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1 Introduction

The recent decade has witnessed a blossom of developments on statistical learning theories

and practice, embraced with the exciting progresses on large-scale optimizations and dimen-

sion reduction techniques. Factor models, as one of the central machinery on summarizing

and extracting information from large scale datasets, have received much attention in this

revolutionary era of data science, and many breakthrough methodologies and applications

have been developed in this exciting area.

This paper makes a selective overview on the recent developments of the factor model

and its applications on econometric learning. Our review focuses on the perspective of the

low-rank structure of factor models, and draws particular attentions to estimating the model

from the low-rank recovery point of view. A central focus in the progress of this literature is

the understanding and recovering low-rank structures of high-dimensional models. Many new

learning theories and methods have been developed, which have revolutionized the modern

understanding of econometric modeling. Meanwhile, the low-rank structure is one of the

key properties of factor models. While this structure has long been aware of by researchers,

studying the factor model from the perspective of low-rank matrix recovery is relatively new,

and has led to many exciting new discoveries and understanding.

The survey mainly consists of three parts: the first part is a review on new factor esti-

mation based on modern techniques on recovering low-rank structures of high-dimensional

models. The second part discusses statistical inferences of several factor-augmented models

and applications in statistical learning models. The final part summarizes new developments

dealing with unbalanced panels from the matrix completion perspective.
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We concentrate on recent developments on methodologies and applications in econometric

learning. For a more comprehensive account on this topic, see Chapters 9-11 of the book

by Fan et al. (2020c). Meanwhile, several important topics are not covered in this survey,

but have also generated extensive researches in the literature. Those include selecting the

number of factors, weak factors, identification, continuous-time and time-varying models,

nonstationarity and structural breaks, Bayesian methods, bootstrap factors, as well as more

sophisticated panel data models. Several excellent reviews have been written with emphasis

on these topics. For those reviews, we refer to Stock and Watson (2016) for dynamic factor

models with applications on macroeconomics, to Bai and Wang (2016) for time series and

panel data models, and to Gagliardini et al. (2019) for a recent review on conditional factor

models with applications to finance. Another class of estimation is a hybrid of PCA-method

and the state space approach, see Giannone et al. (2008) and Doz et al. (2011) for more

discussions. In addition, the generalized dynamic factor model is another important strand

of literature, where factors are often estimated using the dynamic principal components, the

frequency domain analog of principal components, developed by Brillinger (1964). Forni

et al. (2000, 2005) provided rates of convergence of the common component estimated by

dynamic principal components. Finally, we refer to the following papers for more detailed

developments, among others: Bai and Ng (2002); Ahn and Horenstein (2013); Onatski (2010);

Li et al. (2017), Bai and Li (2012, 2016), Onatski (2012); Chudik et al. (2011), Cheng et al.

(2016); Massacci (2017); Gagliardini et al. (2016); Goncalves and Perron (2018); Baltagi

et al. (2017); Barigozzi et al. (2018), Aı̈t-Sahalia and Xiu (2017); Chen et al. (2019a); Liao

and Yang (2018); Li et al. (2019); Pelger (2019), Su and Wang (2017).

We use the following notation. For a matrix A, let λi(A) denote the i th largest sin-

gular value of A and use λmin(A) and λmax(A) to denote its smallest and largest eigen-

values. We define the Frobenius norm ‖A‖F =
√

tr(A′A), the operator norm ‖A‖ =√
λmax(A′A), the element-wise norm ‖A‖∞ = maxij |Aij|, and the matrix `1-norm ‖A‖`1 :=

maxi≤N
∑N

j=1 |Aij|. In addition, define projection matrices PA = A(A′A)−1A and MA =

I − PA when A′A is invertible. Finally, for two (random) sequences aT and bT , we write

aT � bT (or bT � aT ) if aT = oP (bT ).
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2 Spiked Incoherent Low-Rank Models

2.1 The model

Modern high-dimensional factor models can be viewed as a type of spiked incoherent low-

rank model, a broad class of models that have drawn active research in the recent decade. A

spiked incoherent low-rank model typically refers to a large matrix Σ (either observable or

not), having the following decomposition:

Σ = L + S. (2.1)

Such decomposition satisfies the following three properties:

(i) Low-rank. The rank of L is either bounded or grows very slowly compared to its di-

mensions.

(ii) Spikedness. The nonzero singular values of L grow fast, while the largest singular

value of S is either bounded or grows much slower.

(iii) Incoherence. (also known as “pervasiveness”) The left and right singular vectors of L,

corresponding to the nonzero singular values, should have diversified elements, which

means, elements of the rescaled singular vectors should be uniformly bounded.

The low-rank structure achieves dimension reductions: suppose the matrix Σ is of N×N1

dimensions, while the rank of L is r. Then the low-rank structure reduces the dimension

from O(NN1) to O(N +N1)r; the latter is the magnitude of the number of parameters in L.

Meanwhile, the spikedness helps seperate L from S approximately, and ensures that the large

“signals” concentrate on L, the low rank component. Finally, the incoherence, a condition

that excludes matrices being low-rank and sparse simultaneously, enables us to estimate well

the singular eigenvectors.

We explain these three properties using the matrix form of factor models. Consider

yit = b′ift + uit, i ≤ N, t ≤ T, (2.2)

where ft is a r-dimensional vector of factors; bi is the loading vector and uit is the idiosyn-

cratic noise. Specifically, (2.1) applies to two decompositions of this model.
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Factor Decomposition. The matrix form of the factor model gives

Y = M + U, M := BF′,

where Y and U are N ×T matrices of yit and uit; B is the N × r matrix of bi while F is the

T × r matrix of ft. Then corresponding to the notation (2.1), Σ = Y, L = M and S = U.

In this decomposition, Σ is observable. Apparently, M is a low-rank matrix with rank r.

The nonzero singular values of M, under the strong factor assumption, grows much faster

than those of U, which gives rise to the spikedness property. Now let ξ be the N × r matrix

whose columns are the left singular vectors of M, and let ξ′i denote its i th row. Then under

the assumption that the nonzero eigenvalues of B′B grow fast with N , for some constant

C > 0,

max
i≤N
‖
√
Nξi‖ ≤ C max

i≤N
‖bi‖, (2.3)

which gives rise to the incoherent singular vectors. The right singular vectors can be bounded

similarly.

Covariance Decomposition. It is also well known from the factor model (2.2) that

the covariance matrix of yt = (y1t, · · · , yNt)′, denoted by Σy, can be decomposed as follows:

Σy = L + Σu, L := B cov(ft)B
′, (2.4)

where Σu denotes the covariance matrix of ut. The above decomposition is well known for

portfolio allocations and risk managements, where the total volatility is decomposed into

the systematic risk L, plus the (sparse) idiosyncratic risk Σu. It also leads to the spiked

incoherent low-rank model, but Σy is unknown and needs to be estimated.

2.2 Estimation

There are two general approaches to estimating model (2.1): (i) Principal Components

Analysis (PCA), and (ii) low-rank regularization. Here we present a general PCA estimation

setting, and defer the discussion of low-rank regularization to Section 3.2. We shall assume

rank(L) = r to be known.

For any matrix A, let A = UADAV′A denote the singular value decomposition (SVD) of

A. Define the singular value hard thresholding operator as

HR(A) := UAD̄RV′A (2.5)
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where D̄R is a diagonal matrix that keeps the top R diagonal elements of DA and replaces

the remaining elements by zeros. So HR(A) is the best rank R matrix approximation to A.

Suppose an estimator of Σ, denoted by Σ̂, is available, satisfying

‖Σ̂−Σ‖ = OP (ηN), ‖Σ̂−Σ‖∞ = OP (cN) (2.6)

for some sequences ηN and cN . We use Σ̂ as the input matrix, which can be the sample

covariance matrix or its robustfied versions (Fan et al., 2019c). The goal is to estimate L

in (2.1) and its N × r matrix of the left singular vectors, denoted by ξ (also let ζ denote

its right singular vectors). We use respectively L̂ := HR(Σ̂) with R = r, which is the rank

r projection of Σ̂, and the N × r matrix ξ̂ whose columns are the left singular vectors of

Σ̂. The following theorem, adapted from Fan et al. (2018), provides deviation bounds of the

estimators. To make the paper self-contained, we also provide a simpler proof with slightly

different conditions.

Theorem 2.1. Consider the general model (2.1) with bounded r := rank(L). Suppose that

min2≤i≤r+1 |λi−1(L)− λi(L)| � max2≤i≤r+1 |λi−1(L)− λi(L)| := gN and ηN + ‖S‖ = oP (gN).

Then, under condition (2.6), we have (i)

‖L̂− L‖ = OP (ηN + ‖S‖) , ‖ξ̂ − ξ‖ = OP

(
ηN + ‖S‖

gN

)
.

(ii) If additionally, ‖S‖∞ + ‖L‖∞ = OP (1), N1cN = oP (gN), then

‖ξ̂ − ξ‖∞ ≤ OP

(
N1√
N

+
√
N1

)
(ηN + ‖S‖)g−2

N

+OP

(
cN

N1√
N

+ cN
√
N1 + ‖Sζd‖∞ ∨ ‖S′ξd‖∞

)
g−1
N .

Proof. See the online supplement.

This theorem is relatively general, and is applicable to low-rank models that are not

necessarily consequences from factor models. The proof relies on perturbation bounds for

singular vectors/values, and the achieved rates are sharp. Result (i) is simple and gives

asymptotic bounds under the operator norm. Result (ii) gives element-wise deviation bound

for the singular vectors, which requires more dedicated technical arguments.
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3 Estimation under Factor Models

We observe an N × T data matrix Y, which can be decomposed as

Y = M + U = BF′ + U

where B is N × r factor loadings matrix, F is T × r factors matrix and U is N × T idiosyn-

cratic errors, which are uncorrelated with M := BF′. All the three parts B, F and U are

unobserved. The t th column of this expression can be written as

yt = Bft + ut. (3.1)

3.1 PCA and MLE

3.1.1 PCA

Under the model’s specification, we have the covariance structure (2.4). One of the most

widely used estimation methods for the factor model is principal components analysis (PCA).

Define the sample covariance Sy = 1
T

∑T
t=1 yty

′
t = 1

T
YY′. Let ξ̂j be the jth eigenvector

corresponding to the largest j th eigenvalues of Sy. The PCA estimates B by taking B̂ =√
N(ξ̂1, · · · , ξ̂R), which estimates B up to a diagonal transformation. Given B̂, the factors

can be estimated via the least squares:

F̂ = Y′B̂(B̂′B̂)−1 =
1

N
Y′B̂.

This also leads to the estimated low-rank component 1
T
B̂F̂′F̂B̂′ for B cov(ft)B

′.

PCA is equivalent to the singular value hard thresholding by taking the input matrix

Σ̂ = Sy. Then 1
T
B̂F̂′F̂B̂′ = HR(Sy). One can then apply Theorem 2.1 to infer the rates

of convergence of the PCA estimators, which were obtained by Stock and Watson (2002a).

Bai (2003) proved the asymptotic normality of PCA estimators for the factors and loadings.

Results with general input Σ̂ can be found in Chapter 10 of Fan et al. (2020c).

3.1.2 Maximum Likelihood Estimations

Another popular method to estimate a factor model is the maximum likelihood (ML) method

(see, e.g., Lawley and Maxwell (1971), Bai and Li (2012), Doz et al. (2012)). Under the

independence and normality assumptions, the log-likelihood function based on yt is, for
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some constant C,

logLML(B, cov(ft), diag(Σu)) = C − T

2
ln |Σy| −

1

2

T∑
t=1

y′tΣ
−1
y yt.

The log-likelihood function is then maximized with respect to the matrix parameters (B, cov(ft), diag(Σu))

under additional restrictions that Σu is diagonal (Bai and Li, 2012, 2016) or sparse with reg-

ularizations (Bai and Liao, 2016; Wang et al., 2019b). Recently Barigozzi and Luciani (2019)

explicitly accounted for autocorrelations of the factors in the likelihood function.

The factors can be estimated by two methods, one of which is the projection method.

Under the joint normality assumptions of ft and ut, we have

E(ft|yt) = B′(BB′ + Σu)
−1yt = (Ir + B′Σ−1

u B)−1B′Σ−1
u yt.

This provides the basis of estimating factors. The other approach is the generalized least

squares: for given B and Σ−1
u , the GLS estimator for ft is

f̂t = (B′Σ−1
u B)−1B′Σ−1

u yt.

Replacing the unknown parameters with their ML estimators, one obtains two estimators

for the latent factors. Under large-N setup, the difference of the two methods (PCA and

MLE) for estimating factors are asymptotically negligible.

3.2 Low rank estimation

Alternative to PCA, one can estimate M directly taking advantage of its low-rank structure,

based on the nuclear-norm regularization, the `1-norm of singular values, that encourages

the sparseness in singular values and hence low-rankness. For an n × m matrix A, let

‖A‖n :=
∑min{m,n}

i=1 ψi(A) be its nuclear-norm, where ψi(A) is the i th largest singular value

of A.
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3.2.1 Singular value thresholding

Given the low-rank structure of M (sparsity in singular value of M), we can estimate the

model via solving the following penalized optimization:

M̂ = arg min
M

1

2
‖Y −M‖2

F + ν‖M‖n (3.2)

for some tuning parameter ν > 0. The solution is M̂ = Sν(Y), where Sν(·) is the singular

value thresholding operator (Ma et al., 2011), defined as follows. Let Y = UyDV′y be its

SVD. Then Sν(Y) := UyDνV
′
y, where Dν = diag({Dii − ν}+) with Dii being the diagonal

entries of D. So Sν(Y) applies “soft-thresholding” on the singular values of Y. One can

additionally estimate the factors and loadings using the singular vectors.

We note that this method is closely related to the PC-estimator, except the soft-thresholding

is replaced by hard-threshoding. Let R denote the “working number of factors”, which is

the number of principal components one takes when applying the PC-method. We note that

the PC-estimator for M with R factors is given by (see Section 2.2):

M̂PC = HR(Y), HR(Y) := UyD̄RV′y.

This estimator is the solution to the penalized least squares problem (3.2) except that the

nuclear norm is replaced by
∑min{N,T}

i=1 pν(ψi(M)), where pν(θ) = ν2−(ν−|θ|)2
+ is the harding

thresholding penalty and ψi(M) is the ith singular value of M.

Therefore the difference between (3.2) and PCA is more fundamentally about that of

hard- and soft- thresholding. Despite of many good properties, the soft-thresholding esti-

mator possesses shrinkage bias, while the hard-thresholding reduces the bias. As a matter

of fact, the shrinkage bias is on the singular values, rather than on the singular vectors.

Indeed, the singular vectors of the two estimators are the same, and equal to the top R

singular vectors of Y. An important implication is that the factor estimator building on M̂

is numerically equivalent to the PC-estimators for the factors, which does not suffer from

any shrinkage bias. A formal statement and proof of the unbiasedness of eigenvectors can

be found in Fan et al. (2019b).
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3.2.2 Low-rank plus sparse decomposition

Recall that Σy and Σu denote the N × N covariance matrices of yt and ut in model (3.1),

and that we have the following decomposition

Σy = L + Σu, L := B cov(ft)B
′. (3.3)

We now demonstrate that this decomposition also provides a nice structure for estimating

the covariance components. A key assumption is conditionally sparsity, namely, Σu is sparse.

While the definition of sparsity may differ in different contexts, here we mean

J :=
∑
i 6=j

1{Euitujt}

should not grow too fast as N → ∞. This requirement can be weakened to approximate

sparsity. In addition, L is a low-rank matrix. Thus we can directly estimate the above

covariance decomposition via solving the following penalized optimization:

(L̂, Σ̂u) := arg min
L,Σu

1

2
‖Sy − (L + Σu)‖2

F + ν1‖L‖n + ν2‖Σu‖1, (3.4)

where ν1 and ν2 are tuning parameters. Note that here we use the notation ‖A‖1 =∑
i,j |Aij| as the matrix 1-norm, distinguished from the usual matrix `1-norm ‖A‖`1 :=

maxi≤N
∑N

j=1 |Aij|. The above optimization has been employed by many authors to study

the low rank plus sparse decomposition, while some authors exclude the diagonal elements

of Σu from the penalization, and additionally impose positive-definite and other constraints

on L and Σu (Klopp et al., 2017; Agarwal et al., 2012). Finally, given L̂, we can estimate

the factors and loadings by extracting its eigenvectors.

The above optimization can be solved by alternating the estimation of L and Σu, and

closed form solutions are available in both iterations. Given Σu, solving for L leads to the

singular value soft-thresholding : L̂ = Sν1(Sy − Σu), and given L, solving for Σu leads to

the element-wise soft-thresholding : Σ̂u = S̃ν2(Sy − L). While both iterations solve convex

problems, standard convergence analysis can be applied to show that the iterative algorithm

converges in polynomial time.

Agarwal et al. (2012) and Klopp et al. (2017) studied the statistical convergence properties

of (3.4). Let columns of UL,2 be the singular vectors of the true L corresponding to the

zero singular values. Define projections P(A) := UL,2U
′
L,2AUL,2U

′
L,2 and M(A) := A −
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P(A). In addition, let (A)J and (A)Jc be the submatrices of A, whose elements respectively

correspond to Euitujt 6= 0 and Euitujt = 0. Additionally define

C(ν1, ν2) := {(A1,A2) : ν1‖P(A1)‖n + ν2‖(A2)Jc‖1 ≤ 3ν1‖M(A1)‖n + 3ν2‖(A2)J‖1}.

A key quantity is the restricted strong convexity (RSC) constant, which is defined as follows:

κ(ν1, ν2) := sup{c > 0 : ‖A1 + A2‖2
F ≥ c‖A1‖2

F + c‖A2‖2
F for all (A1,A2) ∈ C(ν1, ν2)}.

We then have the following theorem, adapted from Agarwal et al. (2012). To make the

paper self-contained, we also provide a proof with slightly different conditions. See the online

supplement.

Theorem 3.1. Conditioning on events 4‖Sy − Σy‖ ≤ ν1 and 4‖Sy − Σy‖∞ ≤ ν2, there is

C > 0 that only depends on rank(L), so that

1

N2
‖L̂− L‖2

F +
1

N2
‖Σ̂u −Σu‖2

F ≤
C

κ2(ν1, ν2)

(ν2
1 + (J +N)ν2

2)

N2
.

Proof. See the online supplement.

The optimal tuning parameters can be set to satisfy ν1 � N√
T

and ν2 �
√

logN
T

, respec-

tively, accounting for estimating errors under two matrix norms:

‖Sy −Σy‖ ≤ ν1, ‖Sy −Σy‖∞ ≤ ν2;

both can be shown to hold with high probability under weak serial dependence and sub-

Gaussian conditions. In additionally, if κ(ν1, ν2) is bounded away from zero, with the choice

of tunings, the convergence rate in Theorem 3.1 is OP (1 + J logN
N2 ) 1

T
, which is sufficient to

guarantee the convergence of the estimated factors and loadings. We refer to Lemma 2 of

Agarwal et al. (2012) for more refined lower bound of κ(ν1, ν2).

The above problem is also called “robust PCA” (Candès et al., 2011). For recent advance

and references, see Chen et al. (2020c) where factorization methods are also discussed.

3.3 Covariance estimation

Fan et al. (2013) proposed a nonparametric estimator of Σy, named POET (Principal Or-

thogonal complEment Thresholding), when the factors are unobservable. It is basically an
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one-step solution to optimization (3.4) with initialization Σu = 0. To motivate the estimator,

suppose r = R. Then, heuristically

L ≈ HR(Σy), Σu ≈ Σy −HR(Σy),

Thus, one estimates L by HR(Sy) and sets Su := Sy −HR(Sy). To account for the sparsity

assumption on Σu, Fan et al. (2013) estimates Σy and Σu as

Σ̂y = HR(Sy) + Σ̂u, Σ̂u = (h(Su,ij, λij))N×N , (3.5)

where h(x, λij) denotes the element-wise thresholding operator with thresholding value λij.

Here, we emphasize element-dependent thresholding λij to adapt to varying scales of covari-

ance. For correlation thresholding at level λ, we take λij = λ
√
su,iisu,jj with su,ii a diagnonal

element of Su(Fan et al., 2013); we can also take other form such as the adaptive thresholding

in Cai and Liu (2011). In general, the thresholding function should satisfy:

(i) h(x, λ) = 0 if |x| < λ,

(ii) |h(x, λ)− x| ≤ λ.

(iii) there are constants a > 0 and b > 1 such that |h(x, λ)− x| ≤ aλ2 if |x| > bλ.

Note that condition (iii) requires that the thresholding bias should be of higher order.

It is not necessary for consistent estimations, but we recommend using nearly unbiased

thresholding (Antoniadis and Fan, 2001) for inference applications. One such example is

known as SCAD. As noted in Fan et al. (2015), the unbiased thresholding is required to

avoid size distortions in a large class of high-dimensional testing problems involving a “plug-

in” estimator of Σu. In particular, this rules out the popular soft-thresholding function,

which does not satisfy (iii) due to its first-order shrinkage bias.

3.4 Projected PCA

In empirical asset pricing, factor loadings are known to depend on individual-specific observ-

ables Xi, which represent a set of time-invariant characteristics such as individual stocks’

size, momentum, and values. To incorporate the information carried by the observed char-

acteristics, Connor and Linton (2007) and Connor et al. (2012) model explicitly the loading

matrix as a function of covariates Xi. Fan et al. (2016) extended the model to allowing
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components in factor loadings that are not explainable by characteristics:

bi = g(Xi) + γi, E(γi|Xi) = 0. (3.6)

Here g(·) is a vector of nonparametric functions. With this model, they introduced an

improved factor estimator, known as projected PCA.

The basic idea of projected PCA is to smooth the observations {yit}Ni=1 for each given t

against their associated covariates {Xi}Ni=1 (cross-sectional smoothing), and apply PCA to

the smoothed data (fitted values). Let {φj(x)}Jj=1 be a set of basis functions. This can be

either unstructured, such as kernel machines, or structured such as a basis for additive models

(Fan et al., 2020c). Set φ(Xi)
′ = (φ1(Xi), · · · ., φJ(Xi)) and Φ(X) = (φ(X1), · · · , φ(XN))′,

an N × J matrix. Then the projection matrix on characteristics can be taken as P =

Φ(X)(Φ(X)′Φ(X))−1Φ(X)′. The projected data PY is the fitted value of regressing Y on to

the basis functions.

We make the following key assumptions:

Assumption 3.1. (i) Relevance: With probability approaching one, all the eigenvalues of
1
N

(PB)′PB are bounded away from both zero and infinity as N →∞.

(ii) Orthogonality: E(uit|Xi) = 0 for all i ≤ N, t ≤ T.

The above conditions require that the strengths of the loading matrix should remain

strong after the projection. Condition (ii) implies that if we apply P to both sides of

Y = BF′ + U, then

PY ≈ PBF′ = GF′

where G = PB is the N × r matrix, which ≈ (g(Xi))N×r under additional assumption

E(γi|Xi) = 0 for all i ≤ N . In other words, the noise U is suppressed, while signals remain.

Hence, the scaled sample covariance (PY)′PY = Y′PY ≈ FG′GF′. For identification

purpose, let us assume Ξ := G′G is a diagonal matrix and F′F/T = I. Then from

1

T
Y′PYF ≈ FΞ,

we infer that the columns of F are approximately the eigenvectors of the Y′PY, scaled by

a factor
√
T . This motivates estimating factors by using the top R eigenvectors of Y′PY.

Fan et al. (2016) derived the rates of convergence of the projected PCA method. A nice

feature is that the consistency of latent factors is achieved even when the sample size T
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is finite so long as N goes to infinity. Intuitively, the idiosyncratic noise is removed from

cross-sectional projections, which does not require a long time series.

Similarly, in many applications, while we do not know the latent factors ft, we do know

that factors are related to some proxy variables Wt. For example, the latent factors are

unknown for equity markets, but they are related to Fama-French factors (Fama and French,

2015); latent factors for disaggregated macroeconomics time series are unknown, but they

are related to aggregated ones (McCracken and Ng, 2016). Switching the roles of rows and

columns, longitudinal regression of each series {yit}Tt=1 on {Wt}Tt=1 yields the projected data

matrix, from which latent factors and loadings can be extracted similarly. See Fan et al.

(2020a) for details on how latent factor learning is augmented by instruments {Wt}Tt=1.

3.5 Diversified projection

In this section, we continue denoting by R as the number of factors we use, and by r

as the true number of factors. Fan and Liao (2020) proposed a simpler factor estimator

that does not rely on eigenvectors, by using cross-sectional diversified projections (DP). Let

W = (w1, · · · ,wR) be a given exogenous (or deterministic) N × R matrix, where each of

its R columns wk is an N × 1 vector of “diversified weights”, whose definition is to be clear

below. We estimate ft by simply taking

f̂t =
1

N
W′yt.

By substituting yt = Bft + ut into the definition, immediately we have

f̂t = Hft +
1

N
W′ut, H =

1

N
W′B. (3.7)

Thus f̂t (consistently) estimates ft up to an R × r affine transform H, with the estimation

error et := 1
N

W′ut. The assumption that W should be diversified ensures that as N →∞,

et is “diversified away” (converging to zero in probability). More specifically, we impose the

following assumption.

Assumption 3.2. There is a constant c > 0, so that as N →∞,

(i) The R×R matrix 1
N

W′W satisfies λmin( 1
N

W′W) > c.

(ii) W is independent of {ut : t ≤ T}.
(iii) Suppose R ≥ r, rank(H) = r and ψ2

min(H)� 1
N

, where ψmin(H) denotes the minimum

nonzero singular value of H = 1
N

W′B.
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Conditions (i) and (ii) define the “diversified weights” W. When (u1t, · · · , uNt) are

cross-sectionally weakly dependent, they ensure that et is diversified away. Condition (iii)

of Assumption 3.2 is a key condition, which requires that W should not diversify away the

factor components in the time series. Several choices of W can be recommended to satisfy

this condition. For instance, if factor loadings satisfy (3.6), then fix R components of sieve

basis functions: (φ1(·), · · · , φR(·)), we can define

W := (wi,k)N×R, where wi,k = φk(Xi).

Alternatively, we can also use transformations of the initial observation xt for t = 0, which

was considered by Juodis and Sarafidis (2020). If y0 is independent of {ut : t ≥ 1}, we can

apply wi,k = φk(yi,0) . These weights are correlated with B through y0 = Bf0 + u0.

An important benefit of the DP is that it is robust to over-estimating the number of

factors. Theoretical studies of factor models have been crucially depending on the assumption

that the number of factors, r, should be consistently estimated. This usually requires strong

conditions on the strength of factors and serial conditions. Recently, Barigozzi and Cho

(2018) proposed a PCA-based method to estimate factors that are robust to over-estimated

r. They provided rates of convergence of the estimated common components when R ≥ r.

Fan and Liao (2020) applied DP to several inference problems in factor-augmented mod-

els, including the post-selection inference, high-dimensional covariance estimation, and factor

specification tests. They formally justified the robustness to over-estimating the number of

factors in these applications. In particular, DP admits r = 0 but R ≥ 1 as a special case.

That is, the inference is still valid even if there are no common factors present, but factors

are nevertheless estimated for insurance. In addition, Karabiyik et al. (2019) applied DP to

the context of panel data models in the presence of common factors.

3.6 Factor estimators robust to heavy tails

To apply either the PCA or the MLE to estimate the model, we need an initial covariance

estimator Sy, whose application requires elements of yt have sufficient moments. Some

technical results of factor estimations even require sub-Gaussian conditions on data’s tail

distributions. However, heavy tailed data are not uncommon in economic applications. For

instance, about thirty percent of 131 disaggregated macroeconomic variables of Ludvigson

and Ng (2016) have excess kurtosis greater than six, so their distributions are fatter than

the t-distribution with degrees of freedom five. Indeed, heavy tails are a stylized feature of
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high-dimensional data, as it is unlikely that all variables have sub-Gaussian tails.

Because the presence of heavy-tailed data invalidates many conditions required for esti-

mating factor models, the recent literature has proposed several methods that are robust to

the tail distributions. Here we describe two of them: truncation and robust M-estimation.

In the high-dimensional setting, consider estimating multivariate means from an inde-

pendent triangular array variables yi1, ..., yiT with maxi≤N Var(yit) ≤ σ2. Truncate the data

ỹit := sgn(yit) min{|yit|, τi}

with predetermined τi > 0. We then estimate Eyit using the truncated-mean ỹi := 1
T

∑T
t=1 ỹit.

Theorem 3.2 shows that the high-dimensional means can be estimated uniformly well if

E|yit|q < M for some q ≥ 2.

Catoni (2012) constructed a robust M-estimator that shares the same Gaussian con-

centration. Fan et al. (2017a, 2019c) used the adaptive Huber’s loss to define the mean

estimator:

ŷi = arg min
µ

T∑
t=1

ψτi(yit − µ)

where τi is a growing sequence, and

ψτ (z) =

z2τ−2, |z| < τ

2|z|τ−1 − 1, |z| ≥ τ.

The following theorem shows that ŷi also estimates Eyit well provided that maxi Ey2
it is

bounded.

Theorem 3.2. Suppose yit is i.i.d. across t, and maxi≤N Ey2
it < σ2.

(i) The truncation approach: Suppose maxi≤N E|yit|q < M for some q ≥ 2. In addition,

suppose logN ≤ CT for some C > 0, and the truncation parameter is set to satisfy τi �(
T

logN

)1/(1+q/2)

(σ2 maxi≤N E|yit|q)1/(2+q). Then there is c > 0 which does not depend on any

moments of yit, or (N, T ), with probability at least 1− 2N−3,

max
i≤N
|ỹi − Eyit| ≤ (cM1/(2+q) + 3)σ

√
logN

T
.

(ii) The robust M-estimation approach: Suppose logN = o(T ), and the truncation pa-

rameter is set to satisfy τi �
√

T
logN

. Then there is c > 0 which does not depend on any
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moments of yit, or (N, T ), with probability at least 1− 4N−3,

max
i≤N
|ŷi − Eyit| ≤ C(σ + 1)

√
logN

T
.

Proof. See appendix.

The robust mean estimation also applies to estimating covariance as its (i, j) element

is of form Eyityjt. When the high-dimensional data have heavy-tailed components, we can

replace the sample covariance by its robust version Ŝy before estimating the factors. By the

Gaussian concentration inequality, the robustly estimated covariance Ŝy satisfies

‖Ŝy −Σy‖∞ = OP

(√
logN

T

)
,

so long as E y2
ity

2
jt is uniformly bounded (and serial independence is assumed).

Based on the above robust covariance inputs, we can create factor estimators and derive

their theoretical properties following the guidance of Section 2.2. See Chapter 10 of Fan

et al. (2020c) for further generalizations.

3.7 Use of cross-covariance

When factors are highly persistent but Eutu
T
t−h = 0, then the cross-covariance

Σh = Eyty
′
t−h = B(Eftft−h)B

′, h ≥ 1

contains valuable information about B. This motivates to estimate loadings by applying

PCA to aggregated {Σh : h = 1, · · · }, and we studied by Lam and Yao (2012). A related

idea has been extended to matrix-variate PCA (Wang et al., 2019a; Chen et al., 2020a).

Fan and Zhong (2018) also provided a procedure to efficiently aggregate the cross-covariance

information with the covariance information when h = 0.

3.8 Which method to use?

Many references have documented the comparisons among various estimation methods.

Westerlund and Urbain (2013) made a comparison between PCA and cross-sectional av-

erages in the panel data setting. Meanwhile, the PCA and low-rank penalized regressions
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are practically very similar. So we do not distinguish their use in practice. In general,

because of the simplicity for implementations and relatively weak required conditions, the

PCA still seems to be the most widely used method in applied research. Meanwhile, robust

covariance inputs can also be integrated with the surveyed low-rank recovery methods.

In addition, when either factors or loadings can be partially explained by observed char-

acteristics, the projected PCA is recommended. This is particularly useful in asset pricing

applications where the explanatory power of asset characteristics has been well documented

in the literature.

4 Factor-Augmented Inference and Econometric Learn-

ing

4.1 Forecasts

Forecasting in a data-rich environment has been an important research topic in economics

and finance. Typical examples include forecasts of the aggregate output or inflation rate

using a large number of the categorized macroeconomic variables.

Stock and Watson (2002a); Bai and Ng (2006) considered factor-augmented regression

model for h-step ahead forecast:

yt+h = α′ft + β′wt + εt (4.1)

xt = Bft + ut. (4.2)

Here wt in (4.1) is the observed predictors, which may include lagged dependent variables.

Equation (4.2) is a high-dimensional factor model that includes a vector of latent factors

ft. The forecast can be implemented by regressing yt+h onto wt and estimated factors. The

factor model (4.2) serves as an important dimension reduction tool.

4.1.1 Inverse regression

Fan et al. (2017b) generalized (4.1) to the nonlinear model with multi-indices. Consider the

following forecasting model:

yt+1 = h(φ′1ft, . . . ,φ
′
Rft, εt+1) (4.3)
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where h(·) is an unknown link function, and εt+1 is the error independent of ft and ut.

Vectors φ1, . . . ,φR are r-dimensional linear-indepencent prediction indices. In contrast with

linear forecasting, the above model specifies that the predicting function is nonlinear and

depends on multiple indices of extracted factors. If we specify R < r, further dimension

reductions are achieved.

A prominent result related to model (4.3) is given by Li (1991), which shows that under

some regularity conditions such as ft is elliptically symmetric, we have

E(ft|yt+1) = Φa(yt+1), (4.4)

for a R-dimensional vector a(yt+1), where Φ = [φ1,φ2, . . . ,φR] is an r×R matrix. In other

words, the “inverse regression vector” E(ft|yt+1) falls in the column space spanned by Φ,

which can be extracted by PCA. Indeed, since E(E(ft|yt+1)) = E(ft) = 0,

cov(E(ft|yt+1)) = ΦE[a(yt+1)a(yt+1)′]Φ′

The above matrix has R nonvanishing eigenvalues if E[a(yt+1)a(yt+1)′] is non-degenerate.

Their corresponding eigenvectors have the same linear span as φ1, . . . ,φR do. If one can

consistently estimate cov(E(ft|yt+1)), then the subspace spanned by φ1, . . . ,φR, which is of

our primary interests, can be obtained by extracting the top R eigenvectors of the estimated

covariance matrix that correspond to the R largest eigenvalues.

However, it is not an easy task to directly estimate the covariance of E(ft|yt+1). Li (1991)

suggested the sliced covariance estimate, a widely used technique for dimension reductions:

The sliced covariance matrix also satisfies the fundamental property (4.4), namely E(ft|yt+1 ∈
Ik) falls in the column space spanned by Φ for any given partition of the range of yt+1 into

H “slices” I1, I2, . . . , IH . Correspondingly, let

̂cov(E(ft|yt+1)) =
1

H

H∑
h=1

[
1∑T

t=1 1(yt+1 ∈ Ih)

T∑
t=1

ft1(yt+1 ∈ Ih)

]

×
[

1∑T
t=1 1(yt+1 ∈ Ih)

T∑
t=1

ft1(yt+1 ∈ Ih)

]′
, (4.5)

which is a nonparametric covariance estimator. The above sliced covariance estimator is

based on the observable factors. If the factors are unknown, they are replaced by their

estimators, which leads to the following sufficient forecasting algorithm based on the factor
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models.

Algorithm 4.1. Sufficient forecasting algorithm based on the factor models.

Step 1 Estimate factors in model (4.2) for t = 1, . . . , T ;

Step 2 Construct the covariance estimator as in (4.5) with f̂t in place of ft;

Step 3 Obtain φ̂1, φ̂2, . . . , φ̂R by the top R eigenvectors of the covariance in Step 2;

Step 4 Construct the predictive indices φ̂
′
1f̂t, . . . , φ̂

′
Rf̂t;

Step 5 Nonparametrically estimate h(·) with indices from Step 4, and forecast yt+1.

Implementing the above algorithm requires the number of slices H, the number of pre-

dictive indices R, and the number of factors r. In practice, H has little influence on the

estimated directions, as pointed out in Li (1991) and explained above that property ((4.4))

holds. As regard to the choice of R, the first R eigenvalues of cov(E(ft|yt+1)) must be sig-

nificantly different from zero compared to the estimation error. Several methods such as

Li (1991) and Schott (1994) have been proposed to determine R. For instance, the average

of the smallest r − L eigenvalues would follow χ2 distribution if the underlying factors are

normally distributed. The number of factors can be determined by a number of methods.

4.2 Factor-adjusted regularized model selection

Consider a high-dimensional regression model

yt = β′gt + ν ′xt + ηt,

gt = θ′xt + εg,t (4.6)

where gt is a treatment variable whose effect β is of the main interest. The model contains

high-dimensional exogenous control variables xt = (x1t, · · · , xNt) that determine both the

outcome and treatment variables. Having many control variables creates challenges for

statistical inferences, as such, we assume that (ν,θ) are sparse vectors.

Control variables are often strongly correlated due to the presence of confounding factors

xt = Bft + ut. (4.7)
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This invalidates conditions of using penalized regressions to directly select among xt. Instead,

if we substitute (4.7) to (4.6), we reach a factor-adjusted regression model:

yt = α′yft + γ ′ut + εy,t,

gt = α′gft + θ′ut + εg,t,

εy,t = β′εg,t + ηt (4.8)

where α′g = θ′B, α′y = βα′g +ν ′B, and γ ′ = βθ′+ν ′. Here (αy,αg,β) are low -dimensional

coefficient vectors while (γ,θ) are high-dimensional sparse vectors. Importantly, the model

contains high-dimensional latent controls ut, which are weakly dependent due to the nature

of idiosyncratic noises. The use of ut instead of xt validates conditions for many high-

dimensional variable selection methods.

Fan et al. (2020b) and Hansen and Liao (2018) showed that the penalized regression can

be successfully applied to (4.8) to select components in ut, which are cross-sectionally weakly

correlated. Motivated by Belloni et al. (2014), the algorithm can be summarized as follows.

For notational simplicity, we focus on the univariate case dim(β) = 1.

Algorithm 4.2. Estimate β as follows.

Step 1 Estimate {(ft,ut) : t ≤ T} from (4.7) to obtain {(f̂t, ût) : t ≤ T}.

Step 2 Run penalized variable selections on ût:

(γ̂, α̂y) = arg min
γ,αy

1

T

T∑
t=1

(yt −α′y f̂t − γ ′ût)2 + Pτ (γ),

(θ̂, α̂g) = arg min
θ

1

T

T∑
t=1

(gt −α′g f̂t − θ′ût)2 + Pτ (θ).

Obtain residuals: ε̂y,t = yt − (α̂′y f̂t + γ̂ ′ût), and ε̂g,t = gt − (α̂′g f̂t + θ̂
′
ût).

Step 3 Estimate β by residual-regression: β̂ = (
∑T

t=1 ε̂
2
g,t)
−1
∑T

t=1 ε̂g,tε̂y,t.

Note that γ :→ Pτ (γ) is a sparse-induced penalty function with a tuning parameter τ .

When θ and γ are sufficiently sparse, and the PC-estimator is used in step 1 with the correct

selection of the number of factors, the above procedure is asymptotically valid:

σ−1
η,gσ

2
g

√
T (β̂ − β)

d−→ N (0, 1), (4.9)
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where σ2
g and σ2

η,g are the asymptotic variances of εg,t and ηtεg,t.

More recently, Fan and Liao (2020) showed that the assumption of correct selection of

the number of factors can be relaxed if we use the diversified projection in step 1 instead,

and (4.9) is still valid as long as we select R ≥ r factors (over selection). Importantly, this

admits r = 0, and R ≥ 1 as a special case, i.e., there are no factors so that xt = ut itself is

cross-sectionally weakly dependent, but nevertheless we estimate R ≥ 1 number of factors to

run post-selection inference to alleviate the dependence among xt. This setting is empirically

relevant as it allows to avoid pre-testing the presence of common factors for inference.

Figure 1: Histograms of the standardized estimates (4.9) over 200 replications, superimposed
with the standard normal density. The panel of “double selection” corresponds to directly
selecting among xt (corresponding to R = 0, no factor adjustment), while all other panels
correspond to using diversified factor (DP) estimators with R number of working factors.
Top four figures correspond to r = 0 and bottom four figures correspond to r = 2. When
R ≥ r, (4.9) holds, whereas when R < r, (4.9) is violated. Figure source: Fan and Liao
(2020).

Figure 1, taken from Fan and Liao (2020), plots the histograms of the t-statistics based on

estimated β over 200 simulations, superimposed with the standard normal density, where R

diversified projections are used to estimate factors in step 1. Here the weights are the initial

transformations (t = 0) so that the ith row of W is (xit, x
2
it, · · · , xRit) at t = 0. The “double

selection” is the algorithm used in Belloni et al. (2014) that directly selecting among xt,

corresponding to the case R = 0. The factor-augmented algorithm works well even if r = 0;

but when r ≥ 1 factors are present, “double selection” leads to severely biased estimations.

Therefore as a practical guidance, we recommend that one should always run factor-

augmented post-selection inference, with R ≥ 1, to guard against confounding factors among

the control variables.
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4.3 Factor-adjusted robust multiple testing

4.3.1 False discovery rate control

Controlling the false discovery proportion (FDP) in large-scale hypothesis testing based on

strongly dependent tests has been an important problem in many scientific discoveries across

disciplines. See Fan et al. (2019a) and references therein, and Barras et al. (2010); Harvey

et al. (2015); Harvey and Liu (2018); Giglio et al. (2020) for applications in empirical asset

pricing.

Suppose we observe realizations of a random vector {yt = (y1t, · · · , yNt)′}Tt=1. Let α =

(α1, · · · , αN)′ denote its mean vector. We are interested in testing individual hypotheses:

H i
0 : αi = 0, i = 1, · · · , N.

Let pi denote the p-value for testing H i
0 based on a test statistic such as t-test, which

rejects if pi < x given some critical value x. Define the number of false discoveries (rejections)

and the total number of rejections as follows:

F(x) =
N∑
i=1

1{i : pi < x and H i
0 is true}, V(x) =

N∑
i=1

1{i : pi < x}.

In large-scale multiple testing problems, researchers often aim to control the false discovery

proportion (FDP) and the false discovery rate (FDR) defined by

FDP(x) =
F(x)

max{V(x), 1}
, FDR(x) = E{FDP(x)}.

The goal is to find the critical value x so that FDR(x) ≤ τ for a desired level τ (e.g., 0.10)

or more relevantly FDP(x) ≤ τ with high confidence. While V(x) is known, F(x) is not in

practice. A general principle of finding x proceeds as the following two steps.

Algorithm 4.3. General principle for FDP/FDR control.

Step 1. Find F̄(x) such that either it upper bounds F(x) for all x ∈ (0, 1), or it estimates

F(x) uniformly well.

Step 2. Set the critical value to x∗ = sup{x ∈ (0, 1) : F̄(x) ≤ τ max{V(x), 1}}.

One of the most popular procedures, proposed by Benjamini and Hochberg (1995), pro-

ceeds as follows. Denote p(1) ≤ · · · ≤ p(N) as the sorted p-values for the individual tests.
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Then the critical value is set to

x∗ = max{p(i) : p(i) ≤ τi/N}.

This method fits into Algorithm 4.3 with F̄(x) = Nx, which is an asymptotic upper bound

for F(x) when the individual p-values are independent. One of the limitations of this upper

bound is that it is too conservative if the number of true negatives is small compared to

N . More fundamentally, it requires the test statistics be weakly dependent, a topic we shall

discuss in more detail next. Other methods, such as Storey (2002); Fan et al. (2012), etc.,

aim to directly estimate F(x) in step 1 in the presence of strong dependence among test

statistics, and are also adaptive to the unknown number of true negatives.

In addition, instead of Algorithm 4.3, Romano and Wolf (2007); Romano et al. (2008)

provided alternative procedures for FDR control.

4.3.2 Removing dependence by factor adjustments

The key to the success of FDR control is that the individual test statistic should be either

weakly dependent or independent. This makes the FDR and FDP approximately the same

and easier to control. On the other hand, suppose the cross-sectional dependence of yt is

generated from a latent factor model:

yt = α+ Bft + ut, E(ut|ft) = 0, (4.10)

where E ft = 0, and α is the mean vector. In empirical asset pricing, the model can be

used to identify nonzero alphas out of a large number of assets, and has been studied to

identify skilled mutual fund managers, e.g., Barras et al. (2010) and Harvey et al. (2015).

The presence of latent factors, however, leads to strong dependence among the t-statistics

based on the naive sample means of yt, which invalidates the weak dependence assumptions.

As well documented in the literature, strong dependence creates fundamental challenges to

multiple testing, including large standard errors among the estimated αi, unstable FDP’s,

and conservativeness of the test procedure. Learning dependence Bft and removing it from

the model (4.10) make the data not only weakly dependent but also less noisy (from Bft+ut to

ut). This is the basic idea in factor-adjusted robust multiple tests (FarmTest) by using factor-

adjusted data {yt − B̂f̂t}Tt=1; see (4.10). Furthermore, Fan et al. (2019a) makes adjustments

so that it is also robust to heavy tailed data.
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Figure 2: Comparison between the sample mean (omit factors) and the factor-adjusted
method, with T = 200 and N = 1000. The upper panels plot the histograms of estimated
individual alphas from a single simulation; the middle panels plot the individual FDP’s over
1000 simulations. The bottom left panel plots the cross-sectional histograms of standard
errors of the estimated alphas over 1000 simulations. The bottom right panel plots the
sorted p-values from a single simulation. The B-H procedure rejects all the hypotheses if p(i)

is below the B-H threshold line f(i) := τi/N .

To illustrate consequences of omitting adjusting latent factors as well as the effectiveness

of the use of the factor-adjusted method (to be detailed below), let us consider a numerical

example of a single factor model, where elements of ut, ft and Bt are generated from the

standard normal distribution. We take the true means to be αi = 0.6 for 1 ≤ i ≤ N/4

and 0 otherwise, and compare two estimated αi: 1) the sample means of yt, without using

factor adjustments; 2) the factor-adjusted estimator based on PCA. We apply the method

of Benjamini and Hochberg (1995) for multiple testing, setting τ = 0.05.

The top panels of Figure 2 plot the histograms, from a single simulation, of the estimators

for αi, corresponding to those that satisfy the null hypotheses αi = 0 and those that satisfy

the alternatives αi = 0.6. Clearly, there is a large overlap (on the upper left panel) between

sample means from the null and alternative, making tests based on sample means difficult to

distinguish the alternatives from the nulls. In contrast, the PCA-based estimator can easily

separate the nulls and alternatives, as shown on the upper right panel in Figure 2.

The middle two panels of Figure 2 plot the histograms of the true FDP over 1000 simula-

tions based on the two estimators. It is evident that the distribution of the FDP correspond-

ing to the factor-adjusted estimator concentrates around the nominal level. In contrast,

the one based on the sample mean has a noticeable long tail as well as a larger mean and

variance, which demonstrate the challenge to control FPD in presence of common factors,

as explained above.
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Finally, omitting confounding factors would lead to larger standard errors and conser-

vative inference. The bottom two panels in Figure 2 plot the standard errors of individual

estimated alphas and the sorted p values for the two estimation methods. The sample-mean

estimator has much fewer sorted p-values below the B-H threshold line (i.e., fewer rejections),

compared to the factor-adjusted estimator.

Hence it is recommended to estimate and remove the latent factors before applying

standard FDR control algorithms.

4.3.3 Identifying skilled hedge funds

Giglio et al. (2020) studied the problem of identifying hedge funds that are able to produce

positive alphas (i.e., have “skill”), among thousands of existing funds. They considered a

linear pricing model, where hedge fund returns are:

yit = αi + b′iλ+ b′i(ft − Eft) + uit.

In the model ft contains both observable and latent factors. The model allows nontradable

observable factors and λ is the vector of factor risk premia.

At a broad level, their methodology proceeds as the Fama-MacBeth regression integrated

with the PCA to extract latent factors:

Algorithm 4.4. Estimating alphas in the presence of latent and nontradable factors.

Step 1. Run fund-by-fund time series regressions to estimate fund exposures (betas) to

observable factors.

Step 2. Apply PCA to the residuals to recover the latent factors and betas.

Step 3. Implement cross-sectional regressions like Fama-MacBeth to estimate the risk pre-

mia of the factors (including both observable and latent factors) and the alphas.

Because of many negative alphas from unskilled hund managers, the multiple testing

problem should be properly formulated as one-sided hypotheses:

H i
0 : αi ≤ 0, i = 1, · · · , N.

Hence rejecting H i
0 indicates skilled fund manger i. On the other hand, the existence of

potentially a very large number of negative alphas gives rise to the issue of power loss, only
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to add noises to the model. The loss of power associated with testing inequalities is well

known as the problem of “deep in the null”, and is often seen in the econometric literature.

To address this issue, Giglio et al. (2020) proposed to first screen off very bad funds, identified

as:

I = {i ≤ N, α̂i/se(α̂i) < −cNT}

where cNT > 0 is a slowly growing sequence to ensure sure screening (Fan and Lv, 2008):

P (I ⊆ H0) → 1. They recommended to apply FDR control algorithms on funds outside

I. Therefore, there are two ingredients that are recommended for identifying skilled fund

managers via multiple testing: (1) adjust the effect of latent factors, and (2) remove the

estimated alphas that are deep in the null. Both are playing essential roles of gaining good

testing power.

4.4 Instrumental variable regression

The issue of endogeneity is often encountered in real data applications. Consider the following

instrumental variable (IV) regression model

yt = w′tβ
0 + εt = w′1tβ1 + w′2tβ2 + εt,

where w1t is a k1-dimensional vector of exogenous regressors and w2t is a k2-dimensional

vector of endogenous regressors. Meanwhile, we have an N -dimensional IV xt which admit

a factor structure:

xt = Bft + ut.

Below we introduce four estimators for β0, which differ on their choices of the instruments.

Use ft as the instruments. Project w2t on ft:

w2t = φ′ft + vt, E(vt|ft) = 0

where φ is a k2 × r matrix. We need r ≥ k2 for identification. Let zt = (w′1t, f
′
t)
′ be the set

of instruments. As ft is unobservable, we replace it with some factor estimator and apply

the two stage least squares estimator β̂f with the feasible instruments.

Bai and Ng (2010) studied this estimator, and showed that the estimation errors of β̂f

associated with the generated instruments (factor estimations) have no effect on the limiting

variance. When ut and εt are uncorrelated, this only requires (N, T )→∞ regardless of the
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relative growth rates. When some weak correlations are present but ‖Eεtut‖1 = O(1), we

would require
√
T = o(N) to offset the effect of estimating factors.

Use xt as the instruments. Project w2t on xt:

w2t = θxt + et, (4.11)

where θ is a k2 × N coefficient matrix. This projection motivates the use of xt directly as

a set of high-dimensional IV. Suppose that εt is an i.i.d process, then the two-stage least

squares estimator is efficient, and is given by

β̂x =
(
W′XΣ̂

−1

x X′W
)−1

W′XΣ̂
−1

x X′Y

where X is T × N matrix of xt; W and Y are matrices of wt and yt. Note that Σ̂x

is the estimated covariance of xt, which can be constructed using factor-based covariance

estimators as described in Section 3. It is interesting to compare the asymptotic behaviors of

β̂f with β̂x. Bai and Ng (2010) showed when ut and wt are uncorrelated, they have the same

asymptotic variance, but β̂x has a O(N
T

) bias term. So β̂x is consistent only if N = o(T ).

Use selected xt as the instruments. We still consider the projection (4.11), but

assume that rows of θ are sparse vectors so that we can apply penalized regression to select

among the components of xt:

θ̂j = arg min
θj∈RN

1

T

T∑
t=1

(w2t,j − x′tθj)
2 + Pτ (θj), j ≤ dim(w2t) (4.12)

where Pτ (θj) is a sparse-induced penalty with tuning τ . Let xt,selec be the vector of selected

components corresponding to nonzero components of {θ̂j : j ≤ dim(w2t)}. Belloni et al.

(2012) used (w1t,xt,selec) as the instruments to compute β̂x,selec, the two stage least squares

estimator. This method however, would not work well in the presence of common factors.

The strong dependence in xt invalidates the variable selection procedure (4.12).

Use ft and selected ut as the instruments. We are not aware of any applications of

this method in the IV literature, but it is still well motivated. Substitute the factor structure

to (4.11), we obtain

w2t = δft + θut + et
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where δ = θB. Hence we can carry out variable selections among ut:

(δ̂j, θ̂j) = arg min
δj∈Rr,θ∈RN

1

T

T∑
t=1

(w2t,j − δ′j f̂t − û′tθj)
2 + Pτ (θj), j ≤ dim(w2t).

Let ût,selec be the vector of selected components corresponding to nonzero components of

{θ̂j : j ≤ dim(w2t)}. We then use (w1t, f̂t, ût,selec) as the instruments to compute β̂f ,u,

the two stage least squares estimator. This method is expected to work well because it

marginalizes out the strong factors in xt, leaving remaining components ut being weakly

dependent.

Let us conduct a simple simulation to study the finite sample behaviors of the afore-

mentioned four estimators. We consider a model yt = w′2tβ
0 + εt, with a single endogenous

regressor w2t generated from (4.11) with et = εt/2. Here θ = (2, 1,−1, 0..., 0) and xt admits

a two-factor structure. Variables (εt, ft,B,ut) are independent standard normal. Finally,

variable selections are based on lasso with the oracle tuning parameter that controls the

score of the least squares function. For instance, for problem (4.12) we set Pτ (θ) = τ‖θ‖1

with τ = 2.2‖ 1
T

∑
t xtet‖∞.

Table 1: Comparison among four IV methods

N T Bias Standard deviation

β̂f β̂x β̂x,selec β̂f ,u β̂f β̂x β̂x,selec β̂f ,u

50 100 0.004 -0.993 0.003 0.008 0.215 0.001 0.061 0.058
200 100 0.008 -0.996 0.007 0.009 0.143 8e-4 0.056 0.054

Reported is based on 1000 replications. β̂f uses f̂t as IV; β̂x uses xt as IV; β̂x,selec selects xt as IV using

lasso; β̂f ,u uses (f̂t, ût,selec) as IV, where ût are selected using lasso.

Table 1 reports the bias and standard deviation of each estimator calculated from 1000

replications. First, using only estimated factors as the instruments (β̂f ) leads to the largest

standard error. This is not surprising because it excludes the relevant information from ut

while the latter is correlated with w2t, so this method is less efficient. Secondly, using xt

as instruments without variable selection (β̂x) has the smallest standard deviation, but is

severely biased. Finally, the two instrumental selection based estimators (β̂x,selec and β̂f ,u)

perform favorably and similarly. But β̂x,selec is not as stable, as it occasionally selects none

of the instruments in our numerical experiments.
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4.5 Boosting

Consider the following factor-augmented regression

yt+h = c+α(L)′wt + γ(L)yt + β(L)′ft + εt+h. (4.13)

whereα(L) = α0+α1L+· · ·+αpLp, γ(L) = γ0+γ1L+· · ·+γqLq and β(L) = β0+β1L+· · ·+
βlL

l, all are lag operator polynomials. Suppose that wt is a k-dimensional vector and ft is an

r-dimensional vector. The above predictive regression has n = 1+(p+1)k+(q+1)+(l+1)r

parameters. It is likely that partial parameters are zero. So model selection devices can

be conducted to choose a parsimonious model. Here we briefly describe a model selection

method, known as boosting, which was proposed to use by Bai and Ng (2009) in this context.

Boosting is an ensemble meta-algorithm, which sequentially finds a “committee” of base

learners and then makes a collective decisions by using a weighted linear combination of

all base learners. The first successful and popular boosting algorithm is AdaBoost (Freund

and Schapire, 1997). Friedman (2001) proposes a generic functional gradient descent (FGD)

algorithm, which views the boosting as a method for function estimation. If the squared

loss function is specified, the FGD algorithm reduces to the L2-Boosting, which is studied

in Friedman (2001) and Bühlmann and Yu (2003). Suppose that (yt, zt)
T
t=1 are the observed

target and predictive regressors over the sample period. The L2-Boosting algorithm for

estimating the conditional mean E(yt|zt) is given as follows.

Algorithm 4.5. L2-Boosting algorithm

Step 1 Initialize f̂ [0](·) an offset value. The default value is f̂ [0](·) ≡ ȳ. Set m = 0.

Step 2 Increase m by 1. Compute the residuals et = yt − f̂ [m−1](zt) for t = 1, 2, . . . , T .

Step 3 Fit the residual vector e1, . . . , eT to z1, . . . , zT by the real-valued base procedure

(e.g., regression):

(zt, et)
T
t=1

base procedure−−−−−−−−→ ĝ[m](·).

Step 4 Update f̂ [m](·) = f̂ [m−1](·) + ν · ĝ[m](·), where 0 < ν ≤ 1 is a step-length factor.

Step 5 Iterate steps 2 to 4 until m = mstop for some stopping iteration mstop.

One can apply the above L2-Boosting to the factor-augmented predictive regression

(4.13). As seen in Algorithm 4.5, one needs to specify the base procedure in step 3. Bai and
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Ng (2009) suggest two methods depending on the way to deal with lags, which leads to the

component-wise L2-Boosting and block-wise L2-Boosting. In component-wise L2-Boosting,

one treats each lag of each variable as an independent predictor and the base procedure is a

simple linear regression. Therefore, step 3 is given as follows.

Algorithm 4.6. Component-wise L2-Boosting

Step 3.1 Let zt,j denote a typical regressor in the regressors pool with j = 1, 2, . . . , n.

Regress the current residual et (the residual in the m-th repetition) on each zt,j to

obtain the coefficient b̂j. Compute the sum of squared residuals, denoted by SSR(j).

Step 3.2 Determine jm by

jm = argmax
1≤j≤n

SSR(j).

Step 3.3 ĝ[m](xt) = zt,jmb̂jm if xt = zt,jm , and 0 otherwise.

Another way is to only differentiate the predictors in the current period and treat the

predictor and its multiple lags as a block. This gives rise to the block-wise L2-Boosting. The

base procedure now is a multivariate regression with the regressors being one predictor and

its lags. See Bai and Ng (2009) for details.

4.6 Threshold regression with mixed integer optimization

Threshold regressions have been used in economic applications to capture potential structural

changes on regression coefficients. The early literature models the threshold effect using some

observable scalar variable qt as in:

yt = w′tβ + w′tδ1{qt > γ}+ εt,

where wt and qt are adapted to the filtration Ft−1; (β, δ, γ) is a vector of unknown param-

eters, and εt satisfies the conditional mean restriction. Hence when qt > γ, the regression

function becomes w′t(β + δ); when qt ≤ γ, it reduces to w′tβ (Chan, 1993; Hansen, 2000).

In practice, it might be controversial to choose which observed variable plays the role of qt.

For example, if the two different regimes represent the status of two environments of the

population, arguably it is difficult to assume that the change of the environment is governed

by just a single variable.
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Seo and Linton (2007) and Lee et al. (2020) extended the model to multivariate threshold:

yt = w′tβ + w′tδ1{γ ′ft > 0}+ εt,

where ft is a vector of “factors” and γ is the corresponding unknown coefficients. So the

model introduces a regime change due to a single index of factors. Allowing multivariate

thresholding is important, because it permits the structural change to be governed by a

potentially much larger dataset: xt = Bft + ut, where dim(xt) = N → ∞. So ft can

be unobserved factors that can be learned from xt. For the identification purpose, suppose
1
T

∑
t ftf

′
t = I and B′B is diagonal, then γ and ft are separately identified. This gives rise to

the factor-driven two-regime regression model.

A natural strategy to estimate the model is to rely on least squares:

min
β,δ,γ

T∑
t=1

(yt −w′tβ −w′tδ1{γ ′f̂t > 0})2,

where f̂t is the plugged-in PC-estimator of factors. Because the least squares problem is

neither convex nor smooth in γ, the computational task is demanding. Lee et al. (2020) rec-

ommended using algorithms based on mixed integer optimization (MIO). Introduce integers

dt := 1{γ ′f̂t > 0} ∈ {0, 1}. The goal is to introduce linear constraints with respect to vari-

ables of optimization. Suppose there are known upper and lower bounds for δj: Lj ≤ δj ≤ Uj,

where δj denotes the jth element of δ. Define Mt ≡ maxγ∈Γ |γ ′f̂t|, where Γ is the parameter

space for γ. Then it can be verified that the least squares problem is numerically equivalent

to the following constraint MIO problem:

min
β,δ,γ,d,`

T∑
t=1

(yt −w′tβ −w′t`t)
2 (4.14)

subject to (for any ε > 0), for each t = 1, . . . , T and each j = 1, . . . , dim(wt),

γ ∈ Γ, dt ∈ {0, 1}, Lj ≤ δj ≤ Uj,

(dt − 1)(Mt + ε) < γ ′f̂t ≤ dtMt,

dtLj ≤ `j,t ≤ dtUj,

Lj(1− dt) ≤ δj − `j,t ≤ Uj(1− dt).

(4.15)
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Then, we can apply modern MIO packages (e.g., Gurobi) to solve for the optimal (β, δ,γ).

Finally, Lee et al. (2020) also derived the asymptotic distribution of the estimated coef-

ficients and proposed inferences based on bootstraps. Under the condition that T = O(N),

they showed that the effect estimating factors is negligible on the asymptotic distribution

of the estimated (β, δ), but would affect both the rate of convergence and the limiting

distribution of the estimated γ.

4.7 Community detection

The stochastic block model has been a popular approach to modeling networks (see Abbe

(2017) for a recent review). We observe a graph of N nodes. Let A = (aij) ∈ RN×N be

the adjancy matrix of edges so that aij = 1 if nodes i and j are connected, and aij = 0

otherwise. Suppose each node belongs to one of r communities, and the community that

node i belongs to is denoted by an unknown πi ∈ {1, · · · , r}. In addition, elements of A are

random variables. Then stochastic block model assumes that

P (aij = 1|πi = k, πj = l) = wk,l,

where wk,l is an unknown probability. We observe the matrix A and aim to recover the

membership πi and the probabilities wk,l for all k, l = 1, · · · , r.
Let e1, · · · , er denote the canonical basis in Rr, and bi = ek where θi = k. Then, bi

indicates the community membership of node i, and the membership matrix is

B = (b1, · · · ,bN)′, N × r,

whose rows represent nodes and columns represent communities. Let W denote the r × r
matrix of (wk,l) and let L := EA. It can easily be seen that L = BWB′ is a low-rank

matrix, whose rank equals r, leading to the following low-rank decomposition:

A = L + S, S = A− EA.

Therefore, A has the familiar decomposition (2.4), with L being similar to the systematic

risk and B as a low-rank loading matrix. Since the elements in S are independent with mean-

zero (Wigner matrix), the operator norm ‖S‖ does not grow too fast, compared to that of

L. We can then apply PCA on A to estimate B. Suppose r is known, then the estimator B̂
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is defined as
√
N times the eigenvectors of A, corresponding to the first r eigenvalues.

Theorem 2.1 can be applied to obtain a deviation bound for the estimated loading matrix.

If there is a sequence gN → ∞ and constants c1, · · · , cr > 0 such that the eigenvalues

λi(W
1/2B′BW1/2) = cigN(1 + oP (1)) for all i ≤ r, then there is an r × r matrix H, so that

‖B̂−BH‖∞ = OP (g−2
N N‖S‖+ g−1

N

√
N logN).

Therefore, elements of a rotated B can be estimated uniformly well. Moreover, because

each community has many nodes belong to, BH has many identical rows, which makes the

cluster analysis as a natural method for community detections. For instance, we can apply

either the K-means cluster analysis, or the homogeneous pursuit of Ke et al. (2015) on the

rows of B̂ to consistently identify the communities.

4.8 Time varying models

So far we have been assuming that the factor loading and covariance matrices are time-

invariant. Research on conditional factor models has also grown rapidly in recent years.

Suppose

yit = b′i,tft + uit

where bi,t is a time-varying vector of loadings. There have been several approaches to

addressing the issues of time-varying loadings. In this section we briefly review three of

the most commonly used ones: (1) time-varying characteristics, (2) time-smoothing and (3)

continuous-time models.

4.8.1 Time-varying characteristics

The first approach models bi,t using a function of observed characteristics zi,t−1:

bi,t = bi(zi,t−1)

where bi(·) is either a linear function or an unknown nonparametric function of the char-

acteristics. Therefore, the time-varyingness is mainly captured by the characteristics. An

advantage of this approach, over the other two approaches to be reviewed below, is that if

zi,t−1 is correctly specified and indeed can fully capture the degree of time-varyingness of the

model, then bi,t allows a large degree of varyingness, and potentially, structural breaks. On
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the other hand, the limitation of this approach is the potential misspecification of zi,t−1 and

omitted variable problems. Above all, we refer to Gagliardini et al. (2019) for an excellent

review on conditional factor models using this approach, and their applications in empirical

asset pricing.

4.8.2 Time-smoothing

The second approach assumes that factor loadings change smoothly over time. Suppose bi(·)
is an unknown smooth function, we assume

bi,t = bi

(
t

T

)
, ∀t ≤ T.

Then locally, bi,t ≈ bi,r for all t ≈ r. So in a local window B(r) of each fixed r, the model

is approximately time invariant:

yit ≈ b′i,rft + uit, t ∈ B(r).

Motivated by this assumption, Ang and Kristensen (2012) and Ma et al. (2020) tested the

market mean-variance efficiency assumption in the case of known factor case. In the unknown

factor case, Su and Wang (2017) first applied local smoothing on yi,t then employed PCA

on the smoothed data to estimate the factors and loadings. While this approach does not

require the specification of time-varying characteristics, it restricts to the smooth varying

scenario and thus rules out structural breaks. In addition, slow rates of convergence appear

near boundaries (that is, the beginning and the end of observing periods).

4.8.3 High-frequency factor models

Consider a continuous-time factor model

dyt = αtdt+ Btdft + dut

where yt, ft,ut are vectors of asset prices, factors and idiosyncratic risks; αt is a drift term.

The time-varying loading matrix Bt is an N × r matrix that is assumed to be continuous

and locally bounded Itô semimartingale of the form:

Bt = B0 +

∫ t

0

α̃sds+

∫ t

0

σsdWs,
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where α̃s and σs are optional processes and locally bounded; Ws is a Brownian motion.

Roughly speaking, by the Burkholder-Davis-Grundy inequality (cf. chapter 2 of Jacod and

Protter (2011)), Bt is also locally time-invariant, which is similar to the treatment of the

time-smoothing approach. The major difference though, is that the use of high-frequency

data has automatically “smoothed” the data. We refer to the following papers for recent

developments on high-frequency factor models, among others: Aı̈t-Sahalia and Xiu (2017);

Chen et al. (2019a); Liao and Yang (2018); Li et al. (2019); Pelger (2019).

5 Unbalanced Panels

Missing data and unbalanced panels are not uncommon in economic and financial studies.

Addressing the missing data issue in statistical modeling belongs to a larger category of

problems, known as matrix completion. Low-rank matrix completion refers to the problem

of recovering missing entries from low-rank matrices. It is particularly relevant to empirical

asset pricing factor models, because many time series of returns have short histories or

missing records. In this section we review several methods for matrix completions, which

assume that the missing is at random, except for Cai et al. (2016); Bai and Ng (2019).

Besides, the EM algorithm is also a classical approach to dealing with unbalanced panels.

We refer to Stock and Watson (2002b); Su et al. (2019); Zhu et al. (2019) for detailed

discussions on related issues.

5.1 Inverse probability weighting

Recall that the covariance matrix of yt, under the factor model (3.1), has the following

decomposition, Σy = B cov(ft)B
′ + Σu, where columns of B are approximately equal to the

eigenvectors of Σy corresponding to the first r eigenvalues. As such, let Σ̂y be an input

matrix, serving as an estimator for Σy. Then as described in Section 2.2, we can estimate

the space spanned by B using the leading eigenvectors of Σ̂y.

In the presence of missing data with exogenous missing, let xit = 1{yit is observed} and

we only observe yitxit for all (i, t), in which unobserved data is set to zero. Suppose for now

wi := P (xit = 1) is known. We can construct an unbiased estimator Σ̂y = (σ̂ij) with

σ̂ij :=
1

wiwjT

T∑
t=1

yityjtxitxjt.
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In the matrix form, let Y and X be the N × T matrices of yit and xit. So we only observe

Y ◦X, where ◦ represents the element-wise matrix product, the Hadamard product. Also

let W be the diagonal matrix with wi being its i th diagonal entry. Then

Σ̂y =
1

T
ZZ′, Z := W−1Y ◦X.

Therefore, columns of the loading matrix estimator B̂ equal to
√
N times the top right

singular vectors of Z. This method simply replaces the missing entries of Y by zero, and

apply the inverse probability weighting (IPW) before applying PCA. The IPW has been

popularly used in the causal inference literature (e.g., Imbens and Rubin (2015)). Here the

same idea is applied to create an unbiased estimator for the covariance matrix.

In practice, we shall replace wi by its consistent estimators, such as ŵi := 1
T

∑T
t=1 xit.

But in the case of homogeneous missing, that is, w1 = · · · = wN , the IPW is not needed,

because W equals the identity matrix up to a constant, which does not affect the PCA on

Y ◦X. In addition, factors can be further estimated using least squares by regressing yitxit

on the estimated loadings.

Theoretical properties were studied by Abbe et al. (2020); Su et al. (2019) under the

assumption of homogenous missing. Su et al. (2019) used this estimator as their initial

value for the EM algorithm. Xiong and Pelger (2019) allowed heterogenous missing and

proved that the estimators are also asymptotically normal (they estimated wiwj directly by
1
T

∑T
t=1 xitxjt). We can also quickly derive the rate of convergence by applying Theorem 2.1.

However, the IPW is the least efficient approach among all the methods to be discussed in

this section. We shall verify this in a simulation study in Section 5.5.

5.2 Regularized matrix completion

Regularized matrix completion is a powerful technique to recover missing entries from low-

rank matrices. This approach is also much faster than the EM algorithm in handling large

panels. Due to these nice properties, it has also attracted much attention in the recent

econometrics literature, e.g., Athey et al. (2018); Bai and Ng (2017); Moon and Weidner

(2018); Giglio et al. (2020).

In the matrix form Y = M + U, the goal is to recover the factor component M = BF′

when Y has missing elements. The nuclear-norm regularization is directly applicable:

M̂ := arg min
M
‖(Y −M) ◦X‖2

F + λ‖M‖n (5.1)
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with tuning parameter λ. The factors and loadings can be estimated by taking the singular

vectors of M̂. Negahban and Wainwright (2011) and Koltchinskii et al. (2011) derived the

rate of convergence under the Frobenius norm. Under suitable conditions (e.g., missing at

random, restricted strong convexity, sufficiently large noise) it can be proved that

1

NT
‖M̂−M‖2

F = OP

(
1

T
+

1

N

)
.

Chen et al. (2020b) certifies further that the convex optimization (5.1) is optimal for all noise

levels under Frobenius norm, operator norm, and elementwise-infinity norm. The proof is

based on a novel technical device that bridges the convex optimization with a nonconvex

optimization problem. However, this estimator is not asymptotically normal due to the

presence of shrinkage bias, so is not suitable for statistical inferences.

5.3 Debiased estimators

Several recent progress in this literature focuses on debiasing the regularized regression in

order to have valid confidence intervals, e.g., Chen et al. (2019b); Xia and Yuan (2019);

Chernozhukov et al. (2019). When the missing is homogeneous, P (xit = 1) = p for all (i, t),

Chen et al. (2019b) proposed the following simple debiased estimator

M̂d = HR(M̂ + p̂−1(Y − M̂) ◦X), (5.2)

where HR(·) is the best rank R approximation in (2.5), M̂ is given by (5.1), p̂ is the sample

proportion of missing data. The idea is very intuitive. Ignoring the weak-dependence between

M̂ and X and estimating error in p̂, we have

E(M̂ + p̂−1(Y − M̂) ◦X) ≈ E M̂ + E(Y − M̂) = M,

which is approximately unbiased. However, the estimator M̂ + p̂−1(Y− M̂ ◦X) is no longer

of rank R, which increases the variances. This leads to use the projection as in (5.2), which

is asymptotically efficient in terms of both rate and pre-constant.

Alternatively, the debiasing can be achieved through the iterative least squares (Cher-

nozhukov et al., 2019). Suppose the true number of factors, r, is known.

Algorithm 5.1. Debias using iterative least squares.

Step 1. Obtain M̂ as in (5.1).

39



Step 2. Let the columns of 1√
N

B̂ be the left singular vectors of M̂, corresponding to the

first r singular values.

Step 3. Estimate the latent factors at time t by f̃t :=
(∑N

i=1 b̂ib̂
′
ixit

)−1∑N
i=1 b̂iyitxit and

let F̃ = (f̃1, · · · , f̃T )′.

Step 4. Update loading estimates by B̃ = (b̃1, · · · , b̃N)′, where

b̃i :=

(
T∑
t=1

f̃tf̃
′
txit

)−1 T∑
t=1

f̃tyitxit.

Step 5. The asymptotically unbiased estimator for M is M̃ := B̃F̃′.

A key technical argument is to ensure that the estimation error in B̂ (step 2) has no

impact on the factor estimator (step 3); this is achieved by Chen et al. (2019b) using an

“auxiliary leave-one-out” argument.

When the missing probability P (xit = 1) varies across i, there are two ways to revise the

previous algorithm to achieve the asymptotic normality. One way is to replace (5.1) with a

weighted regularization:

min
M
‖(Ŵ−1/2Y − Ŵ−1/2M) ◦X‖2

F + λ‖M‖n, (5.3)

where Ŵ is a diagonal matrix, whose i th diagonal entry equals ŵi := 1
T

∑T
t=1 xit. This debi-

ases the least squares part of the loss function, adopting the same idea of inverse probability

weighting. The remaining steps of Algorithm 5.1 are the same. Then the same “auxiliary

leave-one-out” technical argument of Chen et al. (2019b) still goes through. The other way

is to apply “sample splitting”, which evenly split the columns of Y into two parts: on one

part we run the penalized regression as in (5.1) and obtain B̂, on the other part we run

iterative least squares. Then exchange the two parts and re-do the estimations. The final

estimator is taken as the average of the two. Suppose uit is serially independent, the sample

splitting then artificially creates independences among various statistics from the splitting

sample. See Chernozhukov et al. (2019) for detailed descriptions of this approach.
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5.4 Block-rearrangements

In an attempt to handle endogenous missing, Bai and Ng (2019) proposed a block-rearrangement

method. At the cost of this generality, they require that the data matrix Y should have a

sufficiently large balanced sub-block after elementary rearrangements. See Cai et al. (2016);

Fan and Kim (2019) for related ideas.

Specifically, a preliminary step of their estimation is to rearrange the data in a shape

that all the factor loadings can be estimated in one sub-block and all the factors can be

estimated in another sub-block. The following example is adapted from Bai and Ng (2019),

which gives a good illustration on this manipulation: example of the N × T matrix for yit:
y11 y12 y13 y14 y15

y21 y∗22 y23 y24 y25

y31 y32 y33 y∗34 y35

y∗41 y42 y43 y44 y45

y51 y52 y53 y54 y55

 =⇒


y13 y15 y11 y12 y14

y53 y55 y51 y52 y54

y23 y25 y21 y∗22 y24

y33 y35 y31 y32 y∗34

y43 y45 y∗41 y42 y44

 .

The left matrix is the originally collected data and the right is the rearranged one. The

symbols with asterisk denote the missing data. From the column perspective, the 1st, 2nd

and 4th columns have missing values and therefore are rearranged as the last three columns

in the right panel; from the row perspective, the 2nd, 3rd and 4th rows have missing values

and therefore are rearranged as the last three rows in the right panel. Bai and Ng (2019)

name the black block “bal”, name the black plus the red blocks “tall”, and name the black

plus the blue block “wide”.

Consider the missing value y∗22. We want to replace it with its expected value E(y∗22) =

b′2f2. Note that y∗22 shares the same factor loadings b2 with data points y23 and y25 in the

wide block; and shares the same factors f2 with data points y12 and y52 in the tall block.

Meanwhile, b2 can be estimated using data in the“tall” block; f2 can be estimated using

data in the “wide” block. As a result, one might expect to recover E(y∗22) with these two

estimators. However, we must take into account the rotational indeterminacy inherent with

the factor models. For a generic missing value yit,

b̂tall,i = H′tallbi + oP (1), f̂wide,t = H−1
wideft + oP (1).

Therefore

b′ift = b̂′tall,iAf̂wide,t + oP (1), A := H−1
tallHwide.

41



To estimate A, by f̂wide,t = H−1
wideft + oP (1) and f̂tall,t = H−1

tallft + oP (1), we have

f̂tall,t = Af̂wide,t + oP (1).

So one can run the regression of f̂tall,t on f̂wide,t to consistently estimate A. This leads to the

following estimation procedure.

Algorithm 5.2. Block-rearrangement algorithm

Step 1 Obtain estimators (b̂wide, F̂wide) using the tall block of Y.

Step 2 Obtain estimators (b̂tall, F̂tall) using the wide block of Y.

Step 3 Compute Ĉmiss = B̂tallAF̂′wide where A is obtained by regressing f̂tall,t on f̂wide,t

Step 4 Output Ỹ, where ỹit = yit if yit is observable; ỹit = ĉmiss,it if yit is missing.

Once Ỹ is obtained, we apply the PCA again to the imputed data Ỹ to get more efficient

estimates of B and F. Suppose the size of the “tall” block is N × T0 and the size of the

“wide” block is N0 × T . So the size of the “bal” block is N0 × T0. The whole sample size

(including missing data points) is N × T . Bai and Ng require that

max{
√
N,
√
T} = o(N0), and max{

√
N,
√
T} = o(T0).

An implication of the above condition is that the missing data points should not be too

frequent in the sense that the balanced subblock is large enough. Though this condition

rules out the case of random missing (e.g., missing occurs as outcomes of Bernoulli trials),

it is not stringent given the nature of endogenous missing.

5.5 A simulation study

We conduct a simulation study to compare six matrix completion approaches, namely:

IPW. The inverse probability weighting.

ReUW. Unweighted regularization. The eigenvectors of the estimator (5.1).

ReW. Weighted regularization. The eigenvectors of the estimator (5.3).

ReDebias. The debiased regularized estimator from Algorithm 5.1.

EM. The EM algorithm.
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We generate a two-factor model where loadings, factors and uit are independent stan-

dard normal. Under the homogeneous missing we generate xit ∼ Bernoulli(0.5); under the

heterogeneous missing we generate xit|wi ∼ Bernoulli(wi), and wi ∼Uniform[0.1, 1]. The

three regularized methods require choosing λ, the tuning parameter. Write the penalized

loss function to be ‖(W−1/2Y−W−1/2M)◦X‖2
F +λ‖M‖n where W is a diagonal weighting

matrix. The theory requires that with a high probability, there is c > 0,

(2 + c)‖U ◦ (W−1X)‖ < λ.

So we set λ to be the 0.95 quantile of 2.2‖Z ◦ (W−1X)‖ where Z is an N × T matrix

of standard normal variables. In practice, one can also simulate Z using the estimated

idiosyncratic covariance matrix.

Table 2: Comparison among five matrix completion methods

N T IPW ReUW ReW ReDebias2 EM

Homogeneous missing
100 200 0.176 0.116 0.114 0.109 0.109
200 100 0.252 0.171 0.169 0.161 0.161

Heterogeneous missing
100 200 0.263 0.211 0.131 0.119 0.119
200 100 0.369 0.304 0.222 0.204 0.203

Reported is ‖PB̂ −PB‖ averaged over 100 replications.

We compare the performance of estimating the loading space, measured by PB = B(B′B)−1B′.

Table 2 reports ‖PB̂−PB‖ averaged over 100 replications for each method. In all scenarios,

the IPW performs the worst among all estimators. Under the homogeneous missing, all the

other four methods perform similarly, but the difference is much more noticeable under the

heterogeneous missing. The general ranking is that

IPW ≺ ReUW ≺ ReW ≺ ReDebias ≈ EM.

This ranking is as expected: IPW is the least efficient method among the five; ReUW uses

the nuclear-norm regularized estimation that does not take into account the heterogeneous

missing or debias; ReW accounts for the heterogeneous missing probabilities, and ReDebias
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further removes the regularization bias.

Finally, it is not surprising to see that ReDebias and EM perform similarly because both

start with an initial low-rank estimator (ReDebias initializes from ReW while EM initializes

from IPW), then proceed via iterative least squares. But we note that ReDebias operates

much faster because it only iterates once, so is more attractive than EM in handling large

scale problems. We also implemented the “early-stop-EM” (which only iterates twice), it

performs only slightly better than IPW and is worse than all the other estimators. Therefore

we conclude that the ReDebias is a recommended method for handling large scale low-rank

matrix completion problems.

6 Conclusion

We have conducted a selective overview on the recent developments of the factor model and

its application on statistical learning. We focus on the perspective of the low-rank structure

of factor models, and particularly draws attentions to estimating the model from the low-

rank recovery point of view. New estimation and inference methods, and matrix completion

problems have been discussed.

A Technical details

A.1 Proof of Theorem 2.1

Proof. (i) The proof is an exercise of applying the eigen-perturbation theorem. First, by the

triangular inequality, for aN := 2ηN‖L‖+ η2
N + 3‖L‖‖S‖,

‖Σ̂Σ̂
′
− LL′‖ ≤ ‖ΣΣ′ − Σ̂Σ̂

′
‖+ ‖ΣΣ′ − LL′‖ ≤ OP (aN).

So by Weyl’s theorem (cited in Theorem A.2), maxi≤r+1 |λ2
i (Σ̂)− λ2

i (L)| ≤ OP (aN).

Also, g2
N := min2≤i≤r+1 |λi−1(L)− λi(L)|2 � aN implies λ2

r(L)� aN and

min
2≤i≤r+1

|λ2
i−1(L)− λ2

i (L)| ≥ 2λr(L) min
2≤i≤r+1

|λi−1(L)− λi(L)| � aN .
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So with probability approaching one,

max
i≤r
|λi(Σ̂)− λi(L)| ≤ maxi≤r |λ2

i (Σ̂)− λ2
i (L)|

mini≤r

√
2λ2

i (L)− |λ2
i (Σ̂)− λ2

i (L)|
= OP

(
aN
λr(L)

)
. (A.1)

min
i≤r
|λ2
i−1(Σ̂)− λ2

i (L)| ≥ min
2≤i≤r

|λ2
i−1(L)− λ2

i (L)| − |λ2
i−1(Σ̂)− λ2

i−1(L)|

≥ 1

2
min

2≤i≤r
|λ2
i−1(L)− λ2

i (L)|. (A.2)

Similarly, for all i ≤ r − 1, |λ2
i (L) − λ2

i+1(Σ̂)| ≥ 1
2

min2≤i≤r |λ2
i−1(L) − λ2

i (L)|. Now for

i = r, λ2
r+1(Σ̂) ≤ λ2

r+1(L) + OP (aN) = OP (aN). So |λ2
r(L) − λ2

r+1(Σ̂)| ≥ 1
2
λ2
r(L). Hence by

the sing-theta theorem (cited in Theorem A.2),

max
i≤r
‖ξ̂i − ξi‖ = OP

(
aN
g2
N

)
. (A.3)

The right singular vectors have the same bound. Then (A.1) (A.3) together imply

‖L̂− L‖ = OP

(
aN‖L‖
g2
N

)
.

Finally, we note that ‖L‖ =
∑r+1

i=2 λi−1(L) − λi(L) ≤ rgN . So aN = oP (g2
N) is satisfied as

long as ‖S‖+ ηN = oP (gN) and aN = OP (gNηN + gN‖S‖).
(ii) The element-wise bound is a corollary from the more general bound in Theorem

A.3. Using the notation of Theorem A.3, under the assumptions that ‖Σ‖∞ = OP (1),

sN = OP (
√
N1). Also, mN = OP ( 1√

N
+ 1√

N1
), ‖L‖∞ = OP (1), N1cN = oP (gN). Hence

bN ≤
(
N1√
N

+
√
N1

)
g−2
N (ηN + ‖S‖) +

(
cN

N1√
N

+ cN
√
N1 + ‖Sζd‖∞

)
g−1
N .

A.2 Proof of Theorem 3.1

Proof. Let Q(L,Σu) denote the loss function. Note that

‖Sy − L̂− Σ̂u‖2
F = ‖Sy −Σy‖2

F + ‖L̂ + Σ̂u − L−Σu‖2
F +M1 +M2

M1 = 2 tr((Sy −Σy)(L− L̂)′)

M2 = 2 tr((Sy −Σy)(Σu − Σ̂u)
′).
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We now use two types of inequalities to bound M1 and M2. As for M1, note that L is a

low-rank matrix, we use the inequality | tr(AB′)| ≤ ‖A‖‖B‖n. We thus have

|M1| ≤ 2‖Sy −Σy‖‖L− L̂‖n ≤ 0.5ν1‖L− L̂‖n.

As for M2, note that Σu is a sparse matrix, we use the inequality | tr(AB′)| ≤ ‖A‖∞‖B‖1,

|M2| ≤ 2‖Sy −Σy‖∞‖Σu − Σ̂u‖1 ≤ 0.5ν2‖Σu − Σ̂u‖1.

From Lemma 2.3 of Recht et al. (2010), ‖L + P(A1)‖n = ‖L‖n + ‖P(A1)‖n where A1 =

L̂ − L. Also using the standard sparse argument, ‖Σu + (A2)Jc‖1 = ‖Σu‖1 + ‖(A2)Jc‖1

where A2 = Σ̂u − Σu. In addition, Lemma 1 of Negahban and Wainwright (2011) shows

0.5rank(M(A1)) ≤ r := rank(L). Hence

‖L̂‖n = ‖L + P(A1) +M(A1)‖n ≥ ‖L‖n + ‖P(A1)‖n − ‖M(A1)‖n
‖Σ̂u‖1 = ‖Σu + (A2)Jc + (A2)J‖1 ≥ ‖Σu‖1 + ‖(A2)Jc‖1 − ‖(A2)J‖1,

‖M(A1)‖n ≤ ‖M(A1)‖F
√

rank(M(A1)) ≤
√

2r‖A1‖F
‖(A2)J‖1 ≤ ‖A2‖F

√
J +N.

Thus Q(L̂, Σ̂u) ≤ Q(L,Σu) implies

‖A1 + A2‖2
F + 0.5ν1‖P(A1)‖n + 0.5ν2‖(A2)Jc‖1 ≤ 1.5ν1‖M(A1)‖n + 1.5ν2‖(A2)J‖1.

As such, (A1,A2) ∈ C(ν1, ν2), and thus ‖A1 + A2‖2
F ≥ κ(ν1, ν2)(‖A1‖2

F + ‖A2‖2
F ).

κ(ν1, ν2)(‖A1‖2
F + ‖A2‖2

F ) ≤ 1.5ν1‖M(A1)‖n + 1.5ν2‖(A2)J‖1

≤
√

4.5rν1‖A1‖F + 1.5ν2

√
J +N‖A2‖F .

The last inequality then implies ‖A1‖F + ‖A2‖F ≤ 4
κ(ν1,ν2)

(
√

4.5rν1 + 1.5ν2

√
J +N).

A.3 Proof of Theorem 3.2

A.3.1 Proof of Theorem 3.2 (i)

Proof. First, we have |Eỹi−Eyit| ≤ E(|yit|−τi)1{|yit| > τi} ≤ 2σ
√

E|yit|qτ−q/2i for any q ≥ 2.

Meanwhile, E|ỹit|q ≤ τ q−2
i σ2. As such we can apply the Bernstein’s inequality (Theorem A.1)
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to reach:

max
i≤N

P

(
|ỹi − Eỹi| >

√
2σ2x2

T
+
τix

2

T

)
< 2 exp(−x2).

Then take x =
√

4 logN , by union bound, with probability at least 1− 2N−3,

max
i≤N
|ỹi − Eỹi| ≤

√
8σ2 logN

T
+

4 maxi≤N τi logN

T
.

The rest of the proof is conditioning on this event. Together we have

max
i≤N
|ỹi − Eyit| ≤

√
8σ2 logN

T
+ max

i≤N
f(τi), f(τ) :=

4τ logN

T
+

2σ
√
M

τ q/2
.

Set τi � κ(σ2M)1/(2+q), which is proportional to the minimizer of f(τ).Here κ :=
(

T
logN

)1/(1+q/2)

.

Because logN ≤ CT , we have κ
√

logN
T

< C2 for some constant C2 as long as q ≥ 2. So

max
i≤N
|ỹi − Eyit| ≤

(
√

8 +M1/(2+q)κ

√
logN

T

)
σ

√
logN

T
≤ (M1/(2+q)C2 +

√
8)σ

√
logN

T
.

A.3.2 Proof of Theorem 3.2 (ii)

Proof. Let µi,τ := arg minµ Eψτi(yit − µ). We separately consider the “variance” ŷi − µi,τ
and the “bias” ∆i := µi,τ − E yit. We denote by

ψ̇τ (x) :=
d

dx
ψτ (x) =

2xτ−2, |x| < τ

2sgn(x)τ−1, |x| ≥ τ,

which is well defined because ψτ is first-order differentiable (but not twice).

bias. Bounding bias requires τi cannot grow too slowly. Let gτ (z) := z2 − τ 2ψτ (z) and
d
dz
gτ (z) = 2z − τ 2ψ̇τ (z). Hence for z1 = yit − µi,τ and z2 = yit − Eyit. There is µ̃ in between

µi,τ and E yit, for z̃ = yit − µ̃, and q > 1,

E(z2
1 − z2

2) = E gτi(z1)− E gτi(z2) + τ 2
i Eψτi(z1)− τ 2

i Eψτi(z2) ≤ E gτi(z1)− E gτi(z2)

= E
d

dz
gτ (z̃)(E yit − µi,τ ) ≤ 2|∆i|E 1{|z̃| ≥ τ}|z̃| ≤ 2|∆i|E |z̃|qτ−(q−1)

i
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≤ 2|∆i|E |eit + Eyit − µ̃|qτ−(q−1)
i ≤ τ

−(q−1)
i C|∆i|[E |eit|q + |∆i|q].

On the other hand, E(z2
1 − z2

2) = ∆2
i . Hence |∆i| ≤ τ

−(q−1)
i C[E |eit|q + |∆i|q]. Now consider

two cases.

Case 1: |∆i|q > E |eit|q, then E(z2
1−z2

2) = ∆2
i . Hence |∆i| ≤ 2Cτ

−(q−1)
i |∆i|q. This implies

τi ≤ C|∆i| ≤ C|µi,τ + E yit| which contradicts with τi →∞.
Case 2: |∆i|q < E |eit|q, then |∆i| ≤ Cτ

−(q−1)
i E |eit|q → 0 if E |eit|q <∞.

Variance. Bounding variance requires τi cannot grow too fast. Denote the loss function

Qi(µ) := 1
T

∑T
t=1 ψτi(yit − µ). Fix mT =

√
logN
T

. We aim to show there is δ > 0, so that

P

(
inf
|ν|=δ

min
i≤N

Qi(µi,τ +mTν)−Qi(µi,τ ) > 0

)
> 1− 4N−3, (A.4)

which then implies with probability at least 1 − 4N−3, maxi≤N |ŷi − µi,τ | ≤ mT δ. To prove

(A.4), note E ψ̇τi(eit,τ ) = 0 where eit,τ := yit−µi,τ . Now let eit = yit−E yit, then eit = eit,τ+∆i,

where ∆i = µi,τ − E yit. It can be verified that for any x, x1, x2,

ψ̇τi(eit,τ + x)− ψ̇τi(eit,τ ) = 2xτ−2
i + ait(x)bit(x)

ψτ (eit,τ + x)− ψτ (eit,τ ) = ψ̇τ (eit,τ )x+

∫ x

0

[ψ̇τ (eit,τ + z)− ψ̇τ (eit,τ )]dz

|ψ̇τ (x1)− ψ̇τ (x2)| ≤ 2τ−2|x1 − x2|,

where ait(x) = ψ̇τi(eit,τ + x) − ψ̇τi(eit,τ ) − 2xτ−2
i and bit(x) = 1{|eit,τ + x| ∨ |eit,τ | ≥ τi};

a∨ b = max{a, b}. Also, |ait(x)| ≤ 4|x|τ−2
i . Applying these results with x = −mTν, we have

Qi(µi,τ +mTν)−Qi(µi,τ ) =
1

T

T∑
t=1

ψτi(eit,τ + x)− ψτi(eit,τ )

=
1

T

T∑
t=1

ψ̇τi(eit,τ )x+
1

T

T∑
t=1

∫ x

0

2zτ−2
i dz +

1

T

T∑
t=1

∫ x

0

ait(z)bit(z)dz1{x > 0} − 1

T

T∑
t=1

∫ 0

x

ait(z)bit(z)dz1{x ≤ 0}

≥ x2τ−2
i − xτ−2

i · τ 2
i max
i≤N

∣∣∣∣∣ 1

T

T∑
t=1

ψ̇τi(eit,τ )

∣∣∣∣∣︸ ︷︷ ︸
I

−τ−2
i max

i≤N
8

1

T

T∑
t=1

∫ |x|
0

zbit(z)dz︸ ︷︷ ︸
II

.

To bound I, we apply the Bernstein inequality. |ψ̇τi(eit,τ )| ≤ 2 min{(|eit| + |∆i|)τ−2
i , τ−1

i }.
Hence Eψτi(eit,τ )2 ≤ 8τ−4

i (σ2 + 1) and E |ψτi(eit,τ )|k ≤ 8τ−4
i (σ2 + 1)( 2

τi
)k−2 where we used
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|∆i| < 1, and E |x|k ≤ Ex2Ck−2 if |x| < C. Hence by Theorem A.1,

max
i
P

(∣∣∣∣∣ 1

T

T∑
t=1

ψ̇τi(eit,τ )

∣∣∣∣∣ >
√

16τ−4
i (σ2 + 1)h2

T
+

2h2

τiT

)
< 2 exp(−h2).

Take h2 = 4 logN , by the union bound, with probability at least 1− 2N−3,

I ≤
√

64(σ2 + 1) logN

T
+

8τi logN

T
≤ C(σ + 1)mT

where C does not depend on i. The last inequality holds for τi � m−1
T .

To bound II, note bit(z) ≤ 2× 1{|eit| > τi/4}+ 2× 1{|∆i| > τi/4}+ 1{|z| > τi/2}. Also,

when |z| ≤ |x| ≤ |ν|mT → 0, we have 1{|z| > τi/2} = 0 and 1{|∆i| > τi/4} = 0 because

mT → 0. We apply Hoeffding inequality, with probability at least 1− 2N−3,

II ≤ max
i≤N

8x2 1

T

T∑
t=1

1{|eit| > τi/4} ≤ max
i≤N

8x2

(
2

√
logN

T
+ P (|eit| > τi/4)

)

≤ max
i≤N

32x2

(√
logN

T
+
σ2

τ 2
i

)
≤ 1

4
x2.

Together, Qi(µi,τ +mTν)−Qi(µi,τ ) ≥ τ−2
i m2

T |ν|(3
4
|ν| −C(σ+ 1)) > 0. This inequality holds

uniformly for all |ν| = 4C(σ + 1) and i ≤ N . Hence with probabiliy at least 1 − 4N−3,

maxi≤N |ŷi − µi,τ | ≤ mT4C(σ + 1).

Combine both the bias and variance parts, for q ≥ 2 and E |eit|q < C,

max
i≤N
|ŷi − E yit| ≤ mT4C(σ + 1) + C E |eit|qmq−1

T ≤ 8CmT (σ + 1).

A.4 Some inequalities

The following theorem is adapted from Theorem 2.10 of Boucheron et al. (2013).

Theorem A.1 (Bernstein inequality). Let X1, ..., XT be an independent sequence with 1
T

∑T
t=1 EX2

t <

σ2 and 1
T

∑T
t=1 E|Xt|q ≤ q!

2
σ2cq−2 for all integers q > 2, with constants (σ2, c). Then for all

x > 0,

P

(∣∣∣∣∣ 1

T

T∑
t=1

(Xt − EXt)

∣∣∣∣∣ >
√

2σ2x2

T
+
cx2

T

)
< 2 exp(−x2).
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Theorem A.2 (Eigen-purturbation bounds). Let λ1 ≥ ...λR and λ̂1 ≥ ...λ̂R respectively be

the eigenvectors of N ×N semi-positive definite matrices A and Â, where R < N . Also, let

(ξ1, ..., ξR) and (ξ̂1, ..., ξ̂R) be corresponding eigenvectors. Then

(i) Sin-theta theorem:

max
i≤R
‖ξ̂i − ξi‖ ≤

‖Â−A‖
mini≤R min{|λ̂i−1 − λi|, |λi − λ̂i+1|}

.

(ii) Weyl’s theorem:

max
i≤R
‖λ̂i − λi‖ ≤ ‖Â−A‖.

Next, we prove a general element-wise deviation bound for singular vectors. We consider

the model as described in Theorem 2.1. Let ζ̂ and ζ be the N1× r matrices of right singular

vector of Σ̂ and L, and let ξ̂ and ξ be the left singular vectors.

Theorem A.3. Let cN := ‖Σ̂ − Σ‖∞, ηN := ‖Σ̂ − Σ‖, s2
N := maxi≤N

∑
k≤N1

Σ2
ik, mN =

‖ζ‖∞ ∨ ‖ξ‖∞ and gN := min2≤i≤r+1 |λi−1(L) − λi(L)|. Suppose N1cN = oP (gN). Then for

bN := (sN +N1‖L‖∞mN)g−2
N (ηN + ‖S‖) + (N1cNmN + ‖Sζd‖∞)g−1

N ,

‖ξ̂ − ξ‖∞ + ‖ζ̂ − ζ‖∞ ≤ OP (bN).

Proof. Let ζ̂d and ζd be the N1×1 vector of the d th right singular vector of Σ̂ and L, for some

d ≤ r. By definition, ξd = λ−1
d (L)Lζd and ξ̂d = λ−1

d (Σ̂)Σ̂ζ̂d. So ‖ξ̂d− ξd‖∞ ≤ I + II + III,

where

I := ‖λ−1
d (Σ̂)Σ̂(ζ̂d − ζd)‖∞

II := ‖λ−1
d (Σ̂)(Σ̂− L)ζd‖∞

III := ‖(λ−1
d (Σ̂)− λ−1

d (L))Lζd‖∞.

We shall use ‖Ab‖∞ ≤ min{‖A‖∞‖b‖∞N1,maxi≤N ‖A′i‖‖b‖, ‖A‖‖b‖} for b ∈ RN1 . Also,

part (i) shows ‖ζ̂d − ζd‖ = OP (ηN+‖S‖
gN

), the same bound as the left singular vectors.

I ≤ N1λ
−1
d (Σ̂)‖Σ̂−Σ‖∞‖ζ̂d − ζd‖∞ + ‖λ−1

d (Σ̂)Σ(ζ̂d − ζd)‖∞ ≤ OP (N1g
−1
N cN)‖ζ̂d − ζd‖∞

+OP (g−1
N )‖ζ̂d − ζd‖

√
max
i≤N

∑
k≤N1

Σ2
ik = OP (N1g

−1
N cN)‖ζ̂d − ζd‖∞ +OP (g−2

N sN(ηN + ‖S‖)).

II ≤ λ−1
d (Σ̂)N1‖Σ̂−Σ‖∞‖ζd‖∞ + λ−1

d (Σ̂)‖Sζd‖∞ ≤ OP (g−1
N N1cN‖ζd‖∞) +OP (g−1

N ‖Sζd‖∞)

III ≤ ‖λ−1
d (Σ̂)− λ−1

d (L)‖N1‖L‖∞‖ζd‖∞ ≤ OP (g−2
N (ηN + ‖S‖))N1‖L‖∞‖ζd‖∞.
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Together, ‖ξ̂d − ξd‖∞ ≤ OP (N1g
−1
N cN)‖ζ̂d − ζd‖∞ + OP (bN). Similarly, ‖ζ̂d − ζd‖∞ ≤

OP (N1g
−1
N cN)‖ξ̂d − ξd‖∞ + OP (bN). Hence for ∆ := ‖ξ̂d − ξd‖∞ + ‖ζ̂d − ζd‖∞, we have

∆ ≤ OP (N1g
−1
N cN)∆ +OP (bN). Because N1g

−1
N cN = oP (1), we have ∆ = OP (bN).
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