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Abstract

Machine learning in asset pricing typically predicts expected returns as point esti-

mates, ignoring uncertainty. We develop new methods to construct forecast confidence

intervals for expected returns obtained from neural networks. We show that neural

network forecasts of expected returns share the same asymptotic distribution as classic

nonparametric methods, enabling a closed-form expression for their standard errors.

We also propose a computationally feasible bootstrap to obtain the asymptotic distri-

bution. We incorporate these forecast confidence intervals into an uncertainty-averse

investment framework. This provides an economic rationale for shrinkage implemen-

tations of portfolio selection. Empirically, our methods improve out-of-sample perfor-

mance.

∗We thank Damir Filipovic, Semyon Malamud and seminar audiences at École Polytechnique Fédéral de
Lausanne, Washington University in St. Louis, Wolfe Research.
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1 Introduction

Pension funds, wealth advisors, and hedge funds worldwide employ predictive methods to

forecast asset returns and construct optimal portfolios that aim to maximize client returns.

Recently, machine learning (ML) models have gained prominence in predicting asset returns,

selecting portfolios, and estimating stochastic discount factors, with significant success in

these areas. ML techniques, by capturing complex and nonlinear relationships in financial

data, are particularly well-suited for enhancing portfolio management decisions. For exam-

ple, within the mean-variance portfolio framework, ML methods are increasingly used to

estimate expected returns and (co)variances, often leading to more effective portfolio allo-

cations. The literature consistently demonstrates the effectiveness of machine learning in

these and other applications (e.g., Gu, Kelly, and Xiu (2020); Bianchi, Büchner, and Tamoni

(2021); Cong, Tang, Wang, and Zhang (2021); Kelly, Malamud, and Zhou (2021); Patton and

Weller (2022); Didisheim, Ke, Kelly, and Malamud (2023); Filipovic and Schneider (2024)).

Despite the success of machine learning in asset pricing, existing literature typically

treats ML predictions as point estimates and conducts asset pricing analyses as if they were

true values, overlooking the associated uncertainty. This is surprising, given that uncer-

tainty about input parameters is widely acknowledged as critical in portfolio selection (e.g.,

DeMiguel, Garlappi, and Uppal (2009)), and Garlappi, Uppal, and Wang (2007) show that

incorporating forecast uncertainty in mean-variance portfolio allocation leads to distinct eco-

nomic insights. However, quantifying prediction uncertainty in ML forecasts, particularly

with neural networks, remains a complex challenge, limiting their broader application in

asset pricing. This paper addresses this gap by rigorously quantifying uncertainty in ML

predictions and incorporating it into portfolio selection, specifically by constructing forecast

confidence intervals (FCIs) for return predictions from neural networks.

We provide two methods for constructing forecast confidence intervals: one based on

closed-form approximations and the other on the bootstrap. A key theoretical contribution

of this paper is our proof that ML-based forecast methods exhibit an asymptotic distribution

independent of the specific ML model used to generate the forecast. For example, the asymp-

totic distribution of neural network forecasts is not specific to neural networks. This implies

that, under appropriate technical conditions, simpler machine learning methods—such as

Fourier series, particularly those with closed-form estimators—can be utilized to construct
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confidence intervals. These intervals can be applied to algorithmically more complex machine

learning estimators, whose confidence intervals would otherwise be intractable. Building on

this insight, we derive an analytic formula for the ML forecast standard error, which is

straightforward to calculate and paves the way for constructing the FCI.

For the second method, we propose a novel k-step bootstrap approach to simulating the

asymptotic distribution of the ML forecast. This method overcomes the substantial compu-

tational burden associated with conventional bootstrap procedures, which require repeatedly

fully training multiple neural networks from scratch. In contrast, the k-step bootstrap, orig-

inally developed by Davidson and MacKinnon (1999) and Andrews (2002), starts with the

previously trained neural network and retrains it for additional k steps on a bootstrap re-

sample. Through the k-step method, a pre-trained neural network can achieve a high level of

training accuracy as quantified by the validity of the FCIs’ coverages, even if k is relatively

small.

We verify that both methods give correct asymptotic coverage probabilities for ML fore-

casts of expected returns, while effectively addressing cross-sectional dependence. Empiri-

cally, the two methods produce qualitatively similar results. We recommend that researchers

compare the two as robustness check. In some applications, it may also be prudent to fol-

low a conservative approach and use the larger of the two standard errors. Furthermore,

through extensive simulations, we demonstrate that alternative bootstrap approaches, such

as bootstrapping across assets or jointly across assets and time series, fail to produce a valid

forecast confidence interval for machine learning forecasts.

In the second part of the paper, we apply our methods for quantifying estimation uncer-

tainty to two standard problems in portfolio selection. We adopt the view of an uncertainty-

averse (UA) investor. In the first application, we build on the framework introduced by

Garlappi et al. (2007): we treat the expected return in the classic mean-variance optimiza-

tion problem as an unknown parameter varying within a confidence interval. Then, we find

the optimal portfolio weights for the worst-case scenario of the mean-variance utility, varying

the mean within the given interval. Extending the characterization by Garlappi et al. (2007)

to the machine learning context, we apply the proposed neural network FCI to forecast the

expected return of the UA-portfolio. We show that the solution can be formulated as an

ℓ1-penalized regression problem. Our results establish that portfolio weights exhibit a “non-

participation” region for risky assets, meaning an uncertainty-averse investor may choose
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not to invest in a risky asset if uncertainty about the asset’s expected value exceeds a cer-

tain level. In addition, this region expands as the investor’s uncertainty about the expected

value increases. In contrast, the non-participation region is not present in the standard

mean-variance approach which treats the expected returns as known. This insight offers a

clear rationale for employing shrinkage approaches in portfolio selection, as developed by

Ao, Li, and Zheng (2019) and Kozak, Nagel, and Santosh (2020). Empirically, the behavior

of UA-portfolio of individual stocks aligns closely with our theoretical characterization, and

generates higher Sharpe ratios than benchmarks that disregard forecast uncertainty.

In our second application, we focus on selecting assets with statistically significantly

positive expected returns and constructing long-only portfolios. This exercise is particularly

relevant for mutual funds, which do not employ short positions and thus face exactly this

challenge of building long-only portfolios. The forecast confidence interval facilitates the

selection of individual securities with significantly positive expected returns while controlling

the false discovery rate, thereby mitigating the multiple testing problem as documented by

Barras, Scaillet, and Wermers (2010) and Harvey and Liu (2020). Empirically, our long-

only investment strategy, which accounts for forecast uncertainty, yields higher out-of-sample

average returns and similar standard deviations compared to benchmark methods that select

assets without considering forecast uncertainty. In addition, it yields economically significant

alphas when regressing the returns on various risk factors.

Our result holds in a setting where the machine learning model is not over-parameterized.

Recently, Kelly et al. (2021) and Didisheim et al. (2023) derive results about the out-of-

sample properties of portfolios in the context of overparameterized models where the number

of parameters far exceeds the sample size. They show the interesting virtue of complexity

in asset pricing models. Developing forecast confidence intervals in the virtue of complexity

regime is an important question which we leave for future research.

Related Literature

The literature on machine learning in asset pricing has grown rapidly in recent years, such

as Kelly, Pruitt, and Su (2019); Kozak, Nagel, and Santosh (2020); Freyberger, Neuhierl,

and Weber (2020); Chen, Pelger, and Zhu (2020); Baba-Yara, Boyer, and Davis (2022) and

Li, Rossi, Yan, and Zheng (2024). Recently, several papers in asset pricing have made
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progress in the theoretical analysis of machine learning predictions. Fan, Ke, Liao, and

Neuhierl (2022) and Jagannathan, Liao, and Neuhierl (2023) propose the so-called “period-

by-period” ML and developed the FCI around the forecast indices, which relies on estimating

latent risk factors. Period-by-period learning requires training the machine learning model

each period. In this paper, we instead focus exclusively on the popular “pooled machine

learning” approach, which is the most common in forecasting applications and does not

involve estimating factors.1

Allena (2021) is one of the first papers in asset pricing that formally develops confidence

intervals for risk premia predicted using machine learning. He proposes a Bayesian ML

approach that flexibly draws from posterior distributions of the predicted risk premia and

demonstrates that it successfully yields a confidence-based strategy with insightful economic

interpretations. The Bayesian approach leverages the fact that posterior distributions, de-

duced from properly specified priors, can provide valid confidence intervals. In this paper, we

take a different approach. In particular, we do not pursue Bayesian estimation. One of the

two methods we develop for the forecast confidence interval is based on a derived analytic

formula for the ML standard error. Meanwhile, we move to expand the insights obtained

by Allena (2021) and Garlappi et al. (2007). In the context of portfolio selection under un-

certainty aversion, we show that machine learning confidence intervals lead to qualitatively

different investment behavior relative to the standard mean-variance model.

Another strand of literature in asset pricing studies model uncertainty (e.g., Avramov

(2002); Anderson and Cheng (2016); Bianchi et al. (2024)). In this line of research, no stance

is taken on the “correct model,” as the goal is often to achieve robust portfolio allocations and

predictions via Bayesian model averaging. Researchers therefore usually specify a probability

distribution over the different models but do not derive the forecast uncertainty within a

given model.

In theoretical econometrics, research on machine learning uncertainty is still at a very

early stage. There are, however, few papers that rigorously develop the forecast standard

error in the i.i.d. setting. In a seminal paper, Chen and White (1999) set the stage for a

rigorous analysis of the distributional properties of neural network predictions. In the field

of econometric program evaluation, there is a popular method known as “doubly robust ML

inference”, which aims to develop asymptotic confidence intervals for some structural pa-

1Pooled machine learning pools the data over the cross-sectional and time series dimension in estimation.
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rameters in econometric models (e.g., Chernozhukov, Chetverikov, Demirer, Duflo, Hansen,

Newey, and Robins (2018)). These methods develop sophisticated procedures that require

so-called orthogonal moment conditions and cross-fitting, which are quite different from the

typical implementation of ML models in asset pricing. In addition, both approaches rely on

the assumption of i.i.d. (or weakly dependent) data, which is invalid in asset pricing due to

the strong cross-sectional dependence driven by common risk factors. This dependence is at

the heart of the theoretical challenge in asset pricing. This paper proposes new approaches

that explicitly account for this dependence and develops forecast confidence intervals with

frequentist guarantees.

2 Machine Learning Forecast Confidence Intervals

2.1 The Model

Consider the excess return of a portfolio:

zt+1 =
N∑
i=1

wiyi,t+1,

where yi,t+1, i = 1, ..., N denote the excess return for base asset i from t to t+ 1, relative to

the risk-free rate. The portfolio weights wi are assumed to be known at time t, but they may

vary over time. This contains the special case of an individual asset, i.e., zt+1 = y1,t+1, or a

broad market index. At period T , the objective is to forecast the expected excess return of

the portfolio:

zT+1|T = E(zT+1|FT )

where FT denotes the information set up to time T . To do so, researchers observe a matrix

of asset-specific characteristics (features), xt−1 = (x1,t−1, ..., xN,t−1), where xi,t−1 is an d-

dimensional vector of characteristics for asset i at time t− 1, such as momentum, volatility,

financial liabilities. In this setting, machine learning regression, e.g. Gu et al. (2020);

Bianchi et al. (2021) have become a very successful and popular methodology to obtain
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point predictions. ML regressions build on the nonparametric model,

yi,t = g(xi,t−1) + ei,t

with an unknown function g(·) : Rd → R, where ei,t is the error term. The unknown function

is learned by pooling all observed data (cross-sectionally and over time) and solving a least

squares problem:

ĝ(·) = argmin
g∈G

N∑
i=1

T∑
t=1

(yi,t − g(xi,t−1))
2, (2.1)

where the optimal solution is searched for in a function space G that typically corresponds

to a specific machine learning method. Once ĝ(·) has been computed, the expected excess

return is predicted by plugging in the most recent characteristic xi,T and constructing a

portfolio:

ẑT+1|T :=
N∑
i=1

wiĝ(xi,T ). (2.2)

This approach is widely used in both academic research and industry applications, making

it the primary forecasting method analyzed in this paper.

The choice of the function space G corresponds to the specific ML method to forecast

excess returns. For example, neural networks, random forests, boosted regression trees, or

random feature regressions give rise to different G’s. For the purpose of deriving confidence

intervals, we focus on two types of machine learning methods,

G = either GDNN or GB.

Here GDNN corresponds to the use of deep neural network (DNN) functions, which is a

collection of all possible neural network functions with a predetermined architecture —

specifying the width and depth of the layers and the activation functions for each neuron.

Then by minimizing (2.1), we find the optimal neuron biases and weights so that the neural

network function ĝ(·) optimally fits the in-sample data.

Alternatively, the more classic nonparametric regression gives rise to an alternative spec-

ification G = GB, which uses a set of basis functions: Φ(x) = (ϕ1(x), ..., ϕJ(x)) such as the
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Fourier basis. Then, (2.1) searches for the optimal function within a simpler space:

GB = {Φ(x)′θ : θ ∈ RJ},

and the function ĝ(·) is estimated by finding the best combination of the basis functions.

The crucial distinction between GDNN and GB is that the estimators in GB admit a closed-

form representation, whereas GDNN does not. However, GDNN is more appealing in predicting

expected returns in asset pricing leveraging the advantages of sophisticated machine learning

methods, as documented in Gu et al. (2020) and Bianchi et al. (2021). The objective of this

paper is to construct forecast confidence intervals for predictions made with neural networks

GDNN, but it will soon become clear that GB also plays an important role in our construction.

Throughout, we refer to GB as the “closed-form ML”, such as Fourier series regressions, B-

Splines – which are more classic nonparametric regression models.

Despite the great popularity and empirical success of machine learning predictions, little

work has been devoted to understanding the structure and sources of predictability. However,

understanding the structure of the prediction, ẑT+1|T , is crucially important to quantifying

the prediction uncertainty. Recently, Fan et al. (2022) provide a thorough analysis by bridg-

ing between the machine learning model and factor models. They suppose that excess returns

follow a conditional factor model (also see Gagliardini, Ossola, and Scaillet (2016); Zaffaroni

(2019)):

yi,t = αi,t−1 + β′
i,t−1ft + ui,t

where αi,t−1 and βi,t−1 are respectively the “alpha” and “beta” of the asset, ft is the set

of (possibly latent) risk factors, and ui,t is the idiosyncratic return. In addition, suppose

characteristics are informative about factor loadings (betas) and mispricing (alpha), i.e.,

there are functions gα and gβ so that we can rewrite alpha and beta as:2

αi,t−1 = gα(xi,t−1), βi,t−1 = gβ(xi,t−1).

We can thus rewrite the asset pricing model as

2This formulation is formalizing the notion that asset characteristics are informative about risk exposures
which is also documented in Rosenberg and McKibben (1973); Jagannathan and Wang (1996); Connor et al.
(2012); Gagliardini et al. (2016); Kelly et al. (2019).
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yi,t = gα(xi,t−1) + gβ(xi,t−1)
′Eft + gβ(xi,t−1)

′vt + ui,t, (2.3)

where vt := ft−Eft. Both vt and ui,t are mean-zero processes contributing to the error term:

ei,t := gβ(xi,t−1)
′vt + ui,t, (2.4)

then the first term is the exposure to factor shocks, while the second term is the idiosyncratic

shock. Under the assumption of constant prices of risk, i.e. λf := Eft does not change over

time, we can define

g(x) := gα(x) + gβ(x)
′λf . (2.5)

Then indeed, (2.3) can be formulated as the ML model yi,t = g(xi,t−1) + ei,t, with g(·)
and ei,t defined in (2.4) and (2.5) respectively. Therefore, by applying ML regressions within

the context of this model, Fan et al. (2022) show that ĝ(x) is estimating gα(x) + gβ(x)
′λf .

More formally, they show that the ML function has the following (probability) limit:

ẑT+1|T →P zT+1|T =
N∑
i=1

wi[gα(xi,T ) + gβ(xi,T )
′λf ].

This shows that the predictive ability of machine learning regressions arises from capturing

mispricing and risk premia, i.e. both
∑N

i=1wiαi,T and
∑N

i=1wiβ
′
i,Tλf – are key components

of expected returns.

Understanding the properties of the predicted expected portfolio return, ẑT+1|T , is an

essential first step towards understanding machine learning predictability. Studying the un-

certainty of ML forecasts is yet a challenging problem. Most statistical results are developed

for i.i.d. or weakly dependent errors, however in asset pricing this is a tenuous assumption

as explained by Allena (2021): we should expect to see strong cross-sectional dependence.

The source of the cross-sectional dependence can be illustrated through the lens of the

(characteristic-based) factor model. Recall the standard ML model:

yi,t = g(xi,t−1) + ei,t. (2.6)

The errors are strongly cross-sectionally dependent. Take two assets, i and j, then we can
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characterize the covariance of their errors by using equation (2.4):

Cov(ei,t, ej,t) = E [gβ(xi,t−1)
′ Cov(ft)gβ(xj,t−1)] ̸= 0. (2.7)

We expect to see a strong correlation because the assets are exposed to the same sources

of systematic risk. Hence, the regression model (2.6) is not the usual ML model with i.i.d.

errors. This is why new methods are needed to explicitly consider the strong cross-sectional

dependence structure.3 It is essential to stress that accounting for the dependence in the

errors is not purely an econometric challenge. From (2.7), it is clear that we vastly underes-

timate the risk associated with a prediction if we incorrectly assume i.i.d. errors. The Monte

Carlo evidence in Section 2.4 will illustrate that ignoring the cross-sectional dependences

will vastly understate the prediction uncertainty.

2.2 The Intuition of the ML Forecast Error

We now discuss the intuition of our approach to computing the ML standard error. Recall

that the expected excess return, ẑT+1|T , is predicted using either neural networks (corre-

sponding to GDNN) or a closed-form ML method (corresponding to GB). The intuition of our

constructed FCI is based on the following theorem, which is our first main result, showing

that ẑT+1|T has the same asymptotic distribution regardless of which specific ML method is

used.

Theorem 1. Suppose
∑

i |wi| <∞ and Assumption 1, Assumption 2 and Assumption 3 in

the appendix hold. There exists a function ζ∗(·) so that

ẑT+1|T − zT+1|T =
1

T

T∑
t=1

Bt−1(ft − Eft) + oP (T
−1/2), where

Bt−1 :=
1

N

N∑
i=1

ζ∗(xi,t−1)β
′
i,t−1. (2.8)

3Allena (2021) specified a novel prior to account for the strong dependences in the Bayesian framework.
A possible alternative approach is to treat factors as “interactive fixed effects” as in Bai (2009) and explic-
itly estimate them. However, the method in Bai (2009) or Freyberger (2018) does not cover the case of
sophisticated machine learning methods, nor is it the “standard” implementation in the applied forecasting
literature. We will therefore not pursue this approach.
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The function ζ∗ only depends on the joint distribution of (xi,t−1), but does not depend on

whether GDNN or GB are used for constructing ẑT+1|T . In other words, the same asymptotic

expansion holds for ẑT+1|T if the closed-form ML space GB is used in place of GDNN.

In addition, √
TV −1/2(ẑT+1|T − zT+1|T ) →d N (0, 1) (2.9)

where V = 1
T

∑T
t=1Var(Bt−1ft) does not depend on whether GDNN or GB are used to predict.

Hence ẑT+1|T has the same asymptotic distribution for both neural networks and closed-form-

ML.

Proof. The proof is given in Section B.3.1.

The theorem has two important implications. First and foremost, fundamentally, the

asymptotic distribution of ML forecasts does not depend on the specific machine learning

model G in (2.1). In the asymptotic expansion, Bt−1 depends on a function ζ∗(·). Although
the closed-form expression for the function ζ∗(·) is very difficult to derive for neural networks,

it is entirely determined by the quantities of the asset pricing model (2.3), but not by the

specific choice of the ML method, which can be sophisticated machine learning prediction

GDNN (neural networks) or closed-form prediction GB (e.g., Fourier series regression). The

main econometric intuition is that the predictor is obtained by minimizing a regular loss

function – it is the loss function rather than the choice of G that ultimately determines the

asymptotic distribution.4

This insight forms the foundation of our approach to constructing confidence intervals

for the expected return predicted by neural networks. As explained in more detail in Section

2.3, one of the two proposed methods approximates the standard error of the neural network

forecast using an analytic standard error from closed-form ML. The latter is straightforward

to derive due to its closed-form nature.

The second implication of the theorem is that the prediction error Bt−1(ft −Eft) is only
driven by the common factor shocks rather than the idiosyncratic errors. Thus, the rate

of convergence is OP (1/
√
T ), which is much slower than OP (1/

√
NT ) for the usual panel

data models. This aligns with the well-established asset pricing intuition that the factor risk

4Note that this result also allows for small shrinkage in penalized regressions. However, if models are
strongly penalized, as with the Lasso, this induces a shrinkage bias, leading to different asymptotic phenom-
ena Zhang and Zhang (2014).
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premium can only be learned well over time, rather than cross-sectionally, due to the strong

cross-sectional dependence. Therefore, the dominant source of uncertainty comes from the

time series rather than the cross-sectional variation.

Theorem 1 requires three technical assumptions, which are stated in the appendix. As-

sumption 1 is a standard condition about the dependence of the data and the tail behavior.

Assumptions 2 and 3 concern the complexity of the machine learning space. Essentially, it

says that the complexity must be controlled and the models cannot be overparametrized.

This is in contrast to the setting of Kelly et al. (2021) and Didisheim et al. (2023), who

derive appealing features of overparametrized models in portfolio construction. Developing

distribution theory in such a setting is extremely challenging, but interesting and will be left

for future work in theoretical econometrics.

2.3 Constructing ML Forecast Confidence Interval

Throughout the rest of the paper, we denote ẑT+1|T as the expected return predicted by

neural networks, i.e. GDNN. These models are among the most successful in asset pricing,

as reviewed before. The objective is to construct its forecast confidence interval. Each of

the two implications outlined in the previous subsection motivates a distinct method for this

purpose. In the sequel, we introduce these two methods. We then later demonstrate the

usefulness of these methods in asset pricing in Section 3.

2.3.1 Method I: Closed-form ML Approximation

We first introduce a closed-form ML method, building on our main result in Theorem 1.

The asymptotic distribution (2.9) derived in Theorem 1 demonstrates that the asymptotic

variance of ẑT+1|T is the same regardless of whether G = GDNN or GB. This intuition allows

us to approximate the forecast standard error using that of the closed-form ML method,

which is much easier to derive.

For the closed-form ML we set G = GB in (2.1) and use Fourier series to make predictions.

In this case, let Φ(x) be the vector of Fourier bases, and the regression model is:

ĝB(·) = Φ(·)′θ̂, where θ̂ := argmin
θ

N∑
i=1

T∑
t=1

(yi,t − Φ(xi,t−1)
′θ)2.
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Estimators using the Fourier series can be obtained in closed form because of their OLS-

type analytic solution:

ĝB(·) = Φ(·)′(Ψ′Ψ)−1
∑
i,t

Φ(xi,t−1)yi,t,

where Ψ is the NT × J matrix stacking all Φ(xi,t−1). Therefore, we can easily derive its

asymptotic standard error:

SE(ẑT+1) :=

√√√√ T∑
t=1

H ′Φ′
t−1βt−1Cov(ft)β′

t−1Φt−1H, (2.10)

where W = (w1, ..., wN) are the portfolio weights, Φt−1 = (Φ(x1,t−1), ...,Φ(xN,t−1)), and

H ′ = W ′ΦT (Ψ
′Ψ)−1. This is straightforward to estimate by:

ŜE(ẑT+1|T ) :=

√√√√ T∑
t=1

H ′Φ′
t−1êtê

′
tΦt−1H, (2.11)

where êt is the vector of residuals, êi,t := yi,t − ĝ(xi,t−1).

It is important to note that we employ closed-form ML, ĝB(·), only to compute the fore-

cast standard error. The forecast itself, ĝ(·) as in (2.1), is still generated by a sophisticated

neural network. This leverages our result that the two ML predictions have the same asymp-

totic standard error. It is therefore tempting to ask why we should employ more sophisticated

neural networks in the first place. The answer is that the benefits of using neural networks

or related methods do not arise from a smaller standard error, but from fewer constraints

in handling highly nonlinear functions and the capability of approximating larger classes of

asset pricing functions.

To be specific, Theorem 1 shows that for both DNN and closed-form ML predicted ẑT+1|T ,

ẑT+1|T − zT+1|T =
1

T

T∑
t=1

Bt−1(ft − Eft) + oP (T
−1/2).

The remainder error term oP (T
−1/2) captures what is known as “approximation bias”, which

arises from approximating the unknown expected return function g(x) using either machine

12



learning method. While both methods exhibit a diminishing approximation bias, the rate

of decay differs. Neural networks, due to the adaptivity to the intrinsic dimension of the

input features, 5 can flexibly approximate a broad class of nonlinear functions with a rapidly

diminishing approximation bias. In contrast, the closed-form ML (e.g., Fourier series) is

capable of approximating a much narrower class of functions, and its approximation bias

decays at a slower rate as the number of input features increases, due to the well-known curse

of dimensionality. This makes closed-form ML unsuitable for direct use in return prediction.

However, its larger bias does not affect its asymptotic variance, which still provides a good

approximation to the variance of the predicted returns from the neural network.

The following theorem is our second main result, which formally justifies the validity of

ŜE(ẑT+1|T ) as the standard error when ẑT+1|T is constructed using neural networks.

Theorem 2 (Closed-form ML approximation). Suppose Assumption 1, Assumption 2 and

Assumption 3 in the appendix hold, then

ŜE(ẑT+1|T )
−1(ẑT+1|T − zT+1|T ) →d N (0, 1),

where ẑT+1 is obtained from neural networks and ŜE(ẑT+1|T ) is obtained via Fourier series

as in (2.11). Then for a given significance level 1− α ∈ (0, 1),

P (|ẑT+1|T − zT+1|T | < ŜE(ẑT+1|T )× ϵα) → 1− α,

where ϵα is the critical value of the standard normal distribution corresponding to size α.

Proof. The proof is given in Section B.3.2.

2.3.2 Method II: The k-step Bootstrap

We propose an alternative method for constructing FCIs, based on the time-series bootstrap.

The bootstrap computes the critical value by repeatedly resampling from the original data

set and using the quantile of the neural network predictors recomputed from the resampled

data. Unlike the method of analytic standard error, the bootstrap does not involve closed-

form ML methods, and therefore requires weaker conditions.

5See Schmidt-Hieber (2020); Kohler and Langer (2021) and Fan et al. (2022) for detailed discussions on
theoretical advantages of neural networks.
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However, the performance and validity of bootstrap depend critically on how the boot-

strap data are generated. In the asset pricing context, the bootstrap data should properly

capture the primary sources of uncertainty to predicted expected returns. Theorem 1 shows

that the forecast uncertainty is mainly driven by time series variation. Thus, we can clus-

ter in time by applying the wild bootstrap to mimic the sampling distribution of ẑT+1|T .
6

Specifically, let η∗t denote an i.i.d. sequence of standard normal random variables and let

ĝ(·) denote the learned function using neural networks. Define the bootstrap residuals as:

e∗i,t = (yi,t − ĝ(xi,t−1))η
∗
t . (2.12)

We then apply neural networks to the resampled excess return y∗i,t = ĝ(xi,t−1)+e
∗
i,t and xi,t−1

to repredict the expected return, and repeat this step many times. The forecast critical value

is given by the bootstrap quantile of the repeated predictions.

A potential limitation of the bootstrap procedure is the enormous computational burden.

For example, estimating with 100 bootstrap iterations requires training 100 separate neural

networks, one for each bootstrap sample. Fully training these neural networks is computa-

tionally very costly, limiting the applicability of bootstrap-based inference for larger machine

learning models. To address this issue, we propose a k-step bootstrap method for neural

network inference, which significantly reduces computational burden. The k-step bootstrap

was initially proposed and studied by Davidson and MacKinnon (1999) and Andrews (2002)

in the context of making inference for nonlinear models. The idea is that, instead of fully

training the neural network for each bootstrap sample, we only train it iteratively for k

epochs, with a relatively small k such as 10 or 20. This approach takes advantage of the

observation that the fully trained function from the original data, ĝ(·), provides an excellent

starting point for training in the bootstrap data. Thus, for each bootstrap re-sample, we

initialize with ĝ∗0(·) = ĝ(·) and then train the network for k epochs.

The full algorithm is given as follows:

k-step Bootstrap Algorithm.

6In the case of serial correlation, the block bootstrap (Künsch (1989)) or the stationary bootstrap (Politis
and Romano (1994)) can be applied directly in our setting.
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Step 1. Generate η∗t ∼ N (0, 1) independently; generate

e∗i,t = (yi,t − ĝ(xi,t−1))η
∗
t

y∗i,t = ĝ(xi,t−1) + e∗i,t.

Step 2. Train the neural network on the bootstrap resampled data starting from the original

ĝ(·), and train for k epochs. Obtain ĝ∗(·).

Step 3. Repeat Steps 1-2, B times to get ĝ∗
1
(·), ..., ĝ∗B(·). Let q∗α be the 1− α quantile of∣∣∣∣∣∑

i

wiĝ
∗,b(xi,T )− ẑT+1|T

∣∣∣∣∣ , b = 1, ..., B.

The bootstrap 1− α level FCI for zT+1|T is

[ẑT+1|T − q∗α, ẑT+1|T + q∗α].

It is critical to note that we generate η∗t in Step 1, which only varies over time but

not across individual assets. Hence, assets share the same η∗t at each period. This is be-

cause expression (2.8) clearly shows that it is the time series variation that determines the

sampling distribution of the ML model. In contrast, if the bootstrap sample were wrongly

generated, such as independently from cross-sectional residuals by either generating η∗it (re-

sampled idenpendently across time and firms, this corresponds to the standard bootstrap

implementation) or η∗i (resampled indepdently across firms, but fixed over time) instead of

η∗t , it will not correctly capture the strong cross-sectional dependence, and will dramatically

understate the forecast uncertainty. We illustrate this in simulation in Section 2.4.

Theorem 3 formally justifies the proposed bootstrap confidence interval for predicted

expected returns.

Theorem 3 (Bootstrap). Suppose Assumption 1 and Assumption 2 in the appendix hold.

Then for any α ∈ (0, 1),

P (|ẑT+1|T − zT+1|T | < q∗α) → 1− α,
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where q∗α is the 1− α bootstrap sample.

Proof. The proof is given in Section B.3.3.

2.4 Monte Carlo Evidence

We conduct Monte Carlo simulations to assess the constructed confidence intervals, using a

data generating process calibrated to excess return data; the monthly returns of 3184 assets

listed in NYSE and Nasdaq from January 2015 through December 2017 (calibrated period).

Simulated data are generated from a conditional three–factor model, with d characteristics

as follows: for k = 1, ..., d,

xi,t,k =
1

N
rank(x̄i,t,k), x̄i,t,k = 0.7x̄i,t−1,k + 0.5ϵi,t,k, ϵi,t,k ∼ N (0, 1).

The characteristics are generated via AR(1), then normalized by taking the cross-sectional

ranking. Characteristics within asset i have strong temporal dependence over time, but they

are independent across assets. The β-functions are generated as follows:

gβ,1(xi,t−1) = xi,t−1,1xi,t−1,2, gβ,2(xi,t−1) =
1

d

d∑
j=1

x2i,t−1,j,

gβ,3(xi,t−1) = median{xi,t−1,1, ..., xi,t−1,d}.

The three factors are generated from a multivariate normal distribution whose mean

vector and covariance matrix are calibrated from the monthly return of Fama-French-three

factors in the calibrated period. Finally, the idiosyncratic error is generated from a het-

eroskedastic normal distribution: ui,t ∼ N (0, s2iσ
2), and si ∼ Unif[0.1, 0.9]. Here we set σ so

that Median(s2iσ
2/Var(yi,t)) = 50%. Therefore, the idiosyncratic variances are determined

so that the overall signal to noise ratio is fifty percent.

Throughout we fix N = 500 assets, T = 240 periods and d = 80 characteristics. The goal

is to forecast zT+1 := 1
N

∑
i yi,T+1 using a pooled neural network and examine the forecast

distribution using the proposed methods. We train three-layer feedforward neural networks

with 4 neurons on each layer. The training algorithm is Adam with learning rate 0.01 and

conducted over 500 epochs.

To quantify the forecast uncertainty, we compute the forecast standard error of the neural
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Figure 1: Histogram of t-statistics over 1000 simulation replications, and the standard normal
density. The t-statistics are standardized by either the analytical standard error ŜE(ẑT+1)
(top left panel) or the bootstrap interquartile range σ∗ (top right panel). The bottom panels
use ηi and ηit to generate bootstrap residuals.

network predictions, using both of the proposed methods. For method I closed-form ML, we

compute the t-statistic
ẑT+1|T − zT+1|T

ŜE(ẑT+1|T )
,

where the standard error ŜE(ẑT+1|T ) has an analytical form (2.11). Here we use five Fourier

bases for Φ(x). For method II “k-step bootstrap”, we generate the wild residual ηt from

the standard normal, bootstrap 100 times, and implement the k-step DNN bootstrap with

k = 10. Then we compute the interquartile range of bootstrap, defined as

σ∗ :=
q∗0.75 − q∗0.25
z0.75 − z0.25

where q∗α denotes the α-quantile of bootstrap samples
∑

iwiĝ
∗,b(xi,T )−ẑT+1|T , and zα denotes

the α-quantile of the standard normal distribution. Then we also compute the t-statistic
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using σ∗ in place of ŜE(ẑT+1|T ). The interquantile range is a good proxy for the standard

error obtained using bootstrap distribution, which is often used instead of the usual bootstrap

standard error, because the former is guaranteed to be consistent but the latter is not.

The top two panels of Figure 1 plot the histograms of the t statistics over 1000 simula-

tions and the standard normal density function. The t-statistics are standardized by either

ŜE(ẑT+1|T ) (left panel) or σ
∗ (right panel). We see that although there are only 100 replica-

tions, the histograms of the t-statistics fit well to the standard normal density. Hence both

proposed methods for quantifying the forecast uncertainty seem promising.

It is critical to apply the bootstrap guided by theory. In particular, the resampling must

reflect the dominant source of uncertainty, namely the factor shocks from the time series.

To illustrate this, we show the distribution one would obtain if the standard bootstrap were

applied, i.e. the bootstrap is applied incorrectly. The bottom two panels of Figure 1 are the

histograms of the bootstrap t-statistics (standardized by the bootstrap interquartile range),

but the bootstrap residual is generated as e∗i,t = (yi,t−ĝ(xi,t−1))η
∗
i (the bottom left panel) and

e∗i,t = (yi,t− ĝ(xi,t−1))η
∗
i,t (the bottom right panel), where η∗i , η

∗
i,t ∼ N (0, 1). These bootstraps

mistreat the forecast uncertainty as driven by the cross-sectional variation (because η∗i and

η∗i,t both vary across i). Figure 1 clearly shows that the misuse of bootstrap vastly understates

the uncertainty.

3 Applications

In this section, we outline two applications in which the confidence intervals developed

for machine learning predictions can be used. The first one leads to a sparse portfolio

implementation, which features a region of “non-participation” (Dow and da Costa Werlang

(1992)) in portfolio allocation. In this region, the investor does not invest in a risky asset

if the associated uncertainty is too large. In the second application (Section 3.2), we show

how the derived FCI can be used to select asset with significantly positive expected returns

via multiple hypothesis testing. In addition, in the Appendix (A.4), we also study a robust

optimization approach building on Hansen and Sargent (2008).
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3.1 Portfolio Selection under Uncertainty Aversion

In the first application, we apply our developed FCI to portfolio allocation. Classic portfolio

theory assumes that the investor knows the population moments determining her portfolio

decisions. One of the major challenges in operationalizing this theory has been that these

parameters need to be estimated and that estimation errors can often dominate portfolio

decisions. This issue has long been recognized, for example, the early analysis in Klein and

Bawa (1976) and Michaud (1989). These shortcomings have sometimes led researchers to

question whether portfolio theory can be useful for applications as pointed out in DeMiguel

et al. (2009) and spurred a subsequent quest to address some of these shortcomings as in

Jagannathan and Ma (2003); Kan and Zhou (2007); Tu and Zhou (2011); Yuan and Zhou

(2023).

In a seminal paper, Garlappi et al. (2007) introduce a disciplined way to confront the

estimation uncertainty in portfolio selection by introducing an uncertainty-averse investor.

Their formulation builds on a large literature in economic theory such as Ellsberg (1961);

Gilboa and Schmeidler (1989); Epstein and Wang (1994) that carefully distinguished the

effects of risk vs. uncertainty aversion. In the context of portfolio selection, a risk-averse,

expected utility investor behaves as if she knows the expected return and (co)variances.

An uncertainty-averse investor, however, considers estimation uncertainty and integrates it

into the portfolio selection problem. Implementing this approach requires the investor to be

able to characterize the uncertainty, i.e. have a forecast confidence interval for the expected

returns.

Chopra and Ziemba (2013) show that the effect of uncertainty in means on portfolio selec-

tion is much larger than the effect of uncertainty in variances. Our analysis therefore focuses

on the effect of means. A machine learning-based estimation of covariances and their effect

on portfolio selection is left for future research. Indeed, many early studies have struggled

to implement mean-variance portfolio theory because means are notoriously difficult to esti-

mate from time series. In our study, we leverage the benefits of forecasts of expected returns

obtained from neural networks and also incorporate the associated estimation uncertainty.

In the following, we briefly recall the main definitions of Garlappi et al. (2007).

We consider the allocation among R risky assets, denoting their multivariate, conditional

expected excess return as zT+1|T = (z1,T+1|T , ..., zR,T+1|T )
′ and its prediction from neural net-

works as ẑT+1|T = (ẑ1,T+1|T , ..., ẑR,T+1|T )
′. These basis assets may be factor portfolios. In
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addition, we also consider the case in which the basis assets are individual asset returns.

We denote the covariance matrix, ΣT , which can be either for individual assets or factor

portfolios. Throughout, we will denote the portfolio weights, which we aim to solve for as

ω = (ω1, ..., ωR)
′. We can now describe the portfolio selection problems.

The Markowitz (1952), i.e. standard mean-variance (MV) problem is given as:

MV problem max
ω

ω′ẑT+1|T − γ

2
ω′ΣTω (3.1)

where γ > 0 is the coefficient of risk aversion. In this problem, ẑT+1|T is taken as given

without accounting for its associated estimation uncertainty. In contrast, the uncertainty-

averse formulation explicitly considers the estimation uncertainty. It takes a “max-min”

form. It can be interpreted as finding the best portfolio in the worst case for the expected

return, i.e.

UA-MV problem max
ω

min
µ∈FCI

ω′µ− γ

2
ω′ΣTω, (3.2)

where FCI is the forecast confidence interval for the expected return. The forecast confidence

interval takes the following form:

FCI = [ẑ1,T+1|T − q1,α, ẑ1,T+1|T + q1,α]× · · · × [ẑR,T+1|T − qR,α, ẑR,T+1|T + qR,α],

where qi,α is the critical value for ẑi,T+1|T − zi,T+1 under significance level α obtained using

either the analytic forecast standard error or bootstrap. For instance, using the analytic

standard error, we can take

qi,α = ŜE(ẑi,T+1|T )× ϵα,

where ϵα corresponds to the level uncertainty aversion. If the bootstrap is used to obtain a

forecast confidence interval, we can use

qi,α = q∗i,α,
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which is the 1− α quantile of the bootstrap distribution of ẑi,T+1|T . In applications, partic-

ularly when multiple assets are considered, controlling for the Type I error rate for multiple

testing is also desirable. A simple adjustment is the Bonferroni correction, i.e. setting

α = 0.05/R.

While the intuition of problem (3.2) is clear, it may appear hard to solve because of the

inner maximization. Garlappi et al. (2007) characterize each element of the solution as a

function of other elements. Our contribution in this framework, is in the following theorem,

which shows that the UA-MV problem can be reformulated as a ℓ1- penalized optimization

problem, known as Lasso.

Theorem 4. The multivariate UA-MV problem, (3.2), is equivalent to the following adaptive

Lasso formulation:

min
ω=(ω1,...,ωR)

γ

2
ω′ΣTω −

R∑
i=1

ωiẑT+1|T,i +
R∑
i=1

qα,i|ωi|. (3.3)

Proof. The proof is given in Section B.3.4.

This result offers an economic justification for using penalized shrinkage portfolio selec-

tion, as developed by Ao et al. (2019) and Kozak et al. (2020). Furthermore, it justifies

that the penalization parameter should be explicitly chosen as qα,i, the quantile of the ML

forecast error. The following remarks provide additional guidance for implementation in

different cases.

Remark 1. If a risk-free asset is not available, ẑT+1|T,i denotes the raw return. Then the

above problem becomes a constrained adaptive Lasso problem, i.e.

min
ω=(ω1,...,ωR)

γ

2
ω′ΣTω −

R∑
i=1

ωiẑT+1|T,i +
R∑
i=1

qα,i|ωi|, subject to
R∑
i=1

ωi = 1

Remark 2. The problem can be solved with standard software packages. To see this, write

the Cholesky decomposition of ΣT as

ΣT = LL′
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where L is a R×R lower triangular matrix and denote Qα = diag(qα,1, ..., qα,R) be a diagonal

matrix with elements qα,i. Then it is easy to derive that (3.2) is equivalent to the following

adaptive Lasso problem:

min
ω

1

2
∥Y ∗ −X∗ω∥22 + ∥Qαω∥1, with X∗ =

√
γL′, Y ∗ =

1√
γ
L−1ẑT+1|T . (3.4)

If a risk-free asset is not available, the problem is again augmented with the constraint∑R
i=1 ωi = 1. It is well-known that the Lasso solution may be sparse and thus produce

portfolio allocations, for which some (or many) ωi’s are zero.

The ℓ1-penalized formulation facilitates the economic interpretation of the behavior of

uncertainty-averse investors compared to that of mean-variance investors. To gain the intu-

ition, in below we study a simple case of a single risky asset:

max
ω

min
µ
ωµ− γ

2
ω2σ2 subject to |µ− ẑT+1|T | ≤ qα, (3.5)

where qα denotes the (1−α)-quantile for the predicted expected return. Corollary 5 provides

a closed-form solution and allows for a comparison with the mean-variance solution in which

the effect of estimation uncertainty can be seen directly. In the following, we denote (x)+ =

max{x, 0} and sgn(x) as the sign of x.

Corollary 5. The uncertainty-constrained MV problem (3.5) is equivalent to the following:

min
ω

1

2

(
ω − ωMV

)2
+ λα|ω|

and the optimal solution is

ωUA = sgn(ωMV)(|ωMV| − λα)+

where

ωMV =
ẑT+1|T

γσ2
, λα =

qα
γσ2

.

Proof. The proof is given in Section B.3.4.

In the above theorem, ωMV is the classic mean-variance portfolio without uncertainty
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constraints, i.e. the solution to

max
ω

ωẑT+1|T − γ

2
ω2σ2.

The corollary directly illustrates why the UA-MV problem yields possible non-participation.

For a fixed coefficient of risk aversion (γ) and variance (σ2), an investor will choose not to

invest in the risky asset if the estimation uncertainty (qα) is too large. More importantly,

this result provides a direct economic interpretation of the UA-MV problem. The solution

captures investor behavior in which she tests the following null hypothesis:

H0 : zT+1|T = 0.

On the one hand, when she does not reject the null hypothesis, |ẑT+1|T | ≤ qα, the investor

finds the predicted excess return not significantly different from zero as the level of uncer-

tainty is too large. In this case, she will hold no position in the risky asset and ωUA = 0.

Her optimal portfolio is then solely holding the risk-free asset. At first glance, this may seem

like excessively conservative behavior. However, Bessembinder (2018) performs an extensive

empirical investigation of this hypothesis and finds that many stocks do not outperform

treasuries ex-post in a significant way.

On the other hand, when the investor predicts that the expected return of the risky asset

is significantly different from the risk-free rate, which happens if |ẑT+1|T | > qα, she then

starts investing in the risky asset. The decision of whether to short or long the risky asset

(the sign of ωUA) is determined by the sign of ẑT+1|T . However, even in this case, the investor

will still invest more cautiously in the risky asset by shrinking her investment towards the

risk-free rate. For instance, suppose the investor finds that ẑT+1|T > qα, then her allocation

in the risky asset is

ωUA = ωMV − qα
γσ2

> 0.

Instead of adopting the classic mean-variance portfolio, she reduces her allocation to the

risky asset, and the amount of reduction, qα/(γσ
2), reflects her tolerance towards uncertainty,

which is closely linked to risk aversion.

We illustrate the optimal solution to the UA-MV problem in Figure 2. The upper panel

of Figure 2 plots the optional min-max weight, ωUA, against the classic MV portfolio. Here
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we fix the level of forecast standard error (FSE) and thus qα. As we can see, ωUA is zero

for small magnitudes of |ωMV|, i.e., the investor does not allocate towards this asset. The

allocation toward the risky assets starts to increase but with constant shrinkage relative to

the MVE as the latter deviates from zero. The lower panel of Figure 2 plots ωUA as a function

of the forecast standard error for a fixed ωMV. As the forecast standard error increases, her

position in the risky asset decays linearly and eventually becomes zero.

In the case of two risky assets and no risk-free asset, we also provide an explicit solution

and discuss its properties in A.3.
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Figure 2: Mean-Variance vs. Uncertainty Averse (max-min) Portfolio Allocation

This figure shows the uncertainty averse (max-min) solution for the optimal portfolio weight in comparison with the standard
mean-variance portfolio weight. In the upper panel, we hold the level of the forecast standard error (FSE) fixed and vary the
mean-variance weight (ωMV). In the lower panel, we fix the mean-variance weight at 0.2 and vary the forecast standard error
(FSE).
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3.2 Asset Selection

In the second application, we apply the FCI to security selection. The literature often con-

siders long-short portfolios sorted on characteristics or return predictions typically ignoring

short-sale costs. In a recent study Muravyev et al. (2024) obtain implied short-sale costs

from the equity options markets and find that many anomalies are no longer profitable after
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accounting for short-selling fees. Moreover, several major market participants such as mutual

funds are either prohibited from short-selling or do not engage in shorting for other reasons.

Chen et al. (2013) document that fewer than 10% of mutual funds engage in short-selling

and in general do not have large short positions. More generally, and in particular in the

light of the findings of Bessembinder (2018), it is natural to ask whether expected returns

are indeed significantly positive. In an intriguing analysis, he documents that the US equity

premium is indeed highly concentrated and can be attributed to about 5% of stocks. While

it is unlikely that our forecast confidence intervals (or any other method) can extract all

ex-post winners, the use of machine learning FCI, as we describe below, highlights a good

way of finding securities with positive expected returns.

In the following, we consider a long-only mutual fund manager. She needs to build a

portfolio with K stocks. Rather than merely allocating her funds toward the K stocks with

the highest predicted returns, she aims to allocate toward securities for which she has stronger

conviction, i.e. those that have significantly positive predictions. So for each security under

consideration, she conducts a hypothesis test

H i
0 : zi,T+1|T = 0,

versus the one-sided alternative

H i
a : zi,T+1|T > 0

for each i = 1, ..., R, i.e., she aims to detect which stocks have significantly and positively

predicted expected returns. Given that there may be a large number of securities under

consideration, this is amultiple hypotheses testing problem. Alternatively, one might consider

testing if an expected excess return is significantly larger than the transaction costs associated

with trading the security. We leave this extension for future research.7

We compute the t-statistics of the neural network predicted excess return for each asset:

ti =
ẑi,T+1|T

ŜE(ẑi,T+1|T )
.

Let pi denote the corresponding p-value. We then determine a cutoff value c0 > 0 so that

7Jensen et al. (2024) highlight the importance of transaction costs in the context of machine learning
portfolios.
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H i
0 is rejected if pi < c0. The cutoff value should be determined to adjust for the type I

error under the multiple testing setup. One of the widely used multiple testing adjustments

is based on the false discovery rate, defined to be the expected value of F/R, where

F =
N∑
i=1

1{i ≤ R : pi < c0, but zi,T+1|T = 0} =
N∑
i=1

1{H i
0 is falsely rejected}

and

R =
N∑
i=1

1{i ≤ R : pi < c0} =
N∑
i=1

1{H i
0 is rejected}

We follow the Benjamini and Hochberg (1995) procedure, who first sort the p-values p(1) ≤
· · · ≤ p(R) and determine

c0 = p(K), where K = max{i : pi ≤ αi/R}

where α is the desired significance level such as 0.05. Then the false discovery rate can

be controlled to be below α, and is robust to cross-sectional dependence among tests (see

Benjamini and Yekutieli (2001)).

As illustrated by Sullivan et al. (1999); Barras et al. (2010) and Harvey and Liu (2020),

multiple testing is a valuable tool for mitigating data-snooping bias in performance evaluation

and for selecting assets that are both statistically and economically significant. In our

empirical study, we apply the outlined procedure at the individual stock level, where excess

returns are predicted using neural networks. Our results demonstrate that selecting assets

based on ML t-statistics, when adjusted by the forecast standard errors, delivers improved

performance compared to naive selections that do not account for prediction uncertainty.

4 Empirical Analysis

4.1 Data and Implementation

We take the dataset of Jensen et al. (2022) as our starting point. It uses stock returns,

volume, and price data from the Center for Research in Security prices (CRSP) monthly

stock file. Our sample starts in January 1955 and ends in December 2021. The total number
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of stocks is slightly over 23,000 and the average number of stocks per month is approximately

3,663. Following standard conventions in the literature, we restrict the analysis to common

stocks of firms incorporated in the US trading on NYSE, Nasdaq or Amex. Balance sheet

data are obtained from Compustat. In order to avoid potential forward-looking biases, we

lag all characteristics that are built on Compustat annually by at least six months and all

that build on Compustat quarterly by at least four months. In order to mitigate a potential

back-filling bias as noted by Banz and Breen (1986), we discard the first 24 months for each

firm. We impute missing data using the method of Freyberger et al. (2024). Table 4 in the

Appendix provides an overview of the 123 characteristics we employ. We obtain the 1-month

T-Bill rate from Kenneth French’s data library.

Following Gu et al. (2020) we split the sample into 18 years of training (1955 - 1972),

10 years of validation (1973 - 1982) and use the remaining years (1983 - 2021) for out-of-

sample testing. We re-train the model every 12 months and increase the training sample by

1 year, keeping the validation sample fixed at 10 years, but we roll it forward so that the

most recent 12 months are included. For the neural network model, we use a three-layer

feedforward neural network with 32, 16 and 8 neurons on the hidden layers.8

After fitting the neural network, we substitute in the firm level characteristics xi,T , and

predict the individual stocks for month T + 1 as

ŷi,T+1|T = ĝ(xi,T ).

From the previous step, we obtain predictions for each firm i. We then either use the

predictions for individual firms in portfolio selection. We use the expected returns and their

confidence intervals obtained through the machine learning models.

To compute forecast confidence intervals, we implement both the closed-form ML ap-

proximation and the k-step bootstrap. For the bootstrap, we set k = 10, i.e. we re-train the

models on each bootstrap sample for 10 epochs. The closed-form ML approximation uses a

Fourier basis expansion ϕ(x) = (sin(jπx/4), cos(jπx/4), j = 1...3). We then obtain the stan-

dard error for individual assets or portfolios following Section 2.3.1 for use in applications.

8Section A.2 in the Appendix gives an overview of the tuning parameters.
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4.2 Uncertainty Averse Portfolios of Individual Stocks

We implement both the mean-variance efficient portfolio (problem (3.1)) and the uncertainty

averse portfolio ((3.2)) for the 500, 750 and 1,000 largest stocks.9 Throughout, we use a 240-

month estimation window to estimate the covariance matrix using the POET estimator

(Fan et al., 2013). By conditioning on large firms with a 240 months history, we deliberately

create a sample of very large firms to mitigate concerns over small and illiquid stocks. In the

context of cross-sectional anomalies, Patton and Weller (2020) show that transaction cost

play an important role and in the machine learning setting, Avramov et al. (2023) argue

that standard implementations often concentrate the predictability on small and illiquid

securities. Figure 3 plots the median effective normalized size for three scenarios, 500, 750

and 1000 largest firms with a 240-month history. The normalized size ranks the market equity

of all firms each month t, the ranks are then divided by the number of stocks each period so

that the largest firm has a normalized size of 1 and the smallest firm has a normalized size

of 1/Nt, where Nt is the number of firms each period.

Figure 3: Firm Size Distribution our Sample
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Predictions for expected returns are obtained from the neural network model. To incor-

porate estimation uncertainty, we can either obtain standard errors from the closed-form ML

approximation, the bootstrap, or use the more conservative of the two. The latter connects

well with the max-min nature of the uncertainty-averse portfolio selection approach. Table

1 shows the results for the most conservative version of the standard error.10 We compare

9In the early parts of the sample, we encounter a few months in which fewer firms are available. In these
cases, we use all the available stocks with a 240-month history.

10Table 5 and 6 in the appendix show results for the analytical and bootstrap standard error, respectively.
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the UA portfolio with three benchmarks: the mean-variance efficient portfolio (MVE), the

equal-weighted portfolio (EW), and the global minimum-variance portfolio (GMVP). For the

MVE, we use a coefficient of risk-aversion of one (γ = 1). As we are using excess returns,

there is no automatic constraint on the magnitude of the portfolio weights, we therefore

normalize the standard deviation of the in-sample returns to 20% annualized for the MVE

and apply this constant also to the UA portfolios; we apply a different normalizing constant

for the GMVP since the weights are of different magnitude.

Table 1 shows that the MVE achieves an admirable annualized Sharpe ratio of 1.15, 1.07

and 1.16 for the three cases. This is notable since the result is achieved on a set of very large

firms that are likely not subject to large liquidity frictions. It also considerably outperforms

the equal-weighted portfolio and the global minimum-variance portfolio in all cases. The

uncertainty-averse MV portfolio (UA 25, UA 50, and UA 75) often achieves better Sharpe

ratios than the MVE. This is particularly interesting, as these portfolios are not formed to

maximize the Sharpe ratio, whereas the MVE is formed to do precisely that. However, even

a mean-variance investor can often achieve higher utility through the UA portfolios. The

higher Sharpe ratios of the UA portfolios are achieved by reducing the standard deviation

more strongly than average excess returns. Figure 4 shows the cumulative returns for the

case of the 500 largest firms for the six portfolios. We can clearly see that the UA portfolios

decrease less during recession periods, highlighting the mechanism of lower downside risk.

As we increase the confidence level, however, the rate of “non-participation” increases,

resulting in many weights of zero as predicted by our theory. In Figure 5 we show the

empirical analogue to Figure 2 for the case of the largest 500 firms. In the figure we contrast

the weights of the mean-variance efficient portfolio and the UA portfolio for two dates.

Clearly, we can see that the forecast uncertainty varies over time. For the example of

November 1987, we set many more weights to zero in the UA portfolio, whereas we set fewer

weights to zero in March 2021. In addition, we can see that the portfolio becomes more

conservative as we increase the confidence level. Intuitively, the region of non-participation

is proportional to the width of the confidence interval and as the confidence level increases,

the region of non-participation also increases resulting in more weight of zero. Overall, the

plot in Figure 2 demonstrates that the empirical results align closely with the theoretical

predictions of UA-behavior outlined in Corollary 5.
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Table 1: Performance Statistics for Mean-Variance and Max-Min Portfolio (conservative SE)

This table shows the annualized mean, annualized standard deviation, annualized Sharpe ratio, Sortino ratio,

the maximum drawdown, the best and worst months for the mean-variance efficient portfolio (MVE), the

global minimum variance portfolio (GMVP), an equal weighted portfolio and the UA-MV portfolios for the

25%, 50% and 75% confidence level. The columns Minimum Zeros, Median Zeros, Maximum Zeros show

the minimum, median and maximum fraction of the portfolio weights that are set to zero in the UA-MV

approach. The standard error is the maximum of the closed-form ML approximation and the bootstrap

standard error using an estimation window of 240 months. All results are out-of-sample for the period from

January 1983 - December 2021.

Mean (%)
Standard

Deviation (%)

Sharpe

Ratio

Sortino

Ratio

Maximum

Drawdown

Best

Month

Worst

Month

Minimum

Zeros

Median

Zeros

Maximum

Zeros

500 largest first with 240 months history

MVE 30.37 26.32 1.15 0.57 68.49 36.26 -28.30 0.00 0.00 0.00

GMVP 23.88 31.52 0.76 0.35 74.82 39.67 -37.20 0.00 0.00 0.00

EW 10.54 15.29 0.69 0.30 53.58 14.18 -24.29 0.00 0.00 0.00

UA 25 18.89 15.94 1.19 0.60 49.09 22.79 -18.11 0.25 0.39 0.57

UA 50 10.73 8.68 1.24 0.66 27.46 11.83 -10.41 0.55 0.71 0.86

UA 75 4.73 4.28 1.11 0.59 10.97 6.58 -4.12 0.78 0.90 0.97

750 largest first with 240 months history

MVE 31.52 29.44 1.07 0.51 71.14 37.16 -38.59 0.00 0.00 0.00

GMVP 23.58 32.72 0.72 0.32 78.23 40.08 -50.49 0.00 0.00 0.00

EW 10.83 16.01 0.68 0.29 53.80 18.44 -25.72 0.00 0.00 0.00

UA 25 21.35 17.96 1.19 0.62 51.70 27.46 -23.72 0.24 0.38 0.55

UA 50 13.17 11.16 1.18 0.78 26.81 28.96 -11.68 0.53 0.70 0.87

UA 75 7.65 9.35 0.82 0.99 8.99 39.36 -4.06 0.78 0.89 0.96

1000 largest first with 240 months history

MVE 33.89 29.23 1.16 0.56 68.42 37.16 -37.57 0.00 0.00 0.00

GMVP 24.83 32.33 0.77 0.34 84.91 36.92 -45.10 0.00 0.00 0.00

EW 11.12 16.32 0.68 0.29 55.78 19.83 -25.72 0.00 0.00 0.00

UA 25 24.10 17.53 1.38 0.73 45.85 27.46 -22.22 0.25 0.37 0.55

UA 50 15.59 10.66 1.46 1.08 18.72 28.96 -10.19 0.52 0.69 0.87

UA 75 8.76 9.20 0.95 1.30 6.61 39.36 -3.22 0.76 0.89 0.96
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Figure 4: Cumulative Returns for the MVE and UA Portfolio of the 500 Largest Firms

This figure shows the cumulative returns for the mean-variance efficient portfolio (MVE), the global minimum

variance portfolio (GMVP), an equal-weighted portfolio, and the UA-MV portfolios for the 25%, 50%, and

75% confidence levels. The forecast uncertainty uses the conservative approach, i.e., the maximum of the

analytical and bootstrap standard error. NBER recessions are depicted in gray-shaded areas. All results are

out-of-sample for the period from January 1983 - December 2021.
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Figure 5: Portfolio Weights of the mean-variance efficient and uncertainty average portolios
the 500 Largest Firms

This figure shows the weights for the mean-variance efficient portfolio (MVE) and the UA 25 (left), UA 50

(middle) and UA 75 (right) portfolio for two months (November 1987 and March 2012). The weight pairs

(ωMV, ωUA) are shown as blue dots (November 1987) and red triangles (March 2012). The weights are shown

for the case of 500 largest firms with histories of 240 months.
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4.3 Long Only Portfolios

The classic characteristic-based anomalies are typically studied in the form of “high minus

low” zero-investment portfolio. However, many large investors in the market do not engage

in short-selling. Mutual funds are among the largest investors in the US equity markets and

only very rarely enter into a short position. It is therefore of interest if a long-only investor

could also benefit from expected returns obtained from neural networks and if the developed

forecast confidence intervals are useful in their portfolio decisions. We will therefore consider

a long-only mutual fund manager. The manager uses neural networks to obtain predictions

for expected returns and then aims to buy the stocks with the highest predicted expected

excess returns.

We will study three versions of this portfolio strategy. First, the manager conducts

multiple tests:

H i
0 : E[yi,T+1|FT ] = 0,
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versus the one-sided alternative

H i
a : E[yi,T+1|FT ] > 0

for each i = 1, ..., R. Therefore, the manager wants to focus on stocks whose expected

return is significantly positive. In this setup, she uses the developed FCI to test hypotheses

about the expected return predictions from neural networks. She carries out a multiple

hypothesis testing adjustment using the false discovery rate as outlined in Section 3.2. The

fund manager then longs the K stocks with the highest predicted expected returns stocks

that are also significantly positive and forms an equally weighted portfolio. We will refer to

this strategy as “FCI-FDR”.

For comparison, a benchmark method is to conduct multiple tests using a t-test from

average realized returns and their standard error, i.e.

tNi =
ȳi

ŜE(ȳi)
,

where ȳi is the average realized return and ŜE is the conventional standard error. We will

refer to this strategy as “Naive-FDR”. Finally, consider the simplest implementation, where

the fund manager simply goes long the K stocks with the highest predicted expected returns

using neural networks and forms an equal weighted portfolio. We will refer to this strategy

as “Highest-K”. In our application, we will vary the size of the portfolio (K) between 100,

200 and 500.

It has been well documented that the features that are used in the neural network have

good predictive power, and our sample necessarily covers a period during which they were

particularly successful. It is therefore important to focus on relative comparisons. The upper

panel of Table 2 shows the results when all firms are considered as potential investments. We

see that the “Highest-K” portfolio achieves an annualized excess return of about 66% with

a standard deviation of about 49% annually. When we compare the strategy with “Naive-

FDR”, which uses realized returns to assess statistical significance, we see a non-trivial drop

in average returns to 41.39% per annum. Notably, this drop is not accompanied by an equal

drop in standard deviation, so that the Sharpe ratio also drops in comparison. The FCI-FDR

strategy that employs the FCI for neural networks achieves an even higher average return
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with 67% per year with a smaller standard deviation, thus achieving the highest Sharpe

ratio.

As we move from the concentrated portfolio of 100 stocks to a portfolio of 500 stocks,

the average returns are lower. However, when we compare the portfolios among each other,

we see the same ranking, i.e. the FCI-FDR strategy outperforms the other two in terms of

risk-adjusted returns, but the magnitudes become stronger. The return difference between

the FCI-FDR and the Highest-K is now almost 6% per year, with a slightly lower standard

deviation. The Sharpe ratio is thereby strongly improved.

In Panel B, we repeat the analysis, but only for stocks whose market capitalization is

about the 25th percentile at the time of portfolio formation. This selection further mitigates

liquidity concerns. Throughout panel B, we see lower average returns than in Panel A.

However, the standard deviation is also lower, so that Sharpe ratios are still fairly large

and often above one per year. This again confirms previous findings that the majority

of cross-sectional predictability is concentrated in small firms. As we turn to the relative

comparison of the three strategies, we find that the differences are now becoming more

pronounced. The differences in Sharpe ratios now range between 0.2 and 0.3 per year.

Interestingly, in this analysis the Naive-FDR portfolio sometimes even achieves a higher

Sharpe ratio than the Highest-K portfolio. Throughout the FCI-FDR portfolio achieves

the highest average returns. Since FCI-FDR portfolio is not directly targeting standard

deviation, it is not surprising that the standard deviations are sometimes higher than those

of the other two portfolios. However, the FCI-FDR portfolio also generally displays lower

drawdown, which suggests that the higher standard deviation is not due to a disproportional

increase in downside risk.

In the following analysis, we compare the risk-adjusted returns of the strategies. In

Table 3 we show the monthly alphas in percentage for the FCI-FDR, Highest-K and the

Naive-FDR strategies. We again split the analysis between using all firms and only firms

above the 25th quantile of market equity. The results are consistent with and even stronger

than those in Table 2. The difference in alphas between the FCI-FDR and the Highest-K

(and the Naive-FDR) is larger than the return spreads. It is noteworthy that often the

alphas get larger when we add the momentum factor. For example, when we move from the

Fama and French (1993) three-factor model (FF3) to the FF4 (FF3 + momentum) model,

the alpha increases. This happens because many of these portfolios have negative exposure
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to the momentum factor, which in turn has a positive risk premium. For the case of all

firms (Panel A), we see that the difference in alpha between the FCI-FDR portfolio and the

Highest-K is of the same magnitude as the difference in returns.

For the case of the larger firms in Panel B of Table 3, we see that the level of alphas is

lower than in the upper panel. However, many alphas are larger than 1% per month and

still strongly significant – all alphas in Table 3 pass the t-stat 3 hurdle proposed by Harvey

et al. (2016). In all cases, the FCI-FDR strategy achieves higher alphas than the highest-

K strategy. The difference is more pronounced for larger portfolios. The results therefore

underscore the importance of accounting for forecast uncertainties in constructing portfolios.
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Table 2: Performance Statistics for Best K Portfolio (conservative SE)

This table shows the annualized mean, annualized standard deviation, annualized Sharpe ratio, Sortino ratio,

the maximum drawdown, the best and worst months for the following portfolio: “FCI-FDR” is the portfolio

that longs the K stocks with the highest predicted expected excess returns that are significantly greater than

zero. The “Highest-K” portfolio is to long the K largest predicted returns. The “Naive-FDR” is the portfolio

of the K largest predicted returns for which the average realized returns are significantly greater than zero.

In all cases we use the False Discovery Rate (FDR) as a multiple testing adjustment, as outlined in Section

3.2. We vary the size of the portfolio between 100, 200 and 500. The upper panel of the table shows the

results when all stocks are potential candidates for the portfolios. The lower panel considers stocks whose

market capitalization is larger than the 25% quantile of firms’ market capitalization at the time of portfolio

formation. The standard error used in FCI-FDR is the maximum of the closed-form ML approximation and

the bootstrap standard error using an estimation window of 240 months. The portfolios are equal weighted

and all results are out-of-sample for the period from January 1983 - December 2021.

# Stocks (K) Mean (%)
Standard

Deviation (%)

Sharpe

Ratio

Sortino

Ratio

Maximum

Drawdown

Best

Month

Worst

Month

Panel A: All Firms

FCI-FDR 100 67.33 44.48 1.51 1.30 52.16 100.70 -26.44

Highest-K 100 66.98 48.80 1.37 1.13 55.54 100.66 -28.28

Naive-FDR 100 41.39 36.13 1.15 0.77 60.24 89.25 -30.44

FCI-FDR 200 55.19 37.98 1.45 1.23 49.71 96.61 -26.31

Highest-K 200 52.67 42.25 1.25 0.95 58.04 96.08 -29.48

Naive-FDR 200 33.28 29.36 1.13 0.68 57.26 74.03 -30.04

FCI-FDR 500 44.05 31.46 1.40 1.10 42.91 81.51 -26.16

Highest-K 500 38.52 33.01 1.17 0.78 57.00 85.35 -28.42

Naive-FDR 500 25.79 22.67 1.14 0.60 52.18 46.27 -27.76

Panel B: Firm greater than 25% market equity

FCI-FDR 100 29.16 26.69 1.09 0.64 50.07 65.14 -29.18

Highest-K 100 26.91 33.18 0.81 0.45 62.11 75.89 -35.82

Naive-FDR 100 23.89 25.94 0.92 0.46 57.19 51.80 -31.60

FCI-FDR 200 27.16 24.10 1.13 0.62 48.51 41.15 -28.83

Highest-K 200 23.71 27.73 0.85 0.45 60.37 58.67 -34.36

Naive-FDR 200 21.65 22.54 0.96 0.46 54.93 36.25 -29.61

FCI-FDR 500 25.20 23.00 1.10 0.58 47.26 41.15 -28.83

Highest-K 500 20.79 22.34 0.93 0.45 56.22 35.76 -29.08

Naive-FDR 500 19.28 19.79 0.97 0.45 51.01 21.46 -27.50
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Table 3: Alpha for Best K Portfolio (conservative SE)

This table shows monthly alphas in percentage of regression of the excess returns of the three strategies onto

risk factors. CAPM represents the CAPM, FF3 refers to the Fama and French (1993) three-factor model,

FF4 denotes the FF3 model, augmented with the momentum factor (Carhart (1997)), FF5 is the Fama and

French (2016), FF6 adds the momentum factor to the five-factor model, FF6+ adds the short-term reversal

factor. All data are obtained from Kenneth French’s data library. “FCI-FDR” is the portfolio that longs the

K stocks with the highest predicted expected returns that are significantly greater than zero. The “Highest-

K” longs the K largest predicted returns. The “Naive-FDR” is the portfolio of the K largest predicted

returns for which the average realized returns are significantly greater than zero. In all cases we use the

False Discovery Rate (FDR) as a multiple testing adjustment. The procedure is outlined in Section 3.2. We

vary the size of the portfolio between 100, 200 and 500. The upper panel of the table shows the results

when all stocks are potential candidates for the portfolios. The lower panel only considers stocks whose

market capitalization is larger than the 25% quantile of firms’ market capitalization at the time of portfolio

formation. The standard error used in FCI-FDR is the maximum of the closed-form ML approximation and

the bootstrap standard error using an estimation window of 240 months. The portfolios are equally weighted

and all results are out-of-sample for the period from January 1983 - December 2021.

# Stocks (K) CAPM FF3 FF4 FF5 FF6 FF6+

All Firms

FCI-FDR 100 4.53*** 4.61*** 5.24*** 5.11*** 5.58*** 5.38***

Highest-K 100 4.37*** 4.48*** 5.20*** 5.04*** 5.57*** 5.37***

Naive-FDR 100 2.40*** 2.44*** 2.93*** 2.76*** 3.13*** 2.94***

FCI-FDR 200 3.62*** 3.65*** 4.23*** 4.00*** 4.43*** 4.27***

Highest-K 200 3.25*** 3.33*** 3.98*** 3.76*** 4.24*** 4.05***

Naive-FDR 200 1.81*** 1.83*** 2.21*** 2.07*** 2.35*** 2.20***

FCI-FDR 500 2.76*** 2.75*** 3.24*** 2.95*** 3.32*** 3.19***

Highest-K 500 2.21*** 2.24*** 2.73*** 2.56*** 2.93*** 2.77***

Naive-FDR 500 1.28*** 1.26*** 1.45*** 1.34*** 1.48*** 1.38***

Firm greater than 25% market equity

FCI-FDR 100 1.55*** 1.48*** 1.81*** 1.50*** 1.75*** 1.62***

Highest-K 100 1.09*** 1.09*** 1.62*** 1.37*** 1.76*** 1.59***

Naive-FDR 100 0.98*** 0.97*** 1.22*** 1.08*** 1.26*** 1.14***

FCI-FDR 200 1.41*** 1.33*** 1.58*** 1.28*** 1.47*** 1.36***

Highest-K 200 0.93*** 0.91*** 1.27*** 1.05*** 1.33*** 1.19***

Naive-FDR 200 0.87*** 0.83*** 0.98*** 0.86*** 0.97*** 0.88***

FCI-FDR 500 1.26*** 1.17*** 1.39*** 1.10*** 1.27*** 1.17***

Highest-K 500 0.81*** 0.76*** 0.95*** 0.78*** 0.93*** 0.83***

Naive-FDR 500 0.75*** 0.70*** 0.76*** 0.65*** 0.70*** 0.63***
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5 Conclusion

The asset pricing literature has long recognized that machine learning uncertainty should be

explicitly considered in making portfolio decisions. The framework of uncertainty aversion

provides a disciplined way to incorporate such uncertainty about input parameters. This

however requires a (asymptotic) distribution theory of the parameters. Although machine

learning methods have shown great progress in forecasting expected returns, considering

their estimation uncertainty in portfolio choice has remained an open problem due to a lack

of distribution theory.

We introduce new methods to quantify prediction uncertainty in machine learning fore-

casts of asset returns. We show that neural network forecasts of expected returns share

the same asymptotic distribution as classic nonparametric methods such as Fourier series,

enabling a closed-form expression for their standard errors. We also propose a k-step boot-

strap that simulates the asymptotic distribution without repeatedly retraining networks, thus

dramatically reducing computational costs. We then incorporate these forecast confidence

intervals into an uncertainty-averse investment framework. This leads to “non-participation”

in assets when uncertainty exceeds a threshold, providing an economic rationale for shrinkage

for portfolio selection. Empirically, our methods improve out-of-sample performance while

mitigating multiple testing problems.

We have illustrated two areas of application; the distribution theory is general and can be

used in other applications. An interesting analysis might be to consider “real-time” machine

learning in cross-sectional asset pricing as in Li et al. (2024) to examine pre- vs. post

publication effects. We leave this application for future research.
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A Additional Results

A.1 Figures and Tables

Table 4: Overview of the Characteristics

This table gives an overview of the characteristic used in the empirical analysis. They are obtained from Jensen et al.

(2022). We refer to their paper and the companion website for the precise construction and reference to the original paper

that proposed these predictors.

Acronym Description Category In-Sample

age Firm age Intangibles 1965 - 2001

aliq at Liquidity of book assets Intangibles 1984 - 2006

aliq mat Liquidity of market assets Intangibles 1984 - 2006

cash at Cash-to-assets Intangibles 1972 - 2009

dgp dsale Change gross margin minus change sales Intangibles 1974 - 1988

dsale dinv Change sales minus change Inventory Intangibles 1974 - 1988

dsale drec Change sales minus change receivables Intangibles 1974 - 1988

kz index Kaplan-Zingales index Intangibles 1968-1995

opex at Operating leverage Intangibles 1963 - 2008

sale emp gr1 Labor force efficiency Intangibles 1974 - 1988

seas 11 15an Years 11-15 lagged returns, annual Intangibles 1965 - 2002

seas 11 15na Years 11-15 lagged returns, nonannual Intangibles 1965 - 2002

seas 16 20an Years 16-20 lagged returns, annual Intangibles 1965 - 2002

seas 16 20na Years 16-20 lagged returns, nonannual Intangibles 1965 - 2002

seas 1 1an Year 1-lagged return, annual Intangibles 1965 - 2002

seas 1 1na Year 1-lagged return, nonannual Intangibles 1965 - 2002

seas 2 5an Years 2-5 lagged returns, annual Intangibles 1965 - 2002

seas 2 5na Years 2-5 lagged returns, nonannual Intangibles 1965 - 2002

seas 6 10an Years 6-10 lagged returns, annual Intangibles 1965 - 2002

seas 6 10na Years 6-10 lagged returns, nonannual Intangibles 1965 - 2002

tangibility Asset tangibility Intangibles 1973-2001

at gr1 Asset Growth Investment 1968 - 2003

be gr1a Change in common equity Investment 1962 - 2001

capex abn Abnormal corporate investment Investment 1973 - 1996

capx gr1 CAPEX growth (1 year) Investment 1971-1992

capx gr2 CAPEX growth (2 years) Investment 1976 - 1998

capx gr3 CAPEX growth (3 years) Investment 1976 - 1998

chcsho 12m Net stock issues Investment 1970 - 2003

coa gr1a Change in current operating assets Investment 1962 - 2001

col gr1a Change in current operating liabilities Investment 1962 - 2001

cowc gr1a Change in current operating working capital Investment 1962 - 2001
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Table 4: Overview of the Characteristics (continued)

Acronym Description Category In-Sample

dbnetis at Net debt issuance Investment 1971 - 2000

eqnpo 12m Equity net payout Investment 1968 - 2003

fnl gr1a Change in financial liabilities Investment 1962 - 2001

inv gr1 Inventory growth Investment 1965 - 2009

inv gr1a Inventory change Investment 1970 - 1997

ncoa gr1a Change in noncurrent operating assets Investment 1962 - 2001

ncol gr1a Change in noncurrent operating liabilities Investment 1962 - 2001

nfna gr1a Change in net financial assets Investment 1962 - 2001

nncoa gr1a Change in net noncurrent operating assets Investment 1962 - 2001

noa at Net operating assets Investment 1964-2002

noa gr1a Change in net operating assets Investment 1964-2002

oaccruals at Operating accruals Investment 1962 - 1991

oaccruals ni Percent operating accruals Investment 1989 - 2008

ppeinv gr1a Change PPE and Inventory Investment 1970 - 2005

taccruals at Total accruals Investment 1962 - 2001

taccruals ni Percent total accruals Investment 1989 - 2008

prc highprc 252d Current price to high price over last year Momentum 1963 - 2001

resff3 12 1 Residual momentum t-12 to t-1 Momentum 1930 - 2009

resff3 6 1 Residual momentum t-6 to t-1 Momentum 1930 - 2009

ret 12 1 Price momentum t-12 to t-1 Momentum 1965 - 1989

ret 6 1 Price momentum t-6 to t-1 Momentum 1965 - 1989

tax gr1a Tax expense surprise Momentum 1977 - 2006

corr 1260d Market correlation New 1925 - 2015

mispricing mgmt Mispricing factor: Management New 1967 - 2013

mispricing perf Mispricing factor: Performance New 1967 - 2013

ni be Return on equity New 1979 - 1993

ocf at Operating cash flow to assets New 1990 - 2015

ocf at chg1 Change in operating cash flow to assets New 1990 - 2015

qmj prof Quality minus Junk: Profitability New 1957 - 2016

qmj safety Quality minus Junk: Safety New 1957 - 2016

ret 12 7 Price momentum t-12 to t-7 New 1925 - 2010

ret 3 1 Price momentum t-3 to t-1 New 1965 - 1989

ret 9 1 Price momentum t-9 to t-1 New 1965 - 1989

rmax5 21d Highest 5 days of return New 1993 - 2012

rmax5 rvol 21d Highest 5 days of return scaled by volatility New 1925-2015

at be Book leverage Profitability 1963 - 1990

at turnover Capital turnover Profitability 1979 - 1993

cop at Cash-based operating profits-to-book assets Profitability 1967 - 2016

cop atl1 Cash-based operating profits-to-lagged book assets Profitability 1963 - 2014
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Table 4: Overview of the Characteristics (continued)

Acronym Description Category In-Sample

ebit bev Return on net operating assets Profitability 1984 - 2002

ebit sale Profit margin Profitability 1984 - 2002

f score Pitroski F-score Profitability 1976 - 1996

gp at Gross profits-to-assets Profitability 1963 - 2010

gp atl1 Gross profits-to-lagged assets Profitability 1967 - 2016

o score Ohlson O-score Profitability 1981 - 1995

op at Operating profits-to-book assets Profitability 1963 - 2013

op atl1 Operating profits-to-lagged book assets Profitability 1963 - 2014

ope be Operating profits-to-book equity Profitability 1963 - 2013

ope bel1 Operating profits-to-lagged book equity Profitability 1967 - 2016

pi nix Taxable income-to-book income Profitability 1973-2000

sale bev Asset turnover Profitability 1984 - 2002

ami 126d Amihud Measure Trading Frictions 1964 - 1997

beta 60m Market Beta Trading Frictions 1935 - 1968

beta dimson 21d Dimson beta Trading Frictions 1955 - 1974

betabab 1260d Frazzini-Pedersen market beta Trading Frictions 1926 - 2012

betadown 252d Downside beta Trading Frictions 1963 - 2001

bidaskhl 21d The high-low bid-ask spread Trading Frictions 1927 - 2006

coskew 21d Coskewness Trading Frictions 1963 - 1993

dolvol 126d Dollar trading volume Trading Frictions 1966 - 1995

dolvol var 126d Coefficient of variation for dollar trading volume Trading Frictions 1966 - 1995

iskew capm 21d Idiosyncratic skewness from the CAPM Trading Frictions 1967 - 2016

iskew ff3 21d Idiosyncratic skewness from the Fama-French 3-factor model Trading Frictions 1925-2012

ivol capm 21d Idiosyncratic volatility from the CAPM (21 days) Trading Frictions 1967 - 2016

ivol capm 252d Idiosyncratic volatility from the CAPM (252 days) Trading Frictions 1976 - 1997

ivol ff3 21d Idiosyncratic volatility from the Fama-French 3-factor model Trading Frictions 1963 - 2000

market equity Market Equity Trading Frictions 1926 - 1975

prc Price per share Trading Frictions 1940 - 1978

ret 1 0 Short-term reversal Trading Frictions 1929 - 1982

rmax1 21d Maximum daily return Trading Frictions 1962 -2005

rskew 21d Total skewness Trading Frictions 1925-2012

rvol 21d Return volatility Trading Frictions 1963 - 2000

turnover 126d Share turnover Trading Frictions 1963 - 1991

turnover var 126d Coefficient of variation for share turnover Trading Frictions 1966 - 1995

zero trades 126d Number of zero trades with turnover as tiebreaker (6 months) Trading Frictions 1963 - 2003

zero trades 21d Number of zero trades with turnover as tiebreaker (1 month) Trading Frictions 1963 - 2003

zero trades 252d Number of zero trades with turnover as tiebreaker (12 months) Trading Frictions 1963 - 2003

at me Assets-to-market Value 1963 - 1990

be me Book-to-market equity Value 1973 - 1984
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Table 4: Overview of the Characteristics (continued)

Acronym Description Category In-Sample

bev mev Book-to-market enterprise value Value 1962 - 2001

debt me Debt-to-market Value 1948 - 1979

div12m me Dividend yield Value 1940 -1980

ebitda mev Ebitda-to-market enterprise value Value 1963 - 2009

eq dur Equity duration Value 1962 - 1998

fcf me Free cash flow-to-price Value 1963 - 1990

ival me Intrinsic value-to-market Value 1975 - 1993

netdebt me Net debt-to-price Value 1962 - 2001

ni me Earnings-to-price Value 1963-1979

ocf me Operating cash flow-to-market Value 1973 - 1997

ret 60 12 Long-term reversal Value 1926 - 1982

sale gr1 Sales Growth (1 year) Value 1968 - 1989

sale gr3 Sales Growth (3 years) Value 1968 - 1989

sale me Sales-to-market Value 1979-1991
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Table 5: Performance Statistics for Mean-Variance and Max-Min Portfolio (analytical SE)

This table shows the annualized mean, annualized standard deviation, annualized Sharpe ratio, Sortino ratio,

the maximum drawdown, the best and worst months for the mean-variance efficient portfolio (MVE), the

global minimum variance portfolio (GMVP), an equal-weighted portfolio and the UA-MV portfolios for the

25%, 50% and 75% confidence level. The standard error is obtained from the closed-form ML approximation

using an estimation window of 240 months. All results are out-of-sample for the period from January 1983

- December 2021.

Mean (%)
Standard

Deviation (%)

Sharpe

Ratio

Sortino

Ratio

Maximum

Drawdown

Best

Month

Worst

Month

500 largest first with 240 months history

MVE 30.37 26.32 1.15 0.57 68.49 36.26 -28.30

GMVP 23.88 31.52 0.76 0.35 74.82 39.67 -37.20

EW 10.54 15.29 0.69 0.30 53.58 14.18 -24.29

UA 25 19.12 16.38 1.17 0.58 49.87 23.38 -18.11

UA 50 11.21 9.21 1.22 0.65 28.02 13.02 -10.41

UA 75 5.07 4.78 1.06 0.56 11.76 8.03 -4.58

750 largest first with 240 months history

MVE 31.52 29.44 1.07 0.51 71.14 37.16 -38.59

GMVP 23.58 32.72 0.72 0.32 78.23 40.08 -50.49

EW 10.83 16.01 0.68 0.29 53.80 18.44 -25.72

UA 25 20.84 18.70 1.11 0.57 51.51 31.54 -23.86

UA 50 12.36 11.56 1.07 0.65 29.57 34.20 -11.20

UA 75 6.73 8.39 0.80 0.75 14.13 39.80 -4.17

1000 largest first with 240 months history

MVE 33.89 29.23 1.16 0.56 68.42 37.16 -37.57

GMVP 24.83 32.33 0.77 0.34 84.91 36.92 -45.10

EW 11.12 16.32 0.68 0.29 55.78 19.83 -25.72

UA 25 23.48 18.26 1.29 0.67 45.24 31.54 -23.86

UA 50 14.64 11.09 1.32 0.87 29.57 34.20 -11.20

UA 75 7.70 8.24 0.93 0.90 14.13 39.80 -4.40
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Table 6: Performance Statistics for Mean-Variance and Max-Min Portfolio (bootstrap SE)

This table shows the annualized mean, annualized standard deviation, annualized Sharpe ratio, Sortino ratio,

the maximum drawdown, the best and worst months for the mean-variance efficient portfolio (MVE), the

global minimum variance portfolio (GMVP), an equal-weighted portfolio and the UA-MV portfolios for the

25%, 50% and 75% confidence level. The standard error is obtained from the k-step bootstrap. All results

are out-of-sample for the period from January 1983 - December 2021.

Mean (%)
Standard

Deviation (%)

Sharpe

Ratio

Sortino

Ratio

Maximum

Drawdown

Best

Month

Worst

Month

500 largest first with 240 months history

MVE 30.37 26.32 1.15 0.57 68.49 36.26 -28.30

GMVP 23.88 31.52 0.76 0.35 74.82 39.67 -37.20

EW 10.54 15.29 0.69 0.30 53.58 14.18 -24.29

UA 25 21.73 18.84 1.15 0.56 56.70 25.60 -22.33

UA 50 14.36 13.11 1.10 0.53 43.21 15.36 -16.72

UA 75 8.36 8.21 1.02 0.51 27.99 9.44 -10.40

750 largest first with 240 months history

MVE 31.52 29.44 1.07 0.51 71.14 37.16 -38.59

GMVP 23.58 32.72 0.72 0.32 78.23 40.08 -50.49

EW 10.83 16.01 0.68 0.29 53.80 18.44 -25.72

UA 25 23.78 20.85 1.14 0.56 61.43 27.37 -31.66

UA 50 16.73 15.20 1.10 0.57 49.40 28.34 -22.69

UA 75 10.96 11.80 0.93 0.62 31.12 40.69 -14.47

1000 largest first with 240 months history

MVE 33.89 29.23 1.16 0.56 68.42 37.16 -37.57

GMVP 24.83 32.33 0.77 0.34 84.91 36.92 -45.10

EW 11.12 16.32 0.68 0.29 55.78 19.83 -25.72

UA 25 26.40 20.33 1.30 0.64 58.38 27.37 -31.48

UA 50 19.39 14.51 1.34 0.71 46.44 28.34 -21.86

UA 75 13.05 11.34 1.15 0.82 29.40 40.69 -14.57
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A.2 Tuning Parameters

Table 7 summarizes the tuning parameters for the three-layer feedforward neural network.

For the Fourier series regressions we set the Fourier basis functions as (sin(jπx/4), cos(jπx/4))

for j = 1, ..., J .

Table 7: Tuning Parameters for the Neural Network and Fourier Basis

Parameter Values

L2 Penalty λ2 ∈ {1e−5, 1e−3}
Learning Rate η = 0.001

Batch Size 10,000

Epochs 100

Activation Function ReLu

Algorithm Adam (default parameters)

Num. Fourier Basis J = 3

A.3 The UA-MV Portfolio without Risk-free Rate

We now consider the problem where the investor would like to allocate her portfolio into R

risky assets without risk-free rate. Then zT+1|T,i for i = 1, ..., R denote the expected returns.

To incorporate her uncertainty constraints for forecasting the expected returns, the investor

then formulates a multivariate, constrained, mean-variance problem:

max
ω=(ω1,...,ωR)

min
µ1,...,µR

R∑
i=1

ωiµi −
γ

2
ω′ΣTω

subject to the constraint on (ω, µ1, ..., µR):

R∑
j=1

ωj = 1, |µi − ẑT+1|T,i| ≤ qα,i, i = 1, ..., R.

To see how the investor’s uncertainty aversion determines the portfolio shrinkage, we
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focus on the case when there are two risky assets (R = 2), as this allows us to gain the most

intuition. Since the expressions of the optimal portfolios ω∗
1 and ω∗

2 are symmetric, we will

focus on ω∗
1. The optimal portfolio has a closed-form solution: for c0 = γ−1Var(zT+1,1 −

zT+1,2)
−1 (see Section B.4 for the proof).

ω∗
1 =


0 when − c0(qα,1 + qα,2) < ωMV

1 < c0(qα,k − qα,j)

ωMV
1 + c0(qα,1 + qα,2) when ωMV

1 < −c0(qα,1 + qα,2)

ωMV
1 − c0(qα,k − qα,j) when ωMV

1 > c0(qα,1 − qα,2) and ω
MV
2 > c0(qα,2 − qα,1)

.

(A.1)

Here ωMV
1 is the usual mean-variance efficient portfolio: ωMV

2 = 1− ωMV
1 and

ωMV
1 := argmax

ω∈R
ωẑT+1|T,1 + (1− ω)ẑT+1|T,2 −

γ

2
ω′ΣTω, ω = (ω, 1− ω)′.

There are three cases, the investor holds no position in the first asset, the investor holds

a short-position in the first asset and the investors invests a positive amount in the first

asset. To explain the economic intuition, let us compare the behavior of two investors: one

MV-investor, who adopts ωMV
1 ; and one UA-investor, who is uncertainty averse and adopts

ω∗
1.

Consider the first case of (A.1). The “non-participation” position ω∗
1 = 0 appears when

|ωMV
1 + qα,2c0| ≤ qα,1c0. (A.2)

Recall that qα,k measures the UA-investor’s degree of uncertainty aversion. The higher qα,k,

the more cautious she is when allocating to asset k, and vice versa. Suppose qα,2 → 0 and is

much smaller than qα,1. When (A.2) holds, then

|ωMV
1 | ≤ qα,1c0[1 + o(1)],

meaning that the MV-investor will not invest in zT+1,1 more than qα,1c0. Meanwhile, as qα,2

is very small, the UA-investor has little uncertainty about the predictor ẑT+1|T,2, so she is be

better off by allocating all her assets in zT+1,2, and thus ω∗
1 = 0.

Next, consider the second case in (A.1). In this case ωMV
1 < 0, meaning that the MV-

investor will short the first asset. Meanwhile, the UA-investor will also short asset 1 because
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ω∗
1 = ωMV

1 +c0(qα,1+qα,2) < 0. However, she will short less of asset 1 and shift her allocation

towards asset 2, as ωMV
1 < ω∗

1 < 0. The amount of shrinkage is c0(qα,1+ qα,2). Therefore, the

UA-investor is more cautious than the MV-investor when shorting.

Finally, consider the third case of (A.1), then

ω∗
1 = ωMV

1 − c0(qα,1 − qα,2), which is

< ωMV
1 if qα,1 > qα,2

> ωMV
1 if qα,1 < qα,2.

When qα,1 > qα,2, this case implies ωMV
1 > c0(qα,1 − qα,2) > 0, so the MV-investor will have

a long position in asset 1. Meanwhile, because the UA-investor is more uncertain about

zT+1,1 than zT+1,2, her allocation in the first asset satisfies 0 < ω∗
1 < ωMV

1 , meaning that she

shrinks her allocation toward the second asset. The amount of shrinkage, c0(qα,1 − qα,2), is

proportional to the difference in the degrees of uncertainty. The case when qα,1 < qα,2 follows

from a similar insight due to the symmetry between ω∗
1 and ω∗

2.

A.4 Risk-Sensitive Optimization

The UA-constrained portfolio allocation tends to adopt a non-participation, which may

be overly conservative. In this subsection, we introduce a less restrictive framework that

explicitly accounts for forecast uncertainty. Our approach builds on the robust decision-

making framework of Hansen and Sargent (2008).

A.4.1 One risky and one risk-free asset

Anderson and Cheng (2016) formulate a mean-variance optimization for choosing portfolio

allocations that are robust to misspecification in the predictive model. To illustrate, consider

an example with one risky asset with excess return zT+1. Their problem is formulated as:

max
ω

min
hT

ωEhT
(zT+1)−

γ

2
ω2VarhT

(zT+1) +
1

τ
D(hT ||fT ) (A.3)

where both hT and fT are probability density functions, and EhT
(zT+1) and VarhT

(zT+1)

respectively denote the expectation and variance of the future risky return with respect to the

distribution hT ; D(hT ||fT ) denotes the Kulback-Leibler divergence from fT to hT . Therefore,
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different from the UA-constrained problem, (A.3) introduces an inner optimization with

respect to the density function hT with an additional measure D(hT ||fT ). This problem is

also called “risk-sensitive optimization” by Hansen and Sargent (2008).

The idea is that the investor takes fT as the benchmark predictive density of zT+1, but

she is concerned that fT might be misspecified. So she considers an alternative predictive

density hT for the risky return and constructs portfolio choices to maximize utility under

the worst specification of hT . Meanwhile, the investor also believes that fT is reasonably

specified, so by introducing the penalization termD(hT ||fT ), she focuses on alternatives close

to fT . The scalar parameter τ measures the investor’s uncertainty aversion. One suggestion

by Anderson and Cheng (2016) is to use the benchmark predictive density

fT ∼ N (ẑT+1|T , σ
2
T ), (A.4)

which directly uses the predicted return ẑT+1|T as the mean of the predictive density and is

interpreted as “the agent’s best approximation for the distribution (of returns).”

Importantly, in the Anderson-Cheng model, the incorporated uncertainty is from the

density fT of the true future return, rather than the uncertainty from the prediction ẑT+1|T .

It can be easily shown that the solution is equivalent to the MV-portfolio with an increased

risk-aversion parameter τ + γ. Hence, benchmarking against (A.4) does not incorporate the

prediction uncertainty, which could yield portfolios that are too aggressive to be robust to

sudden changes in market and idiosyncratic risk.

The objective is to derive a better predictive density fT in place of (A.4) to account for

the uncertainty of the prediction ẑT+1|T , which in our applications is the pooled ML (e.g.,

DNN) forecast. Suppose the investor has a prior distribution of the expected return:

p(zT+1|T ) ∼ N (π, v)

where (π, v) respectively denote the prior mean and prior variance. Meanwhile, the asymp-

totic distribution of the ML forecast is approximately (as proved in Theorem 2):

p(ẑT+1|T |zT+1|T ) ∼ N (zT+1|T ,FSE
2)

where FSE = SE(ẑT+1) is the forecast standard error obtained using closed-form-ML or the
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k-step bootstrap. This distribution serves as the likelihood function. Applying the Bayesian

updating rule, it then yields a posterior distribution of the future return zT+1:

fT (zT+1) =

∫
p(zT+1|zT+1|T )p(zT+1|T )p(ẑT+1|T |zT+1|T ) dzT+1|T .

This predictive density accounts for the ML uncertainty and yields:

fT ∼ N (z̃T+1, σ̃
2
T ) (A.5)

where z̃T+1 and σ̃2
T are the posterior mean and variance, respectively, given by

z̃T+1 = (1−W1)ẑT+1|T +W1π, σ̃2
T = vW1 + σ2

T , W1 =
FSE2

FSE2+v
.

In addition, we let hT in the inner optimization of (A.3) take the form:

hT ∼ N (µ, σ̃2
T ),

where µ ∈ R is unspecified and we search for the optimal µ in the inner optimization of (A.3).

This allows us to concentrate on the mean forecast as the main source of misspecification. In

this case, the Kullback-Leibler divergence for two normal distributions is simply D(hT ||fT ) =
1

2σ̃T 2 (z̃T+1|T − µ)2. Therefore, the optimal portfolio can be obtained as:

ωRS := argmax
ω

min
µ
ωµ− γ

2
ω2σ̃2

T +
1

2τ σ̃2
T

(z̃T+1|T − µ)2

To characterize the solution, let

ωMV =
ẑT+1|T

σ2
Tγ

, ωMV
π =

π

σ2
Tγ

be the MV portfolios based on the predicted mean ẑT+1|T and the prior mean π. Then it

can be shown that the solution is (see Section B.4 for the proof)

ωRS =
[
ωMV(1−W1) + ωMV

π W1

] σ2
T

vW1 + σ2
T

γ

τ + γ
. (A.6)

57



Therefore, when taking into account the forecast uncertainty, ωRS conducts a double shrink-

age: First, it shrinks ωMV towards ωMV
π due to the weight W1. Second, it shrinks the overall

portfolio towards zero due to the factor
σ2
T

vW1+σ2
T
.

Figure 6: Mean-Variance vs. Uncertainty Averse (risk-sensitive) Portfolio Allocation

This figure shows the uncertainty averse (risk-sensitive) solution for the optimal portfolio weight in comparison with the
standard mean-variance portfolio weight. In the upper panel, we hold the level of the forecast standard error (FSE) fixed
and vary the mean-variance weight (ωMV). The red line, ωRS I is constructed using ωMV

π = ωMV. The blue line, ωRS II, is
constructed using ωMV

π = 0.5 × ωMV. In the lower panel, we consider the case where ωMV > aωMV
π and vary the forecast

standard error (FSE).
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To further shed light on the effect of incorporating forecast uncertainty into the shrinkage

portfolio, we recall that W1 = FSE2 /(FSE2+v), hence ωRS can be written as an explicit
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function of FSE that shrinks the mean-variance portfolio: ωRS = g(FSE), where

g(s) :=
[
ωMV(1−W (s)) + ωMV

π W (s)
] σ2

T

vW (s) + σ2
T

γ

τ + γ

W (s) :=
s2

s2 + v
.

The monotonicity of g(·) depends on the relative magnitude between ωMV and a × ωMV
π ,

where a =
σ2
T

v+σ2
T
.

As an illustration, consider the case ωMV > aωMV
π , which means that the traditional

MVE position suggests holding a “large” position in the risky asset. The upper panel of

Figure 6 compares ωRS with ωMV as the latter increases with a fixed FSE. Clearly, ωRS

increases linearly in ωMV but at a slower rate due to the linear shrinkage effect. The lower

panel plots the g(·) function with respect to the forecast standard error. As FSE increases,

the uncertainty-averse investor decreases her position in the risky asset, i.e., moving in the

opposite direction relative to ωMV. However, there is no region of complete non-participation.

As forecast uncertainty increases, ωRS converges to a “discounted” MV portfolio that relies

solely on prior beliefs:

g(∞) = ωMV
π

σ2
T

v + σ2
T

γ

τ + γ
,

Essentially, when forecast uncertainty is extremely high, the portfolio is predominantly

guided by prior beliefs, minimizing the impact of the predicted expected returns.

A.4.2 Multiple risky assets

We now extend the framework outlined in the previous subsection to the scenario of multiple

risky assets. We obtain the pooled ML forecast ẑT+1|T for the R-dimensional expected return

zT+1|T . Let SE2 be the forecast covariance matrix of ẑT+1|T , and let ΣT be the R × R

covariance of zT+1 − zT+1|T . We impose a multivariate normal prior zT+1|T ∼ N (π, v),

where v is an R×R prior covariance matrix, set to v = gΣT for some g > 0 as in Zellner’s g-

prior.11 Then the posterior of the predictive density for theN -dimensional zT+1 is fT (zT+1) ∼
11In the context of linear regression, Zellner (1986) proposed a g-prior where the prior variance is pro-

portional to the inverse Fisher information matrix through a constant g. As g → ∞, the posterior mean
converges to the maximum likelihood estimator.
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N (z̃T+1, Σ̃), where for W1 = SE2(SE2+v)−1,

z̃T+1 = (I −W1)ẑT+1|T +W1π, Σ̃ = ΣT + vW ′
1.

Now consider the problem: for hT ∼ N (µ, Σ̃): (see Section B.4 for the proof)

ωRS := arg max
ω∈RN

min
µ∈RN

ω′µ− γ

2
ω′Σ̃ω +

1

τ
D(hT ||fT )

=
γ

τ + γ
Σ̃−1ΣT

[
(I −W1)

′ωMV +W ′
1ω

MV
π

]
(A.7)

where

ωMV = Σ−1
T ẑT+1|T

1

γ
, ωMV

π = Σ−1
T π

1

γ

are respective the mean-variance portfolios based on ẑT+1|T and π. Hence ωRS still conducts

a double shrinkage: First, it shrinks ωMV towards ωMV
π due to the weight W1. Secondly, it

shrinks the overall portfolio to zero due to the Σ̃−1ΣT .

Note that as g → ∞, the prior becomes more diffuse and then W1 → 0, hence more

weights are imposed on ωMV. The resulting portfolio ωRS becomes less robust to the forecast

uncertainty in ẑT+1|T . We shall see the impact of this in the empirical study.

B Technical Appendix

B.1 Intuition

In this subsection we briefly explain the technical intuition on how we derive the expression

ẑT+1|T − zT+1|T =
1

T

T∑
t=1

Ct + oP (T
−1/2)

and why the leading term Ct does not depend on the specific choice of the ML space.

The Riesz-representation plays a key role in the asymptotic analysis, and has been com-

monly used in the inferene for semiparametric models, e.g., Newey (1994); Shen (1997);

Chen and Shen (1998); Chen and White (1999); Chernozhukov et al. (2018), among many

others. The use of Riesz-representation allows to directly span the ML forecast using the
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least squares loss function, which also requires studying the object of interest in a Hilbert

space. To do so, define an inner product:

⟨h1, h2⟩ :=
1

NT

∑
it

Eh1(xi,t−1)h2(xi,t−1)

where the expectation is taken jointly with respect to the serial and cross-sectional distribu-

tion of xi,t−1, treating h1, h2 as fixed functions. Define

gNT,G := arg min
h∈GDNN∪GB

∥h− g∥2L2 ,

which is the best approximation to the true g on the space GDNN ∪ GB under the norm ∥L2 .

Then ANT := span(GDNN ∪ GB − {gNT,G}) is a finite dimensional Hilbert spaced endowed

with the inner product ⟨·, ·⟩. Next, evaluated at the out-of-sample characteristics xi,T , define

a sequence of linear functionals:

Ti(h) := h(xi,T ), i = 1, ..., N.

Because Tj is a linear functional it is always bounded on the finite dimensional Hilbert

space ANT . The Riesz representation theorem then implies that there is a function m∗
j ∈

ANT , called Riesz representer, so that

Tj(h) = ⟨h,m∗
j⟩, ∀h ∈ ANT .

The key fact to our argument is that m∗
j does not depend on the specific machine learning

space being used (whether GNT,G or GB) for ẑT+1|T . It only depends on the joint distribution

of {xi,t−1}, the realization {xj,T} and the union space GDNN ∪ GB.

Next, using an argument for M-estimation (e.g. Theorem 3.2.5 of van der Vaart and

Wellner (1996)), we show in Lemma 8 that uniformly for j ≤ N ,

⟨ĝ − g,m∗
j⟩ =

1

NT

∑
it

ei,tm
∗
j(xi,t−1) + oP (T

−1/2).
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Then heuristically,

ẑT+1|T − zT+1|T =
∑
j

wj[ĝ(xj,T )− g(xj,T )] =
∑
j

wjTj(ĝ − g)

≈
∑
j

wj⟨ĝ − g,m∗
j⟩

≈ 1

NT

∑
it

∑
j

wjei,tm
∗
j(xi,t−1).

This yields the desired expansion with Ct ≈ 1
N

∑
i

∑
j wjei,tm

∗
j(xi,t−1). It is clear from this

expression that Ct does not depend on the specific choice of the ML method.

B.2 Assumptions

We shall use two machine learning spaces: the “forecast ML” GDNN, which is the space for

deep neural networks, and the closed-form ML GB, which is the Fourier series to compute

the standard error. Let N (δ,G, ∥.∥∞) denote the entropy cover of G, which is the smallest

number of ∥.∥∞-balls of radius δ to cover G.

Assumption 1. Conditioning on X, (vt, ui,t) and are independent over time and are sub-

Gaussian. Also suppose xi,t−1 are independent across i.

Assumption 2. The following conditions holds for G = GDNN, the neural network space.

i) There is p(G) so that the covering number satisfies: for any δ > 0,

N (δ,G, ∥.∥∞) ≤
(
CT

δ

)p(G)

. (B.1)

ii) Let

φ2
G = inf

v∈G
sup

h∈{τT g+G}∪{g}
∥v − h∥2∞.

Suppose φG = o(T−1), p(G) log(NT ) = o(T 1/2) and φGp(G) log(NT ) = o(1).

iii) Define the best approximation to the true g function under the ∥.∥L2-norm:

gNT,G := argmin
h∈G

1

NT

∑
it

E(h(xi,t−1)− g(xi,t−1))
2.
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Suppose
√
T maxj≤N |gNT,G(xj,T )− g(xj,T ))| = oP (1).

The above assumption is well known to be satisfied by DNN for properly specified width

and depth of the layers. Schmidt-Hieber (2020) show that a multilayer feedforward network

with ReLu activation functions at each layer can well approximate a rich class of functions

with compact support. It also follows from Anthony and Bartlett (2009) that (B.2) holds

with p(GDNN) as the pseudo dimension of the neural network, with p(GDNN) = O(J2L2),

where J, L are respectively the maximum width and depth of the network.

Assumption 3. The following conditions holds for G = GB, the Fourier series regression.

i) There is p(G) so that the covering number satisfies: for any δ > 0,

N (δ,G, ∥.∥∞) ≤
(
CT

δ

)p(G)

. (B.2)

ii) Let

φ2
G = inf

v∈G
sup

h∈{τT g+G}∪{g}
∥v − h∥2∞.

Suppose φG = o(T−1), p(G) log(NT ) = o(T 1/2) and φGp(G) log(NT ) = o(1).

iii) Define the best approximation to the true g function under the ∥.∥L2-norm:

gNT,G := argmin
h∈G

1

NT

∑
it

E(h(xi,t−1)− g(xi,t−1))
2.

Suppose
√
T maxj≤N |gNT,G(xj,T )− g(xj,T ))| = oP (1).

iv) Let J be the number of Fourier basis functions. Then J5/2 = o(T ) and (p(GG) log(T )
T

+

φGG
)J2 ≤ o(1).

To justify the above assumption, note that the Fouries basis can well approximate a

Hölder class of smooth functions; and (B.2) holds with p(G) ∼ J being the number of basis

functions.
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B.3 Proofs

B.3.1 Proof of Theorem 1

For any generic function h, which may or may not be in G ∈ {GDNN,G1}, let
Q(h) = 1

TN

∑
it(yi,t − h(xi,t−1))

2 be the least squares loss function. Let

ψG(h) = |Q(πG(h))−Q(h)|, πG(h) = argmin
v∈G

∥v − h∥∞. (B.3)

Here πG(h) is the projection of function h onto the learning space G. In particular, if h ∈ G
then πG(h) = h.

Theorem 1 is restated and proved by the following proposition.

Proposition 6. Suppose
∑

i |wi| < ∞. There are functions m∗
j , which is the same whether

DNN or Fourier series are used as the predictor, so that for ẑT+1 being either the DNN

predictor or the Fourier series predictor,

ẑT+1 − zT+1|T =
1

T

∑
t

1

N

∑
i

ζ∗(xi,t−1)β
′
i,t−1vt + oP (T

−1/2)

ζ∗(·) :=
∑
j

wjm
∗
j(·).

Proof. Let GDNN be the DNN space and GB denote the Fourier series space. Define A =

span(GDNN ∪GB −{g}), which is the closed linear span of GDNN ∪GB − g and g is the true g

function. Also, define

gNT,G := arg min
h∈GDNN∪GB

1

NT

∑
it

E(h(xi,t−1)− g(xi,t−1))
2,

which is the best approximation to the true g on the space GDNN ∪ GB under the norm

∥L2 . Define ANT = span(GDNN ∪ GB − {gNT,G}). Then both A and ANT are Hilbert spaces

endowed with the inner product ⟨, ⟩. Also ANT is a finite dimensional space. Now define a

sequence of linear functionals, evaluated at the out-of-sample xj,T :

Tj(h) := h(xj,T ), j = 1, ..., N, h ∈ A ∪ANT .

Next we adopt the Riesz representation theorem on ANT . Because Tj is a linear func-
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tional, it is always bounded on the finite dimensional Hilbert space ANT . Hence the Riesz

representation theorem implies that there is a function m∗
j ∈ ANT , called Riesz representer,

so that

Tj(h) = ⟨h,m∗
j⟩,∀h ∈ ANT .

Hence m∗
j only depends on the definition of the inner product and ANT , that is, the distri-

bution of {xi,t−1 : t ≤ T} and the realization xj,T , but does not depend on whether DNN or

Fourier series were used to construct ẑT+1. (ANT is the same whether DNN or Fourier series

were used.) We have two claims:

claim 1: ⟨m∗
j , gNT,G − g⟩ = 0. This is because gNT,G is the projection of g on ANT

under the norm induced by the inner product, so it should be “orthogonal” to m∗
j and any

element in ANT .

claim 2:
√
T maxj≤N |gNT,G(xj,T )− g(xj,T ))| = oP (1), following from Assumption 1.

Then take mj = m∗
j in Lemma 8, and let h = ĝ − gNT,G ∈ ANT ,

ẑT+1|T − zT+1|T =
∑
j

wj[ĝ(xj,T )− g(xj,T )] =
∑
j

wjTj(ĝ − g)

=
∑
j

wjTj(ĝ − gNT,G) +
∑
j

wj[gNT,G(xj,T )− g(xj,T )]

=
∑
j

wj⟨ĝ − gNT,G,m
∗
j⟩+ oP (T

−1/2) =
∑
j

wj⟨ĝ − g,m∗
j⟩+ oP (T

−1/2)

=(a) 1

NT

∑
it

∑
j

wjei,tm
∗
j(xi,t−1) + oP (T

−1/2)

=(b) 1

T

∑
t

1

N

∑
i

ζ∗(xi,t−1)β
′
i,t−1vt + L+ oP (T

−1/2)

L :=
1

NT

∑
it

∑
j

wjui,tm
∗
j(xi,t−1) = oP (T

−1/2).

In the above (a) follows from Lemma 8; (b) is due to ζ∗(·) =∑j wjm
∗
j(·) and the definition

of ei,t.

Lemma 7. Write ∥g1∥2T = 1
NT

∑
it g1(xi,t−1)

2 and ∥g1∥2L2 = E∥g1∥2T for any function g1.

Then
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∥ĝ − g∥2L2 ≤ OP (
p(G) log(T )

T
+ φG).

Proof. For notational simplicity, we write 1
NT

∑
it eg1 =

1
NT

∑
it ei,tg1(xi,t−1) for any function

g1. Let ζT := ∥g− πg∥2T +2 1
NT

∑
it e(g− πg). Then Q(ĝ) ≤ Q(πg) implies (for E taken with

respect the distribution of (ei,t, xi,t−1))

∥g − ĝ∥2L2 ≤ E
2

NT

∑
it

e(ĝ − g) + EζT ≤ E
2

NT

∑
it

e(ĝ − g) +OP (φG).

Suppose m1, ...,mK(δ) is a δ-cover of G under the norm ∥m∥∞ and K(δ) := N (δ,G, ∥.∥∞) as

the covering number, where δ > 0 is to be determined. Then there ismj so that ∥mj− ĝ∥∞ <

δ. Now let µj(x) = [mj(x)− g(x)]/∥mj − g∥L2 .

Conditioning on X, (vt, ui,t) and thus ei,t are independent over time and ei,t is sub-

Gaussian. Then

E max
j≤K(δ)

1

NT

∑
it

ei,tµj(xi,t−1) ≤ O(

√
logK(δ)

T
) = O(

√
p(G) log(CT/δ)

T
).

If ∥ĝ − g∥L2 ≤ T−9, then we are done. If ∥ĝ − g∥L2 > T−9, then set δ = T−9,

E
1

NT

∑
it

e(ĝ − g) ≤ Emax
j

1

NT

∑
it

eµj∥mj − g∥L2 + E
1

NT

∑
it

|ei,t|δ

≤ O(

√
p(G) log(CT/δ)

T
)[δ + ∥ĝ − g∥L2 ] +O(δ)

≤ O(

√
p(G) log(T )

T
)∥ĝ − g∥L2 +O(T−9).

Hence ∥g − ĝ∥2L2 ≤ OP (
√

p(G) log(T )
T

)∥ĝ − g∥L2 +OP (T
−9 + φG). This implies the result.

Lemma 8. Fix functions mj so that maxj≤N
1

NT

∑
itmj(xi,t−1)

2 = OP (1). Let ĝ denote the

minimizer of Q(·) on the space G. Then uniformly for all j = 1, ..., N ,

⟨ĝ − g,mj⟩ =
1

NT

∑
it

ei,tmj(xi,t−1) + oP (T
−1/2).
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Proof. Recall ψG(h) = |Q(π(h)) − Q(h)|. For any deterministic sequence τT , and function

m(x), consider a function h : Rdim(x) → R so that

hj(x) := ĝ(x) + τTmj(x).

Then, Q(ĝ) ≤ Q(πhj) implies Q(ĝ)−Q(hj) ≤ ψT (hj). Expand this inequality, and note

that yi,t = g(xi,t−1) + ei,t,

−τ 2T
1

NT

∑
it

mj(xi,t−1)
2+2τT

[
1

NT

∑
it

(g(xi,t−1)− ĝ(xi,t−1))mj(xi,t−1) +
1

N

∑
it

ei,tmj(xi,t−1)

]
︸ ︷︷ ︸

Mj

≤ ψT (hj)

where the left hand side of this inequality equals Q(ĝ)−Q(hj). Fix a positive sequence ϵT > 0

and respectively take value τT ∈ {ϵT ,−ϵT}. Then the above inequality yields,

2|Mj| ≤ ϵT max
j

1

NT

∑
it

mj(xi,t−1)
2 + ψT (hj)/ϵT . (B.4)

We have ψ(hj) ≤ Q(πhj) − Q(hj) = ∥hj − πhj∥2T + 2
N

∑
i(yi,t − hj)(hj − πhj) ≤ OP (φG) =

oP (T
−1). This means

√
T maxj ψT (hj) = oP (T

−1/2). Then for ϵT :=
√
maxj ψT (hj),

√
T max

j
ψT (hj) = oP (ϵT ), ϵT = o(T−1/2).

For this choice of ϵT , the right hand side of (B.4) is oP (T
−1/2). This shows

Aj :=
1

NT

∑
it

(ĝ(xi,t−1)− g(xi,t−1))mj(xi,t−1) =
1

NT

∑
it

ei,tmj(xi,t−1) + oP (T
−1/2) (B.5)

uniformly for j ≤ N .

Next, we show Aj = ⟨ĝ− g,mj⟩+ oP (T
−1/2) uniformly in j ≤ N by proving a conclusion

similar to the stochastic equicontinuity. Let

Gj(v) :=
1

NT

∑
it

(v(xi,t−1)− g(xi,t−1))mj(xi,t−1)− E(v(xi,t−1)− g(xi,t−1))mj(xi,t−1)

C := {v ∈ G : ∥v∥2L2 < C
p(G) log T

T
+ CφN}.
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Lemma 7 shows ĝ ∈ C with probability arbitrarily close to one. Hence

|Aj − ⟨ĝ − g,mj⟩| = |Gj(ĝ)| ≤ sup
v∈C

max
j≤N

|Gj(v)|.

We now show the right hand side is oP (T
−1/2) by establishing the stochastic equiconti-

nuity. Let p1, ..., pK(δ) be a δ-cover of G under the norm ∥p∥∞. Let

hkj(x) := [pk(x)− g(x)]mj(x)− ⟨pk − g,mj⟩, µkj(x) = hkj(x)/∥hkj∥L2 .

Then Eµkj(xi,t−1) = 0; also µkj(xi,t−1) are independent across i. Also let B := {k : ∃v ∈
C, ∥v − pk∥∞ < δ}. Then set δ = T−1, for some C > 0,

max
k∈B,j≤N

∥hkj∥L2 ≤ C sup
k∈B,j≤N

∥pk − g∥L2 ≤ C

√
p(G) log T

T
+ C

√
φG + Cδ (Cauchy-Schwarz)

max
k∈B,j≤N

|Gj(pk)| = max
k∈B,j≤N

∣∣∣∣∣ 1

NT

∑
it

hkj(xi,t−1)

∣∣∣∣∣ = max
k∈B,j≤N

∣∣∣∣∣ 1

NT

∑
it

µkj(xi,t−1)

∣∣∣∣∣ ∥hkj∥L2

≤ OP (

√
p(G) log T

T
+
√
φG + δ)

√
log(K(δ)N)

T

sup
v∈C

max
j

|Gj(v)| ≤ max
p∈B,j≤N

|Gj(pk)|

+max
j

sup
v∈C,∥v−pk∥∞<δ

| 1

NT

∑
it

(pk(xi,t−1)− v(xi,t−1))mj(xi,t−1)− ⟨pk − v,mj⟩|

≤ OP (

√
p(G) log T

T
+
√
φG + δ)

√
log(K(δ)N)

T
+ δ = oP (T

−1/2).

The last equality holds since log(K(δ)N) = p(G) log(NT ), and p(G) log(NT ) = o(T 1/2) and

φGp(G) log(NT ) = o(1). This implies uniformly in j ≤ N ,

1

NT

∑
it

(ĝ(xi,t−1)− g(xi,t−1))mj(xi,t−1) = ⟨ĝ − g,mj⟩+ oP (T
−1/2).

This finishes the proof.

68



B.3.2 Proof of Theorem 2

Let J be the number of Fourier series basis and suppose J5/2 = o(T ) and (p(M) log(T )
T

+

φM)J2 ≤ o(1).

Let ẑT+1|T denote the DNN predictor, and let ẑT+1|T,B denote the Fourier series predictor.

Proposition 6 show that

ẑT+1|T − zT+1|T =
1

T

∑
t

1

N

∑
i

ζ∗(xi,t−1)β
′
i,t−1vt + oP (T

−1/2)

ẑT+1|T,B − zT+1|T =
1

T

∑
t

1

N

∑
i

ζ∗(xi,t−1)β
′
i,t−1vt + oP (T

−1/2). (B.6)

Hence ẑT+1|T − zT+1|T = ẑT+1|T,B − zT+1|T + oP (T
−1/2), which means the DNN predictor

and Fourier series are asymptotically equivalent. In addition, it is easy to derive (using the

analytical form of ẑT+1|T,B): ẑT+1|T,B − zT+1|T =
∑T

t=1H
′Φ′

t−1βt−1vt + oP (T
−1/2). Thus the

DNN predictor satisfies:

ẑT+1|T − zT+1|T =
T∑
t=1

H ′Φ′
t−1βt−1vt + oP (T

−1/2).

Define SE(ẑT+1) :=
√∑T

t=1H
′Φ′

t−1βt−1Cov(ft)β′
t−1Φt−1H.We now verify the Lindeberg con-

dition, conditioning on X, which suffices to bound the fourth moment. Write SE(ẑT+1)
2 :=

T−1σ2 and Ft := H ′Φ′
t−1βt−1vt. Then

1
T

∑
t E(∥TFt∥4|X) < CJ5/2, because almost surely,

1

T

∑
t

∥TH ′Φ′
t−1βt−1∥4E(∥vt∥4|X) ≤ C∥W ′ΦT (

1

TN
Ψ′Ψ)−1∥ 1

TN

∑
it

∥ϕ(xi,t−1)∥4 < CJ5/2

given W ′ΦT < C
√
J , ∥( 1

TN
Ψ′Ψ)−1∥ < C, where J is the number of Fourier series basis. If

J5/2 = o(T ), 1
SE(ẑT+1)2

∑
t E(∥Ft∥21{∥Ft∥ > ϵSE(ẑT+1)}|X) ≤ 1

T
1

Tσ4

∑
t E(∥TFt∥4|X) → 0.

Therefore,

SE(ẑT+1)
−1(ẑT+1|T − zT+1|T ) →d N (0, 1).

It remains to prove T (ŜE(ẑT+1)
2 − SE(ẑT+1)

2) = oP (1).

Write L′ := W ′ΦT (
1

NT
Ψ′Ψ)−1 and s2 = 1

T

∑
t L

′ 1
N2Φ

′
t−1ete

′
tΦt−1L. Then ∥L∥ = OP (

√
J),
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and 1
NT

∑
t ∥êt − et∥2 = 1

NT

∑
it |ĝ(xi,t−1)− g(xi,t−1)|2 = OP (

p(M) log(T )
T

+ φM). Hence

T ŜE(ẑT+1)
2 =

1

T

∑
t

L′ 1

N2
Φ′

t−1êtê
′
tΦt−1L = s2 +OP (

p(M) log(T )

T
+ φM)J2 = s2 + oP (1).

Meanwhile, 1
T

∑
t L

′ 1
N2Φ

′
t−1βt−1Cov(ft)β

′
t−1Φt−1L = TSE(ẑT+1)

2, hence

s2 =
1

T

∑
t

L′ 1

N2
Φ′

t−1E(ete′t|Ft−1)Φt−1L+ oP (1) = TSE(ẑT+1)
2 + oP (1).

B.3.3 Proof of Theorem 3: The Bootstrap

For ease of technical proofs, we prove for the asymptotic validity of the fully trained bootstrap

neural networks. That is, let (y∗i,t) denote the bootstrap data. We prove for the case when

the bootstrap DNN ĝ∗(·) is defined as:

ĝ∗(·) = arg min
g∈GDNN

N∑
i=1

T∑
t=1

(y∗i,t − g(xi,t−1))
2, (B.7)

where GDNN is the pooled-ML space, such as DNN.

Proof. Here we focus on the DNN predictor, G = M. Let ĝ∗ be the DNN estimator of ĝ

using the bootstrap data. First, similar to Lemma 7, we can establish

∥ĝ∗ − ĝ∥2L2 ≤ OP ∗(
p(G) log(T )

T
+ φG).

Hence ĝ∗ ∈ C with probability arbitrarily close to one. Also similar to the proof of (B.5), we

can establish, for mj being the Riesz representer as in the proof of Proposition 6,

A∗
j :=

1

NT

∑
it

(ĝ∗(xi,t−1)− ĝ(xi,t−1))mj(xi,t−1) =
1

NT

∑
it

ê∗i,tmj(xi,t−1) + oP ∗(T−1/2). (B.8)

Next, we show A∗
j = ⟨ĝ − g,mj⟩ + oP ∗(T−1/2) uniformly in j ≤ N . The proof is slightly

different from that in Lemma 8. Let

Gj(v1, v2) :=
1

NT

∑
it

(v1(xi,t−1)− v2(xi,t−1))mj(xi,t−1)− E(v1(xi,t−1)− v2(xi,t−1))mj(xi,t−1).
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Hence

|A∗
j − ⟨ĝ∗ − ĝ, mj⟩| = |Gj(ĝ

∗, ĝ)| ≤ sup
v1,v2∈C

max
j≤N

|Gj(v1, v2)|. (B.9)

Let p1, ..., pK(δ) be a δ-cover of G under the norm ∥p∥∞. Let

hkd,j(x) := [pk(x)− pd(x)]mj(x)− ⟨pk − pd,mj⟩, µkd,j(x) = hkd,j(x)/∥hkd,j∥L2 .

Then Eµkd,j(xi,t−1) = 0; also µkd,j(xi,t−1) are independent across i. Also let B := {k : ∃v ∈
C, ∥v − pk∥∞ < δ}. Then set δ = T−1, for some C > 0,

max
k,d∈B,j≤N

∥hkd,j∥L2 ≤ C sup
k,d∈B

∥pk − pd∥L2 ≤ C

√
p(G) log T

T
+ C

√
φG + Cδ

max
k,d∈B,j≤N

|Gj(pk, pd)| = max
k,d∈B,j≤N

∣∣∣∣∣ 1

NT

∑
it

hkd,j(xi,t−1)

∣∣∣∣∣ = max
k,d∈B,j≤N

∣∣∣∣∣ 1

NT

∑
it

µkd,j(xi,t−1)

∣∣∣∣∣ ∥hkd,j∥L2

≤ OP (

√
p(G) log T

T
+
√
φG + δ)

√
log(K(δ)N)

T

sup
v1,v2∈C

max
j

|Gj(v1, v2)| ≤ max
k,d∈B,j≤N

|Gj(pk, pd)|+OP (δ)

≤ OP (

√
p(G) log T

T
+
√
φG + δ)

√
log(K(δ)N)

T
+ δ = oP (T

−1/2).

Combining with (B.8)(B.9), for ê∗i,t = êi,tη
∗
t ,

⟨ĝ∗ − ĝ, mj⟩ =
1

NT

∑
it

ê∗i,tmj(xi,t−1) + oP ∗(T−1/2).

Next, for the same functional Tj and the Riesz representer mj = m∗
j in the proof of Propo-

sition 6 and ζ∗ =
∑
wjm

∗
j ,

ẑ∗T+1|T − ẑT+1|T =
∑
j

wj[ĝ
∗(xj,T )− ĝ(xj,T )] =

∑
j

wjTj(ĝ
∗ − ĝ) =

∑
j

wj⟨ĝ∗ − ĝ, m∗
j⟩

=
1

NT

∑
it

∑
j

wj êi,tη
∗
tm

∗
j(xi,t−1) + oP ∗(T−1/2)

=
1

NT

∑
it

êi,tη
∗
t ζ

∗(xi,t−1) + oP ∗(T−1/2).
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Next, Eη∗t = 0 and Var∗(η∗t ) = 1. Let ζ̃t−1 be the N -vector of ζ∗(xi,t−1). Then

ŜE
∗2
inf :=

1

T 2

∑
t

(
1

N
ê′tζ̃t−1)

2 =
1

T 2

∑
t

(
1

N
e′tζ̃t−1)

2 + oP (T
−1)

=
1

T 2

∑
t

(
1

N
ζ̃ ′t−1βt−1vt)

2 + oP (T
−1) = SE2

inf + oP (T
−1)

SE2
inf :=

1

T 2

∑
t

1

N2
ζ̃ ′t−1βt−1Cov(vt)β

′
t−1ζ̃t−1.

This shows cinf := SE−1
inf ŜE

∗
inf →P 1 because

√
T SEinf > c > 0. Meanwhile,

SE−1
inf (ẑ

∗
T+1|T − ẑT+1|T ) = cinf ŜE

∗−1

inf (ẑ
∗
T+1|T − ẑT+1|T )

=

[
1

T 2

∑
t

(
1

N
ê′tζ̃t−1)

2

]−1/2
1

NT

∑
it

êi,tη
∗
t ζ

∗(xi,t−1) + oP ∗(1)

→d∗ N (0, 1).

In addition, (B.6) shows SE−1
inf (ẑT+1|T − zT+1|T ) →d N (0, 1). Let q∗α be the bootstrap critical

value of |ẑ∗T+1|T − ẑT+1|T | so that P ∗(|ẑ∗T+1|T − ẑT+1|T | ≤ q∗α) = 1 − α, where P ∗ denotes

the probability measure with respect to the bootstrap distribution (i.e., the distribution of

{η∗t , t ≤ T} conditional on the data). Then

P (|ẑT+1|T − zT+1|T | ≤ q∗α) = P (| SE−1
inf (ẑT+1|T − zT+1|T | ≤ SE−1

inf q
∗
α)

= P ∗(| SE−1
inf (ẑ

∗
T+1|T − ẑT+1|T )| ≤ SE−1

inf q
∗
α) + oP (1)

= 1− α + oP (1).

B.3.4 Proof of Theorem 4

Proof. The constraint MV problem is maxω minµ F (ω, µ), subject to |µ− ẑZ+1|T | ≤ q, where

F (ω, µ) = ω′µ− γ
2
ω′ΣTω. For the inner problem, minµi

ωiµi subject to |µi − ẑT+1|T,i| ≤ qα,i,

the minimum is ωi(ẑT+1|T,i − sgn(ωi)qα,i) = ωiẑT+1|T,i − |ωi|qα,i. This leads to the designated

result.
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In the one dimensional case, the problem is equivalent to

min
ω

γ

2
ω2σ2 − ωẑT+1|T + q|ω|

which is also equivalent to minω
γσ2

2
[ω − ωMV]2 + q|ω|. The solution is well known to be the

soft thresholding operator given in the theorem.

B.4 Proof of (A.1), (A.6) and (A.7)

Proof of Expression (A.1).

Proof. For the case R = 2, minω=(ω,1−ω) F (ω), where

F (ω) = γ
2
ω′ΣTω − ωẑT+1|T,1 − (1 − ω)ẑT+1|T,2 + qα,1|ω| + qα,2|1 − ω|. This function is

piecewise quadratic on the regions (−∞, 0], [0, 1], and [1,∞). We define and verify that

argmin
ω>1

F (ω) = max{A, 1}, where A = ωMV
1 − c0(qα,1 + qα,2)

argmin
ω<0

F (ω) = min{C, 0}, where C = ωMV
1 + c0(qα,1 + qα,2)

arg min
0<ω<1

F (ω) = 1{0 < B < 1}B + 1{B > 1} where B = ωMV
1 − c0(qα,1 − qα,2)

ωMV
1 = c0

[
ẑT+1|T,1 − ẑT+1|T,2 − γ(Cov(zT+1,1, zT+1,2)− Var(zT+1,2))

]
where c0 = γ−1Var(zT+1,1 − zT+1,2)

−1. Note that C > B > A. Also write ωMV
2 = 1 − ωMV

1 .

Let the optimal solution be ω∗
1, and ω

∗
2 = 1− ω∗

1. Hence we have the following cases:

Case 1. A > 1, which is ωMV
2 < −c0(qα,1 + qα,2), then ω

∗
1 = A, and

ω∗
2 = ωMV

2 + c0(qα,1 + qα,2).

Case 2. B > 1 > A, which is −c0(qα,1 + qα,2) < ωMV
2 < c0(qα,2 − qα,1), then ω

∗
1 = 1.

Case 3. 0 < B < 1, which is ωMV
1 > c0(qα,1−qα,2) and ωMV

2 > c0(qα,2−qα,1), then ω∗
1 = B,

and ω∗
2 = 1−B = ωMV

2 − c0(qα,2 − qα,1).

Case 4. C > 0 > B, which is −c0(qα,1 + qα,2) < ωMV
1 < c0(qα,1 − qα,2), then ω

∗
1 = 0.

Case 5. C < 0, which is ωMV
1 < −c0(qα,1 + qα,2), then ω

∗
1 = C.

Hence for k, j ∈ {1, 2} and k ̸= j,

When ωMV
1 < −c0(qα,1 + qα,2), then ω

∗
k = ωMV

1 + c0(qα,1 + qα,2).

When −c0(qα,1 + qα,2) < ωMV
1 < c0(qα,k − qα,j), then ω

∗
k = 0.
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When ωMV
1 > c0(qα,1 − qα,2) and ω

MV
2 > c0(qα,2 − qα,1), then ω

∗
k = ωMV

1 − c0(qα,k − qα,j).

Proof of Expressions (A.6), (A.7)

Proof. (A.6) is a special case of (A.7). Hence we directly prove the latter. The conditional

distribution of zT+1|ẑT+1|T is normal. Also, (zT+1|T , ẑT+1|T ) is jointly normal, we have

E(zT+1|ẑT+1|T ) = E[E(zT+1|ẑT+1|T , zT+1|T )|ẑT+1|T ] = E(zT+1|T |ẑT+1|T ) = (I−W1)ẑT+1|T+W1π

where W1 = SE2(SE2+v)−1. Also,(
zT+1|T

ẑT+1|T

)
∼ N

((
π

π

)
,

(
v v

v SE2+v

))
.

Hence Var(zT+1|T |ẑT+1|T ) = v − v(SE2+v)−1v = vW ′
1 = W1v, and thus

Σ̃ = Var(zT+1|ẑT+1|T ) = E[Var(zT+1|zT+1|T )|ẑT+1|T ] + Var(zT+1|T |ẑT+1|T )

= ΣT +Var(zT+1|T |ẑT+1|T ) = ΣT + (I −W1) SE
2 = ΣT + vW ′

1.

Note that for two multivariate normal densities with the same covariance Σ̃, the Kull-

back–Leibler divergence is

D(hT ||fT ) =
1

2
(µ− z̃T+1)

′Σ̃−1(µ− z̃T+1).

Hence ωRS := argmaxω∈RN minµ∈RN L(ω, µ) where

L(ω, µ) = ω′µ− γ

2
ω′Σ̃ω +

1

τ
D(hT ||fT ).

We have minµ∈RN L(ω, µ) = ω′z̃T+1 − γ+τ
2
ω′Σ̃ω. Maximizing it yields

ωRS = Σ̃−1z̃T+1
1

τ + γ
.

Recall that z̃T+1 = (1−W1)ẑT+1|T +W1π, ω
MV = Σ−1

T ẑT+1|T
1
γ
and
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ωRS
π = Σ−1

T π 1
γ
. Also, for any constant c, if v = cΣT , then W1ΣT = ΣTW

′
1, both sides

equal ΣT − cΣT (SE
2+cΣT )

−1ΣT . Hence

ωRS =
γ

τ + γ
Σ̃−1ΣT

[
(I −W1)

′ωMV +W ′
1ω

MV
π

]
.

In the one-dimensional case, this implifies to

ωRS =
γ

τ + γ
g(W1), g(W1) :=

σ2
T

σ2
T + vW1

[
(1−W1)ω

MV +W1ω
MV
π

]
.

In addition, W1 = SE2 /(SE2+v), which is monotonically increasing in SE. Hence the

monotonicity of ωRS with respect to SE is determined by the monotonicity of g(·). It can

be rewritten as

g(W1) = c+
σ2
T

v

v + σ2
T

σ2
T + vW1

[ωMV − σ2
T

v + σ2
T

ωMV
π ].

Hence g(·) is increasing if and only if ωMV <
σ2
T

v+σ2
T
ωMV
π .
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