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Abstract

We introduce a conditional machine learning approach to forecast the stock index

return. Our approach is designed to work well for short-horizon forecasts to address the

well-documented instability in predicting aggregate stock returns in long panels. We

formally characterize the forecast standard errors to assess the uncertainty associated

with our cross-sectional neural network predictions, which also enables us to explain the

predictability of our model. The explainability covers both correctly and incorrectly

assumed forecasting models, and stems from the forecast standard errors and out-of-

sample R square. To explain the economic impacts of the economy’s stability on the

forecast quality, we introduce a “CDI” index defined as the correlation between firms’

market value share and sales share, and show that it can well explain the forecast

uncertainties, thus provides economic insights of the success and failure of machine

learning based forecasting models.
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1 Introduction

This paper proposes a robust conditional machine learning (CML) approach that delivers

asset return forecasts specifically for the case of short time series. To address forecast

instability, it allows for variation in the relationship of variables over time. Our approach

draws on the rich information in the cross-section rather than relying on long and stable

time series relationships.

Cochrane (2011) emphasizes that understanding discount rate variation is the central

question in current asset-pricing research. While discount rate variation is widely accepted,

there is little consensus to what extent discount rates can be predicted. The forces that drive

variation in discount rates are too vast to be all captured in simple model and instability in

predictive relationships can be caused by fundamental factors such as shifts in technological

innovation, changes in stock market participation, tax codes, macroeconomic uncertainty and

expectations or improved risk sharing. Although the literature has extensively documented

the variation in the relationships between variables across time, it poses a significant problem

for many asset return prediction models that rely on time-stability. For example, principal

component analysis or partial least squares (Kelly and Pruitt, 2013, 2015) both require a long

time series to estimate parameters consistently.1 The dependence of these approaches on long

samples however makes them reliant on stable predictive relationships. The applicability of

these methods, hence, often breaks down because most forecast models work within short-

lived periods, then having modest return predictability, as concluded in Timmermann (2008).

Prediction instability across time, as documented in Goyal and Welch (2003), Rapach and

Wohar (2006), Lettau and Van Nieuwerburgh (2008) and Ang and Bekaert (2007) or unstable

relationships between returns and financial ratios likewise constitute a challenge for common

models in the academic return prediction literature since time-variation causes poor out

of sample forecasting performance, see Welch and Goyal (2008); Goyal et al. (2021) and

Dangl and Halling (2012). Also see Rossi (2021) for an excellent recent survey on forecast

instability.

Modern machine learning (ML) methods have been successful at predicting asset returns

(Gu et al. (2020); Kelly et al. (2021)) because ML estimators typically make fewer strong

1In informal terms, long time series are necessary to ensure that idiosyncratic noise will average out over
time and not pollute the estimates.
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functional form assumptions than traditional parametric models. Moreover, they may al-

most avoid the curse of dimensionality which is typically a challenge in high dimensional

nonparametric models.2 The standard machine learning approach (“unconditional machine

learning”), however, trains the model using pooled data that aggregates returns on many

assets over several years. Because these estimates rely on having a long time series of obser-

vations, unconditional machine learning models may not be rich enough to allow for sufficient

variation in the relation between returns and predictors.

We develop a robust conditional forecasting method that does not require long time se-

ries of observations to estimate forecasting factors. By focusing on the aspect of robustness,

we emphasize that the market index forecasts should not be too sensitive to possible in-

stabilities/varyingness of firm level betas and idioscynratic volatilities. The key idea is to

train machine learning models period-by-period, drawing on the rich information of a large

cross-section of asset returns and observable firm characteristics. Building on the recent

contributions in the econometrics literature (Fan et al., 2016, 2022), we estimate factors and

loadings consistently over short samples, with the key intuition that these quantities should

be estimated using expected rather than realized returns, which produce more stable pre-

dictions over time than most existing methods that rely on realized returns and long time

series.

We apply period-by-period machine learning to estimate firm level expected returns.

But unlike the usual time series approaches, our estimated expected returns also preserve

the factor structure of the realized returns, which yields high-quality estimates of stock

betas. Then following Kelly and Pruitt (2013), we use the statistical factors learned from

valuation ratios. One novel implementation step in our procedure is that we do not directly

estimate the book-to-market betas (BM-betas), but use the estimated stock betas as good

instrumental variables for the BM-betas, even though these are generally different. The use

of instrumental variables methods for estimating the forecasting factors, the key difference

from methods in the existing literature, serves for our central purpose of forecasting robust to

the use of small-T . Therefore, unlike the usual aggregated indices that utilize firms’ market

capitalizations as the weights, our BM-factor is constructed as a weighted average of firms’

book-to-market, whereas the stock-betas are being used as the weights. The so-constructed

2Gu et al. (2020) compare numerous machine learning methods to forecast returns of individual assets
and portfolios. See also Bianchi et al. (2021) for an application in forecasting bond risk premiums.
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index is much less noisy and produces more stable forecasts over short horizons.

The economic significance of our approach is the explainability of the CML-based fore-

cast, which stems from the forecast uncertainties. Unlike the usual linear forecasts, machine

learning-based forecasting models are highly nonlinear, often used as black-boxes whose pre-

dictability is hard to explain. As the predictability of any given forecasting model varies

over time, understanding the evolution of its success or failure is crucial for explaining the

financial insights of the predictability. We provide a theoretical framework of the forecast

standard errors (FSE) and out-of-sample R square (OOSR2) for CML, both yield the ex-

plainability that covers both correctly and incorrectly assumed forecasting models: the FSE

measures the forecast uncertainties of CML-based methods for correctly specified models,

whereas the OOSR2 shows the impact of model specifications. By examining the decom-

position of both FSE and OOSR2, we show that the predictability can be explained by the

evolution of various volatilities and forecast coefficients.

We rigorously develop the forecast standard error of neural-network based forecasters,

with a solid theoretical foundation. This enables us to quantify the forecast uncertainty

of the machine learning based method. The FSE has an intuitive interpretation, it arises

from: the uncertainty for using estimated forecast coefficients and the uncertainty for using

estimated factors. We derive the asymptotic distribution for the estimated factors that come

from neural network estimation. In particular, the uncertainty from the estimate factors,

which also depends on idiosyncratic volatility, is different from the parametric case where

factors are estimated using standard PCA (Bai and Ng, 2006). In conventional PCA, a

long time series is needed to remove the effect of idiosyncratic shocks. In contrast, when

factors are estimated by neural networks, we solely require that the number of cross-sectional

units shall be large, but the length of the time series can be finite. The distribution theory

underlying our confidence intervals is an important next step in fostering our understanding

of neural networks or general high dimensional models in finance, as brought forward by the

well-known PPCA/IPCA methods, Fan et al. (2016); Kim et al. (2021); Kelly et al. (2019);

Fan et al. (2022), and the autoencoder Gu et al. (2019).

Our analysis uncovers the relation between the forecast stability and volatilitis of uncer-

tainties. To explain the economic insight of this relationship, we introduce a new measure-

ment of the economy’s stability, which we call “Creative Destruction Index” (CDI), defined

as the cross-sectional correlation between the firms’ market value share and sales share. It
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captures the changes of firms’ exposure to different economic shocks, which may or may not

coincide with peaks and drops of business cycles. Empirically we find that the CDI is well

connected to the evolution of factor volatilities and FSE, thus provides economic insights of

the success and failure of machine learning based forecasting models.

Our methodology is also related to the recent contribution made by Farmer et al. (2022),

with the intuition that any single forecasting model is likely going to fail after some time due

to economic competition. It is therefore likely that no single model will produce successful

predictions all the time. They developed a “pocket forecast” framework to document that

forecasting algorithms, when working by themselves, are successful only for a brief period

of time, so they will perform in “pockets”. Bianchi et al. (2023) also studied the effect of

model averaging on the forecastability, and showed that model averaging can compete with

economically motivated predictive regressions. In our context, for instance, our method may

lose predictive power in some periods if the contemporaneous stock factors depend very

weakly on lagged book-to-market factors, or if the contemporaneous idiosyncratic volatility

is abnormally large, but may gain the predictability in other periods. Therefore, we rely on

the forecast uncertainty, i.e., the forecast standard error, to balance two machine learning

forecasts: the proposed conditional ML and the widely used unconditional ML.

Notation

Throughout the paper, we will use the notation Xn →P X if random variable sequence

Xn converges in probability to a limit X. We also denote by Xn = oP (1) if Xn →P 0.

Finally, we denote by Xn = OP (an) if the stochastic order of Xn is an; specifically, for any

ϵ > 0, there is C > 0, such that P (|Xn| > Can) < ϵ.

2 The Model

The goal is to construct a forecasting model for the market index return yt+1, defined as

a weighted average of individual stock returns:

yt+1 =
N∑
i=1

wi,txi,t+1.
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where xi,t+1 are firm level realized returns, each associated with a possibly time-varying

weight wi,t. We assume that each firm i is also associated with a firm level characteristic vi,t,

and both xi,t+1 and vi,t are driven by conditional factor models as follows:

xi,t+1 = β′
i,tft+1 + ui,t+1, (2.1)

vi,t = λ′i,t−1gt + ηi,t. (2.2)

We observe data of (yt, xi,t, vi,t) for t = 1, ..., T , but the factors (ft, gt) are latent.

We specify vi,t as the firm-level book-to-market (BM), whose predictability on the market

index has been well realized in the literature, e.g., Kelly and Pruitt (2013).3 Here ft+1 and

gt (possibly overlapping) are respectively the factors that are driving stock returns and

book-to-market ratios, whose dimensions are Kf and Kg, and we assume that Kf ≥ Kg.

Meanwhile, the idiosyncratic shocks, uit and ηit can be correlated. We allow intercepts in

both factor models, which are absorbed in the coefficients of βi,t and λi,t−1. These coefficients

respectively denote the loadings of the two factor models. We consider a conditional factor

model in which both βi,t and λi,t may change over time, which is essential to achieving

forecasts that are robust to market instabilities because it has been well known that asset

pricing models can hold only conditionally, and a changing investment opportunity set can

induce time-varying systematic risk exposures of assets, see e.g., Merton (1973); Hansen and

Richard (1987). Therefore, incorporating the time variation is important for evaluation and

testing of asset pricing models, see for example Shanken (1990), Jagannathan and Wang

(1996) and Ferson and Harvey (1999).

Substituting (2.1) to the definition of yt+1, we have

yt+1 = ρ̃′f,tft+1 + ϵ̃t+1, (2.3)

where ρ̃f,t =
∑N

i=1 βi,twi,t and ϵ̃t+1 =
∑N

i=1 ui,t+1wi,t. Hence the market index is also driven

by the stock-factors. Model (2.3) is however, not feasible for practical forecasts, because it

depends on the contemporaneous factors.

We now discuss the main assumption of our model. First, there is temporal persistence

3We present the main model in terms of book-to-market ratios in model (2.2), but naturally any valuation
ratio could also be employed. Our model can also admit multiple valuation ratios.
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between the risk factors:

ft+1 = Φ0 + Φggt + et+1, (2.4)

with a coefficient matrix Φg. This equation shows that the common stock-factors are also

driven by lagged BM-factors. 4 Substituting (2.4) for ft+1 in (2.3),

yt+1 = ρ0,t + ρ′g,tgt + ϵt+1, (yt+1 : market index) (2.5)

xi,t = β′
i,t−1ft + ui,t, (ft : stock-factors) (2.6)

vi,t = λ′i,t−1gt + ηi,t, (gt : BM-factors) (2.7)

where ρ0,t = ρ̃′f,tΦ0, ρ
′
g,t = ρ̃′f,tΦg, and ϵt+1 = ρ̃′f,tet+1 + ϵ̃t+1. As we do not observe either

xi,t+1 or ft+1 when forecasting yt+1, this assumption allows us to apply a feasible forecasting

model based on lagged factors. The key assumption here is that (ρ0,t, ρg,t) is either constant

or slowly moving over time.

Secondly, we assume that the factor loadings are functions of observable firm character-

istics. More formally, there exists a (possibly time-varying) nonparametric function, hβ,t(·),
such that

βi,t−1 = hβ,t(zi,t−1). (stock betas) (2.8)

This assumption is also made in models of Connor et al. (2012); Fan et al. (2016); Kelly

et al. (2020), who develop estimation procedures and asset pricing tests in characteristic

based factor models.5

The third main assumption is that βi,t−1 of stock returns is a good instrument to the

λi,t−1 of book-to-market. Formally, we assume that the rank of the covariance matrix between

4A more general assumption is to allow lagged stock-factors: ft+1 = Φ0 + Φfft + Φggt + et+1, which
would result in a prediction equation: yt+1 = ρ0 + ρ′fft + ρ′ggt + ϵt+1 with ρ′f = ρ̃′fΦf . In essence, we apply
a constraint that Φf = 0 to only include the BM-factor as a predictor. Our motivation stems from the fact
that stock-factors have very little persistence, whose inclusion in fact worsens the predictive performance.

5The intuition to link factor loadings to observable firm characteristics is already formulated in Rosenberg
and McKibben (1973) and is also part of the Fama and French (2015) and related models. In addition, Ferson
and Harvey (1999) find that the lagged characteristics have explanatory power for factor betas because they
pick up time-variation in the factor loadings. Further evidence for the usefulness of firm characteristics to
model systematic risk exposure is also part of Jagannathan and Wang (1996), Lettau and Ludvigson (2010).
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stock and BM-betas is equal to the number of common BM-factors, Kg:

1

N

N∑
i=1

βi,t−1λ
′
i,t−1, Kf ×Kg.

This condition implies that βi,t and λi,t are correlated, which is also the key benefit from

including xi,t in the forecast model: the fact that the stock-beta carries information regarding

the BM-beta allows us to use the former as the instrumental variables to estimate the BM-

factors. This plays a central role of our innovative forecast methodology for robust short-

horizon forecasts.

3 The Robust Forecast

3.1 Large-T versus small-T

Our forecasting model is based on

yt+1 = ρ0,t + ρ′g,tgt + ϵt+1,

vi,t = λ′i,t−1gt + ηi,t, t = 1, ..., T.

Similar to Stock and Watson (2002) and Kelly and Pruitt (2013), we need to respectively

estimate the latent factors gt and the unknown forecasting coefficients (ρ0,t, ρg,t). In the usual

wisdom of forecasting yt+1 using time series however, the error-in-variables (EIV) problem

arising from estimating these quantities would depend on the time series length through two

kinds of volatilities:

estimating (ρ0,t, ρg,t):
1

T
Var(ϵt+1)

estimating gt:
1

T
Var(ηi,t).

So large-T has been critically required to offset the impact of both volatilities. In particular,

estimating the factor gt would require a large T , due to the EIV in estimating its factor

loadings using most existing methods.

A key innovation in our methodology is to show that at least for estimating the latent
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factors, the “large-T” requirement can be relaxed for, meaning that the effect of the idiosyn-

cratic volatility Var(ηi,t) can be offset even if T is small. Taking advantage of conditional

forecasts based on cross-sectional regressions using deep neural networks, we show that this

is the case as long as the cross-sectional dimension is sufficiently large, regardless of the size

of T .

As for estimating the forecasting coefficients (ρ0,t, ρg,t), it appears that large- T is still

needed. While estimating these coefficients requires time series regressions, nevertheless,

having a more precise estimate of factors improves the finite sample properties. The empir-

ical relevance of relaxing the large-T requirement when estimating factors is profound: on

one hand, the impact of Var(ηi,t) is much more severe than Var(ϵt+1), as the idiosyncratic

volatility is less stable over time, and may have structural breaks much more often. On the

other hand, allowing short-T to estimate BM-factors makes the forecast be also robust to

changes in betas (of either stocks, characteristics, or both) over time. Hence being robust to

the instability of the idiosyncratic volatility is critical for achieving the robustness of market

index forecasts.

3.2 Formal algorithm

We propose a conditional machine learning approach (CML) to forecasting aggregate

returns builds on neural networks embedded in a characteristic based factor models and

follows four steps:

I Estimate expected returns by applying deep neural network regression of stock returns

onto characteristics each period.

II Apply “local principal component analysis” (local PCA) on the estimated expected

returns to estimate the stock betas.

III Estimate the book-to-market factors by using the stock betas as instrumental variables,

and conduct forecasts.

IV Construct forecast confidence intervals to quantify the uncertainty of the predictions.

While steps I and II build on the theory developed in Fan et al. (2016, 2022), our primary

methodological innovations are in steps III and IV, i.e. we show how to estimate gt using
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neural networks without estimating its factor loadings directly. In addition, step IV develops

novel forecast confidence intervals for cross-sectional deep neural network (DNN) forecasts

in asset pricing.

We now detail the four steps.

Algorithm. Construct a forecast for future aggregate returns (conditional on time T

information), ŷT+1|T , as follows:

step I (Conditional DNN) Compute the expected stock returns

x̂i,t = m̂t(zi,t−1)

where m̂t(·) is constructed using cross sectional neural network regression at each period

t = 1, ..., T :

m̂t(·) = arg min
m∈DNN

N∑
i=1

(xi,t −m(zi,t−1))
2.

step II (Local-PCA) Let

St :=
1

T

T∑
s=1

x̂sx̂
′
sKs,t

where Ks,t is a time-dependent weight, and x̂s denotes the N -dimensional vector of the

expected returns with elements x̂i,s.

Estimate Stock-betas using β̂t−1, which equals
√
N times theN×Kf eigenvector matrix

of St, corresponding to the top Kf eigenvalues.

step III (Forecast yT+1)

Factors: Let λ̂IVt−1 denote the first Kg columns of β̂t−1, (Kf ≥ Kg). Then estimate

BM-factors by:

ĝt =
1

N

N∑
i=1

λ̂IVi,t−1vi,t. (3.1)

Index: Forecast the index by

ŷT+1|T := ρ̂0 + ρ̂′gĝT
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where (ρ̂, ρ̂g) are obtained by the following time-series regression:

yt+1 = ρ̂0 + ρ̂′gĝt + ui,t+1
6

step IV (Forecast uncertainty) Construct the forecast confidence interval for the expected

index return yT+1|T := ρ0 + ρ′ggT as:

[
ŷT+1|T − zτSE(ŷT+1|T ), ŷT+1|T + zτSE(ŷT+1|T )

]
(3.2)

where zτ is the 1− τ critical value for the standard normal distribution; SE(ŷT+1|T ) is

the forecast standard error, whose exact expression is given in Section 4.1.

The following subsections give detailed explanations of each step in the algorithm.

3.3 An illustrative example

To illustrate how the method works in practice, consider a scenario of a single factor

in both yi,t and vi,t. In the first step, at each period t, we conduct cross-sectional neural

network regression to reach x̂i,t = m̂t(zi,t−1), where m̂t is the DNN function learned in this

period, using cross-sectional returns yi,t−1 and zi,t−1 for all i ≤ N . Now suppose the kernel

function is simply:

Ks,t =

1 if s = t

0 if s ̸= t.

That is, we only use fitted expected return x̂t = (x̂1,t, ..., x̂N,t) at one observation, and obtain

the “conditional covariance”

St =
1

T

∑
s

x̂sx̂
′
sKs,t =

1

T
x̂tx̂

′
t.

6The time series regression in this step treats the cofficients (ρ0, ρg) to be time-invariant. One can also
apply kernel smoothing regression to estimate time-varying coefficients. Empirically, we find that treating
(ρ0, ρg) to be time-invariant leads to better forecasts than treating them to be time-invariant.
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In the second step, let β̂t−1 be the first eigenvector of St, which is given as

β̂t−1 =

√
N

∥x̂t∥
x̂t.

Then in step III, we estimate the BM-factors as

ĝt =
1

∥x̂t∥
√
N

N∑
i=1

x̂i,tvi,t,

and forecast yT+1|T by conducting time series regression of yt+1 onto ĝt with intercept. Then

straightforward calcuations yield

ŷT+1|T = Y Ĝ(Ĝ′Ĝ)−1ĜT

where Ĝ is (T − 1)× 2 matrix of (ĝt, 1) and ĜT = (ĝT , 1)
′.

3.4 Intuitions of the algorithm

3.4.1 Expected returns from deep neural networks

While firm level stock returns carry valuable information for predicting market returns,

as emphasized by Polk et al. (2006), firm-level returns can be very noisy. This typically

leads to EIV problems for estimating betas and factors and severely distorts predictive

information. Our solution is work with the firm-level conditional expected returns (CER)

given the characteristics, which is free of idiosyncratic noise but preserves the factor structure:

Et(xi,t|zi,t−1) = hβ,t(zi,t−1)
′ft.

7 (3.3)

To estimate expected returns we apply deep neural networks by regressing the excess

7The conditional expectation Et(·|zi,t−1) is taken with respect to the cross-sectional distributions at a
fixed and give period t, so it is subscripted by t.
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stock returns onto characteristics:

m̂t(·) = arg min
m∈DNN

N∑
i=1

(xi,t −m(zi,t−1))
2, t = 1, ..., T (3.4)

where “DNN” denotes a set of feedforward neural networks with predetermined layers and

number of neurons in each layer. The optimization (3.4) is carried out to train the parameters

in the DNN. We then estimate Et(xi,t|zi,t−1) by substituting the characteristics to the learned

function:

x̂i,t := m̂t(zi,t−1). (3.5)

It is important to note that the neural networks in (3.4) are trained period-by-period, so

each network is fitted using cross-sectional regressions only. This would entail that

x̂i,t →P hβ,t(zi,t−1)
′ft, as N → ∞,

hence preserving the factor structure in the CER. The preserved factor structure is valuable

to construct factor-based forecasts, which we shall explain next.

3.4.2 Local PCA

Given that the expected returns have the same factor structure as realized returns, we

have:

x̂i,t ≈ hβ,t(zi,t−1)
′ft = β′

i,t−1ft.

Since factor-loadings are varying over time, we apply local principal components analysis

(local-PCA) to estimate factors and betas. The local-PCA estimates βi,t as eigenvectors of

the weighted covariance matrix:

St :=
1

T

T∑
s=1

x̂sx̂
′
sKs,t

where Ks,t is a time-dependent weight, and x̂s denotes the N -dimensional vector of the

expected returns x̂s = (x̂1,s, ..., x̂N,s)
′. Then the estimated stock betas at period t − 1,
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denoted by β̂t−1, are the N ×Kf eigenvector matrix of St, corresponding to its largest Kf

eigenvalues.

The idea behind the local-PCA is that it gives more weights to observations during

periods closer to the time of estimation interest. We create St being the weighted average

of x̂sx̂
′
s where K(s, t) is chosen to be close to zero when s and t are far apart. So expected

returns x̂s are effectively contributing to the calculation of St only if s ≈ t. For those “close

periods” s,

x̂s = β′
t−1fs + oP (1), s ≈ t, (3.6)

which approximately is also a factor model, but only when s is close to t. Let SF,t :=
1
T

∑T
s=1 fsf

′
sKs,t. Then (3.6) implies

St = βt−1SF,tβ
′
t−1 + oP (1).

This equation shows that the idiosyncratic term is almost negligible, the remainder is oP (1),

i.e. it vanishes in the limit. More concretely, the noise is negligible so long as the cross-

sectional deep neural network yields a good approximation to the CER, which is typically

the case as long as N → ∞. Therefore, taking β̂t−1 as eigenvectors of St leads to a good

estimate for βt−1. It is clear that this approach also takes into account the time-varying

nature of betas.

As for the kernel, define

Ks,t =
1

h
K

(
s− t

Th

)
A−1

t , At :=
1

Th

T∑
l=1

K

(
l − t

Th

)
. (3.7)

Here K(·) is a predetermined baseline kernel function with h being the bandwidth, which is

a well established technique in nonparametric econometrics. We apply the two-sided quartic

kernel:

K(x) =
15

16
(1− x2)2, −1 ≤ x ≤ 1.

To avoid the use of forward-looking information in out-of-sample forecasts, we apply a bound-

ary adjustment for t = T . The boundary adjustments is described in greater detail in the

appendix (see also Li and Racine (2007)). By virtue of this adjustment our forecasts are

strictly out-of-sample and can be made in real time.
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Farmer et al. (2022) applied kernel smoothing regression to identify “pockets”, i.e. short

episodes of predictability, which is essentially a robust time-series approach. Our adoption of

kernel smoothing builds on their intuition that parameters stay close within a short period

of time, and is also related to Ang and Kristensen (2012).

Meanwhile, we develop this idea further by adapting the kernel smoothing to the period-

by-period machine learning, which eliminates most of the idioscyncratic noise, followed by

local-PCA. We show that local-PCA leads to a consistent estimator for beta, i.e.:

∥β̂i,t−1 − βi,t−1H∥ = oP (1)

for some rotation matrix H. Importantly, the “oP (1)” term is vanishing as long as N → ∞,

regardless of the size of T .

3.5 Constructing the BM-factors

We rely on the predictability from ĝt to forecast the market index. Step III in our forecast

algorithm constructs it via:

ĝt =
1

N

N∑
i=1

λ̂IVi,t−1vi,t. (3.8)

where λ̂IVi,t−1 are the estimated stock-betas. This subsection explores the predictability of this

step.

3.5.1 The instrumental variable approach

Note that the BM-factors gt is the common factor of book-to-market ratios (or more

generally some valuation ratio), from the model:

vi,t = λ′i,t−1gt + ηi,t, (gt : BM-factors). (3.9)

Our methodological innovation is to estimate gt without the large-T requirement, while

producing a factor estimator that is robust to instabilities in the idiosyncratic volatility.

The key idea is to avoid estimating λt−1 directly, but use the estimated stock betas βt−1
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as instrumental variables for the true λt−1. Specifically, we recall that in the previous step,

Kf stock-betas are estimated in the local PCA step (we also assume Kf ≥ Kg). We then

use a sub-vector of β̂i,t−1 consisting of its first Kg elements to construct a vector of IV:

λ̂IVi,t−1 := (β̂i,t−1,1, ..., β̂i,t−1,Kg).

Next, use λ̂IVi,t−1 to estimate gt as follows:

ĝt =

(
N∑
i=1

λ̂IVi,t−1λ̂
IV ′
i,t−1

)−1 N∑
i=1

λ̂IVi,t−1vi,t =
1

N

N∑
i=1

λ̂IVi,t−1vi,t. (3.10)

where the second equality follows since λ̂IVi,t−1 are also eigenvectors.

Clearly, we are not estimating the true λt−1 to construct the BM-factors, and it is impor-

tant to note λt−1 need not lie in the span of βt−1. Instead, we are using λ̂IVt−1, or essentially

βt−1, as IV for the true λt−1, which is the key difference of our approach compared to existing

methods in the literature. Like the usual IV in linear regressions, all is needed is to satisfy

the two conditions commonly imposed on IV:

(1) relevance: βt−1 should be correlated with λt−1.

(2) exogeneity: βt−1 should be orthogonal to the error term ηi,t.

The relevance is a plausible condition because both the stock and BM-betas are assumed

to depend on the same firm-specific characteristics, whereas the exogeneity condition is also

reasonably satisfied if these characteristics are exogenous.

We now illustrate how the use of IV approach helps address the error-in-variables problem.

From (3.9), we have

ĝt =
1

N

N∑
i=1

λ̂IVi,tλ
′
i,tgt +

1

N

N∑
i=1

λ̂IVi,tηi,t︸ ︷︷ ︸
statistical error

(3.11)

Let

Hg :=
1

N

N∑
i=1

λ̂IVi,t−1λ
′
i,t−1, η̃t :=

1

N

N∑
i=1

λ̂IVi,tηi,t.

The relevance condition would ensure that Hg is a full rank matrix, and the exogeneity
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condition also ensures η̃t disappears as N → ∞. Hence equation (3.11) readily implies:

ĝt −Hggt = oP (1). (3.12)

This means ĝt consistently estimates the true BM-factor gt up to a rotation matrix Hg. Yet,

the statistical error η̃t vanishes without requiring large-T , as it depends on the idiosyncratic

volatility only through:
1

N
Var(ηi,t)

and the EIV inside λ̂IVt−1 also vanishes as N → ∞, thanks to the use of cross-sectional

deep learning. Even in periods when Var(ηi,t) is large, the impact of EIV and idiosyncratic

volatility is still well controlled as long as there are sufficiently many individual stocks.

3.5.2 Economic Interpretation of the ĝt-factor

Financial indices/aggregated state variables are often constructed as weighted averages,

where one of the commonly used weights is the firm level market capitalization. For instance,

one can construct the “aggregate BM” by taking a weighted average

g̃t,abm =
N∑
i=1

w̃it,mkvi,t, wit,mk = market capitalization for firm i.

In contrast, our instrumental variable approach constructs ĝt as an average, weighted by the

stock-betas. Therefore in essence our predictor differs from the market-cap aggregation in

the choice of the weights.

One economic interpretation of using the stock-betas as the weights stems from the

intuition of utilizing expected stock returns instead of realized returns for predictions. The

market capitalization contains realized stock returns also idiosyncratic noise. These noises

often do not carry predictive signals of the market index, making the aggregate BM-factor

a very noisy predictor. In contrast, the stock-betas are important components constituting

to the conditional expected returns, which by definition is much less noisy. As such, our

constructed BM-factors is much cleaner than market-cap weighted aggregations, and yet

retains the predictability of market index returns.
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3.5.3 Large-T robust concerns of existing methods

We now explain from the perspective of robust forecasts, why we should estimate the

BM-factors by incorporating the information from xi,t (through the stock-betas). Suppose

otherwise the BM-beta/factors are estimated directly from:

vi,t = λ′i,tgt + ηi,t. (3.13)

using either ordinary PCA or partial least squares (PLS, e.g., Kelly and Pruitt (2013)).8 To

illustrate the main issues, suppose for now that λi,t does not vary over time. Denote by λ̃i, g̃t

as the estimated λi, gt. The statistical error in λi would depend on η̆i =
1
T

∑
t gtηi,t, and as

a result, the EIV in the estimated BM-betas would critically depend on the idiosyncratic

volatility through:

λ̃i − λi = OP

(√
Var(ηi,t)

T

)
.

This EIV carries over to estimating gt, whose statistical error can be shown as

1

N

∑
i

ηi,tη̆i ≈
1

T

(
1

N

N∑
i=1

gt Var(ηi,t)

)
.

So it would require a large T to offset the EIV problem arising from the impact of the

idiosyncratic volatility. Hence estimating the BM-factor without the information from xi,t

leads to forecasts non-robust to the volatility instabilities.

4 Forecast Uncertainty and Explainability

Quantifying the uncertainty around point forecasts is crucial because in an unstable en-

vironment, forecasts may be far away from their target and could thus be highly unreliable.

For example, the Bank of England Inflation Report routinely reports confidence intervals

around their predictions via fan charts, where the fan charts are obtained as percentiles

8We acknowledge that our model is designed for forecasting index returns, while the approach in Kelly
and Pruitt (2013) also applies to forecasting other outcomes such as the cash flow growth predictions.
Nevertheless, the key idea of using CML-based forecasts to alleviate the limitation of short-horizon forecasts
can still be generally applicable.
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from a sequence of forecast densities. It is however, difficult to construct fan charts when

sophisticated neural networks are used in forecasting. Statistical inference for DNN is tech-

nically very demanding and typically not readily available. While neural network based

forecasts are used frequently in asset pricing, to the best of our knowledge, there is currently

no paper that quantifies forecast uncertainty formally.9

In this section, we construct forecast intervals by rigorously deriving the forecast standard

errors (FSE) for the estimated factors that come from neural network estimations, while

being robust to the time-variation in betas and idiosyncratic volatility.10 The emphasis of

our analysis is that the uncertainty study also provides a natural economic explanation of

the machine learning forecastability.

The importance of quantifying forecast uncertainty is for economically explaining the

success and failure of machine learning predictability. We distinguish two kinds of periods

for the economic explainability: when the factor model is corrected specified and when it is

not. For the former, we shall introduce a “creative destruction index” which can well explain

the evolution of FSE. For the latter, we shall conduct a dynamic out-of-sample R2 analysis,

which is useful to explain the impact of model misspecification on the predictability.

4.1 Forecast Confidence Intervals

As discussed earlier, the central goal of this paper is to achieve forecasts that are robust

to changes in idiosyncratic volatilities. As we will see below, the forecast confidence interval

explicitly shows that the impact of idiosyncratic volatilities is offset by using large-N , instead

of large-T .

In the context of our model, let ρt = (ρ0,t, ρ
′
g,t)

′, FT = (1, g′T )
′. Proposition 1 below shows:

ŷT+1|T →P yT+1|T := ρ′TFT . (4.1)

The standard error of ŷT+1|T arises from two sources of uncertainty: a) the error in estimating

9In the forecast literature, non-confidence based uncertainty measures have been also introduced, e.g.,
Rossi and Sekhposyan (2015); Carriero et al. (2018); Clark et al. (2020).

10Statistical convergence theory for DNN is still in its infancy. Since the pioneering contribution of Chen
and White (1999), important recent contributions are due to Schmidt-Hieber (2020) and Kohler and Langer
(2021). But the forecast confidence interval derived in this paper, or results of this kind, are not available
prior to our work.
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the coefficients of the prediction equation. Quantifying this error follows directly from linear

regression theory and is straightforward. b) The uncertainty from estimating factors. This

is challenging in our setting as these factors are estimated with neural networks.

Despite the technical sophistication of DNN-based forecasts, we obtain a relatively simple

and intuitive expression for the forecast confidence interval, which is established in the

following Proposition.

Proposition 1. Suppose Assumptions 1-4 in the appendix hold. Then ŷT+1|T →P yT+1|T :=

ρ′FT . In addition,
ŷT+1|T − yT+1|T√

1
Th
F ′
TVarρFT + 1

N
ρ′gTVarFρgT

→d N (0, 1)

for some covariance matrices Varρ and VarF that can be consistently estimated by (4.4) below.

With this result in hand, we can construct a forecast confidence interval for yT+1|T using

the estimated forecast standard error:

[
ŷT+1|T − zτSE(ŷT+1|T ), ŷT+1|T + zτSE(ŷT+1|T )

]
, (4.2)

where zτ is the 1 − τ critical value for the standard normal distribution. Let ρ̂g and F̂T

denote the estimators for ρgT and FT obtained in steps 2-3 of the main algorithm in Section

3.2. The squared standard error is then given by:

SE(ŷT+1|T )
2 :=

1

Th
F̂ ′
T V̂arρF̂T +

1

N
ρ̂′gV̂arF ρ̂g (4.3)

where

V̂arρ =

(
1

T

∑
t

F̂tF̂
′
tKt,T

)−1
1

T

∑
t

F̂tF̂
′
t ϵ̂

2
t+1Kt,T

(
1

T

∑
t

F̂tF̂
′
tKt,T

)−1

V̂arF =
1

N

∑
i

η̂2i,T λ̂
IV
i,t−1λ̂

IV ′
i,t−1. (4.4)

Here F̂t = (1, ĝ′T )
′, and ϵ̂t and η̂i,T are the estimated residuals. To gain some intuition behind

the standard error formula (4.3), we can write: (with a rotation matrix Hg)
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ŷT+1|T − yT+1|T = (ρ̂g −H−1
g ρg,T )

′HgFT + ρ̂′g(F̂T −HgFT ). (4.5)

The forecast standard error takes into account two sources of forecast uncertainty: the

first component 1
Th
F̂ ′
T V̂arρF̂T arises from the uncertainty of (ρ̂−H−1

g ρ). The second compo-

nent 1
N
ρ̂′gV̂arF ρ̂g arises from the uncertainty of the estimated factors (F̂T −HgFT ). Analyzing

its effect is non-standard as it combines several sources of uncertainty from the following

steps: (i) period-by-period neural networks regression to obtain expected returns; (ii) apply

local PCA to estimate stock-factors; (iii) use stock-beta as instrumental variables.

The standard error for neural networks is vastly different from standard errors in paramet-

ric forecast models. For example, in a forecast model based on PCA the forecast confidence

interval is developed by Bai and Ng (2006). The estimation error of our method and that

of PCA based forecasts differs strongly due to the different errors in estimating factors, the

term (F̂T −HgFT ) in equation (4.5). For our DNN-based factors, we have the following rates

of convergence:

F̂T −HgFT = OP

(
1√
N

)
+ oP

(
1√
N

)
Var(ηi,t),

where the second term on the right hand side, oP

(
1√
N

)
Var(ηi,t), only depends on the number

of cross-sectional units and the complexity of the neural networks, but does not depend on

the length of the time series (T ). In contrast, let F̂T,PCA denote the PCA-based factors.

Then Bai and Ng (2006) show that

F̂T,PCA −HgFT = OP

(
1√
N

)
+OP

(
1

T

)
Var(ηi,t)

where the second term on the right hand side depends on the variance of the idiosyncratic

shocks and the length of the time series. Therefore, the parametric confidence interval can

be severely affected by the idiosyncratic variance in short-horizon forecasts, While both

methods depend on the idiosyncratic variance Var(ηi,t), the DNN-based method is robust to

this variance as long as N is large.
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4.2 Economic Explainability

To explain the economic impacts of the economy’s stability on the forecast quality, we

introduce a new measurement of the economy’s stability, which we call “Creative Destruction

Index” (CDI). It is defined as cross-sectional correlation of rankings between firms’ sales and

market capitalization:

CDIt = Corrt(St,Mt)

where Corrt takes the sample correlation, at time t, between cross-sectional elements of

St = (S1,t, ..., SN,t) and Mt = (M1,t, ...,MN,t). Here Si,t and Mi,t respectively denote the

cross-sectional rankings of the sales and market capitalization for firm i. The CDI is moti-

vated from the intuition that the creative structure changes the exposure of firms to different

shocks. When the economy is stable without much innovative technological shocks, the rank-

ing of sales share and ranking of market value shares should be highly correlated. Meanwhile,

in periods when the economy undergoes technological innovation, emerging firms will have

lower sales in ranking but higher market values, whereas declining firms will have higher

sales but lower market values in ranking.

The CDI may or may not coincide with peaks and drops of business cycles, but it affects

the predictability through the “volatility of forecast uncertainty”. In their empirical study,

Pesaran and Timmermann (1995) found that a decrease of forecastability often coincides

with a significant increase in the standard errors of the forecasting equations, suggesting

that the predictability can be explained by the forecast standard error. One of the appealing

features of our CML model is that the forecast standard error can be derived, which is a

good measure of the forecast uncertainty. The variations of the forecast standard error with

CDI therefore can be used to explain the success and failure of forecasts over time.

As shown in Proposition 1, the forecast standard error depends on 1
N
ρ′gVarFρg +

1
Th
F ′
TVarρFT : The first term arises from the uncertainty of estimating the factors, which

depends on the idiosyncratic volatility

1

N

N∑
i=1

Var(ηi,T ).

The predictability is relatively high/low at periods when the idiosyncratic volatility is

large/small. In addition, the second term F ′
TVarρFT , is essentially determined by g2T , the
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squared realized factor in the forecast period. Large values of g2T would also harm the pre-

dictability. Therefore, the evolution of both the idiosyncratic volatility and squared realized

factors can explain the dynamic performance of the CML-based forecast over time.

Moving on to the pooled ML forecast, whose explainability can be explained by examining

the prediction error. 11 As derived in our theory, one of the main sources of its forecasting

error is

factor realization = ρ′g [gT − E(gT |Fz,T )] ,

whose magnitude is determined by the time series variance Var(ρggT ). We refer to this term

as the “factor-impact volatility”. It is important to note that the factor-impact volatility is

related, however different, from the factor volatility defined as Var(gT ). The former is the

volatility of the interaction of the forecast coefficient and the factors, so reflecting the effect

of lagged factors on predictions, while the latter is determined by the factor itself. Above

all, the evolution of the predictability can be explained by its magnitude over time: small

values of this volatility should explain the superior of the pooled ML, and vice versa, and

should vary over time.

4.3 The OOS R2 Process

The above explainability stems from the assumption that the forecasting model is cor-

rectly specified, which uses our theoretical framework of forecast uncertainty and statistical

errors. Meanwhile, we can also explain the impact of potential misspecifications, through

the out-of-sample R2 analysis (OOSR2).

The most common measure of forecast accuracy is the out-of-sampleR2 (OOSR2), defined

as:

R2
t := 1−

∑
s∈St

(ys+1 − ŷs+1|s)
2∑

s∈St
(ys+1 − ȳs)2

where ŷs+1|s denotes the one-step-ahead forecast using data up to period s and St is a set

of out-of-sample observations. The forecast is then compared with ȳs, the in-sample aver-

age. While many papers report this quantity to assess the success of predictive procedures,

often only a single number is reported. It is therefore a concern, that “t” maybe chosen

11To date, studying the forecast standard error of the pooled ML is still an open question, which we shall
leave for future research.
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somewhat arbitrarily. While this is certainly a useful statistic for the full sample, it does

not capture the variation of model specification over time. In this subsection, we provide a

novel decomposition of the OOSR2, which explains the impact of model specification on the

forecastability.

4.3.1 R2 Decomposition

From the definition of R2
t , it is clear that it is also a time series and we can study its

evolution over time. Intuitively, a robust forecast ŷs+1|s should have a stable R2
t process,

whereas a turbulent trajectory of R2
t indicates that the forecast may not be robust. We

formalize this intuition below. Suppose a researcher chooses a model M for forecasting ys+1

based on the information set Fs, and produces a conditional forecast ŷs+1|s. We can then

decompose the forecast error into:

ys+1 − ŷs+1|s = ϵs+1 + ζs+1

where

ϵs+1 = ys+1 − E(ys+1|Fs) = innovation shocks

ζs+1 = E(ys+1|Fs)− ŷs+1|s = misspecification of the forecast model. (4.6)

The first term is the difference between the outcome and the true conditional expectation,

E(ys+1|Fs). This is akin to the irreducible error. The second term, ζs+1, arises because a

researcher typically does not know the true conditional expectation and is using a model,

M, to approximate it. Since any model will typically be misspecified it constitutes a second

sources of error.12 Because a particular model, M, is a deliberate choice by the researcher,

regardless of whether ŷs+1|s is consistent for the true conditional mean, it is often the case

as the out-of-sample period becomes very long, we have a limit:

1

|St|
∑
s∈St

E(ζ2s+1) → σ2
ζ (t,M)

12To give a simple example for these terms, suppose the return is generated by ys+1 = xsβ+ϵs+1 for some
linear regressor xs. Then E(ys+1|Fs) = xsβ. Suppose we use a “wrong” beta, denoted by β1, to forecast
the return for s + 1, then ŷs+1|s = xsβ1 in this case, and ζs+1 = xs(β − β1) is the misspecification of the

forecast. As a result σ2
ζ (t,M) = 1

|St|
∑

s∈St
(xsβ − xsβ1)

2
.
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where the limit depends on the model M being used:

σ2
ζ (t,M) =

1

|St|
∑
s∈St

(E(ys+1|Fs)− E(ys+1|Fs,M))2 .

Here E(ys+1|Fs,M) is the probability limit of ŷs+1|s, the forecast outcome produced using

model M; |St| denotes the number of elements in St. If the model were correctly specified,

the limit would be zero. But if the true model is very complicated and we have to confine

ourselves to some class of functions, then there will always be some specification error.

Therefore, depending on whether the model specification is correct, σ2
ζ (t,M) can vary from

zero to a large quantity over time.

Define the variance of the innovation in y as:

σ2
ϵ (t) :=

1

|St|
∑
s∈S

Var(ϵs+1).

Note that it does not depend on the forecast model, M. Moreover, because the two compo-

nents in decomposition (4.6) are uncorrelated, we have

1

|St|
∑
s∈St

(ys+1 − ŷs+1|s)
2 =

1

|St|
∑
s∈S

Var(ϵs+1) +
1

|St|
∑
s∈St

E(ζ2s+1) + oP (1)

→ σ2
ϵ (t) + σ2

ζ (t,M).

Meanwhile, we can express the limit of the unconditional forecast error as:

1

|St|
∑
s∈Ss

(ys+1 − ȳs)
2 →P σ2

un(t).

The conditional forecast using the true E(ys+1|Fs) is almost always better than the uncon-

ditional mean forecast, so we almost always have σ2
un(t) > σ2

ϵ (t). We can then define the

benefits from conditional forecasts :

δt := σ2
un(t)− σ2

ϵ (t) > 0.
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Thus we have proved that for some negligible error term ∆t = oP (1),

R2
t = θt +∆t,

where

θt =
1

σ2
un(t)

[
δt − σ2

ζ (t,M)
]
. (4.7)

From (4.7) we can see that both the sign and magnitude of R2
t depend the sign of

δt − σ2
ζ (t,M). Therefore, the practice of examining OOSR2 to assess forecasts is essentially

about comparing the quality of the specified model σ2
ζ (t,M) with the benefit of conditional

forecasts δt. If the specified forecasting model, M, is doing a good out-of-sample job so that

σ2
ζ (t,M) is smaller than the benefits from conditional forecasts, OOSR2 will be positive,

otherwise OOSR2 will be negative: the model is so badly mis-specified that the cost exceeds

the benefits from conditional forecasts. Such a comparison apparently may vary across t, so

is a dynamic comparison. We shall study this dynamic nature more carefully in the next

subsection.

Pesaran and Timmermann (1995) empirically documented that the change of return

volatility can also affect the predictive power. One of the interesting empirical observations

they found is that both the volatility in the U.S. stock market and the predictability of stock

returns increased around 1974, and conjectured that this is related to the economic “regime

switches”. Our analysis in (4.7) provides a theoretical ground of their empirical finding.

Specifically, the predictability, measured by the OOSR2 sequence, depends on the volatility

through the term:
δt

σ2
un(t)

=
σ2
un(t)− σ2

ϵ (t)

σ2
un(t)

.

Hence the impact of economic regime switches on the predictability is pronounced through

the ratio of the benefits from conditional forecast to the unconditional volatility, instead of

either the σ2
un(t) or σ

2
ϵ (t) by itself.

4.3.2 Connection to standard errors: impacts of misspecification

Recall that the OOSR2 decomposition explicitly depends on the impact of misspecifica-

tion through σ2
ζ (t,M), which measures the discrepancy between the true conditional expected

return E(yt+1|It) and the model-specified expected return E(yt+1|It,M). While it is chal-

26



lenging to directly evaluate σ2
ζ (t,M) without the knowledge of the true expected return

E(ys+1|Is), it is however possible to indirectly assess its impact by examining the evolution

of the forecast coefficient ρt. The degree of evolution of ρt can be measured by its time series

variance, which can be computed using the moving window variance of ρ̂t.

Var(ρt) =
1

L

t∑
s=t−L

(ρ̂s − ρ̄t)
2, ρ̄t =

1

L

t∑
s=t−L

ρ̂s

where ρ̂s is the estimated forecast coefficient in the s th forecast rolling window, and L is a

predetermined number of rolling estimators. Large/low values of Var(ρt) is a good measure

of assessing the degree of misspecifications of our forecasting model.

4.3.3 R2 Structural Break Tests

The previous subsection shows that the out-of-sample R2
t depends on weighing the ben-

efits of conditional forecasts vs. the drawbacks of misspecfication, i.e. comparing δt and

σ2
ζ (t,M). Naturally both components vary over time, but if a forecasting model is good and

robust, it should not vary too strongly over time, otherwise, at periods when the forecasting

method is not robust to the change of forecasting environment, R2
t may possess structural

breaks.

We re-write (4.7) as

R2
t = at − bt(M) + ∆t, where at =

δt
σ2
un(t)

, bt(M) =
σ2
ζ (t,M)

σ2
un(t)

, (4.8)

and ∆t is the statistical error, which is negligible in the discussion below. The decomposition

(4.8) identifies two sources of structural breaks on the time series of R2
t :

“common-break”: breaks on at, the benefits from conditional forecasts

“model-break”: breaks on bt(M), the specific error in the forecast model.

While both terms at, bt(M) may possess structural breaks over time, the former is shared by

all models, and the latter is model-specific. The robustness is mainly assessed by comparing

the structural breaks on the second component among different forecast models.
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On one hand, if the forecasting model, M, is robust to market instabilities, so that ŷs+1|s

is close to the true conditional expected mean E(ys+1|Fs) during most of periods, then

bt(M) should be close to zero. This would lead to R2
t ≈ at, so the OOSR2 time series may

only possess the common-break. On the other hand, if the model is not robust to market

instabilities/breaks, the large discrepancy between in-sample and out-of-sample E(yt+1|Ft)

would make bt(M) be a quite unstable process, then in addition to the common-break, the

OOSR2 series would also contain model specific breaks. 13 Consequently, models that lead

to more robust forecasts would contain less structural breaks on the OOSR2 series on bt(M).

The following proposition formalizes the above discussions. Let h( t
T
) = (1, t

T
, ..., ( t

T
)k)

be a polynomial trending function up to some order k ≥ 0.

Proposition 2. Suppose Assumption 6 in the appendix holds. Then

(i) R2
t = at − bt(M) + oP (1).

(ii) Suppose both at and bt(M) have time trends meaning that they can be written as at =

c′h( t
T
) and bt(M) = d′h( t

T
), where c and d are vectors of trending coefficients, and

either may subject to multiple structural breaks at periods (τ1, ..., τq). Then

R2
t = µ′h

(
t

T

)
+ oP (1),

where µ is a vector of trending coefficients that have multiple structural breaks at periods

(τ1, ..., τq).

In Proposition 2, we say a trending coefficient vector c associated with a time series Xt

can have multiple structural breaks at periods (τ1, ..., τq) if it can be represented as

Xt = c′h

(
t

T

)
where c =



c1 t ≤ τ1

c2 τ1 < t ≤ τ2
...

cq+1 t > τq

.

13There is a third case, where the model is constantly bad so that |bt(M)| is stably large over time. This
model is robust, but uninteresting and we do not analyze this case further.
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These vectors c1, ..., cq+1 are different vectors on the q + 1 regimes (1, τ1], (τ1, τ2], ..., (τq, T ].

As an intuitive example, suppose we use the linear trend h( t
T
) = (1, t

T
)′, and at = a is

a constant. In addition, suppose bt(M) has a linear trend with a single structural break

occurring at time τ1:

bt(M) =

 t
T

t ≤ τ1

2− t
T

t > τ1.

Then the R2
t series also has a structural break at τ1, because (ignoring the oP (1) term),

R2
t ≈

a− t
T

t ≤ τ1

a− 2 + t
T

t > τ1.

Our OOSR2 decomposition is similar in spirit to results in Giacomini and Rossi (2009),

Paye and Timmermann (2006); Pettenuzzo and Timmermann (2011), who identified the

parameter instabilities as one of the major sources of forecast breakdowns in parametric

models. In a nonparametric setting, our analysis reaches qualitatively similar conclusion

that the forecast breakdown may occur through the term bt(M). 14

Because of the trending structure of R2
t , testing for structural breaks in at−bt(M) gives us

a way of evaluating the robustness of the forecasting model. However, for technical reasons,

it is not convenient to directly implement structural break tests in the R2
t sequence itself.

The results of West (1996); McCracken (2007) show that for regular forecasting models,

the error term in the R2
t process satisfies ∆t =

1
|St|
∑

s∈St
εs(1 + oP (1)) for some zero-mean

random variable εs. Hence

∆t = ∆t−1 +
1

|St|
εt−1 + oP (|St|−1). (4.9)

So ∆t is nearly a unit-root process which creates obstacles of applying the test directly on

R2
t . We resolve this issue by taking the first difference, ∆R2

t := R2
t − R2

t−1. Then (4.7) and

14Similar ideas for assessing forecast stability also appeared in the forecast literature. For instance,
Rossi (2021) argue that forecast instabilities can refer to the forecast performance rather than the forecasts
themselves. Even if forecasts may be stable, yet the forecast performance may display instabilities because
predictability varies over time.
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(4.9) imply

∆R2
t = ϑt +

1

|St|
εt−1 + oP (|St|−1), where ϑt := θt − θt−1.

The change process now has a stationary error term 1
|St|εt−1, and we can test for outliers in

ϑt. In practice, it is also meaningful to test for breaks in ∆R2
t to see if the change of R2

dramatically differs at certain periods. Another motivation of testing for breaks in the ∆R2
t

process rather than in R2
t itself is that differencing can eliminate serial correlations.15

For implementation, we assume that ϑt has a linear trend, i.e.

∆R2
t = c1 + c2

(
t

T

)
+ noiset (4.10)

where the coefficients c = (c1, c2) may be subject to multiple breaks at unknown locations.

We can apply the techniques originally developed by Bai and Perron (1998, 2003), to detect

breaks/outliers in (4.10), which treat both the number of breaks and the locations of breaks as

unknown parameters.16 Also note that while all forecasting models fail to capture E(yt+1|Ft)

during periods of volatile markets such as financial crises, we should favor models with fewer

estimated breaks.

5 Comparison with other ML based predictions

5.1 A high level summary of the comparison

There are two more commonly used ML approaches that readers may wonder how they

perform. One of them, which we call “naive” CML approach, is to simply apply the cross-

sectional DNN on the last period:

m̂T (z) = arg min
m∈DNN

N∑
i=1

(xi,T −m(zi,T−1))
2 (5.1)

15Bai and Perron (2003) has conducted extensive simulations to verify the performance of their tests, and
found that serial correlation in the data series can induce significant size distortions.

16As discussed by Bai and Perron (2003), the same method can be applied to estimating both structural
breaks and outliers, which is based on the least squares treating the breaking regimes and outlier periods
as unknown parameters in the least squares problem. Also see discussions in Perron and Rodŕıguez (2003),
where first-order differencing for I(1) processes produces higher powers for detecting outliers.
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and substitute with the “new” zi,T and forecast using:

ŷT+1,naive CML :=
N∑
i=1

wim̂T (zi,T ).

The other approach is more often referred to as “pooled ML” (Gu et al., 2020): First,

estimate a conditional expectation function as:

m̂(z) = arg min
m∈ML

T∑
t=1

N∑
i=1

(xi,t −m(zi,t−1))
2 (5.2)

where “ML” denotes a machine learning space. This function m̂(·) is trained using data

(xi,t, zi,t−1) pooled over all time periods and cross-sections. Then plug-in the “new” charac-

teristic, zi,T , and construct value-weighted market predictor:

ŷT+1,pooledML :=
N∑
i=1

wix̂i,T+1,ML, where x̂i,T+1,ML := m̂(zi,T ). (5.3)

In this section we shall analyze the structure of these two machine learning predictions

and compare with our proposed method. Recall that the true out-of-sample return is

yT+1 = ρ̃′f,TfT+1 + ϵ̃T+1 = ρ0,T + ρ′g,TgT + ϵT+1

which has two representations: either via contemporaneous stock factors, or via lagged BM-

factors. Let

yT+1|T = ρ0,T + ρ′g,TgT .

We show:

ŷT+1|T →P yT+1|T , our proposed method

ŷT+1,naive CML →P ρ̃′f,TfT , naive CML

ŷT+1,pooledML →P ρ̃′f,TE(fT+1|Fz,T ) = E(yT+1|T |Fz,T ) (5.4)

where Fz,T denotes the filtration generated by characteristics zi,t up to T . Result (5.4)

provides clear econometric insights of these three ML-based predictors, where the first is
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the proposed CML prediction, and the other two have been popularly used in asset pricing.

They show that: (1) under correct specification, the CML correctly captures the conditional

expected return. (2) The naive CML is wrong as it only captures the lagged stock factors,

yet there is a huge gap between the contemporaneous and lagged stock factors. (3) the

pooled ML captures the unconditional expected return E(yT+1|T |Fz,T ), but is missing the

factor realization yT+|T − E(yT+|T |Fz,T ).

5.2 Compare with “naive” CML

Unlike the proposed CML, this method uses only the last period to conduct DNN but

does not estimate local PCA or any factors. As the last period xi,T = hβ,T (zi,T−1)
′fT + ui,T ,

the cross-sectional DNN removes the idiosyncratc error but retains the risk factor fT , so

m̂T (z) →P hβ,T (z)
′fT .

Note that the factor realization fT on the right hand side is latent and part of the estimated

neural network function m̂T (z). Now substitute to z = zi,T ,

m̂T (zi,T ) ≈ hβ,T (zi,T )
′fT = β′

i,TfT . (5.5)

As a result, it forecasts:

ŷT+1,naive CML →P

N∑
i=1

wiβ
′
i,TfT , (5.6)

whereas the true asset return should be

yT+1 =
∑
i

wixi,t+1 ≈
∑
i

wiβ
′
i,TfT+1. (5.7)

Comparing the last two displayed equalities, we see that there is a substantial gap between

the forecaster and the target: the former depends on the lagged factor fT whereas the latter

is driven by the contemporaneous factor fT+1. The gap between the two could lead to

substantial misleading forecast results because the lagged stock return factors fT may carry

little information of the factor innovation fT+1.
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5.3 Compare with pooled ML

We now analyze the pooled ML. According to (2.3), the true future market index can be

represented as:

yT+1 = yT+1|T + ϵT+1, where yT+1|T = ρ0,T + ρ′g,TgT . (5.8)

We can further decompose the conditional expected return into the sum of a unconditional

expected return, plut the factor realization:

yT+1|T = E(yT+1|T |Fz,T )︸ ︷︷ ︸
unconditional ER

+ ρ′g [gT − E(gT |Fz,T )]︸ ︷︷ ︸
factor realization

(5.9)

Proposition 3 below shows that the pooled machine learning predictor captures the un-

conditional expected return, but not the factor realization:

ŷT+1,pooledML →P E(yT+1|T |Fz,T ) = ρ0 + ρ′gE(gT |Fz,T ).

So the pooled machine learning does not predict yT+1|T , but only E(yT+1|T |Fz,T ). The key

difference between the two is that E(yT+1|T |Fz,T ) does not preserve the BM-factor realization

gT , which may be the main source of variation driving the conditional expected return (CER).

In contrast, our approach can forecast the CER:

ŷT+1|T →P yT+1|T . (5.10)

Combining (5.9)-(5.10), we can express the true future market return using these estimates:

yT+1 = ŷT+1,pooledML + factor realizations︸ ︷︷ ︸
ŷT+1|T

+ϵT+1 + oP (1),

which shows:

forecast error of ŷT+1,pooledML = factor realization + ϵT+1

forecast error of ŷT+1|T = ϵT+1.
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Therefore, one can infer that ŷT+1|T , once consistently estimating yT+1|T , has strictly less

forecast error than the pooled ML approach asymptotically.

To see the consequence of such a comparison on a multiple-forecast context, we conduct

one-step-ahead forecast yt+1 for multiple periods t ∈ S respectively using the proposed

method ŷt+1|t and the pooled machine learning ŷT+1,pooledML, and obtain their corresponding

OOSR2. The comparison as being discussed well relates to the OOSR analysis in Section

4.3. For model Mpooled being the pooled ML, its specification error is

E(yT+1|FT )− E(yT+1|FT ,Mpooled) = yT+1|T − E(yT+1|T |Fz,T ),

which gives rise to

bT (Mpooled) =
1

σ2
un(T )

1

|S|
∑
s∈S

(
ys+1|s − E(ys+1|s|Fz,s)

)2
.

Such specification error impacts on the OOSR2 of the pooled machine learning, leading

to suboptimal forecasts. The following proposition formalizes this in the neural network

context.

Proposition 3 (Comparison with Pooled ML). Consider a factor model for stock returns

xi,t = gα(zi,t−1)+hβ,t(zi,t−1)
′ft+uit where gα and gβ are respectively mapping characteristics

to alphas and betas. In addition, consider the pooled machine learning method (5.2)-(5.3)

with neural network methods, and suppose Assumption 5 in the appendix hold. Then

ŷT+1,pooledML →P E(yT+1|T |Fz,T ). (5.11)

In addition, suppose model (2.5)-(2.2) is correctly specified. Then when the number of

predictions in S grows, with probability approaching one,

R2(ŷT+1|T ) > R2(ŷT+1,pooledML), (5.12)

where the left and right hand side are respectively the OOSR2 of the proposed method and

the pooled ML.
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5.4 Model Ensemble Using Forecast Standard Error

The CML model requires the factor structure assumption outlined in Section . Namely,

both the market return and the contemporaneous stock factors depend on the lagged BM-

factor gt with stable coefficients:

yt+1 = ρ0,t + ρ′g,tgt + ϵt+1,

ft+1 = Φ0 + Φggt + et+1. (5.13)

It is crucial to note that the validity of these assumptions may exhibit temporal variability.

Moreover, as elucidated in the preceding subsection, the CML dominates the pooled ML by

capturing the factor realization ρ′g[gT−E(gT |Fz,T )]. However, this advantage diminishes when

the contemporaneous return depends less on the lagged gT . Consequently, it is reasonable

to anticipate that neither the CML nor the pooled ML uniformly dominates each other.

This is a natural concern as good forecasting models may be successful only for a brief

period of time as market conditions change and investors adapt their behavior. This phe-

nomenon is also supported by the efficient market hypothesis – when a trading rule helps

forecast future returns and makes near arbitrage profits, other money follows and the profits

vanish and the trading strategy “stops working.” An important progress in the literature

that addresses this issue is Farmer et al. (2022), who develop a “pocket of forecast” frame-

work to incorporate multivariate information into the forecast. Each forecasting algorithm

is successful only for a brief period of time, so the overall performance can be improved by

ensembling multiple models. Bianchi et al. (2023) investigated the idea of model averaging

in more depth, and and showed that it can compete with economically motivated predictive

regressions.

We develop their idea by ensembling the two machine learning methods: CML and pooled

ML. Ensembling both ML-based forecasts could take advantage of the dynamic performance

of either methods. Instead of developing a “pockets forecast” we adopt the procedure of

Black and Litterman (1990), which is essentially a Bayesian updating rule for computing the

conditional mean yt+1|t. Specifically, suppose in period t the investor has a prior distribution

for the expected return:

yt+1|t ∼ N (πt,Σt) (5.14)
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Then with the predicted index ŷT+1|T , the investor wants to update the expected index

return. The Black-Litterman model treats ŷT+1|T as a noisy observation generated from a

distribution centered at yT+1|T . We can apply Proposition 1 and set this distribution as the

predictive distribution:

ŷt+1|t ∼ N (yt+1|t, SE(ŷt+1|t)
2). (5.15)

Combining (5.14) and (5.15), the posterior mean of yt+1|t is, by Bayes’ theorem,

ŷent+1|t := E(yt+1|t|ŷt+1|t) = wtŷt+1|t + (1− wt)πt, wt =
Σt

SE(ŷt+1|t)2 + Σt

. (5.16)

which ensembles the proposed predictor ŷt+1|t with the benchmark predictor πt. As for the

“prior”, we specify πt = ỹt+1,ML, the pooled-ML forecast so that ŷent+1|t is an ensemble fore-

cast of the conditional-ML and the pooled-ML. In addition, we use the (backward-looking)

average of the squared standard error:

Σt = average of SE(ŷs+1|s)
2, s = 1...t

This yields the ensemble forecast:

ŷent+1|t = wtŷt+1|t + (1− wt)ỹt+1,ML. (5.17)

We choose the pooled-ML as the prior predictor because as the prior, it requires much

less conditions on the model specification than the CML does. That is, its validity does

not require conditions (5.13). In contrast, due to the extra conditions of factor structures,

the CML is not suitable as the prior. Meanwhile, on one hand the predictive distribution

requires the availability of forecast standard error, which is not readily available for the

pooled-ML. On the other hand, our proposed CML admits a nice forecast standard error

SE(ŷt+1|t), making it suitable to be specified in as a complete predictive distribution as in

(5.15).

The forecast weight wt is decreasing function of SE(ŷt+1|t)
2. In periods when the forecast

standard error, and thus the uncertainty, is smaller, ŷent+1|t is weighted more by the CML.

The intuition is that a large standard error of the CML method would indicate a large value

of idiosyncratic volatility, suggesting that the factor-based forecast would not help at this
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period. It is then better off to put higher weights on the pooled ML, which does not depend

on any realized factors in the prediction.

6 Empirical Analysis

6.1 Data and the moving window

We use stock returns, volume and price data from the Center for Research in Security

prices (CRSP) monthly stock file. Following standard conventions in the literature, we

restrict the analysis to common stocks of firms incorporated in the US trading on NYSE,

Nasdaq or Amex. Balance sheet data is obtained from Compustat. In order to avoid potential

forward looking biases, we lag all characteristics that build on Compustat annual by at least

six months and all that build on Compustat quarterly by at least four months. In order to

mitigate a potential back-filling bias as noted by Banz and Breen (1986), we discard the first

24 months for each firm.

Our main dataset is obtained from Chen and Zimmermann (2021) and consists of 87

firm characteristics that are available from 1955 - 2021. The firm characteristics feature a

combination of accounting information as well as versions of momentum and functions of

trading volume. Table 4 provides an overview of the characteristics we use in our main

empirical analysis. We use the imputation approach of Freyberger et al. (2021) to impute

missing characteristics. It should be noted that the predictors are not a randomly selected set

of features, but have been found to be successful cross-sectional predictors in the literature.

We detail the construction of the data set used for the main analysis in Appendix A.

Figure 6.1: The estimation window and notation adopted in this paper.

We use moving windows for estimation and predicting the market excess returns, in which

we fix the window size at T = 60 for estimation, and predict the market at month T + 1,
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then slide forward by one month. The first prediction occurs for December 1964, and the

last prediction is in December 2021.

Our main forecast model uses only the BM-factor ĝt, with a single estimated factor

(Kg = 1):

ŷT+1|T := ρ̂0 + ρ̂gĝT .

We refer this model to “CML”. As in many machine learning procedures, our approach also

contains tuning parameters. In many instances, there is little theoretical guidance on how

to choose these tuning parameters. For the purpose of equity premium forecasting, it is

desirable to adopt a tuning method that does not select models that display extremely good

in-sample fit, but are often prone to breaking down out-of-sample.

There have been mainly two tuning approaches in the forecasting literature. In the first

approach, one fixes a window of “tuning period” on which data are being used to tune the

model, and then fix the tuned model for subsequent forecasts in the “post-tuning” periods.

The other approach is to use time series cross-validation. It turns out neither approach is

suitable in our context for the concern of robust forecasts. First, the dynamics of the equity

risk premium are very subtle and even, the in-sample relationship is subject to change. For

example, Kelly and Pruitt (2013) document that dividend growth is predictable over some

periods, but not over others. Therefore, any models that is fixed for a long period of time

or predicates on stable predictive relationships is likely going to disappoint at some point.

Secondly, the standard statistical approaches for determining tuning parameters aim to find

the best model, by maximizing some measure of fit such as R2 or relatively mean-squared

error. These statistics are however, very sensitive to extreme observations, so that they can

be “fooled” by models that happen to work particularly well (or poorly) in 1-2 periods.

We therefore adopt a new approach to tuning to achieve more robust predictions. Camp-

bell and Thompson (2008) argue that it is sensible from an economic point of view to

constrain models for forecasting the equity risk premium to always yield a positive forecast

and that it also leads to better out-of-sample performance. We incorporate this insight in

our tuning procedure and use the model for out-of-sample prediction that most consistently

produces a positive forecast of over the tuning period. More formally, we find the best model

38



to achieve

at tuning period τ : M∗
τ := arg max

Mτ∈M

∑
t∈tuning periodτ

1{ŷt+1|t(Mτ ) > 0}

where ŷt+1|t(M) is the forecast index using model M during the tuning period.17 This corre-

sponds to a specific choice of tuning parameters in the tuning set M.

We repeat this tuning procedure every twelve months using the past 60 months as a

tuning period. Note that as the tuning period rolls forward, we could in principle choose a

different model every twelve months. We view this as a desirable feature since the equity

premium dynamics are likely very subtle and complicated so that choosing a different model

more frequently may yield a better approximation.

We evaluate the out-of-sample R2
t (OOSR2) to assess the prediction performance on two

aspects: the prediction accuracy and the prediction robustness. Let ys+1 denote the true

return from s to s+1, ŷs+1|s denotes the predicted return, and ȳs denote the in-sample time

series average of the return up to time s.

We consider two versions of OOSR2. In both definitions, the realized future return ys+1

never enters into model estimation or tuning, i.e. all measures of fit are strictly out-of-sample.

I. The [t : end]-R2
t :

[t : end] R2
t := 1−

∑
s≥t(ys+1 − ŷs+1|s)

2∑
s≥t(ys+1 − ȳs)2

. (6.1)

This version of OOSR2 varies the starting point, i.e. it evaluates the cumulative pre-

dictive performance, starting in month t through the end of the sample.

II. The [t0 : t]-R
2
t :

[1 : t] R2
t := 1−

∑t
s=t0

(ys+1 − ŷs+1|s)
2∑t

s=t0
(ys+1 − ȳs)2

. (6.2)

For this version of OOSR2, we fix the starting point and vary the end point, i.e. this

measure evaluates the cumulative predictive performance up to month t. This definition

of R2 is used e.g. in Goyal et al. (2021).

17If there are ties, we use the median forecast over the tied models.
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6.2 Forecast Accuracy

We assess the prediction accuracy using the time series average of OOSR2 and compare

six predictive methods:18

(i) (CML) The proposed conditional forecast. We estimate a single BM-factor and use

three neural networks at the firm level (Section A.2). The bandwidth for kernel smooth-

ing is tuned from 0.6 to 1 in 0.025 increments. In total, we choose from 54 models to

apply the adaptive tuning.

(ii) (PCA) Regular PCA applied to individual stock returns. We estimate three stock-

factors.

(iii) (PCA-ker) Kernel-based PCA applied to individual stock returns. We apply the adap-

tive tuning method to tune the number of stock-factors in {1, .., 4} and the bandwidth

for kernel smoothing in the range from 0.6 to 1 in 0.025 increments.

(iv) (GW-linear) Linear forecast using 16 predictors from Goyal et al. (2021).

(v) (GW-Fourier) Random Fourier transformation of 16 predictors from Goyal et al. (2021).

(vi) (Pooled ML) The pooled machine learning method.

We divide the forecast period into three parts: pre-millennium (1964-1999), pre-2008-

crisis (2000-2007) and post-2008-crisis (2008-2021), and respectively calculate the time series

average of R2
t , with respect to each of the three definitions over each period. The results are

given in Table 1 and time series plots are given in Figure 6.2.

Table 1 shows that the proposed method, CML, compares favorably relative to the other

methods, closely followed by the GW-Fourier predictors. Almost all measures of out-of-

sample R2 are positive for both methods, whereas they are mainly negative for the other

methods.

Figure 6.2 illustrates that the time series of [t : end]-R2
t is much more stable at beginning

than toward the end, whereas the trend is opposite for the [1 : t]-R2
t . This observation is

also reasonable because toward the end of the forecast periods, less months of forecast errors

18We refer to Section A.2 for more detailed explanation of PCA-ker, GW-linear and GW-Fourier.
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Table 1: Time series averages of R2
t (in percentage)

This table shows the time series average of OOSR2 during the period given in the first column. Here R2
t is evaluated using two

definitions: [t : end] and [1 : t]. We respectively trim off the the last 20 months for the [t : end]-R2
t , and the first 20 months for

the [1 : t]-R2
t so that there are at least 20 months of forecasts in computing R2

t at each t. The estimation uses 60-month moving
window as the in-sample period, and conducts one-month ahead forecast, then slides forward by one month. Both PCA and
PCA-ker used three factors. All R2 measure are in percentage. The sample period is December 1964 - December 2021.

Forecast periods
1964-1999 2000-2007 2008-2021 full period

[t : end]-R2
t CML 1.733 1.384 -0.185 1.258

PCA -8.928 -2.824 -8.654 -7.967
PCA-ker -5.244 -6.578 -14.259 -7.443
GW-linear -25.17 -47.69 -39.85 -31.45
GW-Fourier 0.291 0.026 0.013 0.196
Pooled-ML 0.160 0.459 1.663 0.536

[1 : t]-R2
t CML 0.657 1.606 1.741 1.069

PCA -3.108 -10.002 -7.841 -5.221
PCA-ker -2.135 -3.241 -3.149 -2.551
GW-linear -6.601 -0.899 -11.56 -6.898
GW-Fourier 0.457 0.373 0.319 0.413
Pooled-ML -0.629 -0.703 -0.599 -0.632
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Figure 6.2: The out-of-sample predictive R2
t (in percentage) and cumulative DSSE. The “conditional ML”

refers to the proposed conditional deep learning based forecast; “conditional ML” refers to the pooled deep
learning forecast. “ensemble” refers the weighted average of conditional ML and pooled ML, using the
forecast standard error as the weight. The estimation uses five-year moving windows (T = 60) to forecast
market index for T + 1. The computed R2

t correspond to one of the definitions in Section 6.1. The model is
tuned using the adaptive tuning described in Section 6.1.

are being computed in the [t : end]-R2
t , and this trend is opposite for the [1 : t]-R2

t . These

plots provide a more complete picture of the overall predictive performance than reporting

a single number out-of-sample R2
t at an arbitrarily chosen t. In addition, the bottom panels

of Figure 6.2 plot the cumulative difference-sum-squared-errors, defined as

DSSE(t) =
∑
s≤t

(ys+1 − ȳs)
2 −

∑
s≤t

(ys+1 − ŷs+1)
2

where ŷs+1 = ŷs+1|s for our predictor, and ŷs+1 = ŷs+1,ML for the pooled ML. An interesting

feature of the DSSE(t) plot is that an increase signifies improved predictive performance of

the model for period t+1, while a decrease indicates better performance of the sample-mean.

So for good predictors, the DSSE should be steadily rising when there is consistently good
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predictability, using the terminology of Farmer et al. (2022), “pockets of predictability”, with

fewer crashes.

The bottom left panel of the cumulative DSSE in Figure 6.2 shows that prior to 1978,

the proposed conditional ML forecast does worse than the sample average, and then has an

overall increasing trend. There are two noticeable “jumps” where it significantly outperforms

the sample average: July 1987 and June 2008. In contrast, the pooled ML does better with

a steady increasing cumulative DSSE prior to 1975. However, it decreases after May 1975

and then switches between increases and decreases afterwards until Jun 2008. The steady

increasing DSSE of the pooled ML forecast at the end of the forecasting period shows that

it outperforms the sample average during most of the time after June 2008.

The three right-most panels of Figure 6.2 plot the R2
t sequences and the cumulative

DSSE of the ensemble forecast. As introduced in Section 5.4, the ensemble forecast takes a

weighted average of the CML and the pooled ML, where the weight is determined by the

contemporaneous forecast standard error of the ŷt+1|t, reflecting the forecast uncertainty of

the CML. Overall, incorporating the uncertainty information delivered by the forecast stan-

dard error leads to good forecasts overall. From a pure accuracy perspective, the prediction

performance is comparable with that of ŷt+1|t before 2000, and is noticeably improved after-

wards. The DSSE plot steadily increases during most of the time after 2008, except for a

period of drop during 2004, showing that the ensemble method outperforms the benchmark

sample mean during most of the forecast periods.

Figure 6.3: The weight wt on the CML of the ensemble forecast (5.16) and (5.17), overlayed by shaded
US recession bands as reported by the National Bureau of Economic Research (NBER).
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Finally, one important observation from Figure 6.2 is the sudden change in June 2008,

which is during the 2008 financial crises. The top left panel shows a large “drop” in the

[t:end]-R2
t of the conditional ML. At first sight, this might suggest that our method perfor-

mance poorly during this time and onward. It appears counter intuitive, but our method

actually performs well at this period and thereafter. At this point, t0, we have the following

ordering of squared deviations:

(yt0 − ŷt0|t0−1)
2︸ ︷︷ ︸

squared deviation our method

< (yt0 − ȳt0−1)
2︸ ︷︷ ︸

squared deviation mean

< (yt0 − ỹt0,ML)
2︸ ︷︷ ︸

squared deviation pooled ML

.

This is corroborated by the first DSSE plots in the two bottom panels of Figure 6.2. The

DSSE(t0) of the conditional ML jumps, but that of the pooled ML drops at June 2008,

showing that the former outperforms whereas the latter underperforms relative to the sample

mean.

To understand this phenomenon, recall that the [t : end] - R2
t , which by definition,

summarizes the aggregated forecast performance after period t. Hence for all periods prior

to t0, the computed [t : end] - R2
t benefits from the superior performance of our method at t0.

Before the financial crises, the closer t is to June 2008, the larger outperformance is observed.

This explains the increase of R2
t on the left panel before the sudden drop. Afterwards, the

outperformance at t0 is no longer part of the sample which explains the drop in [t : end] -

R2
t for our method. The phenomenon can also be seen from the middle panel of Figure 6.2,

which plots the [1 : t] - R2
t . This version R

2
t does not benefit from the outperformance until

t0 is included, which explains the jump in June 2008. In contrast, pooled ML, uses a long

history of data and reacts slowly to market instability and thus forecasts poorly in June 2008

compared to the sample mean.

6.3 Explainability

To explain the dynamic predictability of the ML-based forecasts, we now analyze the

relevant volatilities constituting to the forecast standard error and prediction error. We plot

the evolution of moving average of squared factor realizations

g2T ∼ average of past 24 months estimated ĝ2T ,
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the idiosyncratic volatility

Var(ηi,T ) ∼ average of past 24 months estimated
1

N

N∑
i=1

Var(ηi,T ),

the factor-effect volatility

Var(ρ′gT ) ∼ average of past 24 months estimated Var(ρ′gT ),

and change of forecast coefficient:

Var(ρt) ∼ time series variance of past 24 months estimated ρ̂s.

Figure 6.4 plots the evolution of these volatilities.

6.3.1 The conditional ML

Figure 6.4 shows thas the evolution of both g2T and Var(ηi,T ) increase in the early sample

until mid-1980s, which explains the underperformance of the conditional ML forecast relative

to the sample mean in the early period as indicated by the R2 plot in Figure 6.2. Indeed, as

explained by our theory, the increasing volatilities amplify the forecast uncertainty and the

predictive error. In addition, the cumulative DSSE also decreases during 1995-2000, which

is also explainable by the evolution of the idiosyncratic volatility Var(ηi,T ), which maintains

a high level in this period.

Meanwhile, the superior prediction during 1985-1995 of the CML, evidenced by the mono-

tone increasing trend of the DSSE plot, is also explainable by the decreasing trend of g2T in

this period. In particular, the g2T plot in Figure 6.4 shows a clear decrease during 1990-1995,

and reaches a minimum value around June 1995. Also, both the idiosyncratic volatility and

squared factor realizations noticeably decrease during 2010-2015, explaining the superior

predictability of the CML in this period.

The two noticeable “jumps” on the DSSE plot, occurring at May 1998 and June 2008 are

both well explainable by the change of volatilities: in Figure 6.4, the evolution plots of g2T
and Var(ηi,T ) decrease and maintain at relatively small levels respectively in the neighboring

months of May 1998 and June 2008. In addition, the noticeable peek in both volatilities in
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Figure 6.4: The evolution plots of estimated g2T , Var(ηi,T ), Var(ρ′T gT ) and Var(ρT ). They are first
estimated using the conditional ML method. We then plot their moving average using the 24-month moving
window.

early 2010s explain the underperformance of the conditional ML with a decreasing DSSE

shortly after the 2008 jump.

6.3.2 Creative Destruction Index

To see a more pronounced economic relation between the market stability and the forecast

uncertainty, let us consider the “volatility of uncertainty”, defined as

stdt(wt) = 24 months time series standard deviation of wt,

which measures the variation of the forecast standard errors in a moving window up to

period t. This measures the volatility of forecast uncertainty at each time. As we discussed

for the explainability of the CML forecast, the forecast uncertainty depends on the volatilities

idiosyncratic noise and factors, which explains the success/failure of CML forecast. If one

of these volatilities varies dramatically for a period of time, stdt(wt) would significantly

increase.
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Figure 6.5 plots the creative destruction index (CDI), defined as the correlation between

firm sales and market capitalization rankings, along with stdt(wt). There is a clear pattern

that features the relationship of the CDI and stdt(wt). In periods when CDI drops and

reaches local valleys, stdt(wt) increases and peaks. This relationship can be confirmed by

runnning the regression:

CDIt = 0.81− 0.23× stdt(wt) + residual.

The slope is significantly negative (p value less than 6× 10−4). In summary, the correlation

between sales and market capitalization rankings is economically related to the forecast

uncertainty, and the relation is more pronounced to the volatility of the forecast standard

error. In periods when the sales and market capitalization rankings are less correlated,

the forecast standard error is less stable, indicating less robust market equity forecasts. In

addition, in periods when the correlation is low, the ML-based forecast can be remedied by

assigning less weights to the CML method, while giving more weights to the pooled ML

method.
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Figure 6.5: Creative Destruction Index (CDI) v.s. the 24-month moving standard deviation of wt, the
latter measure the volatility of the forecast uncertainty.
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6.3.3 The pooled ML

Moving on to the pooled ML, its predictability is also well explainable under this frame-

work. Theories show that the major source of forecast error of the pooled ML is the factor

shocks ρ′(gT − E(gT |Fz,T )), so the predictability is negatively impacted by the evolution of

the volatility Var(ρ′gt), which we also plot for its 24-month moving averages.

There are two noticeable periods in which the DSSE of pooled ML steadily increases: be-

fore 1970 and after 2015. Notice that these are the periods where Var(ρ′gt) takes a relatively

low value. Especially, Var(ρ′gt) decays after 2010 and reaches a local minimum around early

2012. This explains the superior of pooled ML over CML in this period. Except for these

periods, neither the cumulative DSSE nor the evolution of Var(ρ′gt) have monotonic trends,

explaining that the pooled ML does not universally outperform the in-sample average during

most of the forecasting period.

6.3.4 The impact of potential misspecifications

Finally, we also explain, to some extent, the impact of potential misspecifications. While

our model allows the forecast coefficient to vary over time, it is our assumption that is should

not vary too fast, and the faster it changes over time, the more severe the misspecification

problem is. The degree of evolution can be measured by its time series variance of Var(ρt)

in each forecast rolling window.

The last panel of Figure 6.4 shows that while the evolution of Var(ρt) periodically varies

throughout the forecasting periods, it peaks around early 2015, which also explains the

underperformance of the CML shortly after the jump in 2008 on the DSSE plot. Also, there

are periodical “local peaks” on the Var(ρt), which shows that the forecast coefficients are not

stable in these periods. These peaks suggest possible instabilities/strucural breaks for the

predicting performance, which are well detected by the structural break test, to be studied

in the next subsection.

6.4 Prediction Robustness

We evaluate the robustness of OOSR2 using two measures for the time series {R2
t : t ≥ 1}:

(i) time series variance and (ii) number of structural breaks. These measures capture distinct

aspects of forecast stability and robustness, and are not interchangeable. The time series
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Table 2: Time series standard deviation of R2
t (in percentage)

This table shows the time series standard deviation of OOSR2 during the period given in the first column. Here R2
t is evaluated

using three different definitions: [t : end], [1 : t], and 5-year moving. We respectively trim off the the last 20 months for the
[t : end]-R2

t , and the first 20 months for the [1 : t]-R2
t so that there are at least 20 months of forecasts in computing R2

t at each
t. The estimation uses 60-month moving window as the in-sample period, and conducts one-month ahead forecast, then slides
forward by one month. Both PCA and PCA-ker used three factors. All R2 measure are in percentage. The entire sample
period is December 1959 - December 2020, with the first forecast occurs in December 1964.

Forecast periods
1964-1999 2000-2007 2008-2020 full period

[t : end]-R2
t CML 0.186 0.235 0.570 0.839

PCA 3.581 0.231 2.367 3.755
PCA-ker 0.845 0.753 4.238 4.247
GW-linear 10.41 2.747 5.991 12.56
GW-Fourier 0.061 0.166 0.266 0.193
Pooled-ML 0.463 0.585 1.115 0.911

[1 : t]-R2
t CML 0.919 0.121 0.106 0.891

PCA 4.831 0.460 0.447 4.725
PCA-ker 0.916 0.197 0.406 0.904
GW-linear 19.66 3.059 2.531 15.91
GW-Fourier 0.644 0.062 0.059 0.512
Pooled-ML 1.746 0.291 0.275 1.368

variance represents the average squared deviations from the mean and is influenced by the

magnitude range of the time series. Conversely, the number of structural breaks reflects the

sensitivity of predictions to sudden market changes. Both are useful indicators to measure

the prediction robustness. In the subsequent analysis, we examine each measure separately.

6.4.1 Time series variance of R2
t

Table 2 presents the time series variance of the R2
t sequence across the three periods of

interest. In most scenarios, CML and GW-Fouriers exhibit comparable and generally smaller

variances, followed by PCA-ker applied to individual stock returns.

Interestingly, the variance of [t : end]-R2
t tends to be larger towards the end of the predic-

tion period compared to the beginning period. Conversely, the variance of [t0 : t]-R
2
t tends to

be smaller towards the end of the prediction period. This pattern aligns with intuition since
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[t : end]-R2
t is computed using fewer samples towards the end, while [t0 : t]-R

2
t is computed

using fewer samples at the beginning. Moreover, variance is generally sensitive to outliers

when the sample size is small.

Consequently, to primarily capture the nature of predictions while mitigating the influ-

ence of sample size, the variance of [t : end]-R2
t is more appropriate for assessing prediction

robustness during the beginning through mid-periods. Similarly, the variance of [t0 : t]-R
2
t is

more suitable for the mid- through the end period.

6.4.2 Structural break tests

An alternative method to evaluate the prediction robustness is to test for structural breaks

of the R2
t series for each method. We test for structural breaks using:

∆R2
t = θt + ϑt ·

(
t

T

)
+ et. (6.3)

Figure 6.6 plots the R2
t series with the detected structural breaks associated with each

series. For the [t : end]-R2
t , six breaks are detected on the CML prediction; seven breaks are

detected on the pooled-ML prediction, and no break is found on the ensemble prediction.

The detected breaks of the two ML-based predictions are fairly uniformly distributed across

the entire forecast periods. Meanwhile, for the [1 : t]-R2
t series, five breaks are detected on

CML, one dected on pooled-ML, and six are detected on the ensemble prediction.

As discussed in Section 4.3, we can roughly classify the detected breaks by “common

breaks” – due to changes in volatility, and by “model breaks”– due to changes of the model

misspecification. While it might be challenging to quantitatively classify the two types of

breaks, we can intuitively classify those “shared” by multiple forecast models as common

breaks, and those only appear to specific models as model specific breaks. We therefore list

the detected breaks in Table 3. Here “Common breaks” are the breaks that are detected on

the OOSR2 of at least two predictors among CML, pooled-ML and the ensemble prediction,

while the “Model breaks” are the breaks that are detected on model specific methods.

Important crises defined by NBER-recessions are detected as common breaks by the

structural break test. For instance, the common breaks detected by the [1 : t]-R2
t series

mainly occurred during early periods, respectively in September 1978 and October 1987,

matching with the Oil Shock in the 1970s. The break in October 1987, while not defined by
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Figure 6.6: Structural breaks of R2
t (top panel: the proposed method; the bottom panel: the pooled ML).

Vertical lines indicates where structural breaks are detected.

NBER recessions, is likely due to a sudden change on the true expected index return, causing

the sample-mean benchmark forecasts badly for this month. In addition, the common breaks

detected by the [t : end]-R2
t series occurred mainly towards the end of the forecasting period:

February 2003, January 2009 and February 2016. The first two are also defined by the NBER

recessions, respectively corresponding to the end of dot-bubble and the global financial crisis.

6.5 Economic Relevance

6.5.1 Interpretations of BM-factors

To relate the estimated BM-factors to economic state variables, Figure 6.8 plots the

estimated BM-factors alongside with Shiller CAPE ratio over the entire prediction period

December-1954 through December 2021. The plot shows that the two time series are posi-

tively correlated during most of the forecasting periods. The correlation during 1980 through

2000 is particularly high, which equals 0.80, and the overall correlation is 0.42 in this entire

period. But PE itself does not forecast the market index as well, with the overall OORS2

being negative.

The close correlation illustrates that our BM-factor is closely related to discount rates

and discount rate variation. But unlike the usual aggregated indices that utilizes firms’
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Table 3: Detected structural breaks on the R2
t time series

This table shows the structural breaks detected by the structural break test (Bai and Perron, 2003) respectively on the [t : end]-
R2

t and [1 : t]-R2
t time series, corresponding to the OOSR2 of three predictors: conditional machine learning (CML), pooled

machine learning (pooled-ML) and the ensemble method of the two based on the ML- forecast standard error. The “Common
breaks” are the breaks that are detected on the OOSR2 of at least two predictors, while the “Model breaks” are the breaks
that are detected on model specific methods.

[t : end]−R2
t

Common breaks Feb-2003, Jan-2009, Feb-2016

Model breaks CML Pooled-ML Ensemble
Jun-1978 Aug-1974
Sep-1987 Jun-1982
Apr-1996 Sep-1990

Jun-1997
[1 : t]−R2

t

Common breaks Sep-1978, Oct-1987

Model breaks CML Pooled-ML Ensemble
Jul-1970 Nov-1970 Jan-1971
Jun-2000 Jul-2002
Mar-2006 Dec-2008

Aug-2014

market capitalization as the weights, our BM-factor is weighted by the stock-betas. As the

stock-betas are much less noisy than the market capitalization, the BM-factor is relatively

stable except during a few periods of US recessions reported by the NBER. These are the

periods for which forecasting is very challenging due to the presence of structural breaks on

the conditional mean index returns.

6.5.2 Forecast Distribution for Portfolio Allocation

We apply the distribution derived in Proposition 1 to construct portfolios that incorporate

investors’ forecasts and the corresponding uncertainty around these forecasts into a portfolio

decision. At period T , an investor wants to allocate her investment into two assets: one

risky asset whose return is yT+1 and one risk-free asset rf . In addition, she has also obtained
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Figure 6.7: Plots of estimated BM-factors and Shiller cape ratio, overlayed by shaded US recession bands,
as reported by the National Bureau of Economic Research (NBER).

a forecast index ŷT+1|T using the proposed method.

Let ω be the investor’s allocation in yT+1 at the end of period T . Also let WT denote the

investor’s wealth at the end of period T . Then her next period wealth is

WT+1 = WT [ω(1 + yT+1) + (1− ω)(1 + rf )] .

Taking a utility function U(W ) = log(W ) the investor chooses ω to maximize expected

utility,

max
ω

EU(WT+1) = max
ω

∫
logWT+1pT (y)dy (6.4)

where pT (·) is the predictive distribution of the future index return. We assume the predictive

distribution is normal, and write

pT (y) ∼ N (µT , VT ) (6.5)

with conditional mean µT and variance VT . Here VT is set as the estimated residual variance

in the forecast model yt+1 = ŷt+1|t + et. The key question is how to compute µT such that it

incorporates the investor’s knowledge of the predicted index return.

The Black-Litterman’s model, as adopted for the model ensembling, is also useful to

compute µT . As we discussed earlier, it is essentially a Bayesian updating rule to reflect the

investor’s “view” of the market index into the investment. Importantly, applying the Black-

Litterman’s updating requires the distribution of the machine learning predictor ŷT+1|T to
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serve as the “likelihood” function. Meanwhile, the asymptotic theory we derived for our

robust machine learning predictor naturally yields such a distribution:

ŷt+1|t ∼ N (yt+1|t, SE(ŷt+1|t)
2).

We use a prior distribution yt+1|t ∼ N (π,Σ). Then set µT as the posterior mean for yT+1|T :

E(yt+1|t|ŷt+1|t) = wŷt+1|t + (1− w)π, w =
Σ

SE(ŷt+1|t)2 + Σ
.

Therefore, we set µT = E(yT+1|T |ŷT+1|T ) for the predictive distribution pT (y) in (6.5). An

appealing feature of such choice of µT is taking the forecast uncertainty, SE(ŷt+1|t), into

forecast account. For the prior distribution, we set π = ȳT as the index’s historical mean.

This prior can be viewed as an empirical Bayes approach that specifies prior distributions

that also depend on the data. For the prior variance, we apply Zellner’s g-prior (Zellner,

1986): Σ = gσ2, where σ2 is the sample variance of the market index return in the estimation

period, and we fix g = 1. Then µT incorporates both the historical mean in the usual mean-

variance analysis and the investor’s view about the index prediction.

The optimal portfolio weight, ω, is then obtained by maximizing expected utility of

terminal wealth:∫
log(WT rT+1)p(yT+1)dyT+1, rT+1 = ω(1 + yT+1) + (1− ω)(1 + rf ),

and yT+1 ∼ N (µT , VT ). We solve this problem numerically, varying ω on a grid of [0, 1.3],

where the upper limit 1.3 is chosen so that the the average ω over time is roughly equal

to one (average investment weight on the market). We label this procedure as “Robust-

FD” approach which constructs the portfolio that utilizes our robust forecast distribution.

We also implement this procedure by simply using the in-sample mean and variance of the

market index return for µT and VT , and construct the optimal portfolio without considering

the uncertainty around the input parameters. This serves as a natural benchmark, which

we label “regular”.

We assess the portfolio performance using the cumulative realized wealthWT+1 = WT rT+1
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and annualized Sharpe ratios:

SRt =
r̄[t0:t]

SE(r[t0:t])
×
√
12

where r̄[t0:t] and SE(r[t0:t]) respectively denote the out-of-sample mean and standard devia-

tions of rT+1 during the periods of the expanding window [t0 : t]. The period t0 of the first

investment is fixed to December 1959. Figure 6.8 plots the realized log wealth and Sharpe

ratio for a sequence of out-of-sample periods, where the realized wealth is defined using the

true return yT+1:

WT [ω̂(1 + yT+1) + (1− ω̂)(1 + rf,T+1)]

and ω̂ is the portfolio that numerically optimizes the expected utility. For a comparison, we

also plot the sequences of the market index return of the same period. The realized wealth

for the Robust-FD is significantly higher than the market prior to 2010, and is significantly

higher than the regular method after 2005. The plot of realized wealth for all the three

models shows two substantial drops: one occurs during the early 2000s recession and the

other one occurs during the 2007-2008 financial crisis. For Sharpe ratios, we also find that

the Robust-FD sequence is constantly higher than the other two methods.
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Figure 6.8: The Sharpe ratio is plotted based on expanding window ranging from January 1970 through
December 2021. “Robust-FD” refers to the portfolio constructed using the forecast distribution of our
proposed robust machine learning ŷt+1|t ∼ N (yt+1|t,SE(ŷt+1|t)

2), coupled with the Black-Litterman model;
“Regular” refers to the portfolio constructed using the sample average and variance for (µT , VT ); “Market”
refers to the market index return.
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7 Conclusion

In this paper we develop a conditional machine learning approach to predict an aggregate

market index leveraging the rich information from many predictors in a large cross section.

We focus on the robustness of predictions which does not predicate on stable long term

predictive relationships and does not require an expanding time series dimension to achieve

good properties. We also provide a rigorous theoretical analysis of the formal properties of

our estimation procedure and establish consistency and also derive confidence intervals of

the neural network predictions to quantify the uncertainty associated with the forecasts. In

addition, we show that the prediction robustness can be assessed by testing for structural

breaks on the out-of-sample R2
t time series.

Empirically, we find that our method compares favorably with leading competitors in

predicting a notoriously difficult target, the monthly US equity premium. Importantly, we

find that our method’s favorable performance does not stem from only a small number of

periods, but is distributed throughout the sample, and has fewer structural breaks than

some of the commonly used prediction models. We expect that our method will be useful

in many different forecast applications such as international equity and bond markets, in

which robustness might be an even larger concern due to limited time series availability.

Our method can also be applied to forecast macroeconomic quantities, which might also be

subject to instability as the structure of the economy is changing.
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A Data & Implementation Details

A.1 Main Data Set

We take the data set of Chen and Zimmermann (2021) as our starting point. The

dataset contains monthly data of a set of firm specific characteristics, as listed in Table 4.

We delete all cases for which book-to-market is not observed, and additionally delete the first

24 months of observations for each firm to avoid possible forward looking biases following

Banz and Breen (1986). This leaves us with a data set of 2,343,844 firm months observation

starting in January 1955. The last column in Table 4 shows what fraction of the data is

missing (after we have imposed the Banz and Breen (1986) filter and requiring that the

book-to-market ratio is observed). For all analyses, we rank-transform the characteristics to

[0, 1] as in Freyberger et al. (2020) and Kozak et al. (2020).

We also follow Freyberger et al. (2021) to impute the missing observations which uses the

cross-sectional and temporal relationship between and within a characteristic to obtain an

estimate of the characteristic value for the missing case. In order to simplify the procedure,

we only rely on the cross-sectional relationship between the characteristics for imputation

and use a linear model for imputation. We refer to Freyberger et al. (2021) for the full pro-

cedure and more details, but for convenience, we outline the approach for two characteristics

(Xi,1, Xi,2). For some firms, we observe X1 and X2, whereas X2 may be missing for some

firms, from the complete case, we can estimate the model Xi,2 = γ0 + γ1Xi,1 + ui. We can

then obtain an imputation for the missing characteristic X2 (for the firms for which it is

not observed) as X̂i,2 = γ̂0 + γ̂1Xi,1. We estimate the imputation models each month and

complete the missing observations this way.

Table 4: Overview of the Characteristics
This Table gives an overview of the characteristic used in the empirical analysis. They are obtained from Chen and Zimmermann

(2021). We refer to their paper and the companion website for the precise construction and reference to the original paper that

proposed these predictors.

Acronym Description Publication Year % missing

AM Total assets to market 1992 7.92
Accruals Accruals 1996 0.69
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Table 4: Overview of the Characteristics (continued)

AssetGrowth Asset growth 2008 0.05
BMdec Book to market using December ME 1992 0.00
BMf Book to market using most recent ME 1985 0.00
Beta CAPM beta 1973 0.00
BetaFP Frazzini-Pedersen Beta 2014 0.00
BetaTailRisk Tail risk beta 2014 23.49
BidAskSpread Bid-ask spread 1986 5.90
BookLeverage Book leverage (annual) 1992 0.00
CF Cash flow to market 1994 7.92
CashProd Cash Productivity 2009 8.89
ChAssetTurnover Change in Asset Turnover 2008 15.74
ChInv Inventory Growth 2002 0.05
ChInvIA Change in capital inv (ind adj) 1998 9.39
ChNNCOA Change in Net Noncurrent Op Assets 2008 0.98
ChNWC Change in Net Working Capital 2008 0.69
ConvDebt Convertible debt indicator 2016 0.00
Coskewness Coskewness 2000 0.00
DelCOA Change in current operating assets 2005 0.05
DelCOL Change in current operating liabilities 2005 0.69
DelFINL Change in financial liabilities 2005 0.96
DelLTI Change in long-term investment 2005 0.05
DelNetFin Change in net financial assets 2005 0.96
DivInit Dividend Initiation 1995 7.92
DivOmit Dividend Omission 1995 7.92
DivSeason Dividend seasonality 2013 53.74
DolVol Past trading volume 1998 3.43
EP Earnings-to-Price Ratio 1977 30.14
EntMult Enterprise Multiple 2011 22.77
ExchSwitch Exchange Switch 1995 7.92
FirmAge Firm age based on CRSP 1984 62.62
GrLTNOA Growth in long term operating assets 2003 2.40
GrSaleToGrInv Sales growth over inventory growth 1998 20.03
Herf Industry concentration (sales) 2006 15.81
HerfAsset Industry concentration (assets) 2006 15.81
HerfBE Industry concentration (equity) 2006 15.81
IdioRisk Idiosyncratic risk 2006 0.00
IdioVol3F Idiosyncratic risk (3 factor) 2006 0.00
IdioVolAHT Idiosyncratic risk (AHT) 2003 0.00
Illiquidity Amihud’s illiquidity 2002 4.30
IndIPO Initial Public Offerings 1991 7.92
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Table 4: Overview of the Characteristics (continued)

IndMom Industry Momentum 1999 7.92
IntMom Intermediate Momentum 2012 8.02
InvGrowth Inventory Growth 2012 37.05
InvestPPEInv change in ppe and inv/assets 2008 10.75
Investment Investment to revenue 2004 18.35
LRreversal Long-run reversal 1985 8.57
Leverage Market leverage 1988 8.16
MRreversal Medium-run reversal 1985 8.08
MaxRet Maximum return over month 2010 0.00
Mom12m Momentum (12 month) 1993 8.05
Mom12mOffSeason Momentum without the seasonal part 2008 7.95
Mom6m Momentum (6 month) 1993 7.98
MomOffSeason Off season long-term reversal 2008 8.03
MomOffSeason06YrPlus Off season reversal years 6 to 10 2008 20.44
MomSeason Return seasonality years 2 to 5 2008 8.03
MomSeason06YrPlus Return seasonality years 6 to 10 2008 20.34
MomSeasonShort Return seasonality last year 2008 7.98
NetEquityFinance Net equity financing 2006 0.72
NetPayoutYield Net Payout Yield 2007 32.70
PayoutYield Payout Yield 2007 46.87
Price Price 1972 0.00
PriceDelayRsq Price delay r square 2005 2.81
PriceDelaySlope Price delay coeff 2005 2.81
PriceDelayTstat Price delay SE adjusted 2005 2.83
RDIPO IPO and no R&D spending 2006 0.00
ResidualMomentum Momentum based on FF3 residuals 2011 1.37
ReturnSkew Return skewness 2016 0.45
ReturnSkew3F Idiosyncratic skewness (3F model) 2016 0.00
SP Sales-to-price 1996 8.08
STreversal Short term reversal 1989 0.00
ShareIss1Y Share issuance (1 year) 2008 8.09
ShareIss5Y Share issuance (5 year) 2006 15.37
ShareRepurchase Share repurchases 1995 0.00
Size Size 1981 0.00
Spinoff Spinoffs 1993 7.92
Tax Taxable income to income 2004 11.50
TotalAccruals Total accruals 2005 3.98
VarCF Cash-flow to price variance 1996 8.12
VolMkt Volume to market equity 1996 3.79
VolSD Volume Variance 2001 4.79

59



Table 4: Overview of the Characteristics (continued)

VolumeTrend Volume Trend 1996 5.90
grcapx Change in capex (two years) 2006 10.26
zerotrade Days with zero trades 2006 3.76
zerotradeAlt1 Days with zero trades 2006 3.34
zerotradeAlt12 Days with zero trades 2006 4.37

A.2 Implementations

In all our applications, we use feed-forward neural networks for estimation of expected

returns. As customary in neural network modeling, model fitting is carried out by stochastic

gradient descent (SGD). We use the adaptive moment estimation algorithm (Adam) intro-

duced by Kingma and Ba (2014). We use the default parameters for Adam in the Julia

package Flux. For all networks, we use ReLu activation functions, a learning rate of 0.001

and 2000 epochs. To ameliorate the sensitivity to starting values and similar to Gu et al.

(2020) we create an ensemble of five forecasts (each month) and then use the ensemble aver-

age in the subsequent analysis. We use between one and three hidden layers with 32 nodes

on the first hidden layer, 16 nodes on the second hidden layer (if it exists) and 8 nodes on

the third hidden layer (if it exists). This results in three different versions for estimates of

expected returns.

As one of the competing forecast models, we implemented a linear forecast using the

16 predictors from Goyal et al. (2021), estimated using ridge regression (GW-linear). In

addition, we also implemented the random Fourier transformations of 16 predictors (GW-

Fourier). This method, originated from Rahimi and Recht (2007), uses d random Fourier

bases as gi,t := (sin(πω′
iwt/2), cos(πω

′
iwt/2)) for i = 1, ..., d, where wt contains the 16 predic-

tors, and ωi ∼ N (0, 1). Then run the prediction regression:

yt+1 = ρ0 +
d∑

i=1

ρ′igi,t + noise. (A.1)

We take d = 300 and use ridge regression for (A.1). In addition, as the randomness of the

transformations would produce unstable forecasts, we repeat this process for 10 times, and

take the final forecaster ŷt+1|t as the average of them. Kelly et al. (2021) apply random Fourier
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features to the Welch and Goyal (2008) predictors and find these nonlinear transformations

greatly improve predictability at the aggregate index level, whereas a linear model using the

same 16 variables does not lead to predictive gains relative to the historical mean.

Finally, we also compared with the PCA-ker method, which is to allow time-varying betas

using kernel based PCA on individual stocks. In the econometric literature, this method was

first studied by Su and Wang (2017). Specifically, we estimate the stock-betas using β̂t−1

which equals
√
N times the N × Kf eigenvector matrix of St, corresponding to the top

eigenvalues of kernel-weighted stocks returns: 1
T

∑T
s=1 xsx

′
sKs,t. then apply a linear forecast

model using estimated stock-factors:

f̂t =
1

N

N∑
i=1

β̂i,t−1xi,t.
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B Technical Appendix

B.1 Technical Assumptions

B.1.1 Assumptions for Proposition 1: forecast confidence intervals

Our theoretical analysis requires on the forecast uncertainty relies on a set of regularity

conditions. Distribution theories for deep neural networks and time-varying conditional

factor models are rather sophisticated, hence needless to say, some technical conditions

are required, although we do not attempt to pursuing the minimum number of necessary

conditions. The conditions below can be classified into four categories:

I. Regulates the dependences of the data generating process (DGP).

II. Impose some moment-bounds on various quantities.

III. Quantifies the degree of time-varyingness on the betas and some second moments.

IV. Complexity and approximation theories of the deep neural network, as well as various

statistical convergences.

Assumption 1 (DGP). (i) E(ut|It−1, ft, gt, zt−1) = 0 and E(ηt|It−1, ft, gt, zt−1) = 0. Con-

ditioning on zi,t and ft, ηi,s are independent over i for all s, t. In addition, (uit, zi,t) is

independent over i.

(ii) ui,t and ηit are sub-Gaussian with uniformly bounded sub-Gaussian norm.

The first condition assumes the dependence structure of the DGP. In particular, we

allow the stock-idiosyncratic and BM- idiosyncratic ηt and ut to be possibly conditionally

correlated. We suppose that these noises are sub-Gaussian.

The following conditions requies some moment - bounds of various quantities. These

conditions extend those for the usual PCA to the time-varying case.

Assumption 2 (Bounds). (i) maxt
1
T

∑
s(1 + ∥fs∥)|Ks,t| < C, Var(ηit|zi,t, ft) < C,

E∥fs∥6 + E∥fs∥4∥gt∥2 + E∥fs∥4ϵ2t+1 < C, maxt ∥βt∥+maxt ∥λt∥ < C
√
N .

(ii) For all s, t, E∥ 1√
N
β′
s−1ut∥2 < C, ∥E(utu′t|ft, gt, ϵt+1)∥ < C, ∥E(utu′t|ft, It−1)∥ < C.

(iii) All singular values of 1
N
β′
tβt, Sf,t =

1
Th

∑
s fsf

′
sKs,t are bounded away from zero; the

top Kg singular values of 1
N
β′
tλt are bounded away from zero, uniformly over t.

(iv) S
1/2
f,t Σβ,tS

1/2
f,t has distinct eigenvalues. By “distinct”, we mean there is c > 0, so that

|νj(t)− νi(t)| > c for all j ≤ Kf and t ≤ T . Here νj(t) denotes the j th largest eigenvalue.
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Next, we quantify the “slow-varying” betas, to adopt the local-PCA. By “slow-varying”

betas, we assume that their trajectories are twice differentiable functions of time. This is

the standard treatment for conditional asset pricing, as in Ang and Kristensen (2012).

Assumption 3 (Slow-varying). There are functions βi(·), λi(·), sf (·) and J(·) so that

βi,t−1 = βi(
t
T
), λi,t−1 = λi(

t
T
), Eftf ′

t = sf (
t
T
) and vt = J( t

T
), where Σβ,t = plim 1

N
β′
t−1βt−1

and vt denotes the matrix of eigenvector of Σ
1/2
f,t Σβ,tΣ

1/2
f,t . In addition, βi(·), sf (·) and J(·)

are twice continuously differentiable, with bounded second derivatives.

Next, we impose three types of convergence properties as in the following assumption.

Assumption 4 (Convergence). (i) There is a diagonal matrix Āt so that

max
t

∥Āt − Σ
1/2
β,t Sf,tΣ

1/2
β,t ∥ = oP ((Th)

−1/2).

(ii) maxt
1
N
β′
t−1

1
TN

∑
s usf

′
sKs,t = oP ((Th)

−1/2) and

maxt
1
N
β′
t−1

1
T

∑
s(βs−1 − βt−1)

1
N
(fsf

′
s − Efsf ′

s)β
′
s−1β̂t−1V

−1
t Ks,t = oP ((Th)

−1/2).

maxit maxr1,r2 ∥ 1
T

∑
s βi,s−1,r1βi,s−1,r2(fsf

′
s − Σf )Ks,t∥ = oP (1).

Furthermore, conditioning on {fT , gT}, for some covariance matrix W = diag{W1,W2},

(

√
Th

T

∑
t

Ftϵt+1Kt,T ,
1√
N

vec(Ῡ′
Tβ

′
T−1ξT )) →d N (0,W )

where Ῡt is defined as the probability limit of Υt =
1
T

∑
s

1
N
fsf

′
sβ

′
s−1β̂t−1V

−1
t Ks,t.

(iii) Th3 = o(1) and Th→ ∞. Also, r2T + rTφN + rT δN = o(N−1) and

∥πm1 − πm2∥∞ ≤ C∥m1 −m2∥∞,

where π() denotes the projection onto the DNN space under the ∥h∥∞ = supx |h(x)| norm;

p(DNN) denotes the pseudo-dimension of the DNN space, see the definition in Bartlett et al.

(2019), and

δ2N =
p(DNN) log(NT )

N
,

φ2
N = max

t
inf

h∈DNN
sup
z

|h(z)−mt(z)|2

r2T = sup
h∈{τT gt+DNN}

inf
m∈DNN

∥m− h∥2∞. (B.1)
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Condition (i) is an identifiable condition. As it is well known that PCA- based methods

estimate factors and betas up to a rotation. Condition (i) in the assumption identifies the

probability limit of the rotation matrix, and is spiritually similar to the conditions imposed

by Bai and Ng (2013), but extends to the conditional factor model context.

Condition (ii) is a set of statistical convergence conditions. They are imposed in a

relatively high-level to allow some temporal dependences. In simpler cases with purely

independent data, both uniform convergence and the central limit theorem can be directly

verified.

Condition (iii) regulates the relative rates of the bandwidth for local-PCA, as well as the

approximation rates and complexity of the deep neural network space.

B.1.2 Assumptions for Propositions 2, 3

Assumption 5 (pooled ML). Let Fz,t denote the filtration of characteristics up to time t.

Define vt+1 := ft+1−E(ft+1|Fz,t). Define m(z) = gα(z)+hβ,t(z)
′E(ft+1|Fz,t). Let πm denote

the projection of m in the DNN space. Then:

(i) Conditioning on zi,t−1, the sequence of vt is alpha-mixing and sub-Gaussian and zi,t

is independent across i. (see various papers for the precise definition of alpha-mixing and

subexponential (Fan et al., 2013).)

(ii) E(ϵT+1|Fz,T ) = E(ui,T+1|Fz,T ) = 0, and E(ft+1|Fz,t) does not vary across t.

(iii) ∥gα∥∞ + ∥gβ∥∞ + supDNN ∥h∥∞ < C for some constant C > 0.

(iv) supz |πm(z)−m(z)| = oP (1) and p(DNN) logN = o(T ).

Assumption 6 (structural breaks). Let Ft denote the usual information set up to time t for

conditional forecasting, which includes both characteristic filtration Fz,t and latent factors ft.

(i) For the forecasting model M , suppose ŷs+1|s “converges” to some quantity, denoted by

E(ys+1|Fs,M), in the sense that 1
|St|
∑

s≥t[E(ys+1|Fs,M)− ŷs+1|s]
2 = oP (1).

(ii) E(ys+1|Fs,M) may not be equal to the true conditional mean E(ys+1|Fs) due to pos-

sible model specification errors/structural breaks. But the discrepancy has a limit σ2
ζ (t,M)

in the sense that 1
|St|
∑

s≥t[E(ys+1|Fs)− E(ys+1|Fs,M)]2 →P σ2
ζ (t,M).

(iii) E(ϵt+1|Ft) = 0.

(iv) There are σ2
un(t) and σ2

ϵ (t) so that 1
|St|
∑

s≥t(ys+1 − ȳs)
2 →P σ2

un(t) and
1

|St|
∑

s≥t ϵ
2
s+1 →P σ2

ϵ (t) at the periof of interest t.
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Perron, P. and G. Rodŕıguez (2003). Searching for additive outliers in nonstationary time

series. Journal of Time Series Analysis 24 (2), 193–220.

Pesaran, M. H. and A. Timmermann (1995). Predictability of stock returns: Robustness

and economic significance. The Journal of Finance 50 (4), 1201–1228.

Pettenuzzo, D. and A. Timmermann (2011). Predictability of stock returns and asset allo-

cation under structural breaks. Journal of Econometrics 164 (1), 60–78.

Polk, C., S. Thompson, and T. Vuolteenaho (2006). Cross-sectional forecasts of the equity

premium. Journal of Financial Economics 81 (1), 101–141.

Rahimi, A. and B. Recht (2007). Random features for large-scale kernel machines. Advances

in neural information processing systems 20.

Rapach, D. E. and M. E. Wohar (2006). Structural breaks and predictive regression models

of aggregate us stock returns. Journal of Financial Econometrics 4 (2), 238–274.

Rosenberg, B. and W. McKibben (1973). The prediction of systematic and specific risk in

common stocks. Journal of Financial and Quantitative Analysis 8 (2), 317–333.

Rossi, B. (2021). Forecasting in the presence of instabilities: How we know whether models

predict well and how to improve them. Journal of Economic Literature 59 (4), 1135–90.

Rossi, B. and T. Sekhposyan (2015). Macroeconomic uncertainty indices based on nowcast

and forecast error distributions. American Economic Review 105 (5), 650–655.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with relu

activation function. The Annals of Statistics 48 (4), 1875–1897.

Shanken, J. (1990). Intertemporal asset pricing: An empirical investigation. Journal of

Econometrics 45 (1-2), 99–120.

Stock, J. and M. Watson (2002). Forecasting using principal components from a large number

of predictors. Journal of the American Statistical Association 97, 1167–1179.

Su, L. and X. Wang (2017). On time-varying factor models: Estimation and testing. Journal

of Econometrics 198 (1), 84–101.

89



Timmermann, A. (2008). Elusive return predictability. International Journal of Forecast-

ing 24 (1), 1–18.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of equity

premium prediction. The Review of Financial Studies 21 (4), 1455–1508.

West, K. D. (1996). Asymptotic inference about predictive ability. Econometrica: Journal

of the Econometric Society , 1067–1084.

Zellner, A. (1986). On assessing prior distributions and bayesian regression analysis with

g-prior distributions. Bayesian inference and decision techniques .

90


