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1
Approaches to High-Dimensional
Covariance and Precision Matrix
Estimation

1.1 Introduction

Large covariance and precision (inverse covariance) matrix estimations have become
fundamental problems in multivariate analysis, which find applications in many fields,
ranging from economics, finance to biology, social networks, and health sciences. When the
dimension of the covariance matrix is large, the estimation problem is generally challenging.
It is well-known that the sample covariance based on the observed data is singular when
the dimension is larger than the sample size. In addition, the aggregation of huge amount
of estimation errors can make considerable adverse impacts on the estimation accuracy.
Therefore, estimating large covariance and precision matrices has attracted rapidly growing
research attentions in the past decade. Many regularized methods have been developed:
Bickel and Levina (2008); El Karoui (2008); Friedman et al. (2008); Fryzlewicz (2013); Han
et al. (2012); Lam and Fan (2009); Ledoit and Wolf (2003); Pourahmadi (2013); Ravikumar
et al. (2011b); Xue and Zou (2012), among others.

One of the commonly used approaches to estimating large matrices is to assume the
covariance matrix to be sparse, that is, many off-diagonal components are either zero or
nearly so. This effectively reduces the total number of parameters to estimate. However,
such a sparsity assumption is restrictive in many applications. For example, financial returns
depend on the common risk factors, housing prices depend on the economic health, gene
expressions can be stimulated by cytokines. Moreover, in many applications, it is more
natural to assume that the precision matrix is sparse instead (e.g., in Gaussian graphical
models).

In this chapter, we introduce several recent developments on estimating large covariance
and precision matrices without assuming the covariance matrix to be sparse. One of the
selected approaches assumes the precision matrix to be sparse and applies column-wise
penalization for estimations. This method efficiently estimates the precision matrix in
Gaussian graphical models. The other method is based on high-dimensional factor analysis.
Both methods will be discussed in Sections 2 and 3, and are computationally more efficient
than the existing ones based on penalized maximum likelihood estimation. We present several
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applications of these methods, including graph estimation for gene expression data, and
several financial applications. In particular, we shall see that estimating covariance matrices
of high-dimensional asset excess returns plays a central role in applications of portfolio
allocations and in risk managements.

In Section 4, we provide a detailed description of the so-called “factor pricing model”,
which is one of the most fundamental results in finance. It postulates how financial returns
are related to market risks, and has many important practical applications, including portfolio
selection, fund performance evaluation, and corporate budgeting. In the model, the excess
returns can be represented by a factor model. We shall also study a problem of testing “mean-
variance efficiency”. In such a testing problem, most of the existing methods are based on the
Wald statistic, which have two main difficulties when the number of assets is large. First, the
Wald statistic depends on estimating a large inverse covariance matrix, which is a challenging
problem in the data-rich environment. Secondly, it suffers from a lower power in a high-
dimensional-low-sample-size situation. To address the problem, we introduce a new test,
called “power enhancement test”, which aims to enhance the power of the usual Wald test.

In Section 5, we will present recent developments of efficient estimations in panel
data models. As we shall illustrate, the usual principal components method for estimating
the factor models is not statistically efficient since it treats the idiosyncratic errors to be
both cross-sectionally independent and homoskedastic. In contrast, using a consistent high-
dimensional precision covariance estimator can potentially improve the estimation efficiency.
We shall conclude in Section 6.

Throughout the paper, we shall use ‖A‖2 and ‖A‖F as the operator and Frobenius norms
of a matrix A. We use ‖v‖ to denote the Euclidean norm of a vector v.

1.2 Covariance Estimation via Factor Models

Suppose we observe a set of stationary data {YYY t}Tt=1, where each YYY t = (Y1t, ..., YN,t)
′

is a high-dimensional vector; here T and N respectively denote the sample size and the
dimension. We aim to estimate the covariance matrix of YYY t: ΣΣΣ = Cov(YYY t), and its inverse
ΣΣΣ−1, which are assumed to be independent of t. This section introduces a method of
estimating ΣΣΣ and its inverse via factor analysis. In many applications, the cross-sectional units
often depend on a few common factors. Fan et al. (2008) tackled the covariance estimation
problem by considering the following factor model:

Yit = b′ifff t + uit. (1.1)

Here Yit is the observed response for the ith (i = 1, ..., N ) individual at time t = 1, ..., T ; bi
is a vector of factor loadings; fff t is a K × 1 vector of common factors, and uit is the error
term, usually called idiosyncratic component, uncorrelated with fff t. In fact, factor analysis
has long been employed in financial studies, where Yit often represents the excess returns of
the ith asset (or stock) on time t. The literature includes, for instance, Campbell et al. (1997);
Chamberlain and Rothschild (1983); Fama and French (1992). It is also commonly used in
macroeconomics for forecasting diffusion index (e.g., Stock and Watson (2002)).

The factor model (1.1) can be put in a matrix form as

YYY t = Bfff t + uuut. (1.2)
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where B = (b1, ...,bN )′ and uuut = (u1t, ..., uNt)
′. We are interested in ΣΣΣ, the N ×N

covariance matrix of YYY t, and its inverse ΘΘΘ = ΣΣΣ−1, which are assumed to be time-invariant.
Under model (1.1), ΣΣΣ is given by

ΣΣΣ = BCov(fff t)B
′ + ΣΣΣu, (1.3)

where ΣΣΣu = (σu,ij)N×N is the covariance matrix of uuut. Estimating the covariance matrix ΣΣΣu
of the idiosyncratic components {uuut} is also important for statistical inferences. For example,
it is needed for large sample inference of the unknown factors and their loadings and for
testing the capital asset pricing model (Sentana 2009).

In the decomposition (1.3), it is natural to consider the conditional sparsity: given the
common factors, most of the remaining outcomes are mutually weakly correlated. This gives
rise to the approximate factor model (e.g., Chamberlain and Rothschild (1983)), in which ΣΣΣu
is a sparse covariance but not necessarily diagonal, and for some q ∈ [0, 1),

mN = max
i≤N

∑
j≤N

|σu,ij |q (1.4)

does not grow too fast as N →∞. When q = 0, mN measures the maximum number of non
zero components in each row.

We would like to emphasize that model (1.3) is related to but different from the problem
recently studied in the literature on “low-rank plus sparse representation”. In fact, the “low
rank plus sparse” representation of (1.3) holds on the population covariance matrix, whereas
the model considered by Candès et al. (2011); Chandrasekaran et al. (2010) considered such
a representation on the data matrix. As there is no ΣΣΣ to estimate, their goal is limited to
producing a low-rank plus sparse matrix decomposition of the data matrix, which corresponds
to the identifiability issue of our study, and does not involve estimation or inference. In
contrast, our ultimate goal is to estimate the population covariance matrices as well as the
precision matrices. Our consistency result on ΣΣΣu demonstrates that the decomposition (1.3)
is identifiable, and hence our results also shed the light of the “surprising phenomenon” of
Candès et al. (2011) that one can separate fully a sparse matrix from a low-rank matrix when
only the sum of these two components is available.

Moreover, note that in financial applications, the common factors fff t are sometimes known,
as in Fama and French (1992). In other applications, however, the common factors may
be unknown and need to be inferred. Interestingly, asymptotic analysis shows that as the
dimensionality grows fast enough (relative to the sample size), the effect of estimating the
unknown factors is negligible, and the covariance matrices of YYY t and uuut and their inverses
can be estimated as if the factors were known (Fan et al. (2013)).

We now divide our discussions into two cases: models with known factors and models with
unknown factors.

1.2.1 Known Factors

When the factors are observable, one can estimate B by the ordinary least squares (OLS):
B̂ = (b̂1, ..., b̂N )′, where,

b̂i = arg min
bi

1

T

T∑
t=1

(Yit − b′ifff t)
2, i = 1, ..., N.
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The residuals are obtained using the plug-in method: ûit = Yit − b̂′ifff t.
Denote by ûuut = (û1t, ..., ûpt)

′. We then construct the residual covariance matrix as:

Su =
1

T

T∑
t=1

ûuutûuu
′
t = (su,ij).

Now we apply thresholding on Su. Define

Σ̂ΣΣu = (σ̂ij)p×p, σ̂Tij =

{
su,ii, i = j;

th(su,ij)I(|su,ij | ≥ τij), i 6= j.
(1.5)

where th(·) is a generalized shrinkage function of Antoniadis and Fan (2001), employed by
Rothman et al. (2009) and Cai and Liu (2011), and τij > 0 is an entry-dependent threshold.
In particular, the hard-thresholding rule th(x) = xI(|x| ≥ τij) (Bickel and Levina (2008))
and the constant thresholding parameter τij = δ are allowed. In practice, it is more desirable
to have τij be entry-adaptive. An example of the threshold is

τij = ωT (su,iisu,jj)
1/2, for a given ωT > 0 (1.6)

This corresponds to applying the thresholding with parameter ωT to the correlation matrix of
Su. Cai and Liu (2011) discussed an alternative type of “adaptive threshold”. Moreover, we
take ωT to be: some C > 0,

ωT = C

√
logN

T
,

which is a proper threshold level to overrides the estimation errors.
The covariance matrix Cov(fff t) can be estimated by the sample covariance matrix

Ĉov(fff t) = T−1F′F− T−2F′111111′F,

where F′ = (fff1, ..., fffT ), and 111 is a T -dimensional column vector of ones. Therefore we
obtain a substitution estimator (Fan et al. (2011)):

Σ̂ΣΣ = B̂Ĉov(fff t)B̂
′ + Σ̂ΣΣu. (1.7)

By the Sherman-Morrison-Woodbury formula,

ΣΣΣ−1 = ΣΣΣ−1
u −ΣΣΣ−1

u B[Cov(fff t)
−1 + B′ΣΣΣ−1

u B]−1B′ΣΣΣ−1
u ,

which is estimated by

Σ̂ΣΣ
−1

= Σ̂ΣΣ
−1

u − Σ̂ΣΣ
−1

u B̂[Ĉov(fff t)
−1 + B̂′Σ̂ΣΣ

−1

u B̂]−1B̂′Σ̂ΣΣ
−1

u . (1.8)

1.2.2 Unknown Factors

When factors are unknown, Fan et al. (2013) proposed a nonparametric estimator of ΣΣΣ based
on the principal component analysis. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N be the ordered eigenvalues of
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the sample covariance matrix S of YYY t and {ξ̂ξξi}Ni=1 be their corresponding eigenvectors. Then
the sample covariance has the following spectral decomposition:

S =

K∑
i=1

λ̂iξ̂ξξiξ̂ξξ
′
i +QQQ,

where QQQ =
∑N
i=K+1 λ̂iξ̂ξξiξ̂ξξ

′
i is called “the principal orthogonal complement”, and K is the

number of common factors. We can apply thresholding onQQQ as in (1.5) and (1.6). Denote the
thresholded QQQ by Σ̂ΣΣu. Note that the threshold value in (1.6) now becomes, for some C > 0

ωT = C
(√ logN

T
+

1√
N

)
.

The estimator of ΣΣΣ is then defined as:

Σ̂ΣΣK =

K∑
i=1

λ̂iξ̂ξξiξ̂ξξ
′
i + Σ̂ΣΣu. (1.9)

This estimator is called the Principal Orthogonal complEment thresholding (POET)
estimator. It is obtained by thresholding the remaining components of the sample covariance
matrix, after taking out the first K principal components. One of the attractiveness of POET
is that it is optimization-free, and hence is computationally appealing.

The POET (1.9) has an equivalent representation using a constrained least squares method.
The least squares method seeks for B̂ = (b̂1, ..., b̂N )′ and F̂′ = (f̂ff1, ..., f̂ffT ) such that

(B̂, F̂) = arg min
bi∈RK ,fff t∈RK

N∑
i=1

T∑
t=1

(Yit − b′ifff t)
2, (1.10)

subject to the normalization

1

T

T∑
t=1

fff tfff
′
t = IK , and

1

N

N∑
i=1

bib
′
i is diagonal. (1.11)

Putting it in a matrix form, the optimization problem can be written as

arg min
B,F
‖Y′ −BF′‖2F (1.12)

T−1F′F = IK , B′B is diagonal.

where Y′ = (YYY 1, ..., YYY T ) and F′ = (fff1, · · · , fffT ). For each given F, the least-squares
estimator of B is B̂ = T−1Y′F, using the constraint (1.11) on the factors. Substituting
this into (1.12), the objective function now becomes ‖Y′ − T−1Y′FF′‖2F = tr[(IT −
T−1FF′)YY′]. The minimizer is now clear: the columns of F̂/

√
T are the eigenvectors

corresponding to the K largest eigenvalues of the T × T matrix YY′ and B̂ = T−1Y′F̂

(see e.g., Stock and Watson (2002)). The residual is given by ûit = Yit − b̂
′

if̂ff t, based on
which we can construct the sample covariance matrix of ΣΣΣu. Then apply the thresholding to
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obtain Σ̂ΣΣu. The covariance of YYY t is then estimated by B̂B̂′ + Σ̂ΣΣu. It can be proved that the
estimator in (1.9) satisfies:

Σ̂ΣΣK = B̂B̂′ + Σ̂ΣΣu.

Several methods have been proposed to consistently estimate the number of factors. For
instance, Bai and Ng (2002) proposed to use:

K̂ = arg min
0≤k≤M

1

N
tr

 N∑
j=k+1

λ̂j ξ̂ξξj ξ̂ξξ
′
j

+
k(N + T )

NT
log

(
NT

N + T

)
, (1.13)

where M is a prescribed upper bound. The literature also includes, e.g., Ahn and Horenstein
(2013); Alessi et al. (2010); Hallin and Liška (2007); Kapetanios (2010), among others.
Numerical studies in Fan et al. (2013) showed that the covariance estimator is robust to
over-estimating K. Therefore, in practice, we can also choose a relatively large number for
K. Consistency can still be guaranteed.

1.2.3 Choosing the Threshold

Recall that the threshold value ωT depends on a user-specific constant C. In practice, we
need to choose C to maintain the positive definiteness of the estimated covariances for any
given finite sample. To do so, write the error covariance estimator as Σ̂ΣΣu(C), which depends
on C via the threshold. We choose C in the range where λmin(Σ̂ΣΣu) > 0. Define

Cmin = inf{C > 0 : λmin(Σ̂ΣΣu(M)) > 0, ∀M > C}. (1.14)

When C is sufficiently large, the estimator becomes diagonal, while its minimum eigenvalue
must retain strictly positive. Thus, Cmin is well defined and for all C > Cmin, Σ̂ΣΣu(C) is
positive definite under finite sample. We can obtain Cmin by solving λmin(Σ̂ΣΣu(C)) = 0, C 6=
0. We can also approximate Cmin by plotting λmin(Σ̂ΣΣu(C)) as a function of C, as illustrated
in Figure 1.1. In practice, we can choose C in the range (Cmin + ε,M) for a small ε and
large enough M. Choosing the threshold in a range to guarantee the finite-sample positive
definiteness has also been previously suggested by Fryzlewicz (2013).

1.2.4 Asymptotic Results

Under regularity conditions (e.g., strong mixing, exponential-tail distributions), Fan et al.
(2011, 2013) showed that for the error covariance estimator, assuming ω1−q

T mN = o(1),

‖Σ̂ΣΣu −ΣΣΣu‖2 = OP

(
ω1−q
T mN

)
,

and
‖Σ̂ΣΣ
−1

u −ΣΣΣ−1
u ‖2 = OP

(
ω1−q
T mN

)
.

Here q ∈ [0, 1) quantifies the level of sparsity as defined in (1.4), and ωT is given by: for
some C > 0, when factors are known,

ωT =

√
logN

T
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Figure 1.1 Minimum eigenvalue of Σ̂ΣΣu(C) as a function of C for three choices of thresholding rules.
Adapted from Fan et al. (2013).
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when factors are known,

ωT =

√
logN

T
+

1√
N
.

The dimension N is allowed to grow exponentially fast in T .
As for the convergence of Σ̂ΣΣ, because the first K eigenvalues of ΣΣΣ grow with N , one can

hardly estimate ΣΣΣ with satisfactory accuracy in either the operator norm or the Frobenius
norm. This problem arises not from the limitation of any estimation method, but is due to the
nature of the high-dimensional factor model. We illustrate this in the following example.

Example 1.2.1 Consider a simplified case where we know bi = (1, 0, ..., 0)′ for each i =
1, ..., N , ΣΣΣu = I, and {fff t}Tt=1 are observable. Then when estimating ΣΣΣ, we only need to
estimate Cov(fff) using the sample covariance matrix Ĉov(fff t), and obtain an estimator for
ΣΣΣ:

Σ̂ΣΣ = BĈov(fff t)B
′ + I.

Simple calculations yield to

‖Σ̂ΣΣ−ΣΣΣ‖2 = | 1
T

T∑
t=1

(f1t − f̄1)2 −Var(f1t)| · ‖111N111′N‖2,

where 111N denotes theN -dimensional column vector of ones with ‖111N111′N‖2 = N . Therefore,
due to the central limit theorem employed on 1√

T

∑T
t=1(f1t − f̄1)2 −Var(f1t),

√
T
N ‖Σ̂ΣΣ−

ΣΣΣ‖2 is asymptotically normal. Hence ‖Σ̂ΣΣ−ΣΣΣ‖2 diverges if N �
√
T , even for such a

simplified toy model.

As we have seen from the above example, the small error of estimating Var(f1t) is
substantially amplified due to the presence of ‖111N111′N‖2, the latter in fact determines the
size of the largest eigenvalue of ΣΣΣ. We further illustrate this phenomenon in the following
example.
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Table 1.1 Mean and covariance matrix used
to generate bi

µµµB ΣΣΣB

0.0047 0.0767 -0.00004 0.0087
0.0007 -0.00004 0.0841 0.0013
-1.8078 0.0087 0.0013 0.1649

Example 1.2.2 Consider an ideal case where we know the spectrum except for the first
eigenvector of ΣΣΣ. Let {λj , ξξξj}Nj=1 be the eigenvalues and vectors, and assume that the largest
eigenvalue λ1 ≥ cN for some c > 0. Let ξ̂ξξ1 be the estimated first eigenvector and define the
covariance estimator Σ̂ΣΣ = λ1ξ̂ξξ1ξ̂ξξ

′
1 +

∑N
j=2 λjξξξjξξξ

′
j . Assume that ξ̂ξξ1 is a good estimator in

the sense that ‖ξ̂ξξ1 − ξξξ1‖2 = OP (T−1). However,

‖Σ̂ΣΣ−ΣΣΣ‖2 = ‖λ1(ξ̂ξξ1ξ̂ξξ
′
1 − ξξξ1ξξξ

′
1)‖2 = λ1OP (‖ξ̂ξξ − ξξξ‖) = OP (λ1T

−1/2),

which can diverge when T = O(N2). �

On the other hand, we can estimate the precision matrix with a satisfactory rate under the
operator norm. The intuition follows from the fact that ΣΣΣ−1 has bounded eigenvalues. Let
Σ̂ΣΣ
−1

denote the inverse of the POET estimator. Fan et al. (2013) showed that Σ̂ΣΣ
−1

has the
same rate of convergence as that of ΣΣΣ−1

u . Specifically,

‖Σ̂ΣΣ
−1
−ΣΣΣ−1‖2 = OP

(
ω1−q
T mN

)
.

Comparing the rates of convergence of known and unknown factors, we see that when
the common factors are unobservable, the rate of convergence has an additional term
mN/N

(1−q)/2, coming from the impact of estimating the unknown factors. This impact
vanishes when N logN � T , in which case the minimax rate as in Cai and Zhou (2010)
is achieved. As N increases, more information about the common factors is collected,
which results in more accurate estimation of the common factors {fff t}Tt=1. Then the rates
of convergence in both observable factor and unobservable factor cases are the same.

1.2.5 A numerical illustration

We now illustrate the above theoretical results by using a simple three-factor-model with
a sparse error covariance matrix. The distribution of the data generating process is taken
from Fan et al. (2013) (Section 7). Specifically, we simulated from a standard Fama-French
three-factor model. The factor loadings are drawn from a trivariate normal distribution
bi = (b1i, b2i, b3i)

′ ∼ N3(µµµB ,ΣΣΣB), and fff t follows a VAR(1) model fff t = µµµ+ ΦΦΦfff t−1 + εεεt.
To make the simulation more realistic, model parameters are calibrated from the real data on
annualized returns of 100 industrial portfolios, obtained from the website of Kenneth French.
As there are three common factors, the largest three eigenvalues of ΣΣΣ are of the same order
as
∑N
i=1 b

2
ji, j = 1, 2, 3, which are approximately O(N), and grow linearly with N .
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Table 1.2 Parameters of fff t generating process

µµµ Cov(fff t) ΦΦΦ

-0.0050 1.0037 0.0011 -0.0009 -0.0712 0.0468 0.1413
0.0335 0.0011 0.9999 0.0042 -0.0764 -0.0008 0.0646
-0.0756 -0.0009 0.0042 0.9973 0.0195 -0.0071 -0.0544

We generate a sparse covariance matrix ΣΣΣu of the form: ΣΣΣu = DDDΣΣΣ0DDD. Here, ΣΣΣ0 is the
error correlation matrix, andDDD is the diagonal matrix of the standard deviations of the errors.
We set DDD = diag(σ1, ..., σp), where each σi is generated independently from a Gamma
distribution G(α, β), and α and β are chosen to match the sample mean and sample standard
deviation of the standard deviations of the errors. The off-diagonal entries of ΣΣΣ0 are generated
independently from a normal distribution, with mean and standard deviation equal to the
sample mean and sample standard deviation of the sample correlations among the estimated
residuals. We then employ hard thresholding to make ΣΣΣ0 sparse, where the threshold is found
as the smallest constant that provides the positive definiteness of ΣΣΣ0.

For the simulation, we fix T = 300, and let N increase from 20 to 600 in increments of
20. We plot the averages and standard deviations of the distance from Σ̂ΣΣ and S to the true
covariance matrix ΣΣΣ, under the norm ‖A‖Σ = 1

N ‖ΣΣΣ
−1/2AΣΣΣ−1/2‖F (recall that S denotes

the sample covariance). It is easy to see that

‖Σ̂ΣΣ−ΣΣΣ‖Σ =
1

N
‖ΣΣΣ−1/2Σ̂ΣΣΣΣΣ−1/2 − I‖F ,

which resembles the relative errors. We also plot the means and standard deviations of the
distances from Σ̂ΣΣ

−1
and S−1 to ΣΣΣ−1 under the spectral norm. Due to invertibility, the operator

norm for S−1 is plotted only up to N = 280.
We observe that the unobservable factor model performs just as well as the estimator if

the factors are known. The cost of not knowing the factors is negligible when N is large
enough. As we can see from Figures 1.2, the impact decreases quickly. In addition, when
estimating ΣΣΣ−1, it is hard to distinguish the estimators with known and unknown factors,
whose performances are quite stable compared to the sample covariance matrix. Intuitively,
as the dimension increases, more information about the common factors becomes available,
which helps infer the unknown factors. Indeed, as is shown in Bai (2003); Fan et al. (2014a),
the principal components method can estimate the unknown factors at a rate:

1

T

T∑
t=1

‖f̂ff t − fff t‖2 = OP (
1

T 2
+

1

N
).

Hence as long as N is relatively large, fff t can be estimated pretty accurately.

1.3 Precision Matrix Estimation and Graphical Models
Let YYY 1, . . . , YYY T be T data points from an N -dimensional random vector YYY = (Y1, ..., YN )′

with YYY ∼ NN (000,ΣΣΣ). We denote the precision matrix ΘΘΘ := ΣΣΣ−1 and define an undirected
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Figure 1.2 Averages of N−1‖ΣΣΣ−1/2Σ̂ΣΣΣΣΣ−1/2 − I‖F (left panel) and ‖Σ̂ΣΣ
−1
−ΣΣΣ−1‖2 (right panel)

with known factors (solid red curve), unknown factors (solid blue curve), and sample covariance
(dashed curve) over 200 simulations, as a function of the dimensionality N . Taken from Fan et al.
(2013).

graph G = (V,E) based on the sparsity pattern of ΘΘΘ: Let V = {1, . . . , N} be the node set
corresponding to the N variables in YYY , an edge (j, k) ∈ E if and only ΘΘΘjk 6= 0.

As we will explain in the next section, the graphG describes the conditional independence
relationships between Y1, ..., YN : i.e., let YYY \{j,k} := {Y` : ` 6= j, k}, then Yj is independent
of Yk given YYY \{j,k} if and only if (j, k) /∈ E.

In high dimensional settings where N � T , we assume that many entries of ΘΘΘ are zero
(or in another word, the graph G is sparse). The problem of estimating large sparse precision
matrix ΘΘΘ is called covariance selection (Dempster 1972).

1.3.1 Column-wise Precision Matrix Estimation

A natural approach for estimating ΘΘΘ is by penalizing the likelihood using the L1-penalty
(Banerjee et al. 2008; Friedman et al. 2008; Yuan and Lin 2007). To further reduce the
estimation bias, Jalali et al. (2012); Lam and Fan (2009); Shen et al. (2012) propose either
greedy algorithms or non-convex penalties for sparse precision matrix estimation. Under
certain conditions, Ravikumar et al. (2011a); Rothman et al. (2008); Wainwright (2009);
Zhao and Yu (2006); Zou (2006) study the theoretical properties of the penalized likelihood
methods.

Another approach is to estimate ΘΘΘ in a column-by-column fashion. For this, Yuan (2010)
and Cai et al. (2011) propose the graphical Dantzig selector and CLIME respectively, which
can be solved by linear programming. More recently, Liu and Luo (2012) and Sun and Zhang
(2012) propose the SCIO and scaled-Lasso methods. Compared to the penalized likelihood



Approaches to High-Dimensional Covariance and Precision Matrix Estimation 11

methods, the column-by-column estimation methods are computationally simpler and are
more amenable to theoretical analysis.

In the rest of this chapter, we explain the main ideas of the column-by-column
precision matrix estimation methods. We start with an introduction of notations. Let v :=
(v1, . . . , vN )′ ∈ RN and I(·) be the indicator function, for 0 < q <∞, we define

‖v‖q :=
( N∑
j=1

|vj |q
)1/q

, ‖v‖0 :=

N∑
j=1

I(vj 6= 0), and ‖v‖∞ := max
j
|vj |.

Let A ∈ RN×N be a symmetric matrix and I, J ⊂ {1, . . . , N} be two sets. Denote by AI,J

the submatrix of A with rows and columns indexed by I and J . Let A∗j be the jth column
of A and A∗\j be the submatrix of A with the jth column A∗j removed. We define the
following matrix norms:

‖A‖q := max
‖v‖q=1

‖Av‖q , ‖A‖max := max
jk
|Ajk|, and ‖A‖F =

(∑
j,k

|Ajk|2
)1/2

.

We also denote Λmax(A) and Λmin(A) to be the largest and smallest eigenvalues of A.
The column-by-column precision matrix estimation method exploits the relationship

between conditional distribution of multivariate Gaussian and linear regression. More
specifically, let YYY ∼ NN (000,ΣΣΣ), the conditional distribution of Yj given YYY \j satisfies

Yj |YYY \j ∼ NN−1

(
ΣΣΣ\j,j(ΣΣΣ\j,\j)

−1YYY \j , ΣΣΣjj −ΣΣΣ\j,j(ΣΣΣ\j,\j)
−1ΣΣΣ\j,j

)
.

Let αααj := (ΣΣΣ\j,\j)
−1ΣΣΣ\j,j ∈ RN−1 and σ2

j := ΣΣΣjj −ΣΣΣ\j,j(ΣΣΣ\j,\j)
−1ΣΣΣ\j,j . We have

Yj = ααα′jYYY \j + εj , (1.15)

where εj ∼ N
(
0 , σ2

j

)
is independent of YYY \j . By the block matrix inversion formula, we

have

ΘΘΘjj = (Var(εj))
−1 = σ−2

j , (1.16)

ΘΘΘ\j,j = −(Var(εj))
−1αααj = −σ−2

j αααj . (1.17)

Therefore, we can recover ΘΘΘ in a column by column manner by regressing Yj on YYY \j for
j = 1, 2, · · · , N . For example, let Y ∈ RT×N be the data matrix. We denote by αααj :=
(αj1, . . . , αj(N−1))

′ ∈ RN−1. Meinshausen and Bühlmann (2006) propose to estimate each
αααj by solving the Lasso regression:

α̂ααj = arg min
αααj∈RN−1

1

2T

∥∥Y∗j −Y∗\jαααj
∥∥2

2
+ λj

∥∥αααj∥∥1
,

where λj is a tuning parameter. Once α̂ααj is given, we get the neighborhood edges by reading
out the nonzero coefficients of αααj . The final graph estimate Ĝ is obtained by either the
“AND” or “OR” rule on combining the neighborhoods for all the N nodes. However, the
neighborhood pursuit method of Meinshausen and Bühlmann (2006) only estimates the graph
G but can not estimates the inverse covariance matrix ΘΘΘ.
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To estimate ΘΘΘ, Yuan (2010) proposes to estimate αααj by solving the Dantzig selector:

α̂ααj = arg min
αααj∈RN−1

∥∥αααj∥∥1
subject to

∥∥S\j,j − S\j,\jαααj
∥∥
∞ ≤ γj ,

where S := T−1Y′Y is the sample covariance matrix and γj is a tuning parameter. Once
α̂ααj is given, we can estimate σ2

j by σ̂2
j =

[
1− 2α̂αα′jS\j,j + α̂αα′jS\j,\jα̂ααj

]−1
. We then get the

estimator Θ̂ΘΘ of ΘΘΘ by plugging α̂ααj and σ̂2
j into (1.16) and (1.17). Yuan (2010) analyzes the

L1-norm error ‖Θ̂ΘΘ−ΘΘΘ‖1 and shows its minimax optimality over certain model space.
In another work, Sun and Zhang (2012) propose to estimate αααj and σj by solving a scaled-

Lasso problem:

b̂j , σ̂j = arg min
b=(b1,...,bN )′,σ

{
b′jSbj

2σ
+
σ

2
+ λ

N∑
k=1

Skk
∣∣bk∣∣ subject to bj = −1

}
.

Once b̂j is obtained, αααj = b̂\j . Sun and Zhang (2012) provide the spectral-norm rate of
convergence of the obtained precision matrix estimator.

Cai et al. (2011) proposes the CLIME estimator, which directly estimates the jth column
of ΘΘΘ by solving

Θ̂ΘΘ∗j = arg min
ΘΘΘ∗j

∥∥ΘΘΘ∗j∥∥1
subject to

∥∥SΘΘΘ∗j − eeej
∥∥
∞ ≤ δj , for j = 1, . . . , N,

where eeej is the jth canonical vector and δj is a tuning parameter. This optimization problem
can be formulated into a linear program and has the potential to scale to large problems. In
a closely related work of CLIME, Liu and Luo (2012) propose the SCIO estimator, which
solves the jth column of ΘΘΘ by

Θ̂ΘΘ∗j = arg min
ΘΘΘ∗j

{
1

2
ΘΘΘ′∗jSΘΘΘ∗j − eee′jΘΘΘ∗j + λj

∥∥ΘΘΘ∗j∥∥1

}
.

The SCIO estimator can be solved efficiently by the pathwise coordinate descent algorithm.

1.3.2 The Need of Tuning-Insensitive Procedures

Most of the methods described in the former section require choosing some tuning parameters
that control the bias-variance tradeoff. Their theoretical justifications are usually built on
some theoretical choices of tuning parameters that cannot be implemented in practice. For
example, in the neighborhood pursuit method and the graphical Dantzig selector, the tuning
parameter λj and γj depend on σ2

j , which is unknown. The tuning parameters of the CLIME
and SCIO depend on ‖ΘΘΘ‖1, which is unknown.

It remains an open problem on choosing the regularization parameter in a data-dependent
way. Popular techniques include the Cp-statistic, AIC (Akaike information criterion), BIC
(Bayesian information criterion), extended BIC (Chen and Chen 2008, 2012; Foygel and
Drton 2010), RIC (Risk inflation criterion, Foster and George (1994)), cross validation, and
covariance penalization (Efron 2004). Most of these methods require data splitting and have
been only justified for low dimensional settings. Some progress has been made recently
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on developing likelihood-free regularization selection techniques, including permutation
methods (Boos et al. 2009; Lysen 2009; Wu et al. 2007) and subsampling methods (Bach
2008; Ben-david et al. 2006; Lange et al. 2004; Meinshausen and Bühlmann 2010).
Meinshausen and Bühlmann (2010) and Bach (2008) and Liu et al. (2010) also propose to
select the tuning parameters using subsampling. However, these subsampling based methods
are computationally expensive and are still lack of theoretical guarantees.

To handle the challenge of tuning parameter selection, we introduce a “tuning-insensitive”
procedure for estimating the precision matrix of high dimensional Gaussian graphical
models. Our method, named TIGER (Tuning-Insensitive Graph Estimation and Regression)
is asymptotically tuning-free and only requires very few efforts to choose the regularization
parameter in finite sample settings.

1.3.3 TIGER: A Tuning-Insensitive Approach for Optimal Precision Matrix
Estimation

The main idea of the TIGER method is to estimate the precision matrix ΘΘΘ in a column-by-
column fashion. For each column, the computation is reduced to a sparse regression problem.
This idea has been adopted by many methods described in Section 1.3.1. These methods
differ from each other mainly by how they solve the sparse regression subproblem. Unlike
these existing methods, the TIGER solves this sparse regression problem using the SQRT-
Lasso (Belloni et al. 2012).

The SQRT-Lasso is a penalized optimization algorithm for solving high dimensional linear
regression problems. For a linear regression problem ỸYY = X̃βββ + εεε, where ỸYY ∈ RT is the
response, X̃ ∈ RT×N is the design matrix, βββ ∈ RN is the vector of unknown coefficients,
and εεε ∈ RT is the noise vector. The SQRT-Lasso estimates βββ by solving

β̂ββ = arg min
βββ∈RN

{ 1√
T
‖ỸYY − X̃βββ‖2 + λ‖βββ‖1

}
,

where λ is the tuning parameter. It is shown in Belloni et al. (2012) that the choice of λ for
the SQRT-Lasso method is asymptotically universal and does not depend on any unknown
parameter. In contrast, most of other methods, including the Lasso and Dantzig selector,
rely heavily on a known standard deviation of the noise. Moreover, the SQRT-Lasso method
achieves near oracle performance for the estimation of βββ.

In Liu and Wang (2012), they show that the objective function of the scaled-Lasso can
be viewed as a variational upper bound of the SQRT-Lasso. Thus the TIGER method is
essentially equivalent to the method in Sun and Zhang (2012). However, the SQRT-Lasso is
more amenable to theoretical analysis and allows us to simultaneously establish optimal rates
of convergence for the precision matrix estimation under many different norms.

Let Γ̂ΓΓ := diag(S) be an N -dimensional diagonal matrix with the diagonal elements be the
same as those in S. Conditioned on the observed data YYY 1, . . . , YYY T , we define

ZZZ := (Z1, . . . , ZN )′ = YYY Γ̂ΓΓ
−1/2

.

By (1.15), we have

ZjΓ̂ΓΓ
1/2

jj = ααα′jZZZ\jΓ̂ΓΓ
1/2

\j,\j + εj , (1.18)
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We define

βββj := Γ̂ΓΓ
1/2

\j,\jΓ̂ΓΓ
−1/2

jj αααj and τ2
j = σ2

j Γ̂ΓΓ
−1

jj .

Therefore, we have

Zj = βββ′jZZZ\j + Γ̂ΓΓ
−1/2

jj εj . (1.19)

We define R̂ to be the sample correlation matrix: R̂ := (diag(S))−1/2S(diag(S))−1/2.
Motivated by the model in (1.19), we propose the following precision matrix estimator.

TIGER Algorithm

For j = 1, . . . , N, we estimate the jth column of ΘΘΘ by solving :

β̂ββj := arg min
βββj∈RN−1

{√
1− 2βββ′jR̂\j,j + βββ′jR̂\j,\jβββj + λ

∥∥βββj∥∥1

}
, (1.20)

τ̂j :=

√
1− 2β̂ββ

′
jR̂\j,j + β̂ββ

′
jR̂\j,\jβ̂ββj , (1.21)

Θ̂ΘΘjj = τ̂−2
j Γ̂ΓΓ

−1

jj and Θ̂ΘΘ\j,j = −τ̂−2
j Γ̂ΓΓ

−1/2

jj Γ̂ΓΓ
−1/2

\j,\j β̂ββj .

For the estimator in (1.20), λ is a tuning parameter. In the next section, we show that by

choosing λ = π
√

logN
2T , the obtained estimator achieves the optimal rates of convergence in

the asymptotic setting. Therefore, the TIGER procedure is asymptotically tuning free. For
finite samples, we set

λ := ζπ

√
logN

2T
(1.22)

with ζ chosen from a range [
√

2/π, 2]. Since the choice of ζ does not depend on any unknown
parameters, we call the procedure tuning-insensitive. Practically, we found that simply setting
ζ = 1 gives satisfactory finite sample performance in most applications.

If a symmetric precision matrix estimate is preferred, we conduct the following correction:
Θ̃ΘΘjk = min

{
Θ̂ΘΘjk, Θ̂ΘΘkj

}
for all k 6= j. Another symmetrization method is

Θ̃ΘΘ =
Θ̂ΘΘ + Θ̂ΘΘ

′

2
.

As has been shown by Cai et al. (2011), if Θ̂ΘΘ is a good estimator, then Θ̃ΘΘ will also be a good
estimator: they achieve the same rates of convergence in the asymptotic settings.

Let Z ∈ RT×N be the normalized data matrix, i.e., Z∗j = Y∗jΣΣΣ
−1/2
jj for j = 1, . . . , N .

An equivalent form of (1.20) and (1.21) is

β̂ββj = arg min
βββj∈RN−1

{
1√
T

∥∥Z∗j − Z∗\jβββj
∥∥

2
+ λ

∥∥βββj∥∥1

}
, (1.23)

τ̂j =
1√
T

∥∥Z∗j − Z∗\jβ̂ββj
∥∥

2
. (1.24)
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Once Θ̂ΘΘ is estimated, we can also estimate the graph Ĝ := (V, Ê) based on the sparsity
pattern of Θ̂ΘΘjk 6= 0.

1.3.4 Computation

Instead of directly solving (1.20) and (1.21), we consider the following optimization:

β̂ββj , τ̂j := arg min
βββj∈RN−1,τj≥0

{1− 2βββ′jR̂\j,j + βββ′jR̂\j,\jβββj
2τj

+
τj
2

+ λ
∥∥βββj∥∥1

}
, (1.25)

Liu and Wang (2012) show that the solution to (1.20) and (1.21) is the same as that to (1.25).
Equation (1.25) is jointly convex with respect to βββj and τj and can be solved by a coordinate-
descent procedure. In the tth iteration, for a given τ (t)

j , we first solve a subproblem

βββ
(t+1)
j := arg min

βββj∈RN−1

{
1− 2βββ′jR̂\j,j + βββ′jR̂\j,\jβββj

2τ
(t)
j

+ λ
∥∥βββj∥∥1

}
,

This is a Lasso problem and can be efficiently solved by the coordinate descent algorithm
developed by Friedman et al. (2007). Once βββ(t+1)

j is obtained, we can calculate τ (t+1)
j as

τ
(t+1)
j =

√
1− 2

(
βββ

(t+1)
j

)′
R̂\j,j +

(
βββ

(t+1)
j

)′
R̂\j,\j

(
βββ

(t+1)
j

)
.

We iterate these two steps until the algorithm converges.

1.3.5 Theoretical Properties of TIGER

Liu and Wang (2012) establish the rates of convergence of the TIGER estimator Θ̂ΘΘ to the
true precision matrix ΘΘΘ under different norms. In particular, let ‖ΘΘΘ‖max := maxjk |ΘΘΘjk| and
‖ΘΘΘ‖1 := maxj

∑
k |ΘΘΘjk|. Under the assumption that the condition number of ΘΘΘ is bounded

by a constant, they establish the element-wise sup-norm rate of convergence:

∥∥Θ̂ΘΘ−ΘΘΘ
∥∥

max
= OP

(
‖ΘΘΘ‖1

√
logN

T

)
. (1.26)

Under mild conditions, the obtained rate in (1.26) is minimax optimal over the model class
consisting of precision matrices with bounded condition numbers.

Let I(·) be the indicator function and s :=
∑
j 6=k I (ΘΘΘjk 6= 0) be the number of nonzero

off-diagonal elements of ΘΘΘ. The result in (1.26) implies that the Frobenious norm error
between Θ̂ΘΘ and ΘΘΘ satisfies:

∥∥Θ̂ΘΘ−ΘΘΘ
∥∥
F

:=

√∑
i,j

∣∣Θ̂ΘΘjk −ΘΘΘjk

∣∣2 = OP

(
‖ΘΘΘ‖1

√
(N + s) logN

T

)
. (1.27)

The rate in (1.27) is minimax optimal rate for the Frobenious norm error in the same model
class consisting of precision matrices with bounded condition numbers.
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Figure 1.3 Boxplots of Yjt = log (St,j/St−1,j) for 10 stocks. As can be seen, the original data has
many outliers, which is addressed by the normal-score transformation on the re-scaled data (right).

Let ‖ΘΘΘ‖2 be the largest eigenvalue of ΘΘΘ (i.e., ‖ΘΘΘ‖2 is the spectral norm of ΘΘΘ) and
k := maxi=1,...,N

∑
j I(ΘΘΘij 6= 0). Liu and Wang (2012) also show that

∥∥Θ̂ΘΘ−ΘΘΘ
∥∥

2
≤
∥∥Θ̂ΘΘ−ΘΘΘ

∥∥
1

= OP

(
k‖ΘΘΘ

∥∥
2

√
logN

T

)
. (1.28)

This spectral norm rate in (1.28) is also minimax optimal over the same model class as before.

1.3.6 Applications to Modeling Stock Returns

We apply the TIGER method to explore a stock price dataset collected from Yahoo! Finance
(finance.yahoo.com). More specifically, the daily closing prices were obtained for 452
stocks that were consistently in the S&P 500 index between January 1, 2003 through January
1, 2011. This gives us altogether 2,015 data points, each data point corresponds to the vector
of closing prices on a trading day. With St,j denoting the closing price of stock j on day t,
we consider the log-return variable Yjt = log (St,j/St−1,j) and build graphs over the indices
j.

We Winsorize (or truncate) every stock so that its data points are within six times the
mean absolute deviation from the sample average. In Figure 1.3(a) we show boxplots for 10
randomly chosen stocks. We see that the data contains outliers even after Winsorization; the
reasons for these outliers includes splits in a stock, which increases the number of shares.
It is known that the log-return data are heavy-tailed. To suitably apply the TIGER method,
we Gaussianize the marginal distribution of the data by the normal-score transformation. In
Figure 1.3(b) we compare the boxplots of the data before and after Gaussianization. We see
the Gaussianization alleviates the effect of outliers.

In this analysis we use the subset of the data between January 1, 2003 to
January 1, 2008, before the onset of the “financial crisis.” The 452 stocks are
categorized into 10 Global Industry Classification Standard (GICS) sectors, including

finance.yahoo.com
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Consumer Discretionary (70 stocks), Consumer Staples (35 stocks), Energy
(37 stocks), Financials (74 stocks), Health Care (46 stocks), Industrials
(59 stocks), Information Technology (64 stocks), Materials (29 stocks),
Telecommunications Services (6 stocks), and Utilities (32 stocks). It is
expected that stocks from the same GICS sectors should tend to be clustered together in
the estimated graph, since stocks from the same GICS sector tend to interact more with each
other. In the graphs shown below, the nodes are colored according to the GICS sector of the
corresponding stock.

In Figure 1.4 we visualize the estimated graph using the TIGER method on the data from
January 1, 2003 to January 1, 2008. There are altogether T = 1, 257 data points andN = 452
dimensions. Even though the TIGER procedure is asymptotically tuning-free, Liu and Wang
(2012) show that a fine-tune step can further improve its finite sample performance. To fine-
tune the tuning parameter, we adopt a variant of the stability selection method proposed by
Meinshausen and Bühlmann (2010). As suggested in (1.22), we consider 10 equal-distance
values of ζ chosen from a range [

√
2/π, 2]. We randomly sample 100 sub-datasets, each

containing B = b10
√
T c = 320 data points. On each of these 100 subsampled datasets, we

estimate a TIGER graph for each tuning parameter. In the final graph shown in Figure 1.4, we
use ζ = 1 and an edge is present only if it appears more than 80 percent of the time among
the 100 subsampled datasets (with all the singleton nodes removed).

From Figure 1.4, we see that stocks from the same GICS sectors are indeed close to each
other in the graph. We refrain from drawing any hard conclusions about the effectiveness of
the estimated TIGER graph—how it is used will depend on the application. One potential
application of such a graph could be for portfolio optimization. When designing a portfolio,
we may want to choose stocks with large graph distances to minimize the investment risk.

1.3.7 Applications to Genomic Network

As discussed before, an important application of precision matrix estimation is to estimate
high dimensional graphical models. In this section we apply the TIGER method on a gene
expression dataset to reconstruct the conditional independence graph of the expression levels
of 39 genes.

This dataset includes 118 gene expression arrays from Arabidopsis thaliana originally
appeared in Wille et al. (2004). Our analysis focuses on gene expression from 39 genes
involved in two isoprenoid metabolic pathways: 16 from the mevalonate (MVA) pathway
are located in the cytoplasm, 18 from the plastidial (MEP) pathway are located in the
chloroplast, and 5 are located in the mitochondria. While the two pathways generally operate
independently, crosstalk is known to happen (Wille et al. 2004). Our scientific goal is to
recover the gene regulatory network, with special interest in crosstalk.

We first examine whether the data actually satisfies the Gaussian distribution assumption.
In Figure 1.5 we plot the histogram and normal QQ plot of the expression levels of a gene
named MECPS. From the histogram, we see the distribution is left-skewed compared to
the Gaussian distribution. From the normal QQ plot, we see the empirical distribution has
a heavier tail compared to Gaussian. To suitably apply the TIGER method on this dataset,
we need to first transform the data so that its distribution is closer to Gaussian. Therefore,
we Gaussianize the marginal expression values of each gene by converting them to the
corresponding normal-scores. This is automatically done by the huge.npn function in the
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Tiger + 80%

Figure 1.4 The estimated TIGER graph using the S&P 500 stock data from Jan. 1, 2003 to Jan. 1,
2008.

R package huge (Zhao et al. 2012).
We apply the TIGER on the transformed data using the default tuning parameter ζ =√
2/π. The estimated network is shown in Figure 1.6. We note that the estimated network is

very sparse with only 44 edges. Prior investigations suggest that the connections from genes
AACT1 and HMGR2 to gene MECPS indicate a primary sources of the crosstalk between the
MEP and MVA pathways and these edges are presented in the estimated network. MECPS is
clearly a hub gene for this pathway.

For the MEP pathway, the genes DXPS2, DXR, MCT, CMK, HDR, and MECPS are
connected as in the true metabolic pathway. Similarly, for the MVA pathway, the genes
AACT2, HMGR2, MK, MPDC1, MPDC2, FPPS1 and FPP2 are closely connected. Our
analysis suggests 11 cross-pathway links. This is consistent to previous investigation in Wille
et al. (2004). This result suggests that there might exist rich inter-pathway crosstalks.
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Figure 1.5 The histogram and normal QQ plots of the marginal expression levels of the gene MECPS.
We see the data are not exactly Gaussian distributed. Adapted from Liu and Wang (2012).

1.4 Financial Applications

1.4.1 Estimating Risks of Large Portfolios

Estimating and assessing the risk of a large portfolio is an important topic in financial
econometrics and risk management. The risk of a given portfolio allocation vector wN is
conveniently measured by (w′NΣΣΣwN )1/2, in which ΣΣΣ is a volatility (covariance) matrix of
the assets’ returns. Often multiple portfolio risks are at interests and hence it is essential to
estimate the volatility matrix ΣΣΣ. On the other hand, assets’ excess returns are often driven by
a few common factors. Hence ΣΣΣ can be estimated via factor analysis as previously described
in Section 1.

Let{YYY t}Tt=1 be a strictly stationary time series of anN × 1 vector of observed asset returns
and ΣΣΣ = Cov(YYY t). We assume that YYY t satisfies an approximate factor model:

YYY t = Bfff t + uuut, t ≤ T, (1.29)

where B is anN ×K matrix of factor loadings; fff t is aK × 1 vector of common factors, and
uuut is an N × 1 vector of idiosyncratic error components. In contrast to N and T , here K is
assumed to be fixed. The common factors may or may not be observable. For example, Fama
and French (1993) identified three known factors that have successfully described the U.S.
stock market. In addition, macroeconomic and financial market variables have been thought
to capture systematic risks as observable factors. On the other hand, in an empirical study,
Bai and Ng (2002) determined two unobservable factors for stocks traded on the New York
Stock Exchange during 1994-1998.

As described in Section 1, the factor model implies the following decomposition of ΣΣΣ:

ΣΣΣ = BCov(fff t)B
′ + ΣΣΣu. (1.30)
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Figure 1.6 The estimated gene networks of the Arabadopsis dataset. The within pathway edges are
denoted by solid lines and between pathway edges are denoted by dashed lines. From Liu and Wang
(2012).

In the case of observable factors, an estimator of ΣΣΣ is constructed based on thresholding
the covariance matrix of idiosyncratic errors, as in (1.7), denoted by Σ̂ΣΣf . In the case of
unobservable factors, ΣΣΣ can be estimated by POET as in (1.9), denoted by Σ̂ΣΣP . Because
K, the number of factors, might also be unknown, this estimator uses a data-driven number
of factors K̂. Based on the factor analysis, the risk for a given portfolio wN can be estimated

by either
√
w′NΣ̂ΣΣfwN or

√
w′NΣ̂ΣΣPwN , depending on whether fff t is observable.

Estimating Minimum Variance Portfolio

There are also many methods proposed to choose data-dependent portfolios. For instance,
estimated portfolio vectors can arise when the ideal portfolio wN depends on the inverse
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of the large covariance ΣΣΣ (Markowitz (1952)), by consistently estimating ΣΣΣ−1. Studying
the effects of estimating ΣΣΣ is also important for portfolio allocations. In these problems,
estimation errors in estimating ΣΣΣ can have substantial implications (see discussions in
El Karoui (2010)). For illustration, consider the following example of estimating the global
minimum variance portfolio.

The global minimum variance portfolio is the solution to the problem:

wgmv
N = arg min

w
(w′ΣΣΣw), such that w′e = 1

where e = (1, ..., 1), yielding wgmv
N = ΣΣΣ−1e/(e′ΣΣΣ−1e). Although this portfolio does not

belong to the efficient frontier, Jagannathan and Ma (2003) showed that its performance is
comparable with those of other tangency portfolios.

The factor model yields a positive definite covariance estimator for ΣΣΣ, which then leads to
a data-dependent portfolio:

ŵgmv
N =

Σ̂ΣΣ
−1

e

e′Σ̂ΣΣ
−1
eee
, Σ̂ΣΣ

−1
=

{
Σ̂ΣΣ
−1

f known factors;

Σ̂ΣΣ
−1

P , unknown factors
.

It can be shown that ŵgmv
N is L1-consistent, in the sense that

‖ŵgmv
N −wgmv

N ‖1 = oP (1).

We refer to El Karoui (2010) and Ledoit and Wolf (2003) for further discussions on the effects
of estimating large covariance matrices for portfolio selections.

Statistical Inference of the Risks

Confidence intervals of the true risk w′NΣΣΣwN can be constructed based on the estimated risk
w′NΣ̂ΣΣwN , where Σ̂ΣΣ = Σ̂ΣΣf or Σ̂ΣΣP , depending on whether the factors are known or not. Fan et
al. (2014a) showed that, under some regularity conditions, respectively,[

Var

(
T∑

t=1

(w′NBfff t)
2

)]−1/2

T ŵ′N (Σ̂ΣΣ−ΣΣΣ)ŵN →d N (0, 1), Σ̂ΣΣ = Σ̂ΣΣf or Σ̂ΣΣP ,

where ŵN is an L1-consistent estimator of wN .
An important implication is that the asymptotic variance is the same regardless of whether

the factors are observable or not. Therefore, the impact of estimating the unknown factors
is asymptotically negligible. In addition, it can also be shown that the asymptotic variance
is slightly smaller than that of w′NSwN , the sample covariance based risk estimator.
The asymptotic variance Var

(∑T
t=1(w′NBfff t)

2
)

can be consistently estimated, using the
heteroskedasticity and autocorrelation consistent covariance estimator of Newey and West
(1987) based on the truncated sum of estimated autocovariance functions. Therefore, the
above limiting distributions can be employed to assess the uncertainty of the estimated risks
by, e.g., constructing asymptotic confidence intervals for (w′NΣΣΣwN )1/2. Fan et al. (2014a)
showed that the confidence interval is practically accurate even at the finite sample.
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1.4.2 Large Panel Test of Factor Pricing Models

The content of this section is adapted from the recent work by Fan et al. (2014b), including
graphs and tables. We consider a “factor-pricing model”, in which the excess return has the
following decomposition:

Yit = αi + b′ifff t + uit, i = 1, ..., N, t = 1, ..., T. (1.31)

In this subsection, we shall focus on the case fff t’s are observable.
Let ααα = (α1, ..., αN )′ be the vector of intercepts for all N financial assets. The key

implication from the multi-factor pricing theory is that ααα should be zero, known as “mean-
variance efficiency”, for any asset i. An important question is then if such a pricing theory
can be validated by empirical data, namely whether the null hypothesis

H0 : ααα = 0, (1.32)

is consistent with empirical data.
Most of the existing tests to the problem (1.32) are based on the quadratic statistic

W = α̂αα
′
Σ̂ΣΣ
−1

u α̂αα, where α̂αα is the OLS estimator for ααα, Σ̂ΣΣ
−1

u is the estimated inverse of the
error covariance, and aT is a positive number that depends on the factors fff t only. Prominent
examples are the test given by Gibbons et al. (1989), the GMM test in MacKinlay and
Richardson (1991), and the likelihood ratio test in Beaulieu et al. (2007), all in quadratic
forms. Recently, Pesaran and Yamagata (2012) studied the limiting theory of the normalized
W assuming ΣΣΣ−1

u were known. They also considered a quadratic test where Σ̂ΣΣ
−1

u is replaced
with its diagonalized matrix.

There are, however, two main challenges in the quadratic statistic W . The first is that
estimating ΣΣΣ−1

u is a challenging problem when N > T , as described previously. Secondly,
even though ΣΣΣ−1

u were known, this test suffers from a lower power in a high-dimensional-
low-sample-size situation, as we now explain.

For simplicity, let us temporarily assume that {uuut}Tt=1 are i.i.d. Gaussian and ΣΣΣu =
Cov(uuut) is known, where uuut = (u1t, ..., uNt). Under H0, W is χ2

N distributed, with the
critical value χ2

N,q, which is of order N , at significant level q. The test has no power at
all when Tααα′ΣΣΣuααα = o(N) or ‖ααα‖2 = o(N/T ), assuming that ΣΣΣu has bounded eigenvalues.
This is not unusual for the high-dimension-low-sample-size situation we encounter, where
there are thousands of assets to be tested over a relatively short time period (e.g. 60 monthly
data). And it is especially the case when there are only a few significant alphas that arouse
market inefficiency. By a similar argument, this problem can not be rescued by using any
genuine quadratic statistic, which are powerful only when a non-negligible fraction of assets
are mispriced. Indeed, the factor N above reflects the noise accumulation in estimating N
parameters of ααα.

High-dimensional Wald test

Suppose {uuut} is i.i.d. N (0,ΣΣΣu). Then as N,T →∞, Pesaran and Yamagata (2012) showed
that

Taα̂αα
′
ΣΣΣ−1
u α̂αα−N√
2N

→d N (0, 1)
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where a = 1− 1
T

∑
t fff
′
t(

1
T

∑
t fff tfff

′
t)
−1 1

T

∑
t fff t. This normalized Wald test is infeasible

unless ΣΣΣ−1
u is consistently estimable. Under the sparse assumption of ΣΣΣu, this can be achieved

by thresholding estimation as previously described. Let Σ̂ΣΣ
−1

u be the thresholding estimator,
then a feasible high-dimensional Wald test is

Jsw ≡
Taα̂αα

′
Σ̂ΣΣ
−1

u α̂αα−N√
2N

.

With further technical arguments (see Fan et al. (2014b)), it can be shown that Jsw →d

N (0, 1). Note that it is very technically involved to show that substituting Σ̂ΣΣ
−1

u for ΣΣΣ−1
u is

asymptotically negligible when N/T →∞.

Power Enhancement Test

Traditional tests of factor pricing models are not powerful unless there are enough stocks that
have non-vanishing alphas. Even if some individual assets are significantly mis-priced, their
non-trivial contributions to the test statistic are insufficient to reject the null hypothesis. This
problem can be resolved by introducing a power enhancement component (PEM) J0 to the
normalized Wald statistic Jsw. The PEM J0 is a screening statistic, designed to detect sparse
alternatives with significant individual alphas.

Specifically, for some predetermined threshold value δT > 0, define a set

Ŝ =

{
j :
|α̂j |
σ̂j

> δT , j = 1, ..., N

}
, (1.33)

where α̂j is the OLS estimator and σ̂2
j = 1

T

∑T
t=1 û

2
jt/a is T times the estimated variance of

α̂j , with ûjt being the regression residuals. Denote a subvector of α̂αα by

α̂ααŜ = (α̂j : j ∈ Ŝ),

the screened-out alpha estimators, which can be interpreted as estimated alphas of mis-priced
stocks. Let Σ̂ΣΣŜ be the submatrix of Σ̂ΣΣu formed by the rows and columns whose indices are
in Ŝ. So Σ̂ΣΣŜ/(Ta) is an estimated conditional covariance matrix of α̂ααŜ , given the common
factors and Ŝ.

With the above notation, we define the screening statistic as

J0 =
√
NTaα̂αα

′
ŜΣ̂ΣΣ
−1

Ŝ α̂ααŜ . (1.34)

The choice of δT must suppress most of the noises, resulting in an empty set of Ŝ under
the null hypothesis. On the other hand, δT cannot be too large to filter out important signals
of alphas under the alternative. For this purpose, noting that the maximum noise level is
OP (

√
logN/T ), we let

δT = log(log T )

√
logN

T
.

This is a high critism test. When N = 500 and T = 60, δT = 3.514. With this choice of δT ,
if we define, for σ2

j = (ΣΣΣu)jj/(1− Efff ′t(Efff tfff
′
t)
−1Efff t),

S =

{
j :
|αj |
σj

> 2δT , j = 1, ..., N

}
, (1.35)
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then under mild conditions, P (S ⊂ Ŝ)→ 1, with some additional conditions, P (S = Ŝ)→
1, and α̂ααŜ behaves like αααS = (αααj : j ∈ S).

The power enhancement test is then defined to be

J0 + Jsw,

whose detectable region is the union of those of J0 and Jsw. Note that under the null
hypothesis, S = ∅, so by the selection consistency, J0 = 0 with probability approaching one.
Thus the null distribution of the power enhancement test is that of Jsw, which is standard
normal. This means adding J0 does not introduce asymptotic size distortion. On the other
hand, since J0 ≥ 0, the power of J0 + Jsw is always enhanced. Fan et al. (2014b) showed
that the test is consistent against the alternative as any subset of:

{ααα ∈ RN : max
j≤N
|αj | > 2δT max

j≤N
σj} ∪ {ααα ∈ RN : ‖ααα‖2 � (N logN)/T}.

Empirical Study

We study monthly returns on all the S&P 500 constituents from the CRSP database for
the period January 1980 to December 2012, during which a total of 1170 stocks have
entered the index for our study. Testing of market efficiency is performed on a rolling
window basis: for each month from December 1984 to December 2012. The test statistics
are evaluated using the preceding 60 months’ returns (T = 60). The panel at each testing
month consists of stocks without missing observations in the past five years, which yields a
cross-sectional dimension much larger than the time-series dimension (N > T ). For testing
months τ = 12/1984, ..., 12/2012, we fit the Fama-French 3-factor model:

rτit − rτft = ατi + βτi,MKT(MKTτt − rτft) + βτi,SMBSMBτt + βτi,HMLHMLτt + uτit, (1.36)

for i = 1, ..., Nτ and t = τ − 59, ..., τ , where rit represents the return for stock i at month t,
rft the risk free rate, and MKT,SMB and HML constitute the FF-3 model’s market, size and
value factors.

Table 1.3 Variable descriptive statistics for the Fama-French 3-factor
model (Adapted from Fan et al. (2014b))

Variables Mean Std dev. Median Min Max

Nτ 617.70 26.31 621 574 665
|Ŝ|0 5.49 5.48 4 0 37
|α̂|

τ

i (%) 0.9973 0.1630 0.9322 0.7899 1.3897
|α̂|

τ

i∈Ŝ(%) 4.3003 0.9274 4.1056 1.7303 8.1299
p-value of Jwi 0.2844 0.2998 0.1811 0 0.9946
p-value of Jsw 0.1861 0.2947 0.0150 0 0.9926
p-value of PEM 0.1256 0.2602 0.0003 0 0.9836

Table 1.4.2 summarizes descriptive statistics for different components and estimates in the
model. On average, 618 stocks (which is more than 500 because we are recording stocks that
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have ever become the constituents of the index) enter the panel of the regression during
each five-year estimation window, of which 5.5 stocks are selected by Ŝ. The threshold
δT =

√
logN/T log(log T ) is about 0.45 on average, which changes as the panel size N

changes for every window of estimation. The selected stocks have much larger alphas than
other stocks do, as expected. As far as the signs of those alpha estimates are concerned,
61.84% of all the estimated alphas are positive, and 80.66% of all the selected alphas are
positive. This indicates that market inefficiency is primarily contributed by stocks with extra
returns, instead of a large portion of stocks with small alphas, demonstrating the sparse
alternatives. In addition, we notice that the p-values of the thresholded Wald test Jsw is
generally smaller than that of the test Jwi given by Pesaran and Yamagata (2012).

Figure 1.7 Dynamics of p-values and selected stocks (%, from Fan et al. (2014b))

We plot the running p-values of Jwi, Jsw and the PEM test (augmented from Jsw) from
December 1984 to December 2012. We also add the dynamics of the percentage of selected
stocks (|Ŝ|0/N ) to the plot, as shown in Figure 1.7. There is a strong negative correlation
between the stock selection percentage and the p-values of these tests. This shows that the
degree of market efficiency is influenced not only by the aggregation of alphas, but also by
those extreme ones. We also observe that the p-value line of the PEM test lies beneath those
of Jsw and Jwi tests as a result of enhanced power, and hence it captures several important
market disruptions ignored by the latter two (e.g. Black Monday in 1987, collapse of Japanese
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Figure 1.8 Histograms of p-values for Jwi, Jsw and PEM (from Fan et al. (2014b))
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bubble in late 1990, and the European sovereign debt crisis after 2010). Indeed, the null
hypothesis of market efficiency is rejected by the PEM test at 5% level during almost all
financial crisis, including major financial crisis such as Black Wednesday in 1992, Asian
financial crisis in 1997, the financial crisis in 2008, which are also detected by Jsw and Jwi
tests. For 30%, 60% and 72% of the study period, Jwi, Jsw and the PEM test conclude that
the market is inefficient respectively. The histograms of the p-values of the three test statistics
are displayed in Figure 1.8.

1.5 Statistical Inference in Panel Data Models

1.5.1 Efficient Estimation in Pure Factor Models

The sparse covariance estimation can also be employed to improve the estimation efficiency
in factor models. Consider:

Yit = b′ifff t + uit, i ≤ N, t ≤ T,

In the model, only Yit is observable. In most literature, the factors and loadings are estimated
via the principal components (PC) method, which solves a constraint minimization problem:

min
B,fff t

T∑
t=1

(YYY t −Bfff t)
′(YYY t −Bfff t)

subject to some identifiability constraints so that the solution is unique. The PC method does
not incorporate the error covariance ΣΣΣu, hence it essentially treats the error terms uuut as cross-
sectionally homoskedastic and uncorrelated. It is well known that under either cross-sectional
heteroskedasticity or correlations, the PC method is not efficient. On the other hand, when ΣΣΣu
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is assumed to be sparse and estimated via thresholding, we can incorporate this covariance
estimator into the estimation, and improve the estimation efficiency.

Weighted Principal Components

We can estimate the factors and loadings via the weighted least squares. For some N ×N
positive definite weight matrix W, solve the following optimization problem:

min
B,fff t

T∑
t=1

(YYY t −Bfff t)
′W(YYY t −Bfff t),

subject to:
1

T

T∑
t=1

fff tfff
′
t = I, B′WB is diagonal.

Here W can be either stochastic or deterministic. When W is stochastic, it can be understood
as a consistent estimator of some deterministic matrix.

Solving the constrained optimization problem gives the WPC estimators: b̂j and f̂ff t are
both K × 1 vectors such that, the columns of the T ×K matrix F̂/

√
T = (f̂ff1, ..., f̂ffT )′/

√
T

are the eigenvectors corresponding to the largest K eigenvalues of YWY′, and B̂ =

T−1Y′F̂ = (b̂1, ..., b̂N )′. This method is called weighted principal components (WPC, see
Bai and Liao 2013), to distinguish from the traditional principal components (PC) method
that uses W = I. Note that PC does not encounter the problem of estimating large covariance
matrices, and is not efficient when {uit}’s are cross-sectionally correlated across i.

Bai and Liao (2013) studied the inferential theory of the WPC estimators. In particular,
they showed that for the estimated common component, as T,N →∞,

b̂′if̂ff t − b′ifff t
(b′iΞWbi/N + fff ′tΩΩΩifff t/T )1/2

→d N (0, 1). (1.37)

with ΞW = ΣΣΣ−1
Λ B′WΣΣΣuWBΣΣΣ−1

Λ /N and ΩΩΩi = Cov(fff t)
−1ΦiCov(fff t)

−1, where

Φi = E(fff tfff
′
tu

2
it) +

∞∑
t=1

E[(fff1fff
′
1+t + fff1+tfff

′
1)ui1ui,1+t].

and ΣΣΣΛ = limN→∞B′WB/N, assumed to exist. Note that although the factors and loadings
are not individually identifiable, b̂′if̂ff t can consistently estimate the common component
b′ifff t, without introducing a rotational transformation.

Optimal Weight Matrix

There are three interesting choices for the weight matrix W. The most commonly seen weight
is the identity matrix, which leads to the regular PC estimator. The second choice of the
weight matrix takes W =diag−1{Var(u1t), ...,Var(uNt)}. The third choice is the optimal
weight. Note that the asymptotic variance of the estimated common component in (1.37)
depends on W only through

ΞW = ΣΣΣ−1
Λ B′WΣΣΣuWBΣΣΣ−1

Λ /N.
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Table 1.4 Three interesting choices of the weight matrix

Eigenvectors of W

regular PC YY′ I
heteroskedastic WPC Ydiag(ΣΣΣu)−1Y′ diag(ΣΣΣu)−1

efficient WPC YΣΣΣ−1
u Y′ ΣΣΣ−1

u

The estimated F̂/
√
T is the eigenvectors of the largest r

eigenvalues of YWY′, and B̂ = T−1Y′F̂.

It is straightforward to show that when W∗ = ΣΣΣ−1
u , the asymptotic variance is minimized,

that is, for any positive definite matrix W, ΞW − ΞW∗ is semi-positive definite. In other
words, the choice W = ΣΣΣ−1

u as the weight matrix of the WPC estimator yields the minimum
asymptotic variance of the estimated common component.

Table 1.5.1 gives the estimators and the corresponding weight matrix. The heteroskedastic
WPC uses W = I, which takes into account the cross-sectional heteroskedasticity of
(u1t, ..., uNt), while the efficient WPC uses the optimal weight matrix ΣΣΣ−1

u . Under the
sparsity assumption, the optimal weight matrix can be estimated using the POET estimator
as described in Section 3.

1.5.2 Panel Data Model with Interactive Effects

A closely related model is the panel data with a factor structure in the error term:

Yit = xxx′itβββ + εit, εit = b′ifff t + uit, i ≤ N, t ≤ T, (1.38)

where xxxit is a d× 1 vector of regressors; βββ is a d× 1 vector of unknown coefficients. The
regression noise εit has a factor structure with unknown loadings and factors, regarded as an
interactive effect of the individual and time effects. In the model, the only observables are
(Yit, xxxit). This model has been considered by many researchers, such as Ahn et al. (2001),
Pesaran (2006), Bai (2009), Moon and Weidner (2010), and has broad applications in social
sciences. For example, in the income studies, Yit represents the income of individual i at
age t, xxxit is a vector of observable characteristics that are associated with income. Here bi
represents a vector of unmeasured skills, such as innate ability, motivation, and hardworking;
fff t is a vector of unobservable prices for the unmeasured skills, which can be time-varying.

The goal is to estimate the structural parameter βββ, whose dimension is fixed. Because the
regressor and factor can be correlated, simply regressing Yit on xxxit is not consistent. Let
XXXt = (xxx1t, ..., xxxNt)

′. The least squares estimator of βββ is

β̂ββ = arg min min
B,fff t

T∑
t=1

(YYY t −XXXtβββ −Bfff t)
′W(YYY t −XXX ′tβββ −Bfff t), (1.39)

with a high-dimensional weight matrix W. In particular, it allows a consistent estimator for
ΣΣΣ−1
u as the optimal weight matrix, which takes into account both cross-sectional correlation

and heteroskedasticity of uit over i. The minimization is subjected to the constraint
1
T

∑T
t=1 fff tfff

′
t/T = I and B′WB being diagonal.
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The estimated βββ for each given (B, {fff t}) is simply

βββ(B, {fff t}) = (

T∑
t=1

XXX ′tWXXXt)
−1

T∑
t=1

XXX ′tW(YYY t −Bfff t).

On the other hand, given βββ, the variable YYY t −XXXtβββ has a factor structure. Hence the estimated
(B, fff t) are the weighted principal components estimators: let XXX(β̂ββ) be an N × T matrix
XXX(β̂ββ) = (XXX1β̂ββ, ...,XXXT β̂ββ). The columns of the T × r matrix F̂/

√
T = (f̂ff1, ..., f̂ffT )′/

√
T

are the eigenvectors corresponding to the largest r eigenvalues of (Y′ −XXX(β̂ββ))′W(Y′ −
XXX(β̂ββ)), and B̂ = T−1(Y′ −XXX(β̂ββ))F̂. Therefore, given (B, fff t), we can estimate βββ, and
given βββ, we can estimate (B, fff t). So β̂ββ can be simply obtained by iterations, with an initial
value. The inversion (

∑T
t=1XXX

′
tWXXXt)

−1 does not update during iterations.

Optimal Weight Matrix

To present the inferential theory of β̂ββ, additional notation are needed. Rearrange the design
matrix

ZZZ = (XXX11, ...,XXX1T ,XXX21, ...,XXX2T , ...,XXXN1, ...,XXXNT )′, NT × dim(βββ).

Let
AW =

[
W −WB (B′WB)

−1
B′W

]
⊗ (I− F(F′F)−1F′/T ).

Under regularity conditions, Bai and Liao (2013) showed that

√
NT (β̂ββ − βββ)→d N (0,VW),

where, for ΣΣΣu = Cov(uuut),

VW = plimN,T→∞(
1

NT
ZZZ ′AWZZZ)−1 1

NT
ZZZ ′AW(ΣΣΣu ⊗ I)AWZZZ(

1

NT
ZZZ ′AWZZZ)−1

assuming the right hand side converges in probability.
It is not difficult to show that W∗ = ΣΣΣ−1

u is the optimal weight matrix, in the sense
that VW −VW∗ is semi-positive definite for all positive definite weight matrix W. With
W = W∗, the asymptotic variance of β̂ββ is

VW∗ = plimN,T→∞ = (
1

NT
ZZZ ′AW∗ZZZ)−1.

Assuming ΣΣΣu to be sparse, one can estimate W∗ based on an initial estimator of βββ.
Specifically, define β̂ββ0 as in (1.39) with W = I, which is the estimator used in Bai (2009)
and Moon and Weidner (2010). Apply the singular value decomposition to

1

T

T∑
t=1

(YYY t −XXXtβ̂ββ0)(YYY t −XXXtβ̂ββ0)′ =

N∑
i=1

νiξξξiξξξ
′
i,
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where (νj , ξξξj)
N
j=1 are the eigenvalues-eigenvectors of 1

T

∑T
t=1(YYY t −XXXtβ̂ββ0)(YYY t −XXXtβ̂ββ0)′

in a decreasing order such that ν1 ≥ ν2 ≥ ... ≥ νN . Then Σ̂ΣΣu = (Σ̂u,ij)N×N ,

Σ̂u,ij =

{
R̃ii, i = j

thij(R̃ij), i 6= j
, R̃ij =

N∑
k=r+1

νkξkiξkj ,

where thij(·) is the same thresholding function. The optimal weight matrix W∗ can then be

estimated by Σ̂ΣΣ
−1

u , and the resulting estimator β̂ββ achieves the asymptotic variance VW∗ .

1.5.3 Numerical illustrations

We present a simple numerical example to compare the weighted principal components with
the popular methods in the literature. The idiosyncratic error terms are generated as follows:
let {εit}i≤N,t≤T be i.i.d. N (0, 1) in both t, i. Let

u1t = ε1t, u2t = ε2t + a1ε1t, u3t = ε3t + a2ε2t + b1ε1t,

ui+1,t = εi+1,t + aiεit + bi−1εi−1,t + ci−2εi−2,t,

where {ai, bi, ci}Ni=1 are i.i.d. N (0, 1). Then ΣΣΣu is a banded matrix, with both cross-
sectional correlation and heteroskedasticity. Let the two factors {f1t, f2t} be i.i.d. N (0, 1),
and {bi,1, bi,2}i≤N be uniform on [0, 1].

Pure Factor Model

Consider the pure factor model Yit = bi1f1,t + bi,2f2t + uit. Estimators based on three
weight matrices are compared: PC using W = I; HWPC using W = diag(ΣΣΣu)−1 and
EWPC using W = ΣΣΣ−1

u . Here ΣΣΣu is estimated using the POET estimator. The smallest
canonical correlation (the larger the better) between the estimators and parameters are
calculated, as an assessment of the estimation accuracy. The simulation is replicated for one
hundred times, and the average canonical correlations are reported in Table 1.5.3. The mean
squared error of the estimated common components are also compared.

We see that the estimation becomes more accurate when we increase the dimensionality.
HWPC improves the regular PC, while the EWPC gives the best estimation results.

Interactive Effects

Adding a regression term, we consider the panel data model with interactive effect: Yit =
xxx′itβββ + bi1f1,t + bi,2f2t + uit, where the true βββ = (1, 3)′. The regressors are generated to be
dependent on (fff t,bi):

xit,1 = 2.5bi1f1,t − 0.2bi2f2,t − 1 + ηit,1, xit,2 = bi1f1,t − 2bi2f2,t + 1 + ηit,2

where ηit,1 and ηit,2 are independent i.i.d. standard normal.

Both methods, PC (Bai (2009) and Moon and Weidner (2010)) and WPC with W = Σ̂ΣΣ
−1

u ,
are carried out to estimate βββ for the comparison. The simulation is replicated for one hundred
times; results are summarized in Table 1.5.3. We see that both methods are almost unbiased,
while the efficient WPC indeed has significantly smaller standard errors than the regular PC
method in the panel model with interactive effects.
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Table 1.5 Canonical correlations for simulation study (from Bai and Liao (2013))

Loadings Factors ( 1
NT

∑
i,t(b̂

′
if̂ff t − b′ifff t)

2)1/2

T N PC HWPC EWPC PC HWPC EWPC PC HWPC EWPC
(the larger the better) (the larger the better) (the smaller the better)

100 80 0.433 0.545 0.631 0.427 0.551 0.652 0.570 0.540 0.496
100 150 0.613 0.761 0.807 0.661 0.835 0.902 0.385 0.346 0.307
100 200 0.751 0.797 0.822 0.827 0.882 0.924 0.333 0.312 0.284

150 100 0.380 0.558 0.738 0.371 0.557 0.749 0.443 0.394 0.334
150 200 0.836 0.865 0.885 0.853 0.897 0.942 0.313 0.276 0.240
150 300 0.882 0.892 0.901 0.927 0.946 0.973 0.257 0.243 0.222

The columns of loadings and factors report the canonical
correlations.

Table 1.6 Method comparison for the panel data with interactive effects (from Bai and Liao
(2013))

β1 = 1 β2 = 3
Mean Normalized SE Mean Normalized SE

T N WPC PC WPC PC WPC PC WPC PC

100 100 1.002 1.010 0.550 1.418 3.000 3.003 0.416 1.353
100 150 1.003 1.007 0.681 1.626 2.999 3.000 0.611 1.683
100 200 1.002 1.005 0.631 1.800 3.000 3.000 0.774 1.752

150 100 1.003 1.006 0.772 1.399 3.000 2.999 0.714 1.458
150 150 1.001 1.005 0.359 1.318 3.000 3.001 0.408 1.379
150 200 1.001 1.003 0.547 1.566 3.000 3.000 0.602 1.762

“Mean” is the average of the estimators; “Normalized SE” is the standard error of the estimators
multiplied by

√
NT .

1.6 Conclusions
Large covariance and precision (inverse covariance) matrix estimations have become
fundamental problems in multivariate analysis, which find applications in many fields,
ranging from economics, finance to biology, social networks, and health sciences.

We introduce two efficient methods for estimating large covariance matrices and precision
matrices. The introduced precision matrix estimator assumes the precision matrix to be
sparse, which is immediately applicable for Gaussian graphical models. It is tuning-
parameter insensitive, and simultaneously achieves the minimax optimal rates of convergence
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in precision matrix estimation under different matrix norms. On the other hand, the estimator
based on factor analysis imposes a conditional sparsity assumption. Computationally, our
procedures are significantly faster than existing methods. Both theoretical properties and
numerical performances of these methods are presented and illustrated. In addition, we
also discussed several financial applications of the proposed methods, including the risk
management, testing high-dimensional factor pricing models. We also illustrate how the
proposed covariance estimators can be used to improve statistical efficiency in estimating
factor models and panel data models.
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