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1 Bayesian variable selection

1.1 Zellner’s g-priors

posterior mean

Y = X3 +e,

var(e) = o

2

p(Blo) ~ N(b,go?(X'X)™H)

P(Blo*, D) ~ N(
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as g — 00, prior becomes flat, posterior mean becomes OLS. Var becomes same

as OLS.



1.2 setting g using empirical bayes

e Let p(D]g) be the marginal likelihood

e no need prior for g.
JeB = arg ngaxp(D|g)

why this is called EB 7

p(Dlg) = / (D18, 0%, g) p(B. o%|g)dBdo®

likelihood

So marginal likelihood integrate out other parameters.

(1+9)°
D
where d = —"_;_p and m = ”T’l
d—m(1— R?
g = max{ ml - F)

(m—d)(1— R2)70}
e need R? > 2. problematic if R? ~ 0.

n—1"

e Asn — 00, § =

1.3 Spike and Slab priors

Let v be a vector of indicators, where v; = 0 iff 5; = 0.
The “working model” is
Y =X,8,+e¢

We can consider priors

p(By,0%,7) = p(B,|o”,7)p(a*7)p(7)

p(Bylo,v) ~ N(0,90* (X, X)), ploy) x 1/0?

This prior makes log o uniform.
p(ri=1)=m,
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1.4 marginal likelihood
The likelihood is
Y — X5,

p(Y’ﬁ770277) X exp(— 202

)

p(Yly) ocp(Y,y) = / p(Y, B, 02,7)dB,do?

_ / P(Y |8y, 0% 7)p(Bs, 0%, 7)df o

oc (1+g)~"28 (7)™
where ¢ =), 7; and
9
SH) =YY - —=—Y'PyY
() 1+g X,

The posterior is

pOIY) o (19 *8(0) " [T (1 = m)

® g— 00 R
S() = Y = X, Byaisl’

S(v) encourages more complicated model. Yet, (1 + ¢)~%? encourages simpler
model.

e g— 0

p(Y|Y) o prior(y)

1.5 Gibbs sampler

e initial value for

e successively generate from p(v;|Y, v;z)

p(vlY, vji) o< p(Y|7)p (i)

where p(y;) = 77" (1 - m,)!~



1.6 Laplace Approx
1.6.1 BIC

If equal priors are used, then max posterior is the same as max p(D|v), the model
likelihood. Max it can be approximately solved using Laplace approximation.
In general,

p(Dly) = / p(D, 6, 1)do,

We now expand p(D, 6, |y). Write

p(D,0,]7) = exp(ln(7,05))

We have ) 1 ) )
(7, 0y) = 1n(7,0,) — 5(87 - QW)TH(QW —0,)
where
H, = Vil (1,6,)-
So

A 1 N .
p(Dly) = exp(ln(7,6,)) / exp(—5 (0 = 0,)" H (6, — 0,))do,
= exp(ln (7, 6,))(2m)2| H,|7/? = p(D, b, |v)(2n)¥? H,|~\/?

p(DI0., 7)p(0,]7) (2m)/2| H,, |~/

where ¢ = dim(6,)
So MLE for model selection is max, log p(D|y), which is approximately max

A A 1
log p(D|6,,,7) + log p(0,|v)(2m)?/? — 5 108 |1

Note p(6,|y) does not grow with n, H, = n % h for some h so |H,| = n|h|. But
log p(D|6,,~) grows with n, so dropping those do not grow with n,

max log p(D|6,, ) — g logn

So this is BIC, which is approx posterior model. It requires p(6,|y) does not grow
with rate n.



Alternatively, use bayesian,
i q
p(y|D) < p(7)(log p(DI0y, ) — 5 logn)

1.7 Bayesian predictions

e We are interested in predicting y in regressions, given training data D = (X,Y)
and Zpew

Posterior
P<y|D7xnew) - /p(y|D7Baxnew)p(5|paxnew)dﬁ

_ / (Y18, Tnew)p(BID)dB

Suppose p(y|B, Tnew) = N(Znew; o), and p(B|D) = N (4n, £n)
Then
P<y|Da xnew) - N(xnewﬂn; O'y)

where

T

2
Oy = 0" 4 Tp oy 2nTnew

Assuming o2 known.

this is homework

e With model averaging

P(YID, ) = / P(y|M, D, o) P(M|D)dM

1
~ E Z P(y|M27 D7 znew)

where M; follows from posterior

2 EM

Dempster, laird and Rubin (1977)
dealt with latent variables, or missing data



2.1 The idea

e Suppose we have observed data X. We also have latent variable Latent, or
missing data.

The complete data is (X, Latent), whose joint distr depends on unknown pa-
rameter 6.

e If we knew Latent, then the full likelihood is
Leompiete(Latent, 8) = p(X, Latent|f)

then estimate 6 is just MLE.

e But we do not know W. The idea is to replace Leompiete Dy its expectation with
respect to Latent, which is conditional posterior

p(Latent| X, 6)

Treating Latent is “parameter”, this is Bayesian.

Assume the conditional distribution known:

p(Latent| X, 6)

e The EM:
E-step: at 5 + 1 step, compute

Flog Leompiete(Latent, 8)

as a function of §. The expectation is wrt p(Latent|X, 67)
M-step: estimate 6:

07 = arg max E? 1og Leompiete( Latent, 0)

e The EM algorithm can be sensitive to the choice of the initial point

2.2 The math behind EM

e [deally we want to max the marginal likelihood
p(X10)

7



We now look at the E step in detail.

E710g Leomplete(Latent, 0) = log p(X|6) + B(6,67)

e Proof:

E’10g Leomplete(Latent, §) = /p(latent|X, 67)log p(X, Latent|0)d Latent

= /p(lmfenﬂX, 67) log(p(Latent| X, 0)p(X|0))d Latent

= /p(latent|X, 67 log p(Latent| X, 9)dLatent+logp(X|«9)/p(latent|X, 67)dLatent

N J/
-~

B

= B(0,67) + log p(X|0)
e The M step: use B(67), so

eIt = max E710g Leompiete(Latent, 0) = max B(,67) + log p(X|0)

07! ~ maxlog p(X|0) + B(67,67).
e logp(X|#”) is monotonically increasing:
10gp(X|9j+1) _ Ej(9j+1) _ B<9j+1;9j> > Ej(‘gj) — B<9j+1;9j>

= logp(X|0") + B(#,67) — B(6*";¢)

-~

>0

in fact o ‘ .
B(67,67) — B(6";67) = K L(a||b) > 0

where
a = p(latent| X, 67), b= p(latent|X,6"+)



2.3 Example in linear regression

2.3.1 Missing one parameter

Y:Xlﬁ—f—XQb—f—@, GNN(O,]_)

where we treat b as “latent variable”, or “latent data”. We only interested in

e full likelihood

assume prior independence :
p(D,b]8) = p(D|b, B)p(b|3) = p(D|b, B)p(b)

as a function of 3.

e posterior p(b|D, %) : this is the conditional posterior of b
The expected log likeihood

El(p) = E*(log p(D[b, 8) +log p(b)) = E*log p(D|b, 5) + ¢
where E* is wrt p(b| D, 87).

e For Gaussian model

suppose ¢ = 1 and g-prior with prior zero mean,
P(B,b|D) ~ N(cOLS, c(XTX)™)

where ¢ =

then

9
g+1°

p(b|D, B) ~ N(p, %)
which is conditional normal from multivariate normal.

e The algorithm:
E step:
1
EI(8) ~ = Y logp(D|,by, B)
b

where b, ~ p(b|D, 37), which is marginal posterior



M step:
BT = ar ming Y — X168 — Xoby|?
g B - H 1 2b||

(XT X)X (Y — Xob) = 3

where b is posterior mean from p(b|D, 57) .

2.3.2 Missing data

Y=X3+e

Suppose some Y are missing, so
Y = (Yo, Yn)

e full likelihood

p(Y|X, 8) ~ normal

e posterior p(V;,|Y,, X, 37) = p(Y;,| X, 37) because data are iid conditionally on

X.
To see this:
p(Y |Y X /8.7) _ p<Ym7}/O|X7 5) o (27T0'21)m+o eXp(_# El(yz - X15)2)
m|Loy <\, p(X/O‘X7 B) (271.;.2)0' eXp(_# Zieo(yi - Xzﬂ)Q)
1 ’ |
~ (2mo?)m exp(—5—5 D (v = XiB)*) = p(Yul X, ) = N(X ', 0%)
iEm
e [ step:

Elog p(Y, Yl X, 8) = / (Yo X, 57) log (Y, Yinl X, B)d Yo

=~ [ Pl 5) 3 = i,

7

== /p(Ym|X> ) Z(yz — @if)*dY, — Z(yz — ;) /p<Ym’X7 B)dY,,

1Em 1€0

10



— =5 [ sl 80— 8P~ Y~

iEm 1€0

== > Bl = @)’ X;, ] = Y (s — wiB)°

em 1€0
Where Y; ~ p(yz|x27ﬁj) = N(xZ/BJa 02)
Note that the first term is

D Bl —mif)*1 X0, ] = 3D BIY; — i + 2 — 2B, 67

iEm 1EM
— T}’LO’2 —f- Z(l’zﬁ] — $16)2

iEm

So .

Elogp(Yo, Vil X, 8) o = > (yi — :8)* = Y _(x:f) — 2;8)”

€0 iEm

The algorithm:

M step:

B = argmin y (g - 2i)* = ) (v — i)’
€0 1EM
solution: let W = (X7X, + X X,,)"' X’ X,, and 3, = OLS using (X,,Y,)
only
B = (I =W)B, + Wp

=(1-W) Z WG, + W5

k=0

When X X,, = O(X[X,), i.e, [[W| < 1, not overly many missing, then
BIt1 — B, using missing data only

11



3.1

Gaussian mixture models

Mixing densities

To model an unknown pdf p(zx), use
> plalk)uwy,
k

where wy, is weighting, and p(z|k) is a collection of known pdf. To ensure this
is pdf, weighting are negative and sum to one.

each p(z|k) is known up to a parameter, so write

k

We assume
p(xlk,0k) ~ N, o7)

The goal is to estimate 6y, wy

“missing data problem”:

Each observation, X1, ... Xn, is drawn from one of these K distributions, but
we are not told from which one.

wy, provides the probability that a sample has been drawn from p(z|k)

We assume

zir = 1{x; is processed by model k}

For each i, z;; = 1 only for a single value of k and zero for the rest.
Now we still observe z; for i=1...n.

For each X, we do not know which model it is from , nor do we know these
model ys.

Here
Wy = P(Zik = 1)

12



o [ step
(i) Full likelihood

p(X, Z|8,W) = [T TTlwe (s g, o)
) k
logp(X, Z|0,W) =) _ zix[log wi + log N (33 iy, 7]
ik

(i) Now p(zu| X, 87, W7) is , assuming independence over i,

(Zik, 2|0, W) p(xi|zik, 0, W)p(231:|0, W)

p
. e . . pu— —
p(zik| X, B, W) = plzik| i, 6, W) p(zi]0, W) p(;|0, W)

_ N (s powy o) p(2in |0, W)
Soa N (i pa, o3)wy

So S
N<xi; ﬂia Ui)lUi

> i< N(yis 2l 0, 09)w)

(iii) E-step

EV(0,W) =Y E’(z)[log wi + log N (33 iy, 7]
ik
o M step:
max E7(0, W) wrt 0,0, W
(i) First solve W7+t :

maXZEj(zik)logwk Dowy > O,Zwk =1

ik

k n

A 1 ,
wtt = Z E7 (zy,)

(ii) Solve for u, o

13



For each k,
ijl = arg maxz Ej(zik)[log N(wz‘; P, U}?)]

which is weighted MLE, each observation is weighted by E7(z;)

Taking derivative, get A
Mjﬂ _ > B (zin)wi
g > B (i)
(iii) solve for o7 "'

Still weighted MLE

vt _ i B G (i — )
i B (zir)

3.2 Mixing regressions

e Consider for k=1... K
Yk = 0?&: +e

2

with common x. also var(ex) = 0° is common

Then under normal,
yr ~ N(270, 0?)

e We assume

zir = 1{x; is processed by model k}

This means: z;; = 1 if
yi = Orr; + e

For each i, z;;, = 1 only for a single value of k and zero for the rest.
Now we still observe (z;,y;) for i=1...n.

For output Y, we do not know which model it is from , nor do we know these
model ys.

e Consider a mixture model

p(y‘ea g, W) = Z wkN(y> xTeka 02)
k

14



We treat Z as latent variable, and apply EM.

Here

e E step
(i) Full likelihood

p(Y, Z|5.W) HH [wi N (yi; 27 6, o))

logp(Y, Z|B,W) = z[logwy, + log N (yi; x] 0, 0°)]
ik

(ii) Now p(zu|Y, X, 87, W) is

Ziks Yilzi, 0, W il i, zig, 0, W)p(2ik|2i, 0, W
P(Zik’Y, Xaﬁaw) :p(zik\yi,%,ﬁ, W) = p( kY | ) = p(y | u )p( k’ )

o N(yzy x@T‘ng 02)p<zik|xi7 97 W)
Xy N(ysalba, 0%)wy

So S
N (yi; 2] 0], 07wy,
J

Ei(zg) = Plzg, = 1Y, X, 7, W9) = —t
>a<x N(yis 2l 0, 09wy

S0
(iii) E-step
EN@,0,W) = Z E7 (z)[log wy, + log N (ys; 77 0y, 02)]
ik
o M step:
max E’(0,0, W) wrt 0,0, W
(i) First solve W7+t :

maxZEj(zik)logwk Dowyg > O,Zwk =1
ik

15



3.3

F n

, 1 ,
w Tt = Z E7 (z,)

(ii) Solve for 6,0
For each k,
0" = arg max Z E (zi,)[log N (ys; @] O, 0]

which is weighted MLE, each observation is weighted by E7(z,)
Taking derivative, get

07 = (XTI X) ' XTI,y
HW: find T';,

(iii) solve for ¢t

Still weighted MLE
X 1 ) )
j+1:_§:E] ) 4_9]—&-1'2
o n — (sz)(yz k ‘rZ)

Mixture of experts

We have K learners, fi, ..., fx, each called “expert”.

For example, f; = 6] x. so each expert is a linear regression model

Each expert is associated with a gating parameter, or weights:

wi.. WK

The “mixing of learners” are

Zwszk
I

The mixture regression is an example

fe(z) = N(270, 0?%)

16



e In the general case, the gatings are also functions of the input variables.

Then the “mixture of experts ” is
> gu(x) fi(x)
k

where we replace the new notation ¢ for w, as “gates”

e Here we parametrize gi(x), by for example,

4 Gaussian process: modeling the regression func-
tion

Y =f(X)+e, e~ N(0,07)

4.1 Reproducing Kernel Hilbert Space

e kernel function

K(z,x;) = cov(f(z), f(z'))

(1) Gaussian kernel
2 — ||
2c

)

exp(—

(2) quadratic kernel

(14 flz—2'[?)""a>0

(3) Ornstein - Uhlenbeck Kernel
(4) Linear kernel

/
T *xX

which is not stationary (as function of z — z’)

e PDS K: for any x;...xx

17



(K (i, 25)) nxw

is symmetric and semi-positive definite

The kernel helps to shape a Hilbert space
Proof
Step 1:

Define a space
M
H={) a;K(z;,.):acR" MeR,zecx"}
i=1

Step 2: Inner product on Hy:

For any two functions in Hy:

f() = Z%K(%, D, g() = ijK@i, )

f is determined by the choice (a, z); g is determined by the choice (b, y).
Define
Mg
< f7 g >= Z Z aiij(xia y])
i=1 j=1

Then the norm

Ifl% =< f.f>=0
because K is PDS.
It is also easy to check the inner product is linear

Step 3: completeness: Hj is not complete yet, but we can build a space Hy C H,
so that Hy is dense in it. So H is complete and is Hilbert.

any Cauchy sequence converges to an element in H
Step 4: reproducing property:

for any

fQ) = Zaﬂ((mi, )

18



any y € X

Now consider g(.) = K(y,.) by definition,

M

<y >:ZaiK(90i7y)

i=1

So we have proved
fly) =< [ K(y,.) >

Mercer’s theorem: if K(.) is semipositive definite, as a kernel of a linear oper-
ator T'

(Tg)(w) = / K (1, 5)g(s)ds

Then T has eigen-decomposition A;, ¢;, so that
K(w,5) =Y Ao (w)e;(s)
j=1

Then truncate at J
K(w,s) = ¢p(w)" diag(\)g(s) + r(w, s)
Thus the covariance kernel matrix
K(vi,25) = ¢ Aygj + 135

the matrix -
K = ®A;9T + R~ T
where R ~ 0.

So the covariance kernel matrix is approximately low rank

19



4.2

Gaussian process

e A random process,

4.3

{9(Z,t) :t €T}

indexed by t, is called a Gaussian process (GP) if for any finite number of
points, t1... tM, the joint distribution

9(Z,t1)...9(Z, trr)

is Gaussian

covariance function

K(z,z;) = cov(9(Z,z),9(Z,x"))
It is stationary if Fg(Z, x) does not depend on x, and covariance function is

a function of x — 2.

Predictive density

Suppose in the regression,

y=f(X)+e e~N(0,0°)

f is a zero mean gaussian process conditionally on X1..Xn, in the following
sense:

[f(X): X € X}
is GP, indexed by X.

9(Z,t) := f(X)

where Z = f, which is random; t = X, which is fixed index. So the randomness
comes from f, while X is held as fixed index. So this is a Bayesian definition.

Then conditionally on X
F = f(X1)...f(X,)

is zero mean, covariance function K (X;, X;).

20



e For predictions, suppose we have a new ¢,

The goal is to find
p(ynew |Y7 X? xnew)

e Method (1)
Let F = (f(znew), F)’
Let Y = (Ynew, Y'). Supress the conditions on X, e, the goal is to find

p\a_/) = p(Y|x7xnew)

where p| means conditional on X, Xnew.

We know
|F) ~ N(F,o”I)

n(Y
p|(F) ~ N(0,K(n+1))

So py(Y) is also normal.
E(Y)=EE({Y|F)=EF=0
Var(Y) = EVar(Y|F)+ Var/E(Y|F) = 6*I + Var|(F) = o°I + K(n +1)

Hence yew|Y, X, Xnew is also Gaussian, because the joint is Gaussian. Let

roen = (M )

The mean is
Yio(o? + K(n))~ 'Y

The variance is
o+ M

M = k(new) — X13(0* + K(n)) '3y

e Method (2)

p(ynew’Y’u X7 xnew) = /p(ynew’F7 Y? X7 xnew)p(FD/u X7 xnew>dF

21



(a) p(FIY, X, Zpew) < p(F|X, Xpew)P(Y|F, X, Xew) = N(F;0, K (n+1))N (Y5 F, 0°I)

1_ - 1
o exp(—éFTK(n +1)7tF) exp(—272||Y — F||?

(b)

_ 1
p(ynew|F7 Y, X7 xnew) = N(:ynew; f(xnew)a 02) o8 exp(_@(ynew - f(xnew»Z)
(c) Together, note that f(xnew) = el F and F = AF, where A = [0, I]

1 1. o _
ﬁ(ynew—f)Q—gFTK(nJrl) 1F—@HY—FH2)CZF

p(ynew’}/a vanew) OC/eXp(_

1 _ 1. 1 _ _
x /exp(— (Ynew — €1 F)?* — 5FTK(n +1)7'F — —||Y — AF||*)dF

202 207
Calculations yield
P(Ynew|Ys X, Tpew) ~ N(mean, var)

for eT = (1,0,...0)
G=I1+0K,, A=(0,1)

e'G1ATY
mean = ==y
o2
var= 1—eTG e

e Matlab
Method (1) GP, with gaussian kernel K(n) = exp(—0.5|z — 2/|?).

4.4 Asymptotics of the predictive density

e To see var ~ O(1/n), the Mercer’s theorem shows
Kn+1 ~ é@T

which is low rank

22



density of Ynew, n=20

0.4 e, :
*
“
0.35 ..' .
: “
N .
LA .
0.3r N .
. S
. S
0.25 N .
.. .
Ll .
o .
021 K %
: :
.
o .
0.15 K .
.. “‘
o .
0.1 o | m— frequentist .
:' m—— |inear pred density,g=n .
o m— GP Gaussian *
0.05F JOSLLLLL GP quadr o,
JOO A GP OU ‘)
0 T LA L
1 0 1 2 3 4 5

Then first apply SVD to show

I+’ K Yt =1— (Ko 2+1)™*

Hence
efGle=1—-e"(Ko2+1) e

Then apply Woodbury’s identity to show (suppose o2 = 1)
(Ko 24+ D lem e (@07 + ) lex1 -l (1 +070) 1oy =1+ 0(1/n)
given the assumption (z is fixed, not random)

Z l¢(:)[I* = O(n)

S0
e’'Gle = O(1/n)

Hence



5.1

Formal proof of this is HW

Objective priors

Jeffreys’ prior
Fisher’s criticism of “uninformative prior”.
If no information on @, then no information as well on h(6).
Example: Exp(\) or Exp(1/6) 7 where A = 1/6.
Say flat prior is on 0: 6 € Unif(0, A). Then

A

POA<t)=P(1/§<t)=P0>t1) = / L T
1/t A A
Hhus dP(A < t) 1
< 2
p)x() dt A ) > /

This is an informative prior.

More generally, Suppose we put flat prior on h. Then

dh dh
p(0) = p(h(0))|—51 = |5
Suppose h(f) = 6. Then
p(0) = 30*
which is INFORMATIVE.

Fisher’s criticism leads to thoughts about what “non-informative prior” means

So what does “informative” means? flat prior is not necessarily “informative”
or “uninformative”.

We need to re-define “informative” or “uninformative”

“finding prior distributions that have a minimal impact as possible on the data
7

“Uninformative” here means:

invariance to reparametrization

24



If there is a method for us to find p(#), then for any change of variable h(f),
and if we start from the beginning using the same method on h directly, we
would get the same thing.

Say, this method gives me priors
Po, Pn

, say 0 = 0(h), then
pulh) = pol6())| S

e Jeffrey prior

p(0) o< /|det1(0)]

I1(0) = —E(V*log L(0)) = E(Vlog L(6))*

It can be proved that for any transformation h(6)

p(h) o< \/detI(h)
Proof. say 0 = 0(h)
then 50
pu(h) = po(B(h))| =

now use Wikipedia, and other examples

Example: N(6,0%). What is the Jeffreys’ prior on 6 ?

Simple calculation yields
1(0,0) = 021,
so the joint J prior is 1/02. This does not depend on .

5.2 Shannon’s information theory

e Entropy X

H(X) = —Ex log p(X) = — / p(a) log p(a)da

25



which represents the chaos of the distr of X.

e Conditional entropy X|Y:
HX]Y) = [ plaly) logp(aly)ds
e Joint entropy decomposition:
H(X,)Y)=FH(X|Y)+ H(Y)

EH(X|Y): after knowing Y, the remaining chaos of X.

So the above says:
total chaos = chaos of Y + remaining chaos of X after knowing Y
XUY =YU[X\(XNY)]

Proof

H(X,Y)= —//p(:v,y) log p(w,y)drdy = —/p(a%y) log p(z|y)dzdy

- [1o8p(0) [ ot y)dady
= — / p(y) / p(z|y)log p(z|y)dzdy — / p(y) log p(y)dy

_ / p(y)H(X|y)dy + H(Y) = EH(X|Y) + H(Y)

e The above equality implies:

EH(X|Y) = remaining chaos of X after knowing Y = X\(X NY)

S0
H(X)— FH(X|Y) = reduced chaos of X, after knowing Y = X NY

= the “Information” about X, carried by Y
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Note that X NY is symmetric, so this is also the same as “the information”
about Y, carried by X. In other words,

H(X)— FH(X|Y) = mutual information

Proof
Note
EH(X|Y) = — / plx, ) log plely)dedy

H(X) =~ / p(z,y) log p(x)drdy

XNY =I1(X,Y):=H(X)-EH(X|Y) = - /p(:v,y) logp(x)dxdy—l—/p(x,y) log p(z|y)dzdy

B s lo p(zly) .
= (1) /p( ,y) log (@) dxdy

_ oV loe PEY)
=) /p( w1 gp(y)p(x)d o

(2) shows symmetry.

e look at (1) again.

I(X,Y) = / p(y)p(aly) log %dmy = By K (plely)||p(x))

recall

Note KP divergence is not symmetric, but mutual information is.

So mutual infor measures how close p(z]y) is to p(xz). The closer, the more
independent (X,Y), the less information.

e If X LV, thenI=0,XNY =0.
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5.3 Reference prior

e Now let
Y=D  X=4¢

1(0, D) = EpK (posterior||prior)) = information about € carried by data

If data has lots of information about 6, posterior and prior are then very far
from each other.

e We want the data to play as much role as possible, and thus we need prior to

be as far from the posterior as possible. This is “uninformative” means.

p(0) = argmaxlim (0, D)
p(d) n

This is known as Reference prior

e Now let us solve it asymptotically

where ¢(0; D) is the pdf of N(MLE,1S), S is inverse Fisher information.

e In the one dim case, This simplifies

det(S(Q))da

~ K (det()11p6) = [ p(6)100 V2

this is max at Jeffrey’s prior.

6 Posterior large sample properties

6.1 concentration rate

Suppose
_ LB)r(8)

J Lu(B)m(B)dp

p(5|D)

We now show that
P(B € B|D) =" 0.
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where

B = {HB - BOH > Tn}
Proof. Let
S LalB)/ LalBo)m(8)d8 s
8 € BID) = 05 =
Let

To = [ L.(B)/Lo(Bo)(5)d
Jz/Ln )/ Ln(Bo)(8)dB

6.1.1 lower bound of J

We now show J is not too small.
This part is hardest, we follow Shen and Wasserman (2001)
Let

O )
V(B) = =Varp, log lz;((%o))

1 LAy
ol =58, )

Kullback-leibler divergence between p(Y|3y) and p(Y|f).
So

Ep.Ku(8) = K(8), Varp, Ka(8) = ~V(5)

Ln(@o)
Ln(B)

7= [ exp(-nt, (3)m(6)d3

= exp(~log ) = exp(—nia(5))

In the normal case,

Y — X3|?
log L =—Cc——
Y — XGol]* Y — X8
Kn(B) = - 2no? + 2no?
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now for some b, — 0,let

K () — K(P)
W, =405 > \/b,
{ 70 vV}
Sn:{ﬂK(ﬁ) <bn7 V(ﬁ) <bn}
set W< and S,, should be “relatively large”:

Varp,(Kn.(8)) 1
sgp Pp,(BeW,) < S%p V(3)b,, " b,

72 [ expent, (9)n(3)as

- /Wcms exP(_n(an)V—( ;)f B V@) expl—nik (8))n(8)d5

> [ ep(en VB V) exp(-nK (9)n(5)d

> / exp(—2nb,)m(5)dS = exp(—2nb,)m(WN S,)
WENnS

= exp(—2nb,)[7(S,) — 7(S, N W,,)]
To look at Ep, w(S, N W,):

Ep,m(Sn N W,) = / (Sn (VW) Lu(Bo)dDy — / / Lesow, ()AL (fo)dD,

= / lges, / Lgew, Ln(Bo)d Dy (B)df3
Note: S,, does NOT depend on data, only W,, does.

/1B€WnLn(50>an - EDn]-{ﬁ € Wn} - PDn(ﬁ € Wn)

So
Ep,7(Sy (W) = / Loes, Po. (8 € Wo)m(8)dS < ——n(8 € S)

nb,
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Hence for some a,,,
Pp, (J < a,m(S,)) < Pp, (exp(—2nb,)[7(S,) — 7(S, N W,)] < anm(Sy))

= Pp, (7(S, N W,,) > 7(S,) — a,7(S,) exp(2nb,))
1 1

<
~ nb, (1 — a, exp(2nb,))

can choose a,, so that 1 —a, exp(2nb,,) is a constant, for example, a,, = % exp(—2nb,,)

Then . 5
Pp, (J > §eXp(—2nbn)7r(Sn)) >1-— o

6.1.2 upper bound of Jg
Method 1

The key proof for posterior convergence is usually based on a “testing technique”
Schwartz (1965). Let E, be a random event, such that E¢ holds with high prob, to
be determined. The usual tradition of the notation is that Ef holds likely, instead
of E,. We hope

Pp, (E,) < small, sup Pp, s(E;) < small
BeB

where Pp, 3 means the probability measure with respect to the data, when the true
value is 3.

Jsy T Jo

p(B € BID) = 7 lg, + 71Eg <lg, + 7 Lge
We need to bound both.
step 1
For 1g,:

Ep,(1g,) = Pp,(Ey)

Hence for some ¢,

1
Cn

For JTBIE%,

En,(Unls) = En.les [ 700 = [ 1, [ 720 r(0) L5000
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/ e / 8)dBdD, = / / g Lo(B)dD, m(3)df = /B Ep, (Ls;)n(8)d

<7(B € B)sup Ep, s(1g:) = 7(B € B)sup Pp, s(Ey)
peB BeB

where Ep, 3 means the expectation with respect to the data, when the true value is

3.

So for some d,,,

1
PDn(JBlE,ﬁ > dn) < W(ﬁ € B) supPDmg(Efl)d—

peB n

step 2
together

J
p(B € BID) < 1p, + 731EC

1
Pp,(Jplg, < dy) =21 —m(8 € B)sup Pp, s(Ey)—

peB dn
1
PDn(lEn < Cn) >1-—- PDn(En)C_
1 2
Pp, (J > §exp(—2nbn)7r(5 ) >1-— o

Hence with probability 1 — m, where m = % + (5 € B) SUPgep PDn,ﬂ(Eﬁ)ﬁ +

dn
(6 S B‘D> < Cn + lexp< 2nbn)7T(Sn)

we need m — 0 and ¢, and d,, as small as possible, so take

nb,, — oo
1
PDn(En) = gcnm
. 1
7(B)sup Pp, s(E;) = gdnm
BeB
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Thus

B
_3mB) exp(2nb,,) sup Pp, g(E;,)

P e pib) < 3 () sen

3
= P, (En) +
m

step 3 let us now find F,. can set
En = {118 = foll = ku}.
and note |5 — fol| > 18 — Boll — |5 — 5]

sup Pp, s(Ey) = sup  Pp,g([|B—Foll <kn) < sup  Pp, (|6 — Boll < kn)
BeB 18—Bol[>rn 18—Bol|>rn

< swp Po (BBl >ra—ka)= sup Pp, (|5 - Bl >rm/2)
I1B8—BolI>rn 18—Boll>7n

set k, =1,/2,
So need exponential bound. For normal model,

Pp,(Ep) + Po, 5(|8 = Bl > r./2) < Cexp(—Crr?)

then
B
P(p € B|D) < EC exp(—Cnr?) + 137?#0 exp(—Cnr? + 2nb,)
m smm(Sh)
let o
2b, = —r2
2
3 3n(B) C
P(B € B|D) < EC exp(—Cnr?) + WC’ exp(—Enri)
let nr? — oo, suppose
7(Sp) exp(%m’i) — 00

m~! — oo slower than 7(S,) exp($nr?)
Method 2 recall

o(p € BID) = 2
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Ln(B)
Ln (o)

alternative bound for

Ly (Bo)
Ln ()

— exp(— log ) = exp(—nK,(5))

h:LMWWMmﬂwwzéwmw&@W@w

Suppose for a,, — 0,

Then on the event infgep K,,(8) > ay,

Jp < exp(—na,)m(B)

Also,
1 2
Z _ >1__=
Pp, (J > 5 exp(—2nb,)w(S,)) > 1 b
Hence ( ) n(B)
exp(2nb,, — na,)w (B exp(—snay)m

let 2b,, = %an, need

na, — 0o
1
7(Sp) exp(gnan) — 00
key question: what is a,, 7 For normal model,

Y —XG[P | Y - XB)?

2no? 2no?

Kn(ﬁ) -

then a, ~ r,. More general verification of Pp, (infgep K,(8) > a,) — 1, is the
stochastic equicontinuity of empirical process (Ossiander 1987)

6.2 Bernstein von Mises theorem

e The BvM shows the asymptotic normality

34



Recall that the likelihood is

L, (B) = exp(ln(8)).

Consider two expansions

(1) Here 1,,(f3) has expansion

ln(ﬁ) = ln(BO) + (B - BO)IVZTL<6O) - g(ﬁ - ﬁoyjn(ﬁo)(ﬁ - 60) + Rn(ﬁ)

So this looks like a normal likelihood. We now formalize this result.

(2)
0=VI,(MLE) = Vli,(5o) — nJn(Bo)(MLE — o) + 1

So
MLE ~ By + %ano)—lvzn(ﬂo)

This motivates:

Given [, we make a transformation
1

\/ﬁJn(BO)_IVln(ﬁO)

h=+/n(8 - B) -

Equivalently
1 1
p= %h + ?0 + ﬁJn(ﬁo)AVln(ﬁo)/

-~

Tn

We do so , because when [ = BMLAE, h = 0 (in absence of R,). So for a general
[, h measures how far it is from 5y/1x.

The B-v-M theorem: detailed proof can be found from Ghosh and Ramamoor-
thi (2003, Springer)

Let pn(8) = p(B|D).

we consider p, (), but in the new transformation
1 1

S o+ () V() = ()
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we alm to show

pr(h) = N(0, Jo(Bo)™") ~ é(h)

Proof. Define .
Tn - 60 + ﬁJn(ﬂO)_IVln(BO>

then
1

E

h+1T,

T,, looks like MLE.
Use these notation, replace [ by \/Lﬁh + T,

ln(ﬁ) = ln(BO) + (B - ﬁO)IVZn<6O) - g(ﬁ - 60)/Jn(50)(5 - 50) + Rn(ﬁ)

1 1 1 1

- ln(ﬁO)“’(\/ﬁh+Tn_BO)/Vln(50)_g(%h_{'Tn_BO)/Jn(ﬁO)(\/ﬁh—{'Tn_ﬁO)—{'Rn(\/ﬁh_{'Tn)
1, 1
Recall

p(5ID) = = explln(B))(5)

then replace § with \/Lﬁh + 7,

W(\/Lﬁ + T,) exp(w(h))
Cn

pn(h) =

1, h
w(h) = —§h Jn(Bo)h + Rn(% +T,)

where C), is the integration wrt h.
Now we are hoping

r(s + Th) explw(h)
Cn

So we aim to show

exp(—%h’Jn(Bo)h + Rn(% + T



(i) when |h| < M, this is true, note T,, = [y

(ii) when M < |h| < y/n, the LHS can be made smaller than exp(—3h'J,,(5o)h),
which then is small if M is sufficiently large.

(iii) when |h| > y/n. Both sides go to zero.

we only give the intuition up to here.

6.3 confidence interval
6.3.1 MCMC revisits

Metroplis-Hastings

The algorithm:

1. choose a starting /3°

2. generate ¢ from ¢(3’|¢)
3. update 3'*! using

6j+1 _ § pro= p(ﬂja 5)
B pro=1—p(p,¢)

where
o) = min(1. Lo@TW) alzly)
) =i L (o) atole))
dlaly) ~ 5

6.3.2 Large sample property of MCMC confidence interval
Let c,1 and c4o be the upper and lower quantiles of MCMC:

P(caa < B < ca1|D) =0.95

We now show that
P(Cag < /80 < Cal) — 0.95

Proof. let N
mez/pmmw
S Bo+—=
F(bh+ Z=ID) = / p(BID)ds
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Let U, = \/Lﬁ(]n*lVln(ﬂo) (at trueth)

recall . .
=—h —U,

change var to h,

P(3 < o+ —=\D) = F(fy + =ID) = / L pndn~ / o(h)dh

h+U,<s

- /M ¢(x — Uy)d(z — U,) = / N(z; Uy, J, V) da

= P(N (U, J; 1) < s|U,)
let Z = N(0, J,), *
now let 3y + \S/—lﬁ = Cq1, and By + \S/—Qﬁ = Ca2,
0.95 = P(caa < B < ca1|D) = P(B < ca1|D) — P(B < ca2|D)
~ P(N(U,,J;") < si|U,) — P(N(U,,J;") < s3|U,)
= P(Z < st —U,|U,) — P(Z < s5— Un|Uy)
=P(s;—U, < Z < s7—U,|Uy,)
So let us define

which satisfy
P(m2 < Z <ml)=0.95

On the other hand,
P(ca2 < By < ca1) = P(s] > 0,85 <0)=P(U, < —m2,U, > —ml)
= P(m2 < U, <ml)=0.95
suppose U, ~ N(0,J71).
it remains to show U, —¢ N (0, J ). Note U, = \%Jrleln.
1 -1
Var(U,) = J, —Var(Vi,)J,
n

this is true because 1Var(Vl,) = J,
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7 Term project: Estimate the density of SP500
returns

Obtain data from SP500 index, as well as its constituents. It does not matter
whether the panel is balanced, because all we need for each individual stock is its
mean and variance.

Estimate the density of SP500 using three methods. Plot the three in the same
plot

e Use full MoN to estimate index density,
you need to:
(1) give the iteration scheme
(2) plot the histogram with the density
(3) try some number of mixtures

e Use MoN to estimate index density, but assuming oy, i are known, only need
to estimate weights
you need to:
(0) Estimate individual oy, p, from each return
(1) give the iteration scheme for the weights
(2) plot the histogram with the density

(3) the number of mixtures is just the number of stocks used

e Estimate the SP500 predictive density, given the model

YV, =f(Xy)+e, Xi=Yii, e~N(00%

you need to:
(1) 02 is assumed known, simply estimated by sample variance
(2) Use “data” Y1, ..., Yr in the following way:

let
(}/1, ey YT_l)be “X”

(Ya, ..., Yr)be “Y”
Yr be “Xnew”
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To goal is to use the above to get the posterior predict density for Ve, = Y711

(3) Use Gaussian process
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