
D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
12

8.
6.

37
.1

44
 O

n:
 M

on
, 0

3 
M

ar
 2

02
5 

16
:1

8:
10

Annual Review of Financial Economics

Recent Developments in Factor
Models and Applications in
Econometric Learning
Jianqing Fan,1 Kunpeng Li,2 and Yuan Liao3
1Department of Operations Research and Financial Engineering, Princeton University,
Princeton, New Jersey 08544, USA; email: jqfan@princeton.edu
2International School of Economics and Management, Capital University of Economics and
Business, Beijing 100070, China
3Department of Economics, Rutgers University, New Brunswick, New Jersey 08901, USA

Annu. Rev. Financ. Econ. 2021. 13:401–30

The Annual Review of Financial Economics is online at
financial.annualreviews.org

https://doi.org/10.1146/annurev-financial-091420-
011735

Copyright © 2021 by Annual Reviews.
All rights reserved

JEL codes: C58, C01

Keywords

factor models, spiked low-rank matrix, matrix completion, unbalanced
panel, factor adjustments, robustness, model selection, multiple testing,
high-dimensional statistics

Abstract

This article provides a selective overview of the recent developments in
factor models and their applications in econometric learning. We focus on
the perspective of the low-rank structure of factor models and particularly
draw attention to estimating the model from the low-rank recovery point
of view. Our survey mainly consists of three parts. The first part is a review
of new factor estimations based on modern techniques for recovering low-
rank structures of high-dimensional models. The second part discusses sta-
tistical inferences of several factor-augmented models and their applications
in statistical learning models. The final part summarizes new developments
dealing with unbalanced panels from the matrix completion perspective.
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1. INTRODUCTION

The recent decade has witnessed a blossoming of developments in statistical learning theories
and practice, fueled by the exciting progress of large-scale optimizations and dimension reduc-
tion techniques. Factor models, as one of the central machineries for summarizing and extracting
information from large-scale data sets, have received much attention in this revolutionary era of
data science, and many breakthrough methodologies and applications have been developed in this
exciting area.

This article makes a selective overview of the recent developments in factor models and their
applications in econometric learning.Our review focuses on the perspective of the low-rank struc-
ture of factor models and draws particular attention to estimating the model from the low-rank
recovery point of view. A central focus in the progress of this literature is the understanding and
recovering of low-rank structures of high-dimensional models. Many new learning theories and
methods have been developed and have revolutionized the modern understanding of econometric
modeling.Meanwhile, the low-rank structure is one of the key properties of factor models.While
researchers have long been aware of this structure, studying the factor model from the perspec-
tive of low-rank matrix recovery is relatively new and has led to many exciting new discoveries
and understandings.

The survey mainly consists of three parts. The first part is a review on new factor estimation
based on modern techniques for recovering low-rank structures of high-dimensional models. The
second part discusses statistical inferences of several factor-augmented models and applications in
statistical learning models. The final part summarizes new developments dealing with unbalanced
panels from the matrix completion perspective.

We concentrate on recent developments in methodologies and applications in econometric
learning. For a more comprehensive account on this topic, see chapters 9–11 of the book by Fan
et al. (2020). Meanwhile, several important topics that are not covered in this survey have gen-
erated extensive research in the literature. Those topics include selecting the number of factors,
weak factors, identification, continuous-time and time-varying models, nonstationarity and struc-
tural breaks, Bayesian methods, bootstrap factors, as well as more sophisticated panel data models.
Several excellent reviews have been written with emphasis on these topics. We refer readers to
the reviews by Stock & Watson (2016) for dynamic factor models with applications on macro-
economics, Bai & Wang (2016) for time series and panel data models, and Gagliardini, Ossola &
Scaillet (2019) for a recent review on conditional factor models with applications to finance. An-
other class of estimation is a hybrid of the principal components analysis (PCA) method and the
state space approach (for more discussions on this topic, see Giannone, Reichlin & Small 2008;
Doz,Giannone&Reichlin 2011). In addition, the generalized dynamic factormodel is another im-
portant strand of literature in which factors are often estimated using the dynamic principal com-
ponents, the frequency domain analog of principal components, developed by Brillinger (1964).
Forni et al. (2000, 2005) provide rates of convergence of the common component estimated by dy-
namic principal components. Finally, for more detailed developments, we refer readers to the fol-
lowing papers, among others: Bai & Ng (2002); Onatski (2010, 2012); Chudik, Pesaran & Tosetti
(2011); Bai & Li (2012, 2016); Ahn & Horenstein (2013); Cheng, Liao & Schorfheide (2016);
Gagliardini, Ossola & Scaillet (2016); Aït-Sahalia & Xiu (2017); Baltagi, Kao &Wang (2017); Li,
Li & Shi (2017); Massacci (2017); Su & Wang (2017); Barigozzi, Cho & Fryzlewicz (2018); Liao
& Yang (2018); Li, Todorov & Tauchen (2019); Pelger (2019); Chen, Mykland & Zhang (2020);
and Goncalves & Perron (2020).

We use the following notation: For a matrix A, let λi(A) denote the ith largest singular value
of A and use λmin(A) and λmax(A) to denote its smallest and largest eigenvalues. We define
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the Frobenius norm ‖A‖F = √
tr(A′A), the operator norm ‖A‖ = √

λmax(A′A), the element-wise
norm ‖A‖∞ = maxi j |Ai j|, and the matrix �1-norm ‖A‖�1 := maxi≤N

∑N
j=1 |Ai j|. In addition, define

projection matrices PA = A(A′A)−1A and MA = I − PA when A′A is invertible. Finally, for two
(random) sequences aT and bT, we write aT � bT (or bT � aT) if aT = oP(bT).

2. SPIKED INCOHERENT LOW-RANK MODELS

2.1. The Model

Modern high-dimensional factor models can be viewed as a type of spiked incoherent low-rank
model, a broad class of models that have drawn active research in the last decade. A spiked inco-
herent low-rank model typically refers to a large matrix � (either observable or not), having the
following decomposition:

� = L + S. 1.

Such decomposition requires the following three assumptions:

1. Low-rank. The rank of L is either bounded or grows very slowly compared with its
dimensions.

2. Spikedness.The nonzero singular values of L grow fast, while the largest singular value of
S is either bounded or grows much slower.

3. Incoherence. The left and right singular vectors of L, corresponding to the nonzero sin-
gular values, should have diversified elements, which means that elements of the rescaled
singular vectors should be uniformly bounded.

The low-rank structure achieves dimension reductions: Suppose the matrix � is of N × N1

dimensions, while the rank of L is r. Then, the low-rank structure reduces the dimension from
O(NN1) to O((N + N1)r); the latter is the magnitude of the number of parameters in L. Mean-
while, the spikedness helps separate L from S, approximately, and ensures that the large signals
concentrate on L, the low-rank component. In addition, the incoherence, a condition that ex-
cludes matrices being low-rank and sparse simultaneously, enables us to estimate well the singular
eigenvectors.

We explain these three properties using the matrix form of factor models. Consider

yit = b′
ift + uit , i ≤ N , t ≤ T , 2.

where ft is an r-dimensional vector of factors, bi is the loading vector, and uit is the idiosyncratic
noise. Specifically, Equation 1 applies to two decompositions of this model.

2.1.1. Factor decomposition. The matrix form of the factor model gives

Y = M + U, M := BF′,

where Y and U are N × T matrices of yit and uit, B is the N × r matrix of bi, while F is the
T × r matrix of ft . Then, corresponding to the notation in Equation 1, � = Y, L = M, and
S = U. In this decomposition, � is observable. Apparently, M is a low-rank matrix with rank r.
The nonzero singular values of M, under the strong factor assumption, grow much faster than
those of U, which gives rise to the spikedness property. To discuss the incoherence assumption,
let ξ be theN× rmatrix whose columns are the left singular vectors ofM, and let ξ′

i denote its ith
row. The incoherence of singular vectors requires

max
i≤N

‖
√
Nξi‖ ≤

√
Cr 3.

for some constant C that can possibly grow. The right singular vectors can be bounded similarly.

www.annualreviews.org • Factor Models and Econometric Learning 403
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Remark 1 (Relation with pervasiveness). A more familiar condition that is often imposed
on factor models is known as pervasiveness, which assumes that all the eigenvalues of the r by
r matrix 1

N B′B are well bounded from both below and above (some rate conditions should be
imposed to make this statement formal). Under somemild conditions, the pervasiveness implies
the spikedness condition with more specific growth rate. It is used to identify, approximately,
the factor component and idiosyncratic component. On the other hand, the incoherence is an-
other condition that helps the identification issue. It relaxes the rates on the spikeness: The
slower the growth of the incoherent constant C in Equation 3, the more relaxed the spikedness
condition.

2.1.2. Covariance decomposition. It is also well known from the factor model (Equation 2)
that the covariance matrix of yt = (y1t , . . . , yNt )′, denoted by �y, can be decomposed as follows:

�y = L + �u, L := B cov(ft )B′, 4.

where �u denotes the covariance matrix of ut . The above decomposition is well known for portfo-
lio allocations and risk managements, where the total volatility is decomposed into the systematic
riskL, plus the (sparse) idiosyncratic risk�u. It also leads to the spiked incoherent low-rankmodel,
but �y is unknown and needs to be estimated.

2.2. Estimation

There are two general approaches to estimating the model in Equation 1: (a) PCA and (b) low-
rank regularization. Here, we present a general PCA estimation setting and defer the discussion
of low-rank regularization to Section 3.2. We shall assume rank(L) = r to be known.

For any matrix A, let A = UADAV′
A denote the singular value decomposition (SVD) of A.

Define the singular value hard-thresholding operator as

HR(A) := UAD̄RV′
A, 5.

where D̄R is a diagonal matrix that keeps the top R diagonal elements of DA and replaces the
remaining elements by zeros. So HR(A) is the best rank R matrix approximation to A.

Suppose an estimator of �, denoted by �̂, is available, satisfying

‖�̂ − �‖ = OP (ηN ), ‖�̂ − �‖∞ = OP (cN ) 6.

for some sequences ηN and cN. We use �̂ as the input matrix, which can be the sample covari-
ance matrix or its robust versions (Fan, Wang & Zhong 2019). The goal is to estimate L in
Equation 1 and its N × r matrix of the left singular vectors, denoted by ξ (also let ζ denote its
right singular vectors).We use, respectively, L̂ := HR(�̂) with R= r, which is the rank r projection
of �̂, and the N × r matrix ξ̂, whose columns are the left singular vectors of �̂. The following
theorem, adapted from Fan, Wang & Zhong (2018), provides deviation bounds of the estima-
tors. To make this article self-contained, we also provide a simpler proof with slightly different
conditions.

Theorem 1. Consider the general model given in Equation 1 with bounded r := rank(L). Sup-
pose that min2≤i≤r+1 |λi−1(L) − λi (L)| 	 max2≤i≤r+1 |λi−1(L) − λi (L)| := gN and ηN + ‖S‖ =
oP (gN ). Then, under the condition from Equation 6, we have result 1:

‖L̂ − L‖ = OP (ηN + ‖S‖) , ‖̂ξ − ξ‖ = OP

(
ηN + ‖S‖

gN

)
.

404 Fan • Li • Liao
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And result 2 states: If, additionally, ‖S‖∞ + ‖L‖∞ = OP (1) and N1cN = oP(gN), then

‖̂ξ − ξ‖∞ ≤OP

(
N1√
N

+
√
N1

)
(ηN + ‖S‖)g−2

N

+OP

(
cN

N1√
N

+ cN
√
N1 + ‖Sζd‖∞ ∨ ‖S′ξd‖∞

)
g−1
N .

Proof. See the online Supplemental Materials. �

This theorem is relatively general and is applicable to low-rank models that are not neces-
sarily consequences from factor models. The proof relies on perturbation bounds for singular
vectors/values, and the achieved rates are sharp. Result 1 is simple and gives asymptotic bounds
under the operator norm. Result 2 gives an element-wise deviation bound for the singular vectors,
which requires more dedicated technical arguments.

3. ESTIMATION UNDER FACTOR MODELS

We observe an N × T data matrix Y, which can be decomposed as

Y = M + U = BF′ + U,

where B is N × r factor loadings matrix, F is T × r factors matrix, and U is N × T idiosyncratic
errors, which are uncorrelated with M := BF′. All the three parts, B, F, and U, are unobserved.
The tth column of this expression can be written as

yt = Bft + ut . 7.

3.1. Principal Components Analysis and Maximum Likelihood Estimation

This section gives the least-squares estimation and maximum likelihood estimation (MLE).

3.1.1. Principal components analysis. Under themodel’s specification,we have the covariance
structure (Equation 4). One of the most widely used estimation methods for the factor loading
matrix and latent factors is PCA. Define the sample covariance Sy = 1

T

∑T
t=1 yty

′
t = 1

T YY
′. Let ξ̂ j

be the jth eigenvector corresponding to the largest jth eigenvalue of Sy. The PCA estimates B
by taking B̂ = √

N (̂ξ1, . . . , ξ̂R ), which estimates B up to a diagonal transformation. Given B̂, the
factors can be estimated via the least squares:

F̂ = Y′B̂(B̂′B̂)−1 = 1
N

Y′B̂.

This also leads to the estimated low-rank component 1
T B̂F̂

′F̂B̂′ for B cov(ft )B′.
PCA is equivalent to the singular value hard-thresholding by taking the input matrix �̂ = Sy.

Then 1
T B̂F̂

′F̂B̂′ = HR(Sy ). One can then apply Theorem 1 to infer the rates of convergence of
the PCA estimators, which were obtained by Stock & Watson (2002a). Bai (2003) proved the
asymptotic normality of PCA estimators for the factors and loadings. Results with general input
�̂ can be found in chapter 10 of Fan et al. (2020).

3.1.2. Maximum likelihood estimations. Another popular method to estimate a factor model
is the maximum likelihood (ML) method (see, e.g., Lawley & Maxwell 1971; Bai & Li 2012;

www.annualreviews.org • Factor Models and Econometric Learning 405
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Doz, Giannone & Reichlin 2012). Under the independence and normality assumptions, the log-
likelihood function based on yt is, for some constant C,

logLML(B, cov(ft ), diag(�u )) = C − T
2
ln |�y| − 1

2

T∑
t=1

y′
t�

−1
y yt .

The log-likelihood function is then maximized with respect to the matrix parameters
(B, cov(ft ), diag(�u )) under additional restrictions that �u is diagonal (Bai & Li 2012, 2016) or
sparse with regularizations (Bai & Liao 2016, Wang, Yang & Yao 2019). Recently, Barigozzi &
Luciani (2019) explicitly accounted for autocorrelations of the factors in the likelihood function.

The factors can be estimated by two methods, one of which is the projection method. Under
the joint normality assumptions of ft and ut , we have

E(ft |yt ) = B′(BB′ + �u )−1yt = (Ir + B′�−1
u B)−1B′�−1

u yt .

This provides the basis of estimating factors. The other approach is the generalized least squares
(GLS): for given B and �−1

u , the GLS estimator for ft is

f̂t = (B′�−1
u B)−1B′�−1

u yt .

Replacing the unknown parameters with their ML estimators, one obtains two estimators for
the latent factors. Under large-N setup, the differences of the two methods (PCA and MLE) for
estimating factors are asymptotically negligible.

3.2. Low-Rank Estimation

As an alternative to PCA, one can estimate M directly, taking advantage of its low-rank struc-
ture, based on the nuclear-norm regularization, the �1-norm of singular values, that encour-
ages the sparseness in singular values and hence low-rankness. For an n × m matrix A, let
‖A‖n :=

∑min{m,n}
i=1 ψi(A) be its nuclear-norm, where ψi(A) is the ith largest singular value of A.

3.2.1. Singular value thresholding. Given the low-rank structure of M (sparsity in singular
value of M), we can estimate the model via solving the following penalized optimization:

M̂ = argmin
M

1
2
‖Y − M‖2F + ν‖M‖n 8.

for some tuning parameter ν > 0. The solution is M̂ = Sν (Y), where Sν (·) is the singular value
thresholding operator (Ma, Goldfarb & Chen 2011), defined as follows. Let Y = UyDV′

y be its
SVD. Then Sν (Y) := UyDνV′

y, where Dν = diag({Dii − ν}+ ), with Dii being the diagonal entries
ofD. So,Sν (Y) applies soft-thresholding on the singular values ofY.One can additionally estimate
the factors and loadings using the singular vectors.

We note that this method is closely related to the principal components estimator, except the
soft-thresholding is replaced by hard-thresholding. Let R denote the working number of factors,
which is the number of principal components one takes when applying the principal components
method. We note that the principal components estimator for M with R factors is given by (see
also Section 2.2)

M̂PC = HR(Y), HR(Y) := UyD̄RV′
y.

This estimator is the solution to the penalized least squares problem (Equation 8) except that
the nuclear-norm is replaced by

∑min{N ,T }
i=1 pν (ψi(M)), where pν (θ ) = ν2 − (ν − |θ |)2+ is the hard-

thresholding penalty (Fan et al. 2020) and ψi(M) is the ith singular value of M.

406 Fan • Li • Liao
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Therefore, the difference between Equation 8 and PCA is more fundamentally about that of
hard- and soft-thresholding. In spite of many good properties, the soft-thresholding estimator
possesses shrinkage bias, while the hard-thresholding estimator reduces the bias. As a matter of
fact, the shrinkage bias is on the singular values, rather than on the singular vectors. Indeed, the
singular vectors of the two estimators are the same and equal to the top R singular vectors of Y.
An important implication is that the factor estimator building on M̂ is numerically equivalent to
the principal components estimators for the factors, which do not suffer from any shrinkage bias.
A formal statement and proof of the unbiasedness of eigenvectors can be found in the work by
Fan et al. (2019b).

3.2.2. Low-rank plus sparse decomposition. Recall that �y and �u denote the N × N co-
variance matrices of yt and ut in the model in Equation 7 and that we have the following
decomposition:

�y = L + �u, L := B cov(ft )B′. 9.

We now demonstrate that this decomposition also provides a nice structure for estimating the
covariance components. A key assumption is conditionally sparsity, namely, �u is sparse. While
the definition of sparsity may differ in different contexts, here we mean

J :=
∑
i �= j

1{E uitu jt}

should not grow too fast, as N → ∞. This requirement can be weakened to approximate sparsity,
replacing �0-norm, the indicator function, in the definition of sparsity by the �q-norm (q < 1). In
addition, L is a low-rank matrix. Thus, we can directly estimate the above covariance decomposi-
tion via solving the following penalized optimization:

(L̂, �̂u ) := argmin
L,�u

1
2
‖Sy − (L + �u )‖2F + ν1‖L‖n + ν2‖�u‖1, 10.

where ν1 and ν2 are tuning parameters. Note that here we use the notation ‖A‖1 = ∑
i, j |Ai j|

as the matrix element-wise 1-norm, distinguished from the usual matrix �1-norm ‖A‖�1 :=
maxi≤N

∑N
j=1 |Ai j|. The above optimization has been employed by many authors to study the

low-rank plus sparse decomposition, while some authors exclude the diagonal elements of �u

from the penalization and additionally impose positive-definite and other constraints on L and
�u (Agarwal, Negahban & Wainwright 2012; Klopp, Lounici & Tsybakov 2017). Finally, given
L̂, we can estimate the factors and loadings by extracting its eigenvectors.

The above optimization can be solved by alternating the estimation of L and �u, and closed
form solutions are available in both iterations. Given �u, solving for L leads to the singular value
soft-thresholding, L̂ = Sν1 (Sy − �u ), and given L, solving for �u leads to the element-wise soft-
thresholding, �̂u = S̃ν2 (Sy − L). While both iterations solve convex problems, standard conver-
gence analysis can be applied to show that the iterative algorithm converges in polynomial time.

Agarwal,Negahban&Wainwright (2012) andKlopp,Lounici&Tsybakov (2017) study the sta-
tistical convergence properties of Equation 10. Let columns ofUL,2 be the singular vectors of the
true L corresponding to the zero singular values. Define projections P (A) := UL,2U′

L,2AUL,2U′
L,2

and M(A) := A − P (A). In addition, let (A)J and (A)Jc be the submatrices of A, whose elements
respectively correspond to E uitu jt �= 0 and E uitu jt = 0. Additionally, define

C(ν1, ν2) := {(A1,A2) : ν1‖P (A1)‖n + ν2‖(A2)Jc‖1 ≤ 3ν1‖M(A1)‖n + 3ν2‖(A2)J‖1}.
A key quantity is the restricted strong convexity (RSC) constant, which is defined as follows:

κ (ν1, ν2) := sup{c > 0 : ‖A1 + A2‖2F ≥ c‖A1‖2F + c‖A2‖2F for all (A1,A2) ∈ C(ν1, ν2)}.

www.annualreviews.org • Factor Models and Econometric Learning 407
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We then have the following theorem, adapted from Agarwal, Negahban &Wainwright (2012).
To make the article self-contained, we also provide a proof with slightly different conditions (see
the online Supplemental Materials).

Theorem 2. Conditioning on events 4‖Sy − �y‖ ≤ ν1 and 4‖Sy − �y‖∞ ≤ ν2, there is C > 0
that depends only on rank(L), so that

1
N2 ‖L̂ − L‖2F + 1

N2 ‖�̂u − �u‖2F ≤ C
κ2(ν1, ν2)

(ν21 + (J +N )ν22 )
N2 .

Proof. See the online Supplemental Materials. �

The optimal tuning parameters can be set to satisfy ν1 	 N√
T

and ν2 	
√

logN
T , respectively,

accounting for estimating errors under two matrix norms:

‖Sy − �y‖ ≤ ν1, ‖Sy − �y‖∞ ≤ ν2.

Both can be shown to hold with high probability under weak serial dependence and sub-Gaussian
conditions. In addition, if κ(ν1, ν2) is bounded away from zero, with the choice of tunings, the con-
vergence rate in Theorem 1 is OP (1 + J logN

N2 ) 1
T , which is sufficient to guarantee the convergence

of the estimated factors and loadings.We refer to Lemma 2 of Agarwal, Negahban &Wainwright
(2012) for a more refined lower bound of κ(ν1, ν2).

The above problem is also termed robust PCA (Candès et al. 2011). For recent advances and
references, see the work by Chen et al. (2020b), in which factorization methods are also discussed.

3.3. Covariance Estimation

Fan, Liao &Mincheva (2013) propose a nonparametric estimator of �y, named POET (Principal
Orthogonal complEment Thresholding), when the factors are unobservable. It is basically a one-
step solution to the optimization given in Equation 10 with initialization �u = 0. To motivate the
estimator, suppose r = R. Then, heuristically,

L ≈ HR(�y ), �u ≈ �y −HR(�y ).

Thus, one estimates L by HR(Sy ) and sets Su := Sy −HR(Sy ). To account for the sparsity assump-
tion on �u, Fan, Liao & Mincheva (2013) estimate �u and �y as

�̂u = (h(Su,i j , λi j ))N×N , �̂y = HR(Sy ) + �̂u, 11.

where h(x, λij) denotes the element-wise thresholding operator with thresholding value λij. Here,
we emphasize element-dependent thresholding λij to adapt to varying scales of covariance. For
correlation thresholding at level λ, we take λi j = λ

√su,iisu, j j , with su, ii as a diagonal element of
Su (Fan, Liao & Mincheva 2013); we can also take other forms, such as the adaptive threshold-
ing from Cai & Liu (2011). In general, the thresholding function should satisfy the following
conditions:

1. h(x, λ) = 0 if |x| < λ,
2. |h(x, λ) − x| ≤ λ, and
3. there are constants a > 0 and b > 1, such that |h(x, λ) − x| ≤ aλ2 if |x| > bλ.

Note that condition 3 requires that the thresholding bias should be of higher order. It is
not necessary for consistent estimations, but we recommend using nearly unbiased threshold-
ing (Antoniadis & Fan 2001) for inference applications. One such example is known as SCAD
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(smoothly clipped absolute deviation). As noted by Fan, Liao & Yao (2015), the unbiased thresh-
olding is required to avoid size distortions in a large class of high-dimensional testing problems
involving a plug-in estimator of �u. In particular, this rules out the popular soft-thresholding
function, which does not satisfy condition 3 due to its first-order shrinkage bias.

3.4. Projected Principal Components Analysis

In empirical asset pricing, factor loadings are known to depend on individual-specific observables
Xi, which represent a set of time-invariant characteristics such as individual stocks’ size, momen-
tum, and values. To incorporate the information carried by the observed characteristics, Connor
& Linton (2007) and Connor, Matthias & Linton (2012) model explicitly the loading matrix as a
function of covariates Xi. Fan, Liao &Wang (2016) extend the model to allowing components in
factor loadings that are not explainable by characteristics:

bi = g(Xi ) + γ i, E(γ i|Xi ) = 0. 12.

Here, g(·) is a vector of nonparametric functions. With this model, they introduce an improved
factor estimator, known as projected PCA.

The basic idea of projected PCA is to smooth the observations {yit}Ni=1 for each given t against
their associated covariates {Xi}Ni=1 (cross-sectional smoothing) and apply PCA to the smoothed
data (fitted values). Let {φ j (x)}J

j=1 be a set of basis functions. This can be either unstructured,
such as kernel machines, or structured, such as a basis for additive models (Fan et al. 2020). Set
φ(Xi )′ = (φ1(Xi ), . . . .,φJ(Xi )) and 	(X) = (φ(X1), . . . ,φ(XN ))′, an N × J matrix. Then the pro-
jection matrix on characteristics can be taken as P = 	(X)(	(X)′	(X))−1	(X)′. The projected
data PY is the fitted value of regressing Y on to the basis functions.

We make the following key assumption:

Assumption 1. We impose the following conditions.

1. Relevance: With probability approaching one, all the eigenvalues of 1
N (PB)′PB are

bounded away from both zero and infinity as N → ∞.
2. Orthogonality: E(uit |Xi ) = 0 for all i ≤ N, t ≤ T.

The above conditions require that the strengths of the loading matrix should remain strong
after the projection. Condition 2 implies that if we apply P to both sides of Y = BF′ + U, then

PY ≈ PBF′ = GF′,

whereG = PB is theN× rmatrix, which ≈ (g(Xi ))N×r under additional assumption E(γ i|Xi ) = 0
for all i ≤ N. In other words, the noise U is suppressed, while signals remain. Hence, the scaled
sample covariance (PY)′PY = Y′PY ≈ FG′GF′. For the identification purpose, let us assume
� := G′G is a diagonal matrix and F′F/T = I. Then, from

1
T
Y′PYF ≈ F�,

we infer that the columns of F are approximately the eigenvectors of the Y′PY, scaled by a factor√
T . This motivates estimating factors by using the top R eigenvectors of Y′PY.
Fan, Liao &Wang (2016) derive the rates of convergence of the projected PCAmethod. A nice

feature is that the consistency of latent factors is achieved even when the sample size T is finite,
so long as N goes to infinity. Intuitively, the idiosyncratic noise is removed from cross-sectional
projections, which does not require a long time series.
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Similarly, in many applications, while we do not know the latent factors ft , we do know that
factors are related to some proxy variables Wt . For example, the latent factors are unknown for
equity markets, but they are related to Fama–French factors (Fama & French 2015); latent factors
for disaggregated macroeconomics time series are unknown, but they are related to aggregated
ones (McCracken & Ng 2016). Switching the roles of rows and columns, longitudinal regression
of each series {yit}Tt=1 on {Wt}Tt=1 yields the projected data matrix, from which latent factors and
loadings can be extracted similarly. For details on how latent factor learning is augmented by
instruments {Wt}Tt=1, see Fan, Ke & Liao (2021).

3.5. Diversified Projection

In this section, we continue denoting R as the number of factors we use and r as the true number of
factors. Fan&Liao (2020) propose a simpler factor estimator that does not rely on eigenvectors by
using cross-sectional diversified projections (DPs). Let W = (w1, . . . ,wR ) be a given exogenous
(or deterministic) N × R matrix, where each of its R columns wk is an N × 1 vector of diversified
weights, the definition of which is made clear below.We estimate ft by simply taking

f̂t = 1
N

W′yt .

By substituting yt = Bft + ut into the definition, immediately we have

f̂t = Hft + 1
N

W′ut , H = 1
N

W′B. 13.

Thus, f̂t (consistently) estimates ft up to an R × r affine transform H, with the estimation error
et := 1

NW
′ut .The assumption thatW should be diversified ensures that asN→ ∞,et is diversified

away (converging to zero in probability). More specifically, we impose the following assumption.

Assumption 2. There is a constant c > 0, so that as N → ∞. In addition, we impose the fol-
lowing conditions.

1. The R × R matrix 1
NW′W satisfies λmin( 1

NW′W) > c.
2. W is independent of {ut : t ≤ T }.
3. Suppose R ≥ r, rank(H) = r and ψ2

min(H) � 1
N , where ψmin(H) denotes the minimum

nonzero singular value of H = 1
NW′B.

Conditions 1 and 2 define the diversified weightsW. When (u1t, . . . , uNt) are cross-sectionally
weakly dependent, they ensure that et is diversified away. Condition 3 of Assumption 2 is a key
condition: It requires that W should not diversify away the factor components in the time series.
Several choices ofW can be recommended to satisfy this condition. For instance, if factor loadings
satisfy Equation 12, then fixR components of sieve basis functions, (φ1(·), . . . , φR(·)),we can define

W := (wi,k )N×R, where wi,k = φk(Xi ).

Alternatively, we can also use transformations of the initial observation xt for t = 0, which was
considered by Juodis & Sarafidis (2020). If y0 is independent of {ut : t ≥ 1}, we can apply wi, k =
φk(yi, 0). These weights are correlated with B through y0 = Bf0 + u0.

An important benefit of the DP is that it is robust to overestimating the number of factors.
Theoretical studies of factor models have been crucially depending on the assumption that the
number of factors, r, should be consistently estimated. This usually requires strong conditions
on the strength of factors and serial conditions. Recently, Barigozzi & Cho (2018) proposed a
PCA-based method to estimate factors that are robust to overestimated r. They provide rates of
convergence of the estimated common components when R ≥ r.
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Fan&Liao (2020) applyDP to several inference problems in factor-augmentedmodels, includ-
ing the postselection inference, high-dimensional covariance estimation, and factor specification
tests. They formally justify the robustness to overestimating the number of factors in these appli-
cations. In particular, DP admits r = 0 but R ≥ 1 as a special case. That is, the inference is still
valid even if no common factors are present, but factors are nevertheless estimated for insurance.
In addition, Karabiyik, Urbain &Westerlund (2019) apply DP to the context of panel data models
in the presence of common factors.

3.6. Factor Estimators Robust to Heavy Tails

To apply either the PCA or the MLE to estimate the model, we need an initial covariance esti-
mator Sy, the application of which requires that elements of yt have sufficient moments. Some
technical results of factor estimations even require sub-Gaussian conditions on the data’s tail dis-
tributions.However, heavy-tailed data are not uncommon in economic applications. For instance,
approximately 30% of the 131 disaggregated macroeconomic variables in the work by Ludvigson
&Ng (2010) have excess kurtosis greater than six, so their distributions are fatter than the t distri-
bution with degrees of freedom five. Indeed, heavy tails are a stylized feature of high-dimensional
data, as it is unlikely that all variables have sub-Gaussian tails.

Because the presence of heavy-tailed data invalidates many conditions required for estimat-
ing factor models, the recent literature has proposed several methods that are robust to the tail
distributions. Here, we describe two of them: truncation and robust M-estimation.

Suppose we have independently and identically distributed (i.i.d.) data Xi, with mean μ and
standard deviation σ . Consider the truncation (Winsorization) data

X̃i := sgn(Xi )min{|Xi|, τ }, 14.

with predetermined τ > 0 and estimate μ by the truncated mean. Then, Fan,Wang & Zhu (2021)
show that when τ 	 σ

√
n, the truncated mean has Gaussian concentration:

P

(∣∣∣∣∣1n
n∑
i=1

X̃i − μ

∣∣∣∣∣ ≥ x
σ√
n

)
≤ 2 exp(−cx2), universal constant c.

In contrast, without Winsorization (τ = 0), it is bounded by x−2 by the Markov inequality. In
other words, the truncated mean behaves like the sample mean from the Gaussian data, whereas
the untruncated one (sample mean) has Cauchy tails.

Catoni (2012) constructs a robust M-estimator that shares the same Gaussian concentration.
Fan, Li & Wang (2017) and Fan, Wang & Zhong (2019) use the Huber loss to define the mean
estimator:

μ̂ = argmin
μ

n∑
i=1

ρτ (Xi − μ), ρτ (z) =
{
z2/τ , |z| < τ

2|z| − τ , |z| ≥ τ ,
15.

for τ 	 σ
√
n, called the adaptive Huber loss as it requires τ to depend on n and σ for asymmetric

error distributions. These authors also establish a similar concentration inequality.
In the high-dimensional setting, suppose Xit is i.i.d. across t and maxi≤N EX 2

it < σ 2, then for
both robustified methods with properly chosen tuning parameters, it can be shown that when
logN = o(T), there is C > 0, with probability at least 1 − 4N−3,

max
i≤N

|zi − EXit | ≤ C(σ + 1)

√
logN
T

, 16.
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where zi is the robust estimator of EXit using either the truncated data as in Equation 14 or
the adaptive Huber estimation given in Equation 15. A formal proof of result (Equation 16) and
associated conditions are presented in the online Supplemental Materials (Theorem B.2).

The Gaussian concentration is fundamental to high-dimensional econometrics, as we estimate
many means simultaneously and the maximum estimation error accumulates slowly with Gaussian
tails. It also applies to estimate covariance, as its (i, j) element is of form Eyit y jt . When the high-
dimensional data have heavy-tailed components,we can replace the sample covariance by its robust
version Ŝy before estimating the factors. By the Gaussian concentration inequality, the robustly
estimated covariance Ŝy satisfies

‖̂Sy − �y‖max = OP

(√
logN
T

)
,

so long as E y2it y
2
jt is uniformly bounded (and serial independence is assumed). Fan, Wang & Zhu

(2021) propose another robust covariance input,

�̂U = 1(n
2

) ∑
j �=k

min
(

‖y j − yk‖22, τ
)
(y j − yk )(y j − yk )′

‖y j − yk‖22
,

which shares similar robust properties and is semipositive-definite. Note that τ = ∞ corresponds
to the sample covariance matrix.

Based on the above robust covariance inputs, we can create factor estimators and derive their
theoretical properties following the guidance of Section 2.2. See chapter 10 of Fan et al. (2020)
for further generalizations.

3.7. Use of Cross-Covariance

When factors are highly persistent but EutuTt−h = 0, then the cross-covariance

�h = Eyty′
t−h = B(Eft ft−h )B′, h ≥ 1

contains valuable information about B. This motivates one to estimate loadings by applying PCA
to aggregated {�h : h = 1, . . .} and was studied by Lam & Yao (2012). A related idea has been
extended to matrix-variate PCA (Wang, Liu & Chen 2019; Chen, Tsay & Chen 2020). Fan &
Zhong (2018) also provide a procedure to efficiently aggregate the cross-covariance information
with the covariance information when h = 0.

3.8. Which Method to Use?

Many references have documented the comparisons among various estimation methods.
Westerlund&Urbain (2013) made a comparison between PCA and cross-sectional averages in the
panel data setting. Meanwhile, the PCA and low-rank penalized regressions are practically very
similar. So, we do not distinguish their use in practice. In general, because of the simplicity for im-
plementations and relatively weak required conditions, the PCA still seems to be the most widely
used method in applied research.Meanwhile, robust covariance inputs can also be integrated with
the surveyed low-rank recovery methods.

In addition, when either factors or loadings can be partially explained by observed charac-
teristics, the projected PCA is recommended. This is particularly useful in asset pricing appli-
cations where the explanatory power of asset characteristics has been well documented in the
literature.
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4. FACTOR-AUGMENTED INFERENCE AND ECONOMETRIC
LEARNING

4.1. Inverse Regression Forecasts

Forecasting in a data-rich environment has been an important research topic in economics and
finance. Typical examples include forecasts of the aggregate output or inflation rate using a large
number of the categorized macroeconomic variables.

Stock & Watson (2002a) and Bai & Ng (2006) consider the following factor-augmented re-
gression model for the h-step ahead forecast:

yt+h = α′ft + β′wt + εt 17.

xt = Bft + ut . 18.

Here,wt in Equation 17 is the observed predictors,whichmay include lagged dependent variables.
Equation 18 is a high-dimensional factor model that includes a vector of latent factors ft . The
forecast can be implemented by regressing yt + h onto wt and estimated factors. The factor model
given in Equation 18 serves as an important dimension reduction tool.

Fan, Xue & Yao (2017) generalize Equation 17 to the nonlinear model with multiple indices.
Consider the following forecasting model:

yt+1 = h(φ′
1ft , . . . ,φ

′
Rft , εt+1), 19.

where h(·) is an unknown link function and εt+1 is the error independent of ft and ut . Vectors
φ1, . . . ,φR are r-dimensional linear-independent prediction indices. In contrast with linear fore-
casting, the above model specifies that the predicting function is nonlinear and depends on mul-
tiple indices of extracted factors. If we specify R < r, further dimension reductions are achieved.

A prominent result related to the model in Equation 19 is given by Li (1991), whose work
shows that under some regularity conditions, such as ft is elliptically symmetric, we have

E(ft |yt+1) = �a(yt+1) 20.

for an R-dimensional vector a(yt+1), where � = [φ1,φ2, . . . ,φR] is an r× Rmatrix. In other words,
the inverse regression vector E(ft |yt+1) falls in the column space spanned by �, which can be
extracted by PCA. Indeed, since E(E(ft |yt+1)) = E(ft ) = 0,

cov(E(ft |yt+1)) = �E[a(yt+1)a(yt+1)′]�′.

The above matrix has R nonvanishing eigenvalues if E[a(yt+1)a(yt+1)′] is nondegenerate. Their
corresponding eigenvectors have the same linear span as φ1, . . . ,φR do. If one can consistently
estimate cov(E(ft |yt+1)), then the subspace spanned by φ1, . . . ,φR, which is of our primary inter-
ests, can be obtained by extracting the top R eigenvectors of the estimated covariance matrix that
correspond to the R largest eigenvalues.

However, it is not an easy task to directly estimate the covariance of E(ft |yt+1). Li (1991)
suggests the sliced covariance estimate, a widely used technique for dimension reductions: The
sliced covariance matrix also satisfies the fundamental property given in Equation 20, namely,
E(ft |yt+1 ∈ Ik ) falls in the column space spanned by � for any given partition of the range of yt + 1

into H slices I1, I2, . . . , IH . Correspondingly, let

̂cov(E(ft |yt+1))= 1
H

H∑
h=1

[
1∑T

t=1 1(yt+1 ∈ Ih )

T∑
t=1

ft1(yt+1 ∈ Ih )

]

×
[

1∑T
t=1 1(yt+1 ∈ Ih )

T∑
t=1

ft1(yt+1 ∈ Ih )

]′

, 21.
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which is a nonparametric covariance estimator. The above sliced covariance estimator is based on
the observable factors. If the factors are unknown, they are replaced by their estimators, which
leads to the following sufficient forecasting algorithm based on the factor models.

Algorithm 1. Sufficient forecasting algorithm based on the factor models.

Step 1. Estimate factors in the model given in Equation 18 for t = 1, . . . , T.
Step 2. Construct the covariance estimator as in Equation 21, with f̂t in place of ft .
Step 3. Obtain φ̂1, φ̂2, . . . , φ̂R by the top R eigenvectors of the covariance in step 2.
Step 4. Construct the predictive indices φ̂

′
1̂ft , . . . , φ̂

′
R̂ft .

Step 5. Nonparametrically estimate h(·) with indices from step 4, and forecast yt + 1.

Implementing the above algorithm requires the number of slices H, the number of predictive
indicesR, and the number of factors r. In practice,H has little influence on the estimated directions,
as pointed out by Li (1991) and explained above that Equation 20 holds. In regard to the choice
of R, the first R eigenvalues of cov(E(ft |yt+1)) must be significantly different from zero compared
with the estimation error. Several methods such as those from Li (1991) and Schott (1994) have
been proposed to determine R. For instance, the average of the smallest r − L eigenvalues would
follow χ2 distribution if the underlying factors are normally distributed. The number of factors
can be determined by a number of methods.

4.2. Factor-Adjusted Regularized Model Selection

Consider a high-dimensional regression model

yt =β′gt + ν′xt + ηt ,
gt = θ′xt + εg,t , 22.

where gt is a treatment variable whose effect β is of the main interest. The model contains high-
dimensional exogenous control variables xt = (x1t , . . . , xNt ) that determine both the outcome and
the treatment variables.Havingmany control variables creates challenges for statistical inferences;
as such, we assume that (ν, θ) are sparse vectors.

Control variables are often strongly correlated due to the presence of confounding factors

xt = Bft + ut . 23.

This invalidates conditions of using penalized regressions to directly select among xt . Instead, if
we substitute Equation 23 into Equation 22, we reach a factor-adjusted regression model:

yt =α′
yft + γ ′ut + εy,t ,

gt =α′
gft + θ′ut + εg,t ,

εy,t =β′εg,t + ηt , 24.

where α′
g = θ′B, α′

y = βα′
g + ν′B, and γ ′ = βθ′ + ν′. Here, (αy,αg,β) are low-dimensional coeffi-

cient vectors, while (γ , θ) are high-dimensional sparse vectors. Importantly, the model contains
high-dimensional latent controls ut , which are weakly dependent due to the nature of idiosyn-
cratic noises. The use of ut instead of xt validates conditions for many high-dimensional variable
selection methods.

Fan, Ke & Wang (2020) and Hansen & Liao (2018) show that the penalized regression can
be successfully applied to Equation 24 to select components in ut , which are cross-sectionally
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weakly correlated. Motivated by Belloni, Chernozhukov & Hansen (2014), the algorithm can be
summarized as follows. For notational simplicity, we focus on the univariate case dim(β) = 1.

Algorithm 2. Estimate β as follows.

Step 1. Estimate {(ft ,ut ) : t ≤ T } from Equation 23 to obtain {(̂ft , ût ) : t ≤ T }.
Step 2. Run penalized variable selections on ût :

(̂γ , α̂y )= argmin
γ ,αy

1
T

T∑
t=1

(yt − α′
ŷft − γ ′ût )2 + Pτ (γ ),

(̂θ, α̂g)= argmin
θ

1
T

T∑
t=1

(gt − α′
ĝft − θ′ût )2 + Pτ (θ).

Obtain residuals: ε̂y,t = yt − (̂α′
ŷft + γ̂ ′ût ) and ε̂g,t = gt − (̂α′

ĝft + θ̂
′ût ).

Step 3. Estimate β by residual-regression: β̂ = (
∑T

t=1 ε̂2g,t )
−1∑T

t=1 ε̂g,t ε̂y,t .

Note that γ :→ Pτ (γ ) is a sparse-induced penalty function with a tuning parameter τ . When
θ and γ are sufficiently sparse and the principal components estimator is used in step 1 with the
correct selection of the number of factors, the above procedure is asymptotically valid:

σ−1
η,g σ

2
g

√
T (̂β − β) d−→ N (0, 1), 25.

where σ 2
g and σ 2

η,g are the asymptotic variances of εg,t and ηtεg,t .
More recently, Fan & Liao (2020) show that the assumption of correct selection of the number

of factors can be relaxed if we use the DP in step 1 instead, and Equation 25 is still valid as long as
we selectR≥ r factors (over selection). Importantly, this admits r= 0 andR≥ 1 as a special case, i.e.,
there are no factors so that xt = ut itself is cross-sectionally weakly dependent, but nevertheless
we estimate R ≥ 1 number of factors to run postselection inference to alleviate the dependence
among xt . This setting is empirically relevant, as it allows one to avoid pretesting the presence of
common factors for inference.

Figure 1, taken from Fan & Liao (2020), plots the histograms of the t-statistics based on es-
timated β over 200 simulations, superimposed with the standard normal density, where R DPs
are used to estimate factors in step 1. Here, the weights are the initial transformations (t = 0), so
that the ith row of W is (xit , x2it , . . . , x

R
it ) at t = 0. The double selection is the algorithm used by

Belloni, Chernozhukov &Hansen (2014) that directly selects among xt , corresponding to the case
R = 0. The factor-augmented algorithm works well even if r = 0; however, when r ≥ 1 factors are
present, double selection leads to severely biased estimations.

Therefore, as a practical guidance, we recommend that one should always run factor-
augmented postselection inference, with R ≥ 1, to guard against confounding factors among the
control variables.

4.3. Factor-Adjusted Robust Multiple Testing

Large-scale multiple testing finds many applications in economics and finance. The test statistics
are frequently dependent and should be adjusted in order to control the false discovery rate and
gain the power of the tests.

4.3.1. False discovery rate control. Controlling the false discovery proportion (FDP) in large-
scale hypothesis testing based on strongly dependent tests has been an important problem inmany
scientific discoveries across disciplines. For applications in empirical asset pricing, readers are
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Figure 1

Histograms of the standardized estimates in Equation 25 over 200 replications, superimposed with the standard normal density (red
lines). The panels showing double selection correspond to directly selecting among control variable xt (corresponding to R = 0, no
factor adjustment), while all other panels correspond to using diversified factor estimators with R number of working factors. The top
four panels correspond to r = 0, and the bottom four panels correspond to r = 2.When R ≥ r, Equation 25 holds, whereas when R < r,
Equation 25 is violated. R denotes as the number of factors we used, and r denotes as the true number of factors. The z-score refers to
the t-statistics. Figure adapted with permission from Fan & Liao (2020).

referred to works by Barras, Scaillet & Wermers (2010); Harvey, Liu & Zhu (2015); Harvey &
Liu (2018); Fan et al. (2019a) and references therein; and Giglio, Liao & Xiu (2021).

Suppose we observe realizations of a random vector {yt = (y1t , . . . , yNt )′}Tt=1. Let α =
(α1, . . . ,αN )′ denote its mean vector. We are interested in testing individual hypotheses:

Hi
0 : αi = 0, i = 1, . . . ,N .

Let pi denote the p-value for testing Hi
0 based on a test statistic such as a t-test, which rejects if

pi < x given some critical value x. Define the number of false discoveries (rejections) and the total
number of rejections as follows:

F (x)=
N∑
i=1

1{i : pi < x and Hi
0 is true}, V (x) =

N∑
i=1

1{i : pi < x}.

In large-scale multiple testing problems, researchers often aim to control the FDP and the false
discovery rate (FDR), defined by

FDP(x) = F (x)
max{V (x), 1} , FDR(x) = E{FDP(x)}.

The goal is to find the critical value x so that FDR(x) ≤ τ for a desired level τ (e.g., 0.10), or
more relevantly, FDP(x) ≤ τ with high confidence. While V (x) is known, F (x) is not in practice.
A general principle of finding x proceeds as the following two steps.

Algorithm 3. General principle for FDP/FDR control.

Step 1. Find F̄ (x), such that either it upper bounds F (x) for all x � (0, 1) or it estimates F (x)
uniformly well.

Step 2. Set the critical value to x∗ = sup{x ∈ (0, 1) : F̄ (x) ≤ τ max{V (x), 1}}.
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One of the most popular procedures, proposed by Benjamini & Hochberg (1995), proceeds as
follows. Denote p(1) ≤ ��� ≤ p(N) as the sorted p-values for the individual tests. Then the critical
value is set to

x∗ = max{p(i) : p(i) ≤ τ i/N}.
This method fits into Algorithm 3 with F̄ (x) = Nx, which is an asymptotic upper bound for F (x)
when the individual p-values are independent. One of the limitations of this upper bound is that
it is too conservative if the number of true negatives is small compared with N. More fundamen-
tally, it requires the test statistics be weakly dependent, a topic we shall discuss in more detail
next. Other methods, such as those by Storey (2002), Fan, Han & Gu (2012), etc., aim to directly
estimate F (x) in step 1 in the presence of strong dependence among test statistics and are also
adaptive to the unknown number of true negatives. In addition, instead of Algorithm 3, Romano
& Wolf (2007) and Romano, Shaikh & Wolf (2008) provide alternative procedures for FDR
control.

4.3.2. Removing dependence by factor adjustments. The key to the success of FDR control
is that the individual test statistic should be either weakly dependent or independent. This makes
the FDR and FDP approximately the same and easier to control. Conversely, suppose the cross-
sectional dependence of yt is generated from a latent factor model:

yt = α + Bft + ut , E(ut |ft ) = 0, 26.

where E ft = 0 and α is the mean vector. In empirical asset pricing, the model can be used to
identify nonzero alphas out of a large number of assets and has been studied to identify skilled
mutual fund managers, e.g., Barras, Scaillet & Wermers (2010) and Harvey, Liu & Zhu (2015).
The presence of latent factors, however, leads to strong dependence among the t-statistics based
on the naive sample means of yt , which invalidates the weak dependence assumptions. As well doc-
umented in the literature, strong dependence creates fundamental challenges to multiple testing,
including large standard errors among the estimated αi, unstable FDPs, and conservativeness of
the test procedure.Learning dependenceBft and removing it from themodel given in Equation 26
make the data not only weakly dependent but also less noisy (fromBft + ut to ut ). This is the basic
idea in factor-adjusted robust multiple tests (FarmTest) by using factor-adjusted data {yt − B̂f̂t}Tt=1
(see Equation 26). Furthermore, Fan et al. (2019a) make adjustments so that it is also robust to
heavy-tailed data.

To illustrate consequences of omitting adjusting latent factors as well as the effectiveness of
the use of the factor-adjusted method (to be detailed below), let us consider a numerical example
of a single factor model, where elements of ut , ft , and Bt are generated from the standard nor-
mal distribution. We take the true means to be αi = 0.6 for 1 ≤ i ≤ N/4 and 0 otherwise, and
we compare two estimated αi: (a) the sample means of yt , without using factor adjustments and
(b) the factor-adjusted estimator based on PCA.We apply the method of Benjamini & Hochberg
(1995) for multiple testing, setting τ = 0.05.

Figure 2a,b plots the histograms, from a single simulation, of the estimators for αi, corre-
sponding to those that satisfy the null hypotheses αi = 0 and those that satisfy the alternatives
αi = 0.6. Clearly, there is a large overlap (panel a) between sample means from the null and the
alternative, making it difficult to distinguish the alternatives from the nulls in tests based on sam-
ple means. In contrast, the PCA-based estimator can easily separate the nulls and alternatives, as
shown in Figure 2b.

Figure 2c,d plots the histograms of the true FDP over 1,000 simulations based on the two
estimators. It is evident that the distribution of the FDP corresponding to the factor-adjusted

www.annualreviews.org • Factor Models and Econometric Learning 417



D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lre
vi

ew
s.

or
g.

  G
ue

st
 (

gu
es

t)
 IP

:  
12

8.
6.

37
.1

44
 O

n:
 M

on
, 0

3 
M

ar
 2

02
5 

16
:1

8:
10

a   Estimated alphas: sample mean b   Estimated alphas: factor adjusted

c   FDP: sample mean d   FDP: factor adjusted

e   Standard error of estimated alphas f   Sorted p-values

−0.5 0 0.5 1.0

0 0

200

400

600

800

−0.2 0 0.60.40.2 0.8

0 0.30.20.1 0.4 0.5

0

20

40

60

80

0

20

40

60

80

0.02 0.080.060.04 0.10

50

100

0

50

100

0.05 0.200.150.10 0.25 0.350.30 0 300200100
0

0.05

0.10

0.15

0.20

Factor adjustedFactor adjusted

Factor adjustedFactor adjusted

B-H threshold line

Omit factors

Omit factors

Estimated alpha Estimated alpha

FDPs FDPs

Cross-sectional standard errors

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

 S
or

te
d 
p-

va
lu

es

Number of sorted p-values

Figure 2

Comparison between the sample mean method (omit factors, red) and the factor-adjusted method (blue), with T = 200 and N = 1,000.
Panels a–d plot the histograms of estimated individual alphas from a single simulation; panels c–d plot the individual false discovery
proportions (FDPs) over 1,000 simulations. Panel e plots the cross-sectional histograms of standard errors of the estimated alphas over
1,000 simulations. Panel f plots the sorted p-values from a single simulation. The B-H threshold line refers to the Benjamini-Hochberg
procedure. The B-H procedure rejects all the hypotheses if p(i) is below the B-H threshold line f (i) := τ i/N.

estimator concentrates around the nominal level. In contrast, the one based on the sample mean
has a noticeable long tail as well as a larger mean and variance, which demonstrates the challenge
to control FPD in the presence of common factors, as explained above.

Finally, omitting confounding factors would lead to larger standard errors and conservative
inference. Figure 2e,f plots the standard errors of individual estimated alphas and the sorted
p-values for the two estimation methods. The sample-mean estimator has much fewer sorted p-
values below the B-H threshold line (i.e., fewer rejections), compared with the factor-adjusted
estimator. Hence, estimating and removing the latent factors is recommended before applying
standard FDR control algorithms.
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4.3.3. Identifying skilled hedge funds. Giglio, Liao & Xiu (2021) study the problem of iden-
tifying hedge funds that are able to produce positive alphas (i.e., have skill), among thousands of
existing funds. They consider a linear pricing model, where hedge fund returns are

yit = αi + b′
iλ + b′

i(ft − Eft ) + uit .

In the model, ft contains both observable and latent factors. The model allows nontradable ob-
servable factors, and λ is the vector of factor risk premia.

At a broad level, their methodology proceeds as the Fama-MacBeth regression integrated with
the PCA to extract latent factors:

Algorithm 4. Estimating alphas in the presence of latent and nontradable factors.

Step 1. Run fund-by-fund time series regressions to estimate fund exposures (betas) to observable
factors.

Step 2. Apply PCA to the residuals to recover the latent factors and betas.
Step 3. Implement cross-sectional regressions like Fama-MacBeth to estimate the risk premia of

the factors (including both observable and latent factors) and the alphas.

Because of many negative alphas from unskilled fund managers, the multiple testing problem
should be properly formulated as one-sided hypotheses:

Hi
0 : αi ≤ 0, i = 1, . . . ,N .

Hence, rejecting Hi
0 indicates skilled fund manager i. Conversely, the existence of potentially a

very large number of negative alphas gives rise to the issue of power loss, only to add noises to
the model. The loss of power associated with testing inequalities is well known as the problem of
“deep in the null” and is often seen in the econometric literature. To address this issue, Giglio,
Liao & Xiu (2021) propose to first screen off very bad funds, identified as:

I = {i ≤ N , α̂i/se(α̂i ) < −cNT },
where cNT > 0 is a slowly growing sequence to ensure sure screening (Fan & Lv 2008): P(I ⊆
H0) → 1. They recommend applying FDR control algorithms on funds outside I. Therefore,
two ingredients are recommended for identifying skilled fund managers via multiple testing:
(a) adjust the effect of latent factors and (b) remove the estimated alphas that are deep in the
null. Both are playing the essential role of gaining good testing power.

4.4. Threshold Regression with Mixed Integer Optimization

Threshold regressions have been used in economic applications to capture potential structural
changes on regression coefficients. The early literature models the threshold effect using some
observable scalar variable qt, as in

yt = w′
tβ + w′

tδ1{qt > γ } + εt ,

where wt and qt are adapted to the filtration Ft−1, (β, δ, γ ) is a vector of unknown parameters,
and εt satisfies the conditional mean restriction. Hence, when qt > γ , the regression function
becomes w′

t (β + δ); when qt ≤ γ , it reduces to w′
tβ (Chan 1993, Hansen 2000). In practice, it

might be controversial to choose which observed variable plays the role of qt. For example, if the
two different regimes represent the status of two environments of the population, arguably it is
difficult to assume that the change of the environment is governed by just a single variable.

Seo & Linton (2007) and Lee et al. (2021) extend the model to multivariate threshold:

yt = w′
tβ + w′

tδ1{γ ′ft > 0} + εt ,
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where ft is a vector of factors and γ is the corresponding unknown coefficients. So the model
introduces a regime change due to a single index of factors. Allowing multivariate thresholding is
important, because it permits the structural change to be governed by a potentially much larger
data set: xt = Bft + ut , where dim(xt ) = N → ∞. So, ft can be unobserved factors that can be
learned from xt . For the identification purpose, suppose 1

T

∑
t ft f

′
t = I and B′B is diagonal, then γ

and ft are separately identified. This gives rise to the factor-driven two-regime regression model.
A natural strategy to estimate the model is to rely on least squares:

min
β,δ,γ

T∑
t=1

(yt − w′
tβ − w′

tδ1{γ ′̂ft > 0})2,

where f̂t is the plugged-in principal components estimator of factors. Because the least squares
problem is neither convex nor smooth in γ , the computational task is demanding. Lee et al. (2021)
recommend using algorithms based on mixed integer optimization (MIO). Introduce integers
dt := 1{γ ′̂ft > 0} ∈ {0, 1}. The goal is to introduce linear constraints with respect to variables of
optimization. Suppose there are known upper and lower bounds for δj: Lj ≤ δj ≤ Uj, where δj
denotes the jth element of δ. Define Mt ≡ maxγ∈� |γ ′̂ft |, where � is the parameter space for γ .
Then it can be verified that the least squares problem is numerically equivalent to the following
constraint MIO problem:

min
β,δ,γ ,d,�

T∑
t=1

(yt − w′
tβ − w′

t�t )
2, 27.

subject to the following constraints: for any ε > 0, for each t = 1, . . . , T and each
j = 1, . . . , dim(wt ),

γ ∈ �, dt ∈ {0, 1}, Lj ≤ δ j ≤Uj ,

(dt − 1)(Mt + ε ) < γ ′̂ft ≤ dtMt ,

dtL j ≤ � j,t ≤ dtUj ,

Lj (1 − dt ) ≤ δ j − � j,t ≤Uj (1 − dt ).

28.

Then, we can apply modern MIO packages (e.g., Gurobi) to solve for the optimal (β, δ, γ ).
Finally, Lee et al. (2021) also derive the asymptotic distribution of the estimated coefficients

and propose inferences based on bootstraps. Under the condition that T = O(N), they show that
the effect of estimating factors is negligible on the asymptotic distribution of the estimated (β, δ)
but would affect both the rate of convergence and the limiting distribution of the estimated γ .

4.5. Community Detection

The stochastic block model has been a popular approach to modeling networks (for a recent re-
view, see Abbe 2017).We observe a graph ofN nodes. Let A = (ai j ) ∈ RN×N be the adjancy matrix
of edges, so that aij = 1 if nodes i and j are connected, and aij = 0 otherwise. Suppose each node
belongs to one of r communities and the community that node i belongs to is denoted by an un-
known π i � {1, . . . , r}. In addition, elements of A are random variables. Then, the stochastic block
model assumes that

P(ai j = 1|πi = k,π j = l ) = wk,l ,

wherewk, l is an unknown probability.We observe thematrixA and aim to recover themembership
π i and the probabilities wk, l for all k, l = 1, . . . , r.
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Let e1, . . . , er denote the canonical basis in Rr , and bi = ek where θ i = k. Then, bi indicates
the community membership of node i, and the membership matrix is

B = (b1, . . . ,bN )′, N × r,

whose rows represent nodes and columns represent communities. LetW denote the r × rmatrix
of (wk, l), and let L := EA. It can easily be seen that L = BWB′ is a low-rank matrix, whose rank
equals r, leading to the following low-rank decomposition:

A = L + S, S = A − EA.

Therefore, A has the familiar decomposition, shown in Equation 4, with L being similar to the
systematic risk and B as a low-rank loading matrix. Since the elements in S are independent with
mean-zero (Wigner matrix), the operator norm ‖S‖ does not grow too fast, compared with that
of L. We can then apply PCA to A to estimate B. Suppose r is known, then the estimator B̂ is
defined as

√
N times the eigenvectors of A, corresponding to the first r eigenvalues.

Theorem 1 can be applied to obtain a deviation bound for the estimated loadingmatrix. If there
is a sequence gN → ∞ and constants c1, . . . , cr > 0 such that the eigenvalues λi(W1/2B′BW1/2) =
cigN (1 + oP (1)) for all i ≤ r, then there is an r × r matrix H, so that

‖B̂ − BH‖∞ = OP (g−2
N N‖S‖ + g−1

N

√
N logN ).

Therefore, elements of a rotated B can be estimated uniformly well. Moreover, because each
community has many nodes to belong to, BH has many identical rows, which makes the cluster
analysis a natural method for community detections. For instance, we can apply either the K-
means cluster analysis or the homogeneous pursuit from Ke, Fan & Wu (2015) on the rows of B̂
to consistently identify the communities.

5. UNBALANCED PANELS

Missing data and unbalanced panels are not uncommon in economic and financial studies. Ad-
dressing the missing data issue in statistical modeling belongs to a larger category of problems,
known as matrix completion. Low-rank matrix completion refers to the problem of recovering
missing entries from low-rank matrices. It is particularly relevant to empirical asset pricing factor
models, because many time series of returns have short histories or missing records. In this section,
we review several methods for matrix completions, which assume that the missing is at random,
except for the work by Cai, Cai & Zhang (2016), Bai & Ng (2019b), and Fan & Kim (2019). In
addition, the expectation-maximization (EM) algorithm is a classical approach to dealing with un-
balanced panels. For detailed discussions on related issues, we refer the reader to works by Stock
& Watson (2002b), Su, Miao & Jin (2019), and Zhu,Wang & Samworth (2019).

5.1. Inverse Probability Weighting

Recall that the covariance matrix of yt , under the factor model given in Equation 7, has the fol-
lowing decomposition,�y = B cov(ft )B′ + �u, where columns ofB are approximately equal to the
eigenvectors of�y corresponding to the first r eigenvalues. As such, let �̂y be an input matrix, serv-
ing as an estimator for �y. Then, as described in Section 2.2, we can estimate the space spanned
by B using the leading eigenvectors of �̂y.

In the presence of missing data with exogenous missing, let xit = 1{yit is observed}, and we
only observe yitxit for all (i, t), in which unobserved data are set to zero. Suppose for now that
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wi := P(xit = 1) is known.We can construct an unbiased estimator �̂y = (σ̂i j ), with

σ̂i j := 1
wiw jT

T∑
t=1

yit y jt xitx jt .

In the matrix form, let Y and X be the N × T matrices of yit and xit. So, we only observe Y ° X,
where ° represents the element-wise matrix product, the Hadamard product. Also, let W be the
diagonal matrix, with wi being its ith diagonal entry. Then,

�̂y = 1
T
ZZ′, Z := W−1(Y ° X).

Therefore, columns of the loading matrix estimator B̂ are equal to
√
N times the top right

singular vectors of Z. This method simply replaces the missing entries of Y by zero and applies
the inverse probability weighting (IPW) before applying PCA. The IPW has been popularly used
in the causal inference literature (e.g., Imbens & Rubin 2015). Here, the same idea is applied to
create an unbiased estimator for the covariance matrix.

In practice, we shall replace wi by its consistent estimators, such as ŵi := 1
T

∑T
t=1 xit . But in the

case of homogeneous missing, that is, w1 = ��� = wN, the IPW is not needed, because W equals
the identity matrix up to a constant, which does not affect the PCA on Y ° X. In addition, factors
can be further estimated using least squares by regressing yitxit on the estimated loadings.

Theoretical properties are studied by Abbe et al. (2020) and Su, Miao & Jin (2019) under the
assumption of homogenous missing. Su,Miao & Jin (2019) use this estimator as their initial value
for the EM algorithm. Xiong & Pelger (2019) allow heterogenous missing and prove that the
estimators are also asymptotically normal (they estimate wiwj directly by 1

T

∑T
t=1 xitx jt ). We can

also quickly derive the rate of convergence by applying Theorem 1.However, the IPW is the least
efficient approach among all the methods to be discussed in this section. We shall verify this in a
simulation study in Section 5.5.

5.2. Regularized Matrix Completion

Regularized matrix completion is a powerful technique to recover missing entries from low-rank
matrices. This approach is also much faster than the EM algorithm in handling large panels. Due
to these nice properties, it has also attracted much attention in the recent econometrics literature
(e.g., Athey et al. 2018; Moon & Weidner 2018; Bai & Ng 2019a; Giglio, Liao & Xiu 2021).

In the matrix form Y = M + U, the goal is to recover the factor componentM = BF′ when Y
has missing elements. The nuclear-norm regularization is directly applicable:

M̂ := argmin
M

‖(Y − M) ° X‖2F + λ‖M‖n, 29.

with tuning parameter λ. The factors and loadings can be estimated by taking the singular vectors
of M̂. Negahban & Wainwright (2011) and Koltchinskii, Lounici & Tsybakov (2011) derive the
rate of convergence under the Frobenius norm.Under suitable conditions (e.g.,missing at random,
RSC, sufficiently large noise), it can be proved that

1
NT

‖M̂ − M‖2F = OP

(
1
T

+ 1
N

)
.

Chen et al. (2020a) certifies further that the convex optimization found in Equation 29 is optimal
for all noise levels under the Frobenius norm,operator norm, and element-wise infinity norm.The
proof is based on a novel technical device that bridges the convex optimization with a nonconvex
optimization problem. However, this estimator is not asymptotically normal due to the presence
of shrinkage bias and thus is not suitable for statistical inferences.
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5.3. Debiased Estimators

Recent progress in this literature focuses on debiasing the regularized regression in order to have
valid confidence intervals (e.g., Chen et al. 2019; Chernozhukov et al. 2019; Xia & Yuan 2019).
When the missing is homogeneous, P(xit = 1) = p for all (i, t), Chen et al. (2019) propose the
following simple debiased estimator:

M̂d = HR(M̂ + p̂−1(Y − M̂) ° X), 30.

where HR(·) is the best rank R approximation in Equation 5, M̂ is given by Equation 29, and p̂ is
the sample proportion of missing data. The idea is very intuitive. Ignoring the weak dependence
between M̂ and X and estimating error in p̂, we have

E(M̂ + p̂−1(Y − M̂) ° X) ≈ E M̂ + E(Y − M̂) = M,

which is approximately unbiased. However, the estimator M̂ + p̂−1(Y − M̂) ° X is no longer of
rank R, which increases the variances. This leads to using the projection as in Equation 30, which
is asymptotically efficient in terms of both rate and preconstant.

Alternatively, the debiasing can be achieved through the two-step least squares (Chernozhukov
et al. 2019). Suppose the true number of factors, r, is known.

Algorithm 5. Debias using two-step least squares.

Step 1. Obtain M̂ as in Equation 29.
Step 2. Let the columns of 1√

N
B̂ be the left singular vectors of M̂, corresponding to the first r

singular values.

Step 3. Estimate the latent factors at time t by f̃t :=
(∑N

i=1 b̂ib̂
′
ixit
)−1∑N

i=1 b̂iyit xit , and let

F̃ = (̃f1, . . . , f̃T )′.
Step 4. Update loading estimates by B̃ = (̃b1, . . . , b̃N )′, where

b̃i :=
( T∑
t=1

f̃t f̃ ′
t xit

)−1 T∑
t=1

f̃t yit xit .

Step 5. The asymptotically unbiased estimator for M is M̃ := B̃F̃′.

A key technical argument is to ensure that the estimation error in B̂ (step 2) has no impact
on the factor estimator (step 3). Chen et al. (2019) achieved this using an auxiliary leave-one-out
argument.

When themissing probability P(xit = 1) varies across i, there are two ways to revise the previous
algorithm to achieve the asymptotic normality. One way is to replace Equation 29 with a weighted
regularization:

min
M

‖(Ŵ−1/2Y − Ŵ−1/2M) ° X‖2F + λ‖M‖n, 31.

where Ŵ is a diagonal matrix, whose ith diagonal entry equals ŵi := 1
T

∑T
t=1 xit . This debiases the

least squares part of the loss function, adopting the same idea of IPW. The remaining steps of
Algorithm 5 are the same. Then, the same auxiliary leave-one-out technical argument of Chen
et al. (2019) still goes through. The other way is to apply sample splitting, which evenly splits the
columns of Y into two parts: On one part, we run the penalized regression as in Equation 29 and
obtain B̂, and on the other part,we run iterative least squares.Then,we exchange the two parts and
redo the estimations.The final estimator is taken as the average of the two. Supposing uit is serially
independent, the sample splitting then artificially creates independences among various statistics
from the splitting sample. For detailed descriptions of this approach, the reader is referred to the
work by Chernozhukov et al. (2019).
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Figure 3

Missing data matrix rearrangement. This figure illustrates the block rearrangement from Bai & Ng (2019b)
on the missing data matrix.

5.4. Block Rearrangements

In an attempt to handle endogenous missing, Bai & Ng (2019b) propose a block rearrangement
method. At the cost of this generality, they require that the data matrix Y should have a sufficiently
large balanced subblock after elementary rearrangements. (For related ideas, readers are referred
to Cai, Cai & Zhang 2016; Fan & Kim 2019.)

Specifically, a preliminary step of their estimation is to rearrange the data in a shape in which
all the factor loadings can be estimated in one subblock and all the factors can be estimated in
another subblock. The example in Figure 3 is adapted from Bai & Ng (2019b), which gives a
good illustration on this manipulation, and shows the N × T matrix for yit.

In Figure 3, the left matrix is the originally collected data, and the right is the rearranged
one. The asterisks denote missing data. From the column perspective, the first, second, and fourth
columns have missing values and therefore are rearranged as the last three columns in the right
panel; from the row perspective, the second, third, and fourth rows have missing values and there-
fore are rearranged as the last three rows in the right panel. Bai & Ng (2019b) name the black
blocks “bal,” the black plus red blocks “tall,” and the black plus blue blocks “wide.”

Consider the missing value y∗
22. We want to replace it with its expected value E(y∗

22) = b′
2f2.

Note that y∗
22 shares the same factor loadings b2 with data points y23 and y25 in the wide block,

and it shares the same factors f2 with data points y12 and y52 in the tall block. Meanwhile, b2 can
be estimated using data in the tall block, and f2 can be estimated using data in the wide block. As a
result, one might expect to recover E(y∗

22) with these two estimators. However, we must take into
account the rotational indeterminacy inherent with the factor models. For a generic missing value
yit ,

b̂tall,i = H′
tallbi + oP (1), f̂wide,t = H−1

wideft + oP (1).

Therefore,

b′
ift = b̂′

tall,iÂfwide,t + oP (1), A := H−1
tallHwide.

To estimate A, by f̂wide,t = H−1
wideft + oP (1) and f̂tall,t = H−1

tallft + oP (1), we have

f̂tall,t = Âfwide,t + oP (1).

So, one can run the regression of f̂tall,t on f̂wide,t to consistently estimate A. This leads to the fol-
lowing estimation procedure.

Algorithm 6. Block rearrangement algorithm.

Step 1. Obtain estimators (̂bwide, F̂wide) using the tall block of Y.
Step 2. Obtain estimators (̂btall, F̂tall ) using the wide block of Y.
Step 3. Compute Ĉmiss = B̂tallAF̂′

wide, where A is obtained by regressing f̂tall,t on f̂wide,t .
Step 4. Output Ỹ, where ỹit = yit if yit is observable and ỹit = ĉmiss,it if yit is missing.
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Once Ỹ is obtained, we apply the PCA again to the imputed data Ỹ to get more efficient es-
timates of B and F. Suppose the size of the tall block is N × T0 and the size of the wide block is
N0 × T. So, the size of the bal block is N0 × T0. The whole sample size (including missing data
points) is N × T. Bai & Ng (2019b) require that

max{
√
N ,

√
T } = o(N0) and max{

√
N ,

√
T } = o(T0).

An implication of the above condition is that the missing data points should not be too frequent
in the sense that the balanced subblock is large enough. Though this condition rules out the case
of random missing (e.g., missing occurs as outcomes of Bernoulli trials), it is not stringent given
the nature of endogenous missing.

5.5. A Simulation Study

We conduct a simulation study to compare six matrix completion approaches, namely:

1. IPW.The inverse probability weighting.
2. ReUW. Unweighted regularization. The eigenvectors of the estimator, as given in

Equation 29.
3. ReW.Weighted regularization. The eigenvectors of the estimator, as given in Equation 31.
4. ReDebias.The debiased regularized estimator from Algorithm 5.
5. EM.The EM algorithm.

We generate a two-factor model where loadings, factors, and uit are independent standard
normal. Under homogeneous missing, we generate xit ∼ Bernoulli(0.5); under heterogeneous
missing, we generate xit|wi ∼ Bernoulli(wi) and wi ∼ Uniform[0.1,1]. The three regularized
methods require choosing λ, the tuning parameter. Write the penalized loss function to be
‖(W−1/2Y − W−1/2M) ° X‖2F + λ‖M‖n, where W is a diagonal weighting matrix. The theory re-
quires that with a high probability, there is c > 0,

(2 + c)‖U ° (W−1X)‖ < λ.

So we set λ to be the 0.95 quantile of 2.2‖Z ° (W−1X)‖, where Z is an N × T matrix of standard
normal variables. In practice, one can also simulateZ using the estimated idiosyncratic covariance
matrix.

We compare the performance of estimating the loading space, measured by PB = B(B′B)−1B′.
Table 1 reports ‖PB̂ − PB‖ averaged over 100 replications for each method. In all scenarios, the
IPW performs the worst among all estimators. Under homogeneous missing, all the other four

Table 1 Comparison among five matrix completion methods

N T IPW ReUW ReW ReDebias EM
Homogeneous missing

100 200 0.176 0.116 0.114 0.109 0.109
200 100 0.252 0.171 0.169 0.161 0.161

Heterogeneous missing
100 200 0.263 0.211 0.131 0.119 0.119
200 100 0.369 0.304 0.222 0.204 0.203

This table reports ‖PB̂ − PB‖ averaged over 100 replications for each method.
Abbreviations: EM, expectation-maximation algorithm; IPW, inverse probability weighting; ReDebias, debiased
regularized estimator; ReUW, unweighted regularization; ReW, weighted regularization.
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methods perform similarly, but the difference is muchmore noticeable under heterogeneous miss-
ing. The general ranking is that

IPW ≺ ReUW ≺ ReW ≺ ReDebias ≈ EM.

This ranking is as expected: IPW is the least efficient method among the five; ReUW uses the
nuclear-norm regularized estimation that does not take into account the heterogeneous missing or
debias; ReW accounts for the heterogeneous missing probabilities; and ReDebias further removes
the regularization bias.

Finally, it is not surprising to see that ReDebias and EM perform similarly, because both start
with an initial low-rank estimator (ReDebias initializes fromReW,while EM initializes from IPW)
and then proceed via iterative least squares. But we note that ReDebias operates much faster be-
cause it only iterates once, so it is more attractive than EM in handling large-scale problems.We
also implemented the early stop EM (which iterates only twice); it performs only slightly better
than IPW and is worse than all the other estimators. Therefore, we conclude that ReDebias is the
recommended method for handling large-scale low-rank matrix completion problems.

6. CONCLUSION

In this review, we have conducted a selective overview of the recent developments in factor models
and their application on statistical learning.We focused on the perspective of the low-rank struc-
ture of factor models and particularly drew attention to estimating the model from the low-rank
recovery point of view. New estimation and inference methods and matrix completion problems
were discussed.
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