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A B S T R A C T

This paper studies the inferential theory for estimating low-rank matrices. It also provides
an inference method for the average treatment effect as an application. We show that the
least square estimation of eigenvectors following the nuclear norm penalization attains the
asymptotic normality. The key contribution of our method is that it does not require sample
splitting. In addition, this paper allows dependent observation patterns and heterogeneous
observation probabilities. Empirically, we apply the proposed procedure to estimating the
impact of the presidential vote on allocating the U.S. federal budget to the states.

1. Introduction

The task of imputing the missing entries of a partially observed matrix, often dubbed as matrix completion, is widely applicable
in various areas. In addition to the well-known application to recommendation systems (e.g., the Netflix problem), this problem is
applied in a diverse array of science and engineering such as collaborative filtering, system identification, social network recovery,
and causal inference.

In this paper, we focus on the following approximate low-rank model with a factor structure:

𝑌 =𝑀 +  ≈ 𝛽𝐹 ′ +  , (1.1)

where 𝑌 is an 𝑁×𝑇 data matrix which is subject to missing, 𝑀 is a latent matrix of interest, and  represents a noise contamination.
Importantly, 𝑀 is assumed to be an approximate low-rank matrix having an approximate factor structure 𝑀 ≈ 𝛽𝐹 ′, where 𝛽 is factor
loadings and 𝐹 is latent factors. In addition, we allow some entries of 𝑌 to be unobserved by defining an indicator 𝜔𝑖𝑡, which equals
one if the (𝑖, 𝑡) element of 𝑌 is observed, and zero otherwise. In this practical setting, we provide the inferential theory for each
entry of 𝑀 , regardless of whether its corresponding entry in 𝑌 is observed or not.

One of the widely used methods for the low-rank matrix completion is the nuclear norm penalization and it has been intensively
studied in the last decade. Candès and Recht (2009), Candes and Plan (2010), Koltchinskii et al. (2011), Negahban and Wainwright
(2012), and Chen et al. (2020b) provide statistical rates of convergence for the nuclear norm penalized estimator and a branch
of studies including Beck and Teboulle (2009), Cai et al. (2010), Mazumder et al. (2010), Ma et al. (2011), and Parikh and Boyd
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(2014) provide algorithms to compute the nuclear norm penalized estimator. However, research on inference is still limited. This
is because the shrinkage bias caused by the penalization, as well as the lack of the closed-form expression of the estimator, hinders
the distributional characterization of the estimator.

We contribute to the literature by providing an inferential theory of the low-rank estimation without sample splitting. Our
stimation procedure consists of the following main steps:

1. Using the full sample of observed 𝑌 , compute the nuclear norm penalized estimator 𝑀 and use the left singular vectors of
𝑀 as the initial estimator for 𝛽.

2. To estimate 𝐹 , regress the observed 𝑌 onto the initial estimator for 𝛽.
3. To re-estimate 𝛽, regress the observed 𝑌 on the estimator for 𝐹 .
4. The product of the estimators in Steps 2 and 3 is the final estimator for 𝑀 .

ote that steps 2–3 are only conducted once without further iterations.
An important contribution is that we do not rely on the sample splitting to make inference, but simply use the full (observed)

ample in every step of our procedure. There are at least three advantages to avoid sample splitting. First, the resulting estimator
sing sample splitting is unstable and random even conditioning on the data. Second, sample splitting requires relatively large 𝑇 in
ractice, because it practically works with only 𝑇 ∕2 observations. This is demanding in applied micro applications when 𝑇 is just
few decades. In the simulation study, we show that the performance of the estimator using sample splitting is worse than that of

he estimator without sample splitting when 𝑇 is relatively small. Lastly, sample splitting increases computational costs in multiple
ests because for each target time ‘𝑡’, we need to use different sample splitting.

Technically, we apply a new approach to showing the negligibility of the potential bias terms, by making use of a hypothetically
efined auxiliary leave-one-out (ALOO) estimator. We emphasize the word ‘‘auxiliary’’ because it is only introduced in the technical
rgument, but not implemented in the estimation. So it is a hypothetical estimator, which is to be shown that it is

(i) asymptotically equivalent to the initial estimator for 𝛽 in Step 1 and
(ii) independent of the sample used in the least squares estimation, namely, the sample in period 𝑡. Using the ALOO estimator,

e can separate out the part in the initial estimator for 𝛽, which is correlated with the sample in period 𝑡. Once we separate out
he correlated part, we can enjoy a similar effect to the sample splitting. And we show the separated correlated part is sufficiently
mall. Importantly, the leave-one-out estimator only appears in the proof as an auxiliary point of the initial estimator for 𝛽, so we
o not need to compute it in the estimation procedure, which allows us to remove the sample splitting step without implementing
ny additional steps.

Empirically, we apply the proposed procedure to making inference for the impact of the presidential vote on allocating the U.S.
ederal budget to the states. We find the states that supported the incumbent president in past presidential elections tend to receive
ore federal funds and this tendency is stronger for the loyal states than the swing states. In addition, this tendency is stronger

fter the 1980s.

.1. Relation to the literature

Very recently, some studies proposed the ways of achieving unbiased estimation for the inference of the nuclear norm penalized
stimator. Chernozhukov et al. (2019, 2023) propose a two-step least square procedure with sample splitting, which estimates the
actors and loadings successively using the least square estimations. As we discussed earlier, sampling splitting comes with several
ndesirable costs.

The idea of the ALOO estimator has been employed in other recent works such as Ma et al. (2019), Chen et al. (2019, 2020a,b)
nd Yan et al. (2021) as well. Among them, in particular, Chen et al. (2019) pioneered using this idea to convex relaxation of
ow-rank inference. This paper has some important contributions compared to Chen et al. (2019).

1. We consider a general nonparametric panel model which is an approximate low-rank model rather than an exact low-rank
model.

2. This paper accommodates more general data-observation patterns: the heterogeneous observational probabilities and the
correlated observation patterns by assuming the cluster structure and allowing dependence within a cluster.

3. The inferential theory for the average treatment effect estimation is provided as an application.
4. We formally address a technical issue concerning the ALOO estimator. The ALOO estimator is to be (hypothetically) calculated

by using the gradient descent iteration from the leave-one-out problem, which rules out, for example, samples in period 𝑡.
This exclusion is designed to guarantee the independence between the leave-one-out estimator and the period 𝑡 sample.
However, due to the non-convexity of the loss functions, the gradient descent iteration must stop where the gradient of the
loss function is sufficiently ‘‘small’’. If this stopping point depends on the sample in period 𝑡, as in Chen et al. (2019) who
derive the stopping point from the problem using the full sample, the leave-one-out estimator using this stopping point may
not be truly independent of the sample in period 𝑡. This dependence frustrates the analysis of the bounds regarding the
leave-one-out estimator. We provide two solutions for this potential dependence issue to be detailed in the paper.

5. Our method does not have an explicit debias step, but is based on refitting least squares. While we do not claim that this
estimator is advantageous over the explicit debiasing method, we view our estimator as the natural extension of ‘‘post model
selection methods’’ to the low rank framework.
2
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Other related works on inference include Xia and Yuan (2021), Xiong and Pelger (2023), and Jin et al. (2021). We compare
hese methods with ours in simulations.

Lastly, a comparison with other literature that takes advantage of a low-rank model to estimate the treatment effect would
e helpful. The close connection between low-rank completion and treatment effect estimation was first made formal by Athey
t al. (2021) who showed that the nuclear norm regularization can be useful for causal panel data by presenting the convergence
ate of the estimator. Another line of research develops inferential theories without sample splitting under different patterns of
reatment assignments. For example, Arkhangelsky et al. (2021) introduce a new estimator for the overall average treatment effect,
hat is designed to be more robust than the traditional difference-in-differences and synthetic control estimators, under the block-
tructured treatment assignments. Farias et al. (2021) also focus on the overall average treatment effect under the assumption that
he treatment assignment is sufficiently orthogonal to the tangent space of the underlying low-rank matrix parameter. They show
hat their assumption may incorporate the treatment patterns in the synthetic control literature. On the other hand, Agarwal et al.
2021) and Bai and Ng (2021) consider heterogeneous treatment effects. While they allow strongly dependent treatment assignments,
hey assume the availability of fully observed submatrices, where they apply PCA-based methods.

This paper is organized as follows. Section 2 provides the model and the estimation procedure as well as our strategy for achieving
he unbiased estimation. Section 3 gives the asymptotic results of our estimator. Section 4 provides the inferential theory for the
verage treatment effect estimator as an application. Section 5 presents an empirical study about the impact of the president on
llocating the U.S. federal budget to the states to illustrate the use of our inferential theory. Section 6 includes the simulation studies.
ection 7 concludes.

There are a few words on our notation. For any matrix 𝐴, we use ‖𝐴‖𝐹 , ‖𝐴‖, and ‖𝐴‖∗ to denote the Frobenius norm, operator
orm, and nuclear norm respectively. ‖𝐴‖2,∞ denotes the largest 𝑙2 norm of all rows of a matrix 𝐴. vec(𝐴) is the vector constructed
y stacking the columns of the matrix 𝐴 in order. Also, 𝜓𝑟(𝐴) is 𝑟th largest singular value of 𝐴. 𝜓max(𝐴) and 𝜓min(𝐴) are the largest
nd the smallest nonzero singular value of A. For any vector 𝐵, diag(𝐵) is the diagonal matrix whose diagonal entries are 𝐵. 𝑎 ≍ 𝑏
eans 𝑎∕𝑏 and 𝑏∕𝑎 are 𝑂𝑃 (1).

. Model and estimation

We consider the following nonparametric panel model subject to missing data problem:

𝑦𝑖𝑡 = ℎ𝑡
(

𝜁𝑖
)

+ 𝜀𝑖𝑡,

here 𝑦𝑖𝑡 is the scalar outcome for a unit 𝑖 in a period 𝑡, ℎ𝑡(⋅) is a time-varying nonparametric function, 𝜁𝑖 is a unit-specific latent state
ariable, 𝜀𝑖𝑡 is the noise, and 𝜔𝑖𝑡 = 1{𝑦𝑖𝑡 is observed}. Here, {ℎ𝑡(⋅), 𝜁𝑖, 𝜀𝑖𝑡} are unobservable. In the model, the (latent) unit states 𝜁𝑖
ave a time-varying effect on the outcome variable through ℎ𝑡(⋅). This model can be written in (1.1) using the sieve representation.
uppose the function ℎ𝑡(⋅) has the following sieve approximation:

ℎ𝑡(𝜁𝑖) =
𝐾
∑

𝑟=1
𝜅𝑡,𝑟𝜙𝑟(𝜁𝑖) +𝑀𝑅

𝑖𝑡 = 𝛽′𝑖𝐹𝑡 +𝑀
𝑅
𝑖𝑡 =𝑀⋆

𝑖𝑡 +𝑀
𝑅
𝑖𝑡 ,

here 𝛽𝑖 = (𝜙1(𝜁𝑖),… , 𝜙𝐾 (𝜁𝑖))′ and 𝐹𝑡 = (𝜅𝑡,1,… , 𝜅𝑡,𝐾 )′. Here, 𝑀𝑅
𝑖𝑡 is the sieve approximation error and, for all 1 ≤ 𝑟 ≤ 𝐾, 𝜙𝑟(𝜁𝑖) is

he sieve transformation of 𝜁𝑖 using the basis function 𝜙𝑟(⋅) and 𝜅𝑡,𝑟 is the sieve coefficient. Then,

𝑀 = [𝑀𝑖𝑡]𝑁×𝑇 , 𝑀𝑖𝑡 = ℎ𝑡(𝜁𝑖)

an be successfully represented as the approximate factor structure. In matrix form, we can represent the model as

𝑌 =𝑀 +  =𝑀⋆ +𝑀𝑅 +  = 𝛽𝐹 ′ +𝑀𝑅 +  , (2.1)

here we denote 𝑌 = [𝑦𝑖𝑡]𝑁×𝑇 , 𝑀 = [𝑀𝑖𝑡]𝑁×𝑇 , 𝑀⋆ = [𝑀⋆
𝑖𝑡 ]𝑁×𝑇 , 𝑀𝑅 = [𝑀𝑅

𝑖𝑡 ]𝑁×𝑇 , 𝛽 = [𝛽1,… , 𝛽𝑁 ]′, 𝐹 = [𝐹1,… , 𝐹𝑇 ]′, and  = [𝜀𝑖𝑡]𝑁×𝑇 .
Let  ∶= (𝛽, 𝐹 ,𝑀𝑅) be the triplet of random matrices that compose 𝑀 . In the paper, we allow the heterogeneous observation

robability, i.e., 𝑃 (𝜔𝑖𝑡 = 1) = 𝑝𝑖 and denote 𝛱 = diag(𝑝1,… , 𝑝𝑁 ). Here, we shall assume the sieve dimension 𝐾 is pre-specified by
esearchers and propose some data-driven ways of choosing 𝐾 in Appendix A.

.1. Nuclear norm penalized estimation with inverse probability weighting

To accommodate the heterogeneous observation probability, this paper uses the inverse probability weighting scheme, referred
o as inverse propensity scoring (IPS) or inverse probability weighting in causal inference literature (e.g., Imbens and Rubin (2015),
chnabel et al. (2016) and Little and Rubin (2019)), in addition to the nuclear norm penalization:

𝑀 ∶= arg min
𝐴∈R𝑁×𝑇

1
2
‖�̂�− 1

2𝛺◦ (𝐴 − 𝑌 ) ‖2𝐹 + 𝜆‖𝐴‖∗ (2.2)

where �̂� = diag(𝑝1,… , 𝑝𝑁 ), and 𝑝𝑖 =
1
𝑇
∑𝑇
𝑡=1 𝜔𝑖𝑡 for each 𝑖 ≤ 𝑁 , 𝛺 = [𝜔𝑖𝑡]𝑁×𝑇 and ◦ denotes the Hadamard product. As noted in Ma

and Chen (2019), this inverse probability weighting debiases the objective function itself. If there is heterogeneity in the observation
probability, ‖𝛱− 1

2𝛺◦ (𝐴 − 𝑌 ) ‖2𝐹 is an unbiased estimate of ‖𝐴 − 𝑌 ‖2𝐹 , which we would use if there is no missing entry, in the sense
hat E [‖𝛱− 1

2𝛺◦ 𝐴 − 𝑌 ‖

2 ] = 𝐴 − 𝑌 2 , while 𝛺◦(𝐴 − 𝑌 ) 2 is biased.
3

𝛺 ( ) 𝐹 ‖ ‖𝐹 ‖ ‖𝐹
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2.2. Estimation procedure

Although the inverse probability weighting enhances the estimation quality, the weighting alone cannot guarantee the asymptotic
ormality of the estimator because of the shrinkage bias. To achieve the unbiased estimation having the asymptotic normality, we
un the two-step least squares procedure. As noted previously, our estimation does not have the sample splitting steps. Our estimation
lgorithm is as follows:

Algorithm 1 Constructing the estimator for 𝑀 .

Step 1 Compute the initial estimator 𝑀 using the nuclear norm penalization.
Step 2 Let 𝛽 be 𝑁 ×𝐾 matrix whose columns are

√

𝑁 times the top 𝐾 left singular vectors of 𝑀 .
Step 3 For each 𝑡 ≤ 𝑇 , run OLS to get 𝐹𝑡 =

(

∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1
∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝑦𝑗𝑡.

Step 4 For each 𝑖 ≤ 𝑁 , run OLS to get 𝛽𝑖 =
(

∑𝑇
𝑠=1 𝜔𝑖𝑠𝐹𝑠𝐹

′
𝑠

)−1
∑𝑇
𝑠=1 𝜔𝑖𝑠𝐹𝑠𝑦𝑖𝑠.

Step 5 The final estimator 𝑀𝑖𝑡 is 𝛽′𝑖𝐹𝑡 for all (𝑖, 𝑡).

After deriving the initial estimator of loadings from the nuclear norm penalized estimator 𝑀 , we estimate latent factors and
loadings using the two-step least squares procedure. The final estimator of 𝑀 is then the product of the estimates for latent factors
and loadings.

2.3. A general discussion of the main idea

It is well-known that the nuclear-norm penalized estimator 𝑀 , like other penalized estimators, is subject to shrinkage bias which
complicates statistical inference. To resolve this problem, we use the two-step least squares procedure, i.e., Steps 3 and 4 in Algorithm
1. In showing the asymptotic normality of the resulting estimator 𝑀 , a key challenge is to show the following term is asymptotically
negligible:

𝑅𝑡 =
1

√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 −𝐻 ′

1𝛽𝑗 )

where 𝐻1 is some rotation matrix.1 This term represents the effect of the bias of the nuclear-norm penalization since 𝛽𝑗 is derived
from the nuclear-norm penalized estimator. Chernozhukov et al. (2019, 2023) resort to sample splitting to show the asymptotic
negligibility of 𝑅𝑡.

2.3.1. The auxiliary leave-one-out method
Motivated by Chen et al. (2020b), we show the asymptotic negligibility of 𝑅𝑡 without sample splitting by using two hypothetical

estimators which are asymptotically equivalent to the nuclear norm penalized estimator 𝛽. Namely, we consider a hypothetical
non-convex iteration procedure for the low-rank regularization, where singular vectors are iteratively solved as the solution and
show that this procedure can be formulated as the following two problems:

𝐿full(𝐵, 𝐹 ) = 1
2
‖𝛱− 1

2𝛺◦
(

𝐵𝐹 ′ − 𝑌
)

‖

2
𝐹 + 𝜆

2
‖𝐵‖2𝐹 + 𝜆

2
‖𝐹‖2𝐹

= 1
2
‖𝛱− 1

2𝛺◦
(

𝐵𝐹 ′ − 𝑌
)

‖

2
𝐹 ,(−𝑡) +

1
2
‖𝛱− 1

2𝛺◦
(

𝐵𝐹 ′ − 𝑌
)

‖

2
𝐹 ,𝑡 +

𝜆
2
‖𝐵‖2𝐹 + 𝜆

2
‖𝐹‖2𝐹 (2.3)

𝐿(−𝑡)(𝐵, 𝐹 ) = 1
2
‖𝛱− 1

2𝛺◦
(

𝐵𝐹 ′ − 𝑌
)

‖

2
𝐹 ,(−𝑡) +

1
2
‖𝐵𝐹 ′ −𝑀⋆

‖

2
𝐹 ,𝑡 +

𝜆
2
‖𝐵‖2𝐹 + 𝜆

2
‖𝐹‖2𝐹 . (2.4)

ere, ‖ ⋅ ‖𝐹 ,(−𝑡) denotes the Frobenius norm which is computed ignoring 𝑡th column and ‖ ⋅ ‖𝐹 ,𝑡 is the Frobenius norm of only 𝑡th
olumn. Note that the only difference between (2.3) and (2.4) is that the 𝑡th column of the goodness of fit part in (2.3) is replaced
y its conditional expectation in (2.4). So, {𝜔𝑗𝑡, 𝜀𝑗𝑡}𝑗≤𝑁 is excluded from the problem (2.4).

We emphasize that (i) both problems defined above are non-convex; (ii) both problems are ‘‘auxiliary’’, meaning that they are
ntroduced only for proofs, not actually implemented. (iii) Optimizing 𝐿(−𝑡)(𝐵, 𝐹 ) is an auxiliary leave-one-out (ALOO) problem,
eading to the ALOO estimator 𝛽(−𝑡) to be discussed below.

Because of the non-convexity, both hypothetical problems should be computed iteratively until the gradients of the non-convex
oss functions become ‘‘sufficiently small’’. However, the gradients do not monotonically decrease as iteration proceeds since the
roblem is non-convex. So, one cannot let it iterate until convergence is reached, but has to stop at the point where the gradient
s small enough. The choice of this ‘‘stopping point’’ is crucial in the analysis of the residual terms. Chen et al. (2019) define the
topping point using the full sample problem (2.3), which potentially causes dependence problem of the leave-one-out estimators.
e propose two approaches of addressing this issue.

1 Another term 1
√

∑𝑁 (𝜔 − 𝑝 )𝛽 𝐹 ′𝐻 ′−1(𝛽 −𝐻 ′𝛽 ) is also to be shown negligible, but the argument is similar to that of 𝑅 .
4

𝑁 𝑗=1 𝑗𝑡 𝑗 𝑗 𝑡 1 𝑗 1 𝑗 𝑡
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Approach I First, we derive the stopping point from the leave-one-out problem (2.4). Let 𝐵full,𝜏 and 𝐵(−𝑡),𝜏 be 𝜏th iterates of the
gradient decent for (2.3) and (2.4), respectively. Fix 𝑡 of interest and suppose we iterate both problems 𝜏𝑡 times, where 𝜏𝑡
depends on 𝑡. Define the ‘‘solutions’’ at 𝜏𝑡th iterations:

𝛽full,𝑡 = 𝐵full,𝜏𝑡 and 𝛽(−𝑡) = 𝐵(−𝑡),𝜏𝑡 .

Hence, they share the same stopping point 𝜏𝑡. Noticeably, although 𝛽full,𝑡 is a solution for the full sample problem (2.3),
it depends on 𝑡 through 𝜏𝑡. In this first approach, we derive the stopping point from the ALOO problem (2.4). Hence, it
ensures that the estimator 𝛽(−𝑡) using this stopping point is independent of the 𝑡th period sample, {𝜔𝑗𝑡, 𝜀𝑗𝑡}𝑗≤𝑁 . This introduces
nontrivial technical challenges. Namely, 𝜏𝑡, being derived from the problem 𝐿(−𝑡)(𝐵, 𝐹 ), depends on 𝑡, so the ‘‘full-problem’’
solution 𝛽full,𝑡 would therefore also depend on 𝑡. We derive the uniform convergence of both 𝛽full,𝑡 and 𝛽(−𝑡) uniformly in
𝑡 = 1,… , 𝑇 .

Being equipped with these two auxiliary non-convex estimators, we can bound 𝑅𝑡 in the following scheme:

1. First, decompose 𝑅𝑡 into two terms:

𝑅𝑡 =
1

√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 −𝐻 ′

1𝛽𝑗 )

= 1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 − 𝛽

(−𝑡)
𝑗 )

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝑎

+ 1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

(−𝑡)
𝑗 −𝐻 ′

1𝛽𝑗 ).

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝑏

(2.5)

2. max𝑡 ‖𝑏‖ = 𝑜𝑃 (1) can be shown relatively easily due to the genuine independence between 𝛽(−𝑡) and {𝜔𝑗𝑡𝜀𝑗𝑡}𝑗≤𝑁 , which
is along the same line as sample splitting. Importantly, it is crucial to require that 𝜏𝑡 should not depend on observations
of time 𝑡. So the stopping time should be defined carefully, which is one of the main technical contributions of the
paper.

3. In addition, max𝑡 ‖𝑎‖ = 𝑜𝑃 (1) comes from the following two rationales:

𝑎 = 1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 − 𝛽

full,𝑡
𝑗 ) + 1

√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

full,𝑡
𝑗 − 𝛽(−𝑡)𝑗 ).

(a) 𝛽full,𝑡 ≈ 𝛽(−𝑡)

Their loss functions (2.3) and (2.4) are very similar and they share the same stopping point 𝜏𝑡. There-
fore, max𝑡 ‖𝛽full,𝑡 − 𝛽(−𝑡)‖ is sufficiently small. Following the guidance of Chen et al. (2020b), we apply the
mathematical induction.

(b) 𝛽 ≈ 𝛽full,𝑡

Note that 𝛽full,𝑡 is derived from the non-convex problem (2.3) and 𝛽 comes from the nuclear norm penalization
(2.2). Although the loss functions (2.2) and (2.3) are seemingly distinct, their penalty terms are closely related
in the sense that

‖𝐴‖∗ = inf
𝐵∈R𝑁×𝐾 ,𝐹∈R𝑇×𝐾∶𝐵𝐹 ′=𝐴

{1
2
‖𝐵‖2𝐹 + 1

2
‖𝐹‖2𝐹

}

.

Hence, max𝑡 ‖𝛽 − 𝛽full,𝑡‖ is sufficiently small. A technical innovation is that 𝛽full,𝑡 depends on 𝑡 so the uniformity
is crucially relevant.

Hence, we have max𝑡 ‖𝑅𝑡‖ = 𝑜𝑃 (1).

Approach II Alternatively, we can follow the definition of the stopping point in Chen et al. (2019), which uses the full sample.
And then, we correct their proof by showing that, although the leave-one-out estimator is not independent of the sample
data in period 𝑡, we can still obtain a uniform bound over iterations. Denote the stopping point from Chen et al. (2019) as
𝜏∗. In lieu of (𝐵full,𝜏𝑡 , 𝐵(−𝑡),𝜏𝑡 ), we use (𝐵full,𝜏∗ , 𝐵(−𝑡),𝜏∗ ) as the solutions for (2.3) and (2.4), respectively.

Recall the decomposition (2.5). The analysis of term 𝑎 is analogous to the previous case. Regarding term 𝑏, we highlight that
𝛽(−𝑡), which is 𝐵(−𝑡),𝜏∗ , is not independence from the sample in period 𝑡, i.e., {𝜔𝑗𝑡, 𝜀𝑗𝑡}𝑗≤𝑁 , since the stopping point 𝜏∗ depends
on it. We will provide a uniform bound over iteration 𝜏 and period 𝑡 for term 𝑏 ∶

max
𝑡

‖𝑏‖ = max
𝑡

‖

‖

‖

‖

‖

‖

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

(−𝑡)
𝑗 −𝐻 ′

1𝛽𝑗 )
‖

‖

‖

‖

‖

‖

= max
𝑡

‖

‖

‖

‖

‖

‖

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝐵

(−𝑡),𝜏∗
𝑗 −𝐻 ′

1𝛽𝑗 )
‖

‖

‖

‖

‖

‖

≤ max
𝑡

max
𝜏

‖

‖

‖

‖

1
√

𝑁
∑

𝜔𝑗𝑡𝜀𝑗𝑡(𝐵
(−𝑡),𝜏
𝑗 −𝐻 ′

1𝛽𝑗 )
‖

‖

‖

‖

= 𝑜𝑃 (1).
5

‖

‖

𝑁 𝑗=1 ‖

‖
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In either way, we can successfully show the negligibility of 𝑅𝑡 uniformly in 𝑡 without resorting to sample splitting. We highlight
hat the first approach is more natural in the sense that it automatically ensures the independence that we need for term 𝑏. Our
irst approach, while technically more involved, is potentially more applicable to general machine learning inferences that rely on
uxiliary leave-one-out estimators, because of the natural independence. In contrast, it is unclear whether the second approach is
till applicable in other cases.

.3.2. Why is the auxiliary leave-one-out problem defined in this way?
It is natural to ask why would not we define the ALOO estimator more naturally as the original estimator 𝛽, but simply dropping

he 𝑡 th column from the data matrix in the optimization? One of the key differences between 𝐿(−𝑡)(𝐵, 𝐹 ) in (2.4) and the ‘‘more
atural dropping-𝑡’’ loss, is that the 𝑡 th column in the least squares part of 𝐿(−𝑡)(𝐵, 𝐹 ) is not simply dropped, but is replaced by its

expectation:

E‖𝛱− 1
2𝛺◦

(

𝐵𝐹 ′ − 𝑌
)

‖

2
𝐹 ,𝑡 = ‖𝐵𝐹 ′ −𝑀⋆

‖

2
𝐹 ,𝑡 + 𝐶

where the constant 𝐶 does not depend on (𝐵, 𝐹 ). The reason for defining the ALOO loss function in this way is to gain ‘‘hypothetical
efficiency’’, so that the ALOO estimator would be closer to the full-sample estimator.

It is easier to understand the issue using a simple example. Consider estimating the mean E𝑌𝑡 using iid data 𝑌𝑡. The full-sample
estimator 𝜇 is the solution to

𝜇 = argmin
𝜇
𝐿(𝜇), where 𝐿(𝜇) =

𝑇
∑

𝑠=1
(𝑌𝑠 − 𝜇)2.

Now consider the ALOO version of this problem. Our definition of 𝐿(−𝑡)(𝜇) is not dropping 𝑌𝑡, but replacing (𝑌𝑡 − 𝜇)2 with its
expectation:

�̆�(−𝑡) = argmin
𝜇
𝐿(−𝑡)(𝜇), where 𝐿(−𝑡)(𝜇) =

∑

𝑠≠𝑡
(𝑌𝑠 − 𝜇)2 + E(𝑌𝑡 − 𝜇)2.

The solution is then �̆�(−𝑡) = 1
𝑇 (

∑

𝑠≠𝑡 𝑌𝑠 + E𝑌𝑡). Then straightforward calculations can verify that �̆�(−𝑡) (although infeasible) is more
efficient and ‘‘closer’’ to the full-sample average 𝜇 than the naive dropping-𝑡 estimator 𝑌−𝑡 ∶=

1
𝑇−1

∑

𝑠≠𝑡 𝑌𝑠. For instance,

Var(�̆�(−𝑡))
Var(𝑌−𝑡)

=
(𝑇 − 1

𝑇

)2
< 1,

E(�̆�(−𝑡) − 𝜇)2

E(𝑌−𝑡 − 𝜇)2
= 𝑇 − 1

𝑇
< 1.

The definitions of 𝐿(−𝑡)(𝐵, 𝐹 ) and 𝐿(−𝑡)(𝜇) also fulfill the intuition of the EM algorithm, which imputes the missing data in the
loss function by its conditional expectations before optimizations, rather than simply dropping the missing values.

2.3.3. Singular vector estimation is unbiased
From Algorithm 1, we see that there is no explicit debias step. In fact, in terms of estimating the singular vector space, the singular

vector estimator from the least square estimation following the nuclear norm penalization, 𝐹𝑡, is unbiased (up to a rotation).
To see this, note that the estimation of 𝐹𝑡 has the following maximization problem:

𝐹𝑡 ∶= arg max
𝑓∈R𝐾

𝑄𝑡(𝑓, 𝛽)

here 𝑄𝑡(𝑓, 𝐵) = −𝑁−1 ∑𝑁
𝑗=1 𝜔𝑗𝑡(𝑦𝑗𝑡 − 𝑓 ′𝑏𝑗 )2, 𝐵 = (𝑏1,… , 𝑏𝑁 )′ and 𝑏𝑗 are 𝐾 dimensional vectors. In this step, 𝛽 is the nuisance

parameter and 𝐹𝑡 is the parameter of interest. By Taylor expansion, we have, for some invertible matrix 𝐴,
√

𝑁(𝐹𝑡 −𝐻−1
1 𝐹𝑡)

= −
√

𝑁𝐴−1
𝜕𝑄𝑡(𝐻−1

1 𝐹𝑡, 𝛽𝐻1)
𝜕𝑓

−
√

𝑁𝐴−1
𝜕2𝑄𝑡(𝐻−1

1 𝐹𝑡, 𝛽𝐻1)
𝜕𝑓𝜕vec(𝐵)

vec(𝛽 − 𝛽𝐻1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑑

+𝑜𝑃 (1). (2.6)

he first term is the score which leads to the asymptotic normality and the second term represents the effect of the 𝛽 estimation
hich is subject to the shrinkage bias. The second term, while is the ‘‘usual bias’’ in a generic machine learning inference problem,

an be shown to take the form:

𝑑 =
√

𝑁𝜑𝐻−1
1 𝐹𝑡 + 𝑜𝑃 (1)

or some 𝜑 = 𝑜𝑃 (1). It has a useful feature of being on the space of 𝐹𝑡. Making use of this fact, (2.6) can be re-written as follows:

√

𝑁(𝐹𝑡 −𝐻2𝐹𝑡) = −
√

𝑁𝐴−1
𝜕𝑄𝑡(𝐻−1

1 𝐹𝑡, 𝛽𝐻1)
𝜕𝑓

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
asymptotically normal

+𝑜𝑃 (1)

y defining 𝐻2 ∶= (𝐼𝐾 + 𝜑)𝐻−1
1 . Note that the non-negligible bias term in 𝑑 is absorbed by the rotation matrix 𝐻2, and thus 𝐹𝑡 can

unbiasedly estimate 𝐹 up to this new rotation. Then, in Step 4 of Algorithm 1, 𝛽, the least square estimator using 𝐹 as a regressor,
6
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can unbiasedly estimate 𝛽𝑖 up to the rotation since 𝐹𝑡 has only a higher order bias now. As a result, the product of them estimates
𝑖𝑡 unbiasedly:

𝑀𝑖𝑡 = 𝛽′𝑖𝐹𝑡 ≈ 𝛽′𝑖𝐻
−1
2 𝐻2𝐹𝑡 =𝑀𝑖𝑡

hich allows us to conduct inference successfully. This is how the two-step least squares procedure works.

. Asymptotic results

.1. Inferential theory

This section presents the inferential theory. We provide the asymptotic normality of the estimator of the group average of 𝑀𝑖𝑡.
ur assumptions allow the rank 𝐾 to grow, but slowly. Remind the following notation:

ℎ𝑡(𝜁𝑖) =
𝐾
∑

𝑟=1
𝜅𝑡,𝑟𝜙𝑟(𝜁𝑖) +𝑀𝑅

𝑖𝑡 = 𝛽′𝑖𝐹𝑡 +𝑀
𝑅
𝑖𝑡 ,

here 𝛽𝑖 = (𝜙1(𝜁𝑖),… , 𝜙𝐾 (𝜁𝑖))′ and 𝐹𝑡 = (𝜅𝑡,1,… , 𝜅𝑡,𝐾 )′. Let 𝑆𝛽 = 𝑁−1 ∑𝑁
𝑖=1 𝛽𝑖𝛽

′
𝑖 , 𝑆𝐹 = 𝑇 −1 ∑𝑇

𝑠=1 𝐹𝑠𝐹
′
𝑠 , and 𝑄 = 𝑆1∕2

𝛽 𝑆1∕2
𝐹 .

ssumption 3.1 (Sieve Representation). (i) {ℎ𝑡(⋅)}𝑡≤𝑇 belong to ball 
(

, ‖⋅‖𝐿2
, 𝐶

)

inside a Hilbert space spanned by the basis
𝜙𝑟}𝑟≥1, with a uniform 𝐿2-bound 𝐶: supℎ∈(,‖⋅‖𝐿2 )

‖ℎ‖ ≤ 𝐶, where  is the support of 𝜁𝑖.

ii) The sieve approximation error satisfies: For some 𝜈 > 0, max𝑖,𝑡 |𝑀𝑅
𝑖𝑡 | ≤ 𝐶𝐾−𝜈 .

(iii) For some 𝐶 > 0, max𝑟≤𝐾 sup𝜁 |𝜙𝑟(𝜁 )| < 𝐶. In addition, there is 𝜂 > 0 such that 𝜓−1
min

(

𝑆𝛽
)

< 𝜂 and 𝜓−1
min

(

𝑆𝐹
)

< 𝜂 with probability
converging to 1.

(iv) (𝑁𝑇 )−1
∑

𝑖,𝑡 ℎ
2
𝑡 (𝜁𝑖) = 𝑂𝑃 (1).

(v) There are constants 𝛿, 𝑔 ≥ 0 such that 𝜓1(𝑄)∕𝜓𝐾 (𝑄) = 𝑂𝑃 (𝐾𝛿), min1≤𝑟≤𝐾−1 𝜓𝑟(𝑄) − 𝜓𝑟+1(𝑄) ≥ 𝑐𝐾−𝑔 for some constant 𝑐 > 0.

First, we present some assumptions for the sieve representation. Assumption 3.1(ii) is well satisfied with a large 𝜈 if
the functions {ℎ𝑡 (⋅)} are sufficiently smooth. For example, consider ℎ𝑡 belonging to a Hölder class: for some 𝑎, 𝑏, 𝐶 > 0,
{

ℎ ∶ ‖𝐷𝑏ℎ(𝑥1) −𝐷𝑏ℎ(𝑥2)‖ ≤ 𝐶‖𝑥1 − 𝑥2‖𝑎
}

. In addition, suppose that we take a usual basis like polynomials, trigonometric poly-
nomials, and B-splines. Then, max𝑖,𝑡 |𝑀𝑅

𝑖𝑡 | ≤ 𝐶𝐾−𝜈 , and 𝜈 = 2(𝑎 + 𝑏)∕dim(𝜁𝑖). So, Assumption 3.1(ii) is satisfied with very large 𝜈 if
ℎ𝑡 (⋅)} are smooth. In addition, the first part of Assumption 3.1(iii) can be satisfied if the basis is a bounded basis like trigonometric
asis or 𝜁𝑖 has a compact support. Assumption 3.1(iv) and (v) are not restrictive, and have been verified by Chernozhukov et al.
2023).

ssumption 3.2 (DGP for 𝜀𝑖𝑡 and 𝜔𝑖𝑡). (i) Conditioning on , 𝜀𝑖𝑡 is zero-mean, sub-gaussian random variable such that E[𝜀𝑖𝑡|] = 0,
[𝜀2𝑖𝑡|] = 𝜎2𝑖𝑡 ≤ 𝜎2, E[exp(𝑠𝜀𝑖𝑡)|] ≤ exp(𝐶𝑠2𝜎2), ∀𝑠 ∈ R for some constant 𝐶 > 0. We assume that 𝜎2 is bounded above and 𝜎2𝑖𝑡 are
ounded away from zero. In addition, 𝜀𝑖𝑡 is indepedent across 𝑖 and 𝑡.

ii) 𝛺 is independent of  . Conditioning on , 𝜔𝑖𝑡 is independent across 𝑡. In addition, E[𝜔𝑖𝑡|] = E[𝜔𝑖𝑡] = 𝑝𝑖 where 0 < 𝑝min ≤ 𝑝𝑖 ≤
𝑝max ≤ 1.

(iii) Let 𝑎𝑡 be the column of either 𝛺 −𝛱1𝑁1′𝑇 or 𝛺◦ . Then, {𝑎𝑡}𝑡≤𝑇 are independent sub-gaussian random vector with E[𝑎𝑡] = 0;
more specifically, there is 𝐶 > 0 such that

max
𝑡≤𝑇

sup
‖𝑥‖=1

E[exp(𝑠𝑎′𝑡𝑥)] ≤ exp(𝑠2𝐶), ∀𝑠 ∈ R.

We assume the heterogeneous observation probability across 𝑖. It generalizes the homogeneous observation probability assump-
tion which is a typical assumption in the matrix completion literature. The sub-gaussian assumption in Assumption 3.2(iii) helps us
to bound ‖𝛺◦‖ and ‖

‖

𝛺 −𝛱1𝑁1′𝑇 ‖‖.
While the serial independence of the missing data indicators 𝜔𝑖𝑡 is assumed, we allow they are cross-sectional dependence among

𝑖. In doing so, we assume a cluster structure in {1,… , 𝑁}, i.e., there is a family of nonempty disjoint clusters, 1,… ,𝜌 such that
∪𝜌𝑔=1𝑔 = {1,… , 𝑁}. So we divide units {1,… , 𝑁} into 𝜌 disjoint clusters. In addition, denote the size of the largest cluster by 𝜗.
That is, 𝜗 = max𝑔 |𝑔|𝑜. We highlight that 𝜗 is allowed to increase as 𝑁 and 𝑇 increase.

Assumption 3.3 (Cross-sectional Dependence in 𝜔𝑖𝑡). Cross sectional units 𝜔𝑖𝑡 are independent across clusters. Within the same cluster,
arbitrary dependence is allowed, but overall, we require max𝑡max𝑖

∑𝑁
𝑗=1 |Cov(𝜔𝑖𝑡, 𝜔𝑗𝑡|)| < 𝐶.

Due to the cluster structure in Assumption 3.3(i), we can construct a ‘‘leave-cluster-out’’ estimator 𝛽{−𝑖} which is independent
of the sample of unit 𝑖. Similarly to the idea of (2.3) and (2.4), we can rule out the samples of the cluster that includes unit 𝑖. The
7

difference from (2.4) is that we identify all the units which are in the same cluster as unit 𝑖 and replace their rows of the goodness
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of fit part by their conditional expectations.2 Together with the leave-one-out estimator 𝛽(−𝑡), the leave-cluster-out estimator 𝛽{−𝑖}
lays a pivotal role in showing the solution of (2.2) is close to that of (2.3).

The parameter for the cluster size 𝜗 is bounded by Assumption 3.4. For instance, in the case where 𝑁 ≍ 𝑇 and {ℎ𝑡(⋅)}𝑡≤𝑇 are
mooth enough, if we estimate the cross-sectional average of a certain period, the assumption requires 𝜗 ≈ 𝑜(

√

𝑁∕ log𝑁) since 𝐾 is
allowed to grow very slowly when {ℎ𝑡(⋅)}𝑡≤𝑇 are smooth.

We are interested in making inference about group-averaged effects. Let  be a particular group; the object of interest is
1

||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 =

1
||𝑜

∑

(𝑖,𝑡)∈
ℎ𝑡(𝜁𝑖).

ere the group of interest as  =  ×  where  ⊆ {1,… , 𝑁} and  ⊆ {1,… , 𝑇 }. We impose the following assumption on the
rates of parameters. Define a sequence 𝜓𝑁𝑇 as 𝜓𝑁𝑇 ≍

√

𝐾−(2𝛿+1) ∑𝑁
𝑖=1

∑𝑇
𝑡=1 ℎ

2
𝑡 (𝜁𝑖). It is a lower bound of 𝜓min(𝛽𝐹 ′) and works as the

parameter for signal. Recall that 𝐾 denotes the sieve dimension.

Assumption 3.4 (Parameter Size and Signal-to-noise Ratio). Let 𝛾 = 𝑝max
𝑝min

and �̃� = max{𝜗, log𝑁 + log 𝑇 }. Then, we have

(𝑖) min{||
1
2
𝑜 , | |

1
2
𝑜 } 𝜃𝜂3𝛾4𝐾

(4+2𝑔+ 13
2 𝛿) max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 } = 𝑜(𝑝
3
2
min min{𝑁, 𝑇 }),

min{||
1
2
𝑜 , | |

1
2
𝑜 }𝜂

1
2 𝛾3𝐾 (1+𝑔+ 7

2 𝛿) max{𝑁
3
2 , 𝑇

3
2 } = 𝑜(𝑝

3
2
min𝜓

2
𝑁𝑇 ),

(𝑖𝑖) min{||
1
2
𝑜 , | |

1
2
𝑜 }𝜂

3
2 𝛾2 max{

√

𝑁,
√

𝑇 } = 𝑜(𝑝
1
2
min𝐾

(𝜈−2𝛿− 3
2 )),

min{||
1
2
𝑜 , | |

1
2
𝑜 }𝜂

1
2 𝛾

3
2 max{

√

𝑁,
√

𝑇 }
√

𝑁𝑇 = 𝑜(𝜓𝑁𝑇 𝑝
1
2
min𝐾

(𝜈−𝛿− 1
2 )).

Assumption 3.4(ii) is used to bound the sieve approximation error. For this condition to be satisfied, the smoothness of {ℎ𝑡(⋅)}𝑡≤𝑇
s crucial. If {ℎ𝑡(⋅)}𝑡≤𝑇 are smooth enough, 𝜈 = 2(𝑎 + 𝑏)∕dim(𝜁𝑖) can be arbitrarily large. Hence, Assumption 3.4(ii) can be easily
atisfied with a slowly increasing 𝐾 as long as {ℎ𝑡(⋅)}𝑡≤𝑇 is smooth.

Assumption 3.4(i) is the conditions about sample complexity and signal-to-noise ratio. As long as 𝐾, 𝜂, 𝛾 are bounded or increase
sufficiently slowly, it would be satisfied. Note that, in the cases like the cross-sectional average of a certain period t or the time
average of a certain unit i, min{||

1
2
𝑜 , | |

1
2
𝑜 } = 1. In many interesting cases, min{||

1
2
𝑜 , | |

1
2
𝑜 } is usually not that large. However, due

to Assumption 3.4(i), we cannot derive the inferential theory in the case where both ||𝑜 and | |𝑜 are large like ||𝑜 = 𝑁 and
| |𝑜 = 𝑇 . In this case, the asymptotically normal distribution part cannot dominate other residual parts, since the convergence rate
of the asymptotically normal distribution part is roughly 1

√

𝑁| |𝑜
+ 1

√

𝑇 ||𝑜
, while that of the residual term is similar to or greater than

1
√

𝑁𝑇
regardless of the group size. For inference, at least one part of the asymptotically normal term should dominate other residual

terms. On the other hand, in terms of the convergence rate, the large sizes of ||𝑜 and | |𝑜 are beneficial, as noted in Appendix B.
n addition, for comparison with the conditions of other low-rank literature, it would be helpful to refer to Assumption C.2 in
ppendix C where we consider the general low-rank model.

Under the above assumptions, Theorem C.1 shows that the estimator for the group average of 𝑀𝑖𝑡 has the asymptotic normality:


− 1

2


(

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡

)

𝐷
⟶  (0, 1),

here the asymptotic variance  is given in the statement of Theorem C.1, and needs to be estimated. In this result,  can consist
of either multiple columns with multiple rows or solely a certain (𝑖, 𝑡), implying that we can conduct inference for one specific
element of the matrix. To make the estimation of  feasible, we consider the case of E[𝜀2𝑖𝑡|] = 𝜎2𝑖 . Let 𝑈 ′

𝑖 is the 𝑖th row of the left
ingular vector of 𝛽𝐹 ′ and 𝑉 ′

𝑡 is the 𝑡th row of the right singular vector of 𝛽𝐹 ′. The following theorem gives the feasible asymptotic
ormality.

heorem 3.1 (Feasible CLT). Suppose Assumptions 3.1–3.4 hold. In addition, suppose that
‖

‖

‖

‖

√

𝑁
||𝑜

∑

𝑖∈ 𝑈𝑀∗ ,𝑖
‖

‖

‖

‖

≥ 𝑐 and
‖

‖

‖

‖

√

𝑇
| |𝑜

∑

𝑡∈ 𝑉𝑀∗ ,𝑡
‖

‖

‖

‖

≥
𝑐 for some constant 𝑐 > 0. Then we have

̂
− 1

2


(

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡

)

𝐷
⟶  (0, 1),

here

̂ = 1
| |

2
𝑜

∑

𝑡∈

̂̄𝛽
′


( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜎

2
𝑗 𝛽𝑗𝛽

′
𝑗

)( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1
̂̄𝛽

+ 1
||2𝑜

∑

𝑖∈
𝜎2𝑖
̂̄𝐹
′


( 𝑇
∑

𝑠=1
𝜔𝑖𝑠𝐹𝑠𝐹

′
𝑠

)−1
̂̄𝐹  ,

2 For the formal definitions of the estimators, please refer to Appendix D and Remark 1.
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̂

3

(
W
𝑇
v
o

𝑇

L

w

4

t
𝑇
s

𝛽 = 1
||𝑜

∑

𝑎∈ 𝛽𝑎, ̂̄𝐹  = 1
| |𝑜

∑

𝑎∈ 𝐹𝑎, 𝜎2𝑖 = 1
|𝑖|𝑜

∑

𝑡∈𝑖
𝜀2𝑖𝑡, 𝑖 = {𝑡 ∶ 𝜔𝑖𝑡 = 1} and 𝜀𝑖𝑡 = 𝑦𝑖𝑡 − 𝛽′𝑖𝐹𝑡.

.2. Semiparametric efficiency

We now establish the semiparametric efficiency of our estimator, following a similar approach as in Jankova and Van De Geer
2018). In order to make calculation tractable, we suppose that 𝜔𝑖𝑡 ∼ Bernoulli(𝑝) and 𝜀𝑖𝑡 ∼  (0, 𝜎2) are independent across (𝑖, 𝑡).
e will focus on the case of block group, where both ||𝑜 and | |𝑜 are finite or growing slowly, satisfying 𝑁| |𝑜 ≪ 𝑇 2

||2𝑜 and
||𝑜 ≪ 𝑁2

| |

2
𝑜 . The other cases like cross-sectional and serial groups (e.g., ||𝑜 = 𝑁 and | |𝑜 is finite or slowly growing, or vice

ersa) can also be attained, which are very similar to Theorem 4.2 in Chernozhukov et al. (2023). Hence, we omit them. The novelty
f our efficiency theorem is that it is for estimating the general block group.

As specified in Theorem C.1, the asymptotic variance in this case is

 = 𝜎2

| |

2
𝑜

∑

𝑡∈
𝛽′

( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1

𝛽 + 𝜎2

||2𝑜

∑

𝑖∈
𝐹 ′


( 𝑇
∑

𝑠=1
𝜔𝑖𝑠𝐹𝑠𝐹

′
𝑠

)−1

𝐹

= 𝑠2∗(𝑀,𝑝, 𝜎) + 𝑜(𝑠2∗(𝑀,𝑝, 𝜎))

𝑠2∗(𝑀,𝑝, 𝜎) ∶= 𝜎2

𝑝
1

| |𝑜
𝛽′ (𝛽

′𝛽)−1𝛽 + 𝜎2

𝑝
1

||𝑜
𝐹 ′
 (𝐹

′𝐹 )−1𝐹 .

The following theorem shows that 𝑠2∗(𝑀,𝑝, 𝜎) is the asymptotic Cramér-Rao bound for asymptotically unbiased estimators.

Theorem 3.2. Suppose 𝜔𝑖𝑡 ∼ Bernoulli(𝑝) and 𝜀𝑖𝑡 ∼  (0, 𝜎2) are independent across (𝑖, 𝑡). Suppose also that 𝑁| |𝑜 ≪ 𝑇 2
||2𝑜 and

||𝑜 ≪ 𝑁2
| |

2
𝑜 . Define

 = {(𝑀,𝑝, 𝜎) ∶𝑀 =𝑀⋆ +𝑀𝑅,𝑀⋆ = 𝛽𝐹 ′, rank(𝑀⋆) ≤ 𝐾, and Assumptions 3.1–3.4 hold}.

et 𝑈 (𝑌 ,𝛺) be an asymptotically unbiased estimator of ||−1 ∑(𝑖,𝑡)∈𝑀𝑖𝑡 in that

E𝑀,𝑝,𝜎𝑈 (𝑌 ,𝛺) − ||−1
∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 = 𝑜(𝑠∗(𝑀,𝑝, 𝜎))

where E𝑀,𝑝,𝜎 denotes the expectation with respect to given (𝑀,𝑝, 𝜎). Then for any sequence of (𝑀,𝑝, 𝜎) ∈ , we have

lim inf
𝑁,𝑇→∞

E𝑀,𝑝,𝜎

[

𝑈 (𝑌 ,𝛺) − ||−1
∑

(𝑖,𝑡)∈𝑀𝑖𝑡

]2

𝑠2∗(𝑀,𝑝, 𝜎)
≥ 1,

ith probability converging to 1.

. Applications to heterogeneous treatment effect estimation

In this section, we propose the inference procedure for treatment effects by utilizing the asymptotic results in Section 3. Following
he causal potential outcome setting (e.g., Rubin (1974) and Imbens and Rubin (2015)), we assume that for each of 𝑁 units and

time periods, there exists a pair of potential outcomes, 𝑦(0)𝑖𝑡 and 𝑦(1)𝑖𝑡 where 𝑦(0)𝑖𝑡 denotes the potential outcome of the untreated
ituation and 𝑦(1)𝑖𝑡 denotes the potential outcome of the treated situation. Importantly, among potential outcomes 𝑦(0)𝑖𝑡 and 𝑦(1)𝑖𝑡 , we

can observe only one realized outcome 𝑦(𝛶𝑖𝑡)𝑖𝑡 where 𝛶𝑖𝑡 = 1{unit 𝑖 is treated at period 𝑡}. Hence, we have two incomplete potential
outcome matrices, 𝑌 (0) and 𝑌 (1), having missing components, and the problem of estimating the treatment effects can be cast as a
matrix completion problem because of the missing components in the two matrices.

Specifically, we consider the nonparametric model such that for each 𝜄 ∈ {0, 1},

𝑦(𝜄)𝑖𝑡 =𝑀 (𝜄)
𝑖𝑡 + 𝜀𝑖𝑡 = ℎ(𝜄)𝑡 (𝜁𝑖) + 𝜀𝑖𝑡,

where 𝜀𝑖𝑡 is the noise, 𝜁𝑖 is a vector of unit specific latent state variables. We regard ℎ(𝜄)𝑡 (⋅) as a deterministic function while 𝜁𝑖 is
a random vector. In the model, the treatment effect comes from the difference between the time-varying treatment function ℎ(1)𝑡 (⋅)
and the control function ℎ(0)𝑡 (⋅). Let 𝜔(𝜄)

𝑖𝑡 = 1{𝑦(𝜄)𝑖𝑡 is observed}. Then, 𝜔(1)
𝑖𝑡 = 𝛶𝑖𝑡 and 𝜔(0)

𝑖𝑡 = 1 − 𝛶𝑖𝑡 because we observe 𝑦(1)𝑖𝑡 when there
is a treatment on (𝑖, 𝑡) and observe 𝑦(0)𝑖𝑡 when there is no treatment on (𝑖, 𝑡).

We suppose the following sieve representation for ℎ(𝜄)𝑡 :

ℎ(𝜄)𝑡 (𝜁𝑖) =
𝐾
∑

𝑟=1
𝜅(𝜄)𝑡,𝑟𝜙𝑟(𝜁𝑖) +𝑀

𝑅(𝜄)
𝑖𝑡 , 𝜄 ∈ {0, 1}

where 𝜅(𝜄)𝑡,𝑟 is the sieve coefficient, 𝜙𝑟(𝜁𝑖) is the sieve transformation of 𝜁𝑖 using the basis function 𝜙𝑟(⋅) and 𝑀𝑅(𝜄)
𝑖𝑡 is the sieve

approximation error. Then, by representing ∑𝐾
𝑟=1 𝜅

(𝜄)
𝑡,𝑟𝜙𝑟(𝜁𝑖) as 𝛽′𝑖𝐹

(𝜄)
𝑡 where 𝛽𝑖 = [𝜙1(𝜁𝑖),… , 𝜙𝐾 (𝜁𝑖)]′ and 𝐹 (𝜄)

𝑡 = [𝜅(𝜄)𝑡,1,… , 𝜅(𝜄)𝑡,𝐾 ]
′, ℎ(𝜄)𝑡 (𝜁𝑖)
9
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We make inference about the average treatment effect for a particular group of interest (𝑖, 𝑡) ∈ :
1

||𝑜

∑

(𝑖,𝑡)∈
𝛤𝑖𝑡, where 𝛤𝑖𝑡 =𝑀 (1)

𝑖𝑡 −𝑀 (0)
𝑖𝑡 .

The individual treatment effect 𝛤𝑖𝑡 is estimated by 𝛤𝑖𝑡 = 𝑀 (1)
𝑖𝑡 − 𝑀 (0)

𝑖𝑡 where 𝑀 (0)
𝑖𝑡 and 𝑀 (1)

𝑖𝑡 are estimators of 𝑀 (0)
𝑖𝑡 and 𝑀 (1)

𝑖𝑡 ,
espectively. Hence, by implementing the estimation steps in Algorithm 1 for each 𝜄 ∈ {0, 1}, we can derive the estimators for
he group average of 𝑀 (0)

𝑖𝑡 and 𝑀 (1)
𝑖𝑡 , and construct the average treatment effect estimator.

The notations are essentially the same as those in Section 2, and we just put the superscript (𝜄) to all notations to distinguish the
air of potential realizations.

heorem 4.1 (Feasible CLT). Suppose the assumptions of Theorem 3.1 hold for each 𝜄 ∈ {0, 1}. With E[𝜀2𝑖𝑡|] = 𝜎2𝑖 , we have

(

̂ (0)
 + ̂ (1)



)− 1
2

(

1
||𝑜

∑

(𝑖,𝑡)∈
𝛤𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝛤𝑖𝑡

)

𝐷
⟶  (0, 1),

where for each 𝜄 ∈ {0, 1},

̂ = 1
| |

2
𝑜

∑

𝑡∈

̂̄𝛽
(𝜄)′


( 𝑁
∑

𝑗=1
𝜔(𝜄)
𝑗𝑡 𝛽

(𝜄)
𝑗 𝛽

(𝜄)′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔(𝜄)
𝑗𝑡 𝜎

(𝜄)2
𝑗 𝛽(𝜄)𝑗 𝛽

(𝜄)′
𝑗

)( 𝑁
∑

𝑗=1
𝜔(𝜄)
𝑗𝑡 𝛽

(𝜄)
𝑗 𝛽

(𝜄)′
𝑗

)−1
̂̄𝛽
(𝜄)


+ 1
||2𝑜

∑

𝑖∈
𝜎(𝜄)2𝑖

̂̄𝐹
(𝜄)′


( 𝑇
∑

𝑠=1
𝜔(𝜄)
𝑖𝑠 𝐹

(𝜄)
𝑠 𝐹

(𝜄)′
𝑠

)−1
̂̄𝐹
(𝜄)
 .

ere, ̂̄𝛽
(𝜄)
 = 1

||𝑜

∑

𝑎∈ 𝛽
(𝜄)
𝑎 , ̂̄𝐹

(𝜄)
 = 1

| |𝑜

∑

𝑎∈ 𝐹
(𝜄)
𝑎 ,

(

𝜎(𝜄)𝑖
)2

= 1
| (𝜄)

𝑖 |𝑜

∑

𝑡∈ (𝜄)
𝑖

(

𝜀(𝜄)𝑖𝑡
)2

,  (𝜄)
𝑖 = {𝑡 ∶ 𝜔(𝜄)

𝑖𝑡 = 1} and 𝜀(𝜄)𝑖𝑡 = 𝑦(𝜄)𝑖𝑡 − 𝛽(𝜄)′𝑖 𝐹 (𝜄)
𝑡 .

. Empirical study: Impact of the president on allocating the U.S. federal budget to the states

To illustrate the use of our inferential theory, we present an empirical study about the impact of the president on allocating the
.S. federal budget to the states. The allocation of the federal budget in the U.S. is the outcome of a complicated process involving
iverse institutional participants. However, the president plays a particularly important role among the participants. Ex-ante, the
resident is responsible for composing a proposal, which is to be submitted to Congress and initiates the actual authorization and
ppropriations processes. Ex post, once the budget has been approved, the president has a veto power that can be overridden only
y a qualified majority equal to two-thirds of Congress. In addition, the president exploits extra additional controls over agency
dministrators who distribute federal funds.

There is a vast theoretical and empirical literature about the impact of the president on allocating the federal budget to the states
e.g., Cox and McCubbins (1986), Anderson and Tollison (1991), McCarty (2000), Larcinese et al. (2006) and Berry et al. (2010)). In
articular, Cox and McCubbins (1986) provide a theoretical model which supports the idea that more funds are allocated where the
resident has larger support because of the ideological relationship between voters and the president, and Larcinese et al. (2006)
ave found that states which supported the incumbent president in past presidential elections tend to receive more funds empirically.
e contribute by showing the impact using our inferential theory for the heterogeneous treatment effect with a wider set of data.
Here, the hypothesis we want to test is whether federal funds are disproportionately targeted to states where the incumbent

resident is supported in the past presidential election. We use data on federal outlays for the 50 U.S. states with the District of
olumbia from 1953 to 2018. The data are obtained from websites of the U.S. Census Bureau, NASBO (National Association of State
udget Officers), and SSA (Social Security Administration).

Following Section 4, we set the treatment indicator as 𝛶𝑖𝑡 = 1 if the state 𝑖 supported the president of year 𝑡 in the presidential
election, and 𝛶𝑖𝑡 = 0 otherwise. If the candidate whom the state 𝑖 supported in the previous presidential election is the same as the
president at year 𝑡, we consider it as ‘‘treated’’ and otherwise, we consider it as ‘‘untreated’’. While applying our inferential procedure,
we adopt the assumption that the treatment (whether state 𝑖 supported the resident in the election) is exogenously assigned, which
is probably not practical, but we take our stand on this assumption in this study, and do not claim a causal interpretation of the
treatment effect.

In addition, for the outcome variable 𝑦𝑖𝑡, we use the following ratio: 𝑦𝑖𝑡 = (�̃�𝑖𝑡∕
∑

𝑖 �̃�𝑖𝑡) × 100 where �̃�𝑖𝑡 is the per-capita federal
grant in state 𝑖 at year 𝑡. Note that the outcome variable, 𝑦𝑖𝑡, is a proportion so that ∑

𝑖 𝑦𝑖𝑡 = 100 for all 𝑡, which is to treat each
period equally.

Our inferential theory allows novel approaches to study the following effects:

1. State Effects: the time average of the treatment effect of each state 𝑖, i.e., 𝑇 −1 ∑𝑇
𝑡=1 𝛤𝑖𝑡.

2. Region Effects: the time average of the treatment effect of each ‘‘Region’’, i.e.,

1
|Region|

∑ 1
𝑇

𝑇
∑

𝛤𝑖𝑡.
10
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Fig. 1. State effects and corresponding t-statistics. NOTE: When we use the Benjamini and Hochberg (1995) procedure to control the size of the false discovery
rate at 5%, the list of states with significant effects is unchanged.

Table 1
Number of swings of each state.
Group # of swing States

Loyal states 0∼2 DC, AK, ID, KS, NE, ND, OK, SD, UT, WY
Weak loyal states 3∼4 AZ, CA, CT, IL, ME, MA, MN, NJ, OR, SC, VT, VA, WA, IN, MI, MT, TX
Weak swing states 5∼6 AL, CO, DE, HI, MD, NV, NH, NM, NY, NC, RI, IA, MS, MO, PA, TN, WI
Swing states 7∼ AR, GA, KY, WV, FL, OH, LA

3. Loyal/Swing Effects: the time average of the treatment effect of ‘‘loyal’’ and ‘‘swing’’ states, e.g.,

1
|Loyal States|0

∑

𝑖∈Loyal States

1
𝑇

𝑇
∑

𝑡=1
𝛤𝑖𝑡. (see Table 1 for the definition of ‘‘Loyal States")

4. President Effects: the average treatment effect of each president, i.e.,

1
| |0

∑

𝑡∈

1
𝑁

𝑁
∑

𝑖=1
𝛤𝑖𝑡. ( denotes the period of a given President in Office)

5. Party Effects: the average treatment effect of each Party, i.e.,

1
||0

∑

𝑡∈

1
𝑁

𝑁
∑

𝑖=1
𝛤𝑖𝑡. ( denotes the period of a given Party to which the President belonged)

First, Fig. 1 presents the State Effects and the corresponding t-statistics. The results suggest significantly positive treatment effects
in most states. To investigate the reason of differences, we categorize states according to the number of times a state swung the
party it supports in the presidential elections as in Table 1. Together with Fig. 1, it shows that most states with large t-statistics are
in ‘‘Loyal states’’ while the other states are generally in ‘‘Swing state’’ or ‘‘Weak swing state’’. It suggests that the treatment effect
is closely related to the loyalty of states to parties.

In addition, the results for the Region Effects in Fig. 2 show that, at the 1% significant level, New England, Mid Atlantic, Plains,
Rocky Mountain, and Far West have the positive treatment effects while Great Lakes, South East, and South West do not. Note that
Many states in Great Lakes, South East, and South West are in ‘‘Swing states’’ or ‘‘Weak swing states’’. As we can see in Fig. 2,
‘‘Swing states’’ do not have statistically significant positive treatment effects while ‘‘Loyal states’’ have significant positive treatment
effects. This result is in line with the empirical study of Larcinese et al. (2006) finding that states with loyal supports tend to receive
more funds, while swing states are not rewarded. In addition, it is aligned with the assertion of Cox and McCubbins (1986) that the
targeting of loyal voters can be seen as a safer investment as compared to aiming for swing voters and risk-averse political actors
may allocate more funds to loyal states.
11
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Fig. 2. Test statistics for the Region Effects and the Loyal/Swing Effects. NOTE: ‘‘New England’’ includes CT, ME, MA, NH, RI,VT, ‘‘Mid Atlantic’’ includes DE,
D.C., MD, NJ, NY, PA, ‘‘Great Lakes’’ includes IL, IN, MI, OH, WI, ‘‘Plains’’ includes IA, KS, MN, MO, NE, ND, SD, ‘‘South East’’ includes AL, AR, FL, GA, KY,
LA, MS, NC, SC, TN, VI, WV, ‘‘South West’’ includes AZ, NM, OK, TX, ‘‘Rocky Mountain’’ includes CO, ID, MT, UT, WY, and ‘‘Far West’’ includes AK, CA,HI,
NV, OR, WA.

Fig. 3. Test statistics for the President Effects and the Party Effects.

Fig. 4. Test statistics for the average treatment effect before 1980 and after 1981.

Fig. 3 shows the President Effects and the Party Effects. Despite some exceptions, there are no statistically significant positive
treatment effects before Carter, while there are significant positive treatment effects after Reagan. Fig. 4 shows that before 1980,
there is no significant positive treatment effect in most states, while there are significant positive treatment effects in most states after
1981. Hence, there is a substantial difference between ‘before 1980’ and ‘after 1981’ and the tendency that incumbent presidents
reward states that showed their support in the presidential elections became significant after Reagan, that is, after the 1980s. It
suggests that after the 1980s, the presidents show more influence on the allocation of federal funds to reward their supporters.
Evidence is that starting from the 1980s, all presidents have put forward proposals for the introduction of presidential line-item
12

veto and tried to increase the power of the president to control federal spending.
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Table 2
‖𝑀 −𝑀‖𝐹 ∕

√

𝑁𝑇 .
Sample size N = 100, T = 100 N = 200, T = 100 N = 100, T = 200

Model Factor Sine Poly Factor Sine Poly Factor Sine Poly

TLS 0.3035 0.2129 0.2057 0.2613 0.1871 0.1777 0.2522 0.1831 0.1831
TLS with SS 0.3130 0.2152 0.2080 0.2699 0.1893 0.1805 0.2551 0.1835 0.1836
Plain Nuclear 0.5637 0.3869 0.3745 0.4827 0.3342 0.3334 0.4814 0.3418 0.3433
(Hetero) CFMY 0.3312 0.2230 0.2128 0.2798 0.1916 0.183 0.2740 0.1914 0.1917
(Hetero) XY 0.3870 0.2369 0.2275 0.3185 0.1984 0.1931 0.3104 0.2019 0.2033
IPW 0.5280 0.2446 0.2435 0.4994 0.2184 0.2117 0.4254 0.1997 0.2068
EM 0.3033 0.2134 0.206 0.2611 0.1872 0.1777 0.2517 0.1834 0.1832

NOTE: ‘‘Sine’’ and ‘‘Poly’’ refer to the functions ℎsine𝑡 (𝜁 ) and ℎpoly𝑡 (𝜁 ), respectively.

Finally, when testing for the treatment effects of multiple states, the tests may subject to the issue of multiple testing problems,
with undesirable false discovery rates (FDR). We also address this issue by adopting the procedure of Benjamini and Hochberg
(1995) to control the FDR at 5%. We find that the list of states with significant treatment effects is unchanged.

6. Simulation study

This section provides the finite sample performances of the estimators. We first study the performances of the estimators of
𝑀𝑖𝑡 and ||−1𝑜

∑

(𝑖,𝑡)∈𝑀𝑖𝑡, and then study performances of the average treatment effect estimators. To save space, some results are
relegated to Appendix.

First of all, in order to check the estimation quality of our estimator, we compare the Frobenius norms of the estimation errors
for several existing estimators of 𝑀 . Our two-step least squares is labeled as ‘‘TLS’’. We also consider the debiased nuclear norm
penalized estimators from Xia and Yuan (2021), ‘‘(Hetero) XY’’, and Chen et al. (2019), ‘‘(Hetero) CFMY’’. ‘‘(Hetero)’’ represents
that they are modified to allow the heterogeneous observation probabilities. The comparison also includes the inverse probability
weight based estimator, ‘‘IPW’’, from Xiong and Pelger (2023), and the EM algorithm based estimator, ‘‘EM’’, from Jin et al. (2021).
The plain nuclear norm penalized estimator, ‘‘Plain Nuclear’’, and the TLS estimator using sample splitting, ‘‘TLS with SS’’, are also
considered. For the data-generating designs, we consider the following three models:

∙ Factor model: 𝑦𝑖𝑡 = 𝛽1,𝑖𝐹1,𝑡 + 𝛽2,𝑖𝐹2,𝑡 + 𝜀𝑖𝑡, where 𝛽1,𝑖, 𝐹1,𝑡, 𝛽2,𝑖, 𝐹2,𝑡 ∼ 

(

1
√

2
, 1

)

,

∙ Nonparametric model 1: 𝑦𝑖𝑡 = ℎ𝑡
(

𝜁𝑖
)

+ 𝜀𝑖𝑡, where ℎ𝑡(𝜁 ) = ℎpoly𝑡 (𝜁 ) ∶=
∞
∑

𝑟=1

|𝑈𝑡,𝑟|
𝑟3

⋅ 𝜁 𝑟,

∙ Nonparametric model 2: 𝑦𝑖𝑡 = ℎ𝑡
(

𝜁𝑖
)

+ 𝜀𝑖𝑡, where ℎ𝑡(𝜁 ) = ℎsine𝑡 (𝜁 ) ∶=
∞
∑

𝑟=1

|𝑈𝑡,𝑟|
𝑟3

sin(𝑟𝜁 ). (6.1)

Here, 𝑈𝑡,𝑟 is generated from  (2, 1) and 𝜁𝑖 is generated from Uniform[0, 1]. In addition, 𝜀𝑖𝑡 is generated from the standard normal
distribution independently across 𝑖 and 𝑡. The observation pattern follows a heterogeneous missing-at-random mechanism where
𝜔𝑖𝑡 ∼ Bernoulli(𝑝𝑖) and 𝑝𝑖 is generated from Uniform [0.3, 0.7].

Table 2 reports ‖𝑀−𝑀‖𝐹 ∕
√

𝑁𝑇 averaged over 100 replications. We highlight that the TLS shows the best performance in almost
all scenarios. Only the EM is comparable to ours, but it computes much slower since it requires multi-step iterations. In contrast,
our proposed method does not iterate. Also, our method always outperforms the TLS with SS. The (Hetero) XY and (Hetero) CFMY
are slightly worse than ours in this experiment. Lastly, both the IPW and the Plain Nuclear show the worst performances uniformly.
The IPW, being non-statistically efficient, is only slightly better than the Plain Nuclear.

Additionally, to show the relative advantage of TLS over TLS with sample splitting, Table 3 reports (𝑀𝑖𝑡−𝑀𝑖𝑡)2 in the case where
𝑇 is small. Here, we choose (𝑖, 𝑡) randomly and fix it during replications. As we can check in the table, when 𝑇 is relatively small, the
performance of TLS with sample splitting is much worse than that of TLS without sample splitting. Especially, in the factor model,
the difference in performance is quite large.

Second, we study the finite sample distributions for standardized estimates defined as (𝑀𝑖𝑡 −𝑀𝑖𝑡)∕𝑠𝑒(𝑀𝑖𝑡). For comparison, we
report the results of the Plain Nuclear and the TLS with SS, in addition to the TLS. For the Plain Nuclear, we use the sample
standard deviation obtained from the simulations for 𝑠𝑒(𝑀𝑖𝑡) because the theoretical variance of it is unknown. For the TLS with
SS, we construct the standard error following Chernozhukov et al. (2019). Here, we consider the nonparametric models in (6.1).
Hereinafter, the number of replications is 1000, and the sample size is 𝑁 = 𝑇 = 200.

Fig. 5 plots the scaled histograms of the standardized estimates with the standard normal density. As we expected in theory, it
shows that the standardized TLS and the standardized TLS with SS fit the standard normal distribution well, while the standardized
Plain Nuclear is biased. Without sample splitting, the TLS itself provides a good approximation to the standard normal distribution
so that it can be used for the inference successfully. The coverage probabilities of confidence interval in Appendix also show similar
13

results.
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Table 3
(𝑀𝑖𝑡 −𝑀𝑖𝑡)2 comparison between TLS and TLS with SS.

Model Factor Sine Poly

Sample size TLS TLS w/ SS Ratio TLS TLS w/ SS Ratio TLS TLS w/ SS Ratio

N = 100,T = 20 0.4665 2.8951 16.1% 0.1401 0.1702 82.3% 0.1272 0.1894 67.2%
N = 100,T = 40 0.2162 0.2685 80.5% 0.0736 0.0819 89.9% 0.0807 0.0865 93.3%
N = 100,T = 60 0.1111 0.1300 85.5% 0.0603 0.0637 94.7% 0.0538 0.0567 94.9%

NOTE: The values are the averaged (𝑀𝑖𝑡 −𝑀𝑖𝑡)2 over 1000 replications. ‘‘Ratio’’ denotes the ratio between performances of TLS and TLS with SS. Here, we
assume 𝜔𝑖𝑡 ∼ Bernoulli(0.5). When 𝑇 = 20, the working sample size for the sample splitting is only 10, which leads to singularity issues in the inverse covariance
matrix estimation. As a result, the estimator performs badly in this case.

Fig. 5. Histograms of standardized estimates, (𝑀𝑖𝑡 −𝑀𝑖𝑡)∕𝑠𝑒(𝑀𝑖𝑡).

Next, we study the finite sample performance of the average treatment effect estimator. Following Section 4, for each 𝜄 ∈ {0, 1},
we generate the data from 𝑦(𝜄)𝑖𝑡 = ℎ(𝜄)𝑡 (𝜁𝑖) + 𝜀𝑖𝑡, where ℎ(0)𝑡 (𝜁 ) =

∑∞
𝑟=1 |𝑈𝑡,𝑟|𝑟

−𝑎 sin(𝑟𝜁 ), ℎ(1)𝑡 (𝜁 ) =
∑∞
𝑟=1(|𝑈𝑡,𝑟| + 2)𝑟−𝑎 sin(𝑟𝜁). The power

parameter 𝑎 > 1 controls the decay speed of the sieve coefficients. The forms of the above functions and the treatment effect
𝛤𝑖𝑡 = ℎ(1)𝑡 (𝜁𝑖) − ℎ

(0)
𝑡 (𝜁𝑖) are in Fig. 6.

Here, 𝜀𝑖𝑡 and 𝑈𝑡,𝑟 are independently generated from the standard normal distribution and 𝜁𝑖 is independently generated from
Uniform[0, 1]. The treatment pattern follows 𝛶𝑖𝑡 ∼ Bernoulli(𝑝(1)𝑖 ) and 𝑝(1)𝑖 ∼ Uniform[0.3, 0.7].

Fig. 7 presents the scaled histograms of the standardized estimates of the average treatment effect estimators for the groups
1 = {(𝑖, 𝑡)}, 2 = {(𝑗, 𝑡) ∶ 1 ≤ 𝑗 ≤ 𝑁}, and 3 = {(𝑖, 𝑠) ∶ 1 ≤ 𝑠 ≤ 𝑇 }. Here, the standard estimates are given as

1
||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡 −
1

||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡

𝑠𝑒
(

1
||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡
) .

As expected in theory, the standardized estimates of the average treatment effect estimators of all groups approximately show the
standard normal distribution. In addition, the coverage probabilities of the confidence interval in Appendix also show similar results.

7. Conclusion

This paper studies the inferential theory for low-rank matrices and provides an inference method for the average treatment effect
as an application. Without the aid of sample splitting, our estimation procedure successfully resolves the problem of the shrinkage
bias, and the resulting estimator attains the asymptotic normality. Unlike Chernozhukov et al. (2019, 2023) which exploit sample
splitting, our estimation step is simple, and we can avoid some undesirable properties of sample splitting. In addition, this paper
allows the heterogeneous observation probability and uses inverse probability weighting to control the effect of the heterogeneous
observation probability.
14
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Fig. 6. Shape of function ℎ(𝜄)𝑡 (𝜁 ) and treatment effect function (𝑈𝑡,𝑟 = 1, 𝑎 = 2).

Fig. 7. Histograms of standardized estimates,
1

||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡−
1

||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡

𝑠𝑒
(

1
||𝑜

∑

(𝑖,𝑡)∈ 𝛤𝑖𝑡
) . NOTE: Here, the sample size is 𝑁 = 𝑇 = 300. “Group 1” refers to 1, “Group 2” denotes 2

and “Group 3” refers to 3.

Appendix A. Data-driven ways of choosing 𝑲

Using a consistent estimator of 𝐾
To choose the sieve dimension 𝐾, we can use the following rank estimator of 𝑀⋆ in the general approximate factor model

𝐾 =
∑

𝑟 1{𝜓𝑟(𝑀) ≥ ((𝑁 + 𝑇 )∕2)
11
20
‖𝑀‖

1
4 } where 𝜓𝑟(𝑀) denotes the 𝑟th largest singular value of 𝑀 . As noted in Claim G.1(iii), it

works as a consistent rank estimator for 𝑀⋆ in the general approximate factor model. By the same token in Footnote 5 of Bai (2003),
our inferential theory for the general approximate factor model is not affected even if the rank 𝐾 is unknown and estimated using
this estimator since 𝑃 (𝐾 = 𝐾) → 1.

Cross-validation method
When the matrix of interest 𝑀 is approximated by a low-rank structure via a sieve representation like our main model,

we can treat the sieve dimension 𝐾 as a tuning parameter. Hence, we introduce one data-driven way of selecting 𝐾 which
exploits the cross-validation which is similar to the idea in Athey et al. (2021). From the observed sample {(𝑖, 𝑡) ∶ 𝜔𝑖𝑡 = 1}, we
randomly create a subsample by using a Bernoulli process, namely the subsample is {(𝑖, 𝑡) ∶ 𝜔𝑖𝑡𝑋𝑖𝑡 = 1} where {𝑋𝑖𝑡}𝑖≤𝑁,𝑡≤𝑇 are
independent Bernoulli random variables of probability ∑

𝑖,𝑡 𝜔𝑖𝑡∕𝑁𝑇 , which is independent of {𝜔𝑖𝑡}𝑖≤𝑁,𝑡≤𝑇 . This guarantees that we
have ∑

𝑖,𝑡 𝜔𝑖𝑡∕𝑁𝑇 ≈
∑

𝑖,𝑡 𝜔𝑖𝑡𝑋𝑖𝑡∕
∑

𝑖,𝑡 𝜔𝑖𝑡. We then pre-specify the set of candidates of 𝐾 as {𝐾1, 𝐾2,…} and compute the estimates
𝑀𝐾1

,𝑀𝐾2
,…, respectively, using only the subsample. To compare their out-of-sample performance, we measure the mean squared

error of them on {(𝑖, 𝑡) ∶ 𝜔𝑖𝑡(1−𝑋𝑖𝑡) = 1}. For robustness, we repeat this process five times, creating different independent subsamples
each time, to obtain five mean squared errors for each 𝐾 ∈ {𝐾1, 𝐾2,…}. The sieve dimension which minimizes the sum of five mean
squared errors is chosen. In our simulation study, we use this method with {2, 4, 6, 8, 10} as the set of candidates of 𝐾.
15
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Appendix B. Finite sample convergence rate

For completeness, this section studies the finite sample convergence rate of our estimator. First, we provide several conditions.
ere, 𝑎 ≲ 𝑏 means |𝑎|∕|𝑏| ≤ 𝐶 for some constant 𝐶 > 0. 𝑎 ≪ 𝑏 indicates |𝑎| ≤ 𝑐|𝑏| for some sufficiently small constant 𝑐 > 0.

Assumption B.1 (Sieve Representation). (i) {ℎ𝑡(⋅)}𝑡≤𝑇 belong to ball 
(

, ‖⋅‖𝐿2
, 𝐶

)

inside a Hilbert space spanned by the basis
{𝜙𝑟}𝑟≥1, with a uniform 𝐿2-bound 𝐶: supℎ∈(,‖⋅‖𝐿2 )

‖ℎ‖ ≤ 𝐶, where  is the support of 𝜁𝑖.

(ii) The sieve approximation error satisfies: For some 𝜈 > 0, max𝑖,𝑡 |𝑀𝑅
𝑖𝑡 | ≤ 𝐶𝐾−𝜈 .

(iii) For some 𝐶 > 0, max𝑟≤𝐾 sup𝜁 |𝜙𝑟(𝜁 )| < 𝐶. In addition, there is 𝜂 > 0 such that 𝜓−1
min

(

𝑆𝛽
)

< 𝜂 and 𝜓−1
min

(

𝑆𝐹
)

< 𝜂.

(iv) ∑

𝑖,𝑡 ℎ
2
𝑡 (𝜁𝑖) ≲ 𝑁𝑇 .

(v) There are constants 𝛿, 𝑔 ≥ 0 such that 𝜓1(𝑄)∕𝜓𝐾 (𝑄) ≲ 𝐾𝛿 , min1≤𝑟≤𝐾−1 𝜓𝑟(𝑄) − 𝜓𝑟+1(𝑄) ≥ 𝑐𝐾−𝑔 for some constant 𝑐 > 0.

This condition is basically the same as Assumption 3.1, and we modify some notation to be suitable for finite sample analysis.

Assumption B.2 (Parameter Size and Signal-to-noise Ratio). Let 𝛾 = 𝑝max
𝑝min

and �̃� = max{𝜗, log𝑁 + log 𝑇 }. Then, we have

(𝑖) �̃�𝜂
3
2 𝛾

5
2𝐾 (2+2𝑔+ 9

2 𝛿) max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }≪ 𝑝
1
2
min min{𝑁, 𝑇 },

𝛾
3
2𝐾 (𝑔+ 3

2 𝛿) max{𝑁, 𝑇 }≪ 𝑝
1
2
min min{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 }𝜓𝑁𝑇 ,

(𝑖𝑖) min{||
1
2
𝑜 , | |

1
2
𝑜 }max{

√

𝑁,
√

𝑇 }≪ 𝑝
1
2
min𝐾

(𝜈− 1
2−2𝛿),

min{||
1
2
𝑜 , | |

1
2
𝑜 }max{

√

𝑁,
√

𝑇 }
√

𝑁𝑇 ≪ 𝛾
1
2 𝜓𝑁𝑇𝐾

𝑣.

The above condition is weaker than the condition for the asymptotic normality (Assumption 3.4). For example, Assumption B.2(i)
does not restrict the size of the interesting group, min{||𝑜, | |𝑜}, unlike Assumption 3.4(i). Hence, we can deal with the case where
||𝑜 = 𝑁 and | |𝑜 = 𝑇 . In addition, it allows for a weaker signal-to-noise ratio than that of Assumption 3.4.

roposition B.1. Suppose Assumptions 3.2, 3.3, B.1, and B.2. Then, with probability at least 1 − 𝑂(min{𝑁−3, 𝑇 −3}), we have

‖

‖

‖

‖

‖

‖

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡

‖

‖

‖

‖

‖

‖

≤ 𝐶

⎛

⎜

⎜

⎜

⎝

𝜎𝜂
1
2𝐾

1
2 max{

√

log𝑁,
√

log 𝑇 }

𝑝
1
2
min

√

𝑁| |𝑜,
+
𝜎𝜂

1
2𝐾

1
2 max{

√

log𝑁,
√

log 𝑇 }

𝑝
1
2
min

√

𝑇 ||𝑜

+
𝜎�̃�𝛾

7
2𝐾 (4+2 𝑔+ 13

2 𝛿)𝜂3 max{log𝑁, log 𝑇 }

𝑝
3
2
min min{𝑁, 𝑇 }

+
𝜎3𝛾2𝐾 ( 72 𝛿+𝑔+1)𝜂

1
2 max{𝑁, 𝑇 }

𝑝2min𝜓
2
𝑁𝑇

⎞

⎟

⎟

⎟

⎠

for some constant 𝐶 > 0.

The first two terms represent the asymptotically normal distribution parts, while the last two terms are the residual parts related
to the estimation errors of 𝛽𝑖 and 𝑓𝑡. If we ignore some small parameters and logarithmic terms, the convergence rate of the first
two terms is reduced to

1
√

𝑁| |𝑜

+ 1
√

𝑇 ||𝑜
.

owever, if both ||𝑜 and | |𝑜 are large, as in the case where ||𝑜 = 𝑁 and | |𝑜 = 𝑇 , the asymptotically normal parts cannot
ominate the residual parts. Thus, we are unable to derive the inferential theory in this case. For inference, at least one part of the
symptotically normal terms should dominate other residual terms. On the other hand, in terms of the convergence rate, the large
izes of ||𝑜 and | |𝑜 are beneficial.

ppendix C. Inferential theory for the general approximated factor model

This section provides assumptions for the asymptotic normality of the estimator of the group average of 𝑀𝑖𝑡 for the general
pproximated factor model having the form 𝑌 = 𝑀 +  where 𝑀 = 𝑀⋆ + 𝑀𝑅, 𝑟𝑎𝑛𝑘(𝑀⋆) = 𝐾. For this, we define some
dditional notations. The condition number of 𝑀⋆ is defined as 𝑞 ∶= 𝜓max(𝑀⋆)∕𝜓min(𝑀⋆). Define 𝑐 = min1≤𝑟≤𝐾+1

|

|

|

𝑐2𝑟−1 − 𝑐
2
𝑟
|

|

|

, where
𝑟 ∶= 𝜓𝑟(𝑀⋆)∕𝜓min(𝑀⋆), and 𝑐inv ∶= 1∕𝑐.3

3 We set 𝑐0 ∶= ∞. Note that 𝜓𝑟 = 0 for 𝑟 > 𝐾, and that 𝑐21 = 𝑞2 ≥ 𝑐2𝑟 ≥ 𝑐2𝐾 = 1 for all 1 ≤ 𝑟 ≤ 𝐾. 𝑐 is always smaller than 1 since 𝑐2𝐾 − 𝑐2𝐾+1 = 1. Hence, 𝑐inv ≥ 1.
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A

(

Assumption C.1 (Incoherence). The matrix 𝑀⋆ satisfies 𝜇-incoherence condition. That is, ‖
‖

𝑈𝑀⋆‖
‖2,∞ ≤

√

𝜇
𝑁

‖

‖

𝑈𝑀⋆‖
‖𝐹 =

√

𝜇𝐾
𝑁 and

𝑉𝑀⋆‖
‖2,∞ ≤

√

𝜇
𝑇
‖

‖

𝑉𝑀⋆‖
‖𝐹 =

√

𝜇𝐾
𝑇 with probability converging to 1. Here, 𝜇 is allowed to increase as 𝑁, 𝑇 increase.

ssumption C.2 (Parameters Size). Let 𝛾 = 𝑝max
𝑝min

and �̃� = max{𝜗, log𝑁 + log 𝑇 }. Then, we have

(i) min{||1∕2𝑜 , | |

1∕2
𝑜 }�̃�𝑐inv𝑞

15
2 𝜇3𝐾4𝛾

7
2 max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 } = 𝑜𝑃 (𝑝min min{𝑁, 𝑇 }),

(ii) min{||1∕2𝑜 , | |

1∕2
𝑜 }�̃�𝑐2inv𝑞

7𝜇
5
2𝐾

7
2 𝛾4 max{𝑁

√

log𝑁, 𝑇
√

log 𝑇 } = 𝑜𝑃 (𝜓min𝑝
3
2
min min{

√

𝑁,
√

𝑇 }),

(iii) min{||1∕2𝑜 , | |

1∕2
𝑜 }𝜗𝑐2inv𝑞

6𝜇2𝐾
7
2 𝛾

7
2 max{𝑁

3
2
√

log𝑁, 𝑇
3
2
√

log 𝑇 } = 𝑜𝑃 (𝜓2
min𝑝min),

(iv) min{||1∕2𝑜 , | |

1∕2
𝑜 }𝑐inv𝑞

7
2 𝜇

1
2𝐾𝛾3 max{𝑁2, 𝑇 2}min{

√

𝑁,
√

𝑇 } = 𝑜𝑃 (𝜓3
min𝑝

3
2
min).

ssumption C.3 (Low-rank Approximation Error 𝑀𝑅). The low-rank approximation error 𝑀𝑅 satisfies the following condition:

max
𝑖,𝑡

|

|

|

𝑀𝑅
𝑖𝑡
|

|

|

=𝑜𝑃

⎛

⎜

⎜

⎜

⎝

𝑝
5
2
min

min{||1∕2𝑜 , | |

1∕2
𝑜 }𝑝2max𝑞2𝜇

3
2𝐾

3
2 max{

√

𝑁,
√

𝑇 }
+

𝜓min𝑝2min

min{||1∕2𝑜 , | |

1∕2
𝑜 }𝑝

3
2
max𝑞𝜇

1
2𝐾

1
2 max{

√

𝑁,
√

𝑇 }
√

𝑁𝑇

⎞

⎟

⎟

⎟

⎠

Then, the estimator for the group average of 𝑀𝑖𝑡 has the asymptotic normality as follows.

Theorem C.1. Suppose Assumptions 3.2, 3.3 and C.1–C.3 hold. In addition, suppose that
‖

‖

‖

‖

√

𝑁
||𝑜

∑

𝑖∈ 𝑈𝑀∗ ,𝑖
‖

‖

‖

‖

≥ 𝑐 and
‖

‖

‖

‖

√

𝑇
| |𝑜

∑

𝑡∈ 𝑉𝑀∗ ,𝑡
‖

‖

‖

‖

≥
𝑐 for some constant 𝑐 > 0. Then,


− 1

2


(

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡

)

𝐷
⟶  (0, 1),

where  = 1
| |

2
𝑜

∑

𝑡∈
𝛽′

( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜎

2
𝑗𝑡𝛽𝑗𝛽

′
𝑗

)( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1

𝛽

+ 1
||2𝑜

∑

𝑖∈
𝐹 ′


( 𝑇
∑

𝑠=1
𝜔𝑖𝑠𝐹𝑠𝐹

′
𝑠

)−1 ( 𝑇
∑

𝑠=1
𝜔𝑖𝑠𝜎

2
𝑖𝑠𝐹𝑠𝐹

′
𝑠

)( 𝑇
∑

𝑠=1
𝜔𝑖𝑠𝐹𝑠𝐹

′
𝑠

)−1

𝐹 ,

̄ = 1
||𝑜

∑

𝑖∈ 𝛽𝑖, 𝐹 = 1
| |𝑜

∑

𝑠∈ 𝐹𝑠. In addition, Assumptions C.1–C.3 are satisfied under Assumptions 3.1–3.4 by setting 𝜇 = 𝐶𝜂 for
ome constant 𝐶 > 0.

In fact, Assumptions C.1–C.3 are verified by Lemma G.1.

heorem C.2 (Feasible CLT). Under the assumptions of Theorem C.1, we have

̂
− 1

2


(

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡 −

1
||𝑜

∑

(𝑖,𝑡)∈
𝑀𝑖𝑡

)

𝐷
⟶  (0, 1),

here ̂ is the same as the one in Theorem 3.1.

ppendix D. Formal definitions of the non-convex estimator and the leave-one-out estimator

Here, we introduce formal definitions of the non-convex optimization estimator (𝑊 [𝑙], 𝑍[𝑙]) and the leave-one-out estimator
�̆� (𝑙), �̆�(𝑙)) where 1 ≤ 𝑙 ≤ 𝑁 + 𝑇 . We start with defining the following two loss functions:

𝑓 infs(𝑤, 𝑧) ∶= 1
2
‖𝛱− 1

2 𝛺
(

𝑤𝑧′ − 𝑌
)

‖

2
𝐹 + 𝜆

2
‖𝑤‖2𝐹 + 𝜆

2
‖𝑧‖2𝐹 , (D.1)

𝑓 infs,(𝑙)(𝑤, 𝑧) (D.2)

∶=

⎧

⎪

⎨

⎪

⎩

1
2
‖

‖

‖

𝛱−1∕2𝛺−𝑙,⋅
(𝑤𝑧′ − 𝑌 )‖‖

‖

2

𝐹
+ 1

2
‖

‖

𝑙,⋅(𝑤𝑧′ −𝑀⋆)‖
‖

2
𝐹 + 𝜆

2 ‖𝑤‖
2
𝐹 + 𝜆

2 ‖𝑧‖
2
𝐹 , if 1 ≤ 𝑙 ≤ 𝑁,

1
2
‖

‖

‖

𝛱−1∕2𝛺⋅,−(𝑙−𝑁)
(𝑤𝑧′ − 𝑌 )‖‖

‖

2

𝐹
+ 1

2
‖

‖

‖

⋅,(𝑙−𝑁)(𝑤𝑧′ −𝑀⋆)‖‖
‖

2

𝐹
+ 𝜆

2 ‖𝑤‖
2
𝐹 + 𝜆

2 ‖𝑧‖
2
𝐹 ,

if 𝑁 + 1 ≤ 𝑙 ≤ 𝑁 + 𝑇 ,
17
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where 𝑤 and 𝑧 are 𝑁 × 𝐾 and 𝑇 × 𝐾 matrices, respectively.4 The loss function (D.1) is for the non-convex optimization estimator
(𝑊 [𝑙], 𝑍[𝑙]) and the loss function (D.2) is for the leave-one-out estimator �̆� (𝑙). In the loss function (D.2), we use the following
definitions. Let 𝑔(𝑖) be the cluster where the unit 𝑖 is included in. For each 𝑁 × 𝑇 matrix 𝐷, let 𝛺 = 𝛺◦𝐷. Also, for each 𝑁 × 𝑇

atrix 𝐷 and for each 1 ≤ 𝑙 ≤ 𝑁 , let 𝛺−𝑙,⋅
(𝐷) ∶= 𝛺−𝑙,⋅◦𝐷 where 𝛺−𝑙,⋅ ∶= [𝜔𝑗𝑠1{𝑗 ∉ 𝑔(𝑙)}]𝑁×𝑇 , and 𝑙,⋅(𝐷) ∶= 𝐸𝑙,⋅◦𝐷 where

𝐸𝑙,⋅ ∶= [1{𝑗 ∈ 𝑔(𝑙)}]𝑁×𝑇 . Roughly speaking, 𝑓 infs,(𝑙) changes {𝑝−1𝑗 𝜔𝑗𝑠, 𝑦𝑗𝑠}𝑗∈𝑔(𝑙) ,𝑠≤𝑇 in 𝑓 infs to its (approximate) population mean
{1,𝑀⋆

𝑗𝑠}𝑗∈𝑔(𝑙) ,𝑠≤𝑇 . Hence, the leave-one-out estimator constructed from the loss function 𝑓 infs,(𝑙) can be independent of {𝜔𝑙𝑠, 𝜀𝑙𝑠}𝑠≤𝑇
because 𝑓 infs,(𝑙) excludes {𝜔𝑗𝑠, 𝜀𝑗𝑠}𝑗∈𝑔(𝑙) ,𝑠≤𝑇 which is in the cluster where the unit 𝑙 is included in.

On the other hand, for each 𝑁 + 1 ≤ 𝑙 ≤ 𝑁 + 𝑇 , we define 𝛺⋅,−(𝑙−𝑁)
(𝐷) ∶= 𝛺⋅,−(𝑙−𝑁)◦𝐷 where 𝛺⋅,−(𝑙−𝑁) ∶= [𝜔𝑗𝑠1{𝑠 ≠ 𝑙 −𝑁}]𝑁×𝑇 ,

and ⋅,(𝑙−𝑁)(𝐷) ∶= 𝐸⋅,(𝑙−𝑁)◦𝐷 where 𝐸⋅,(𝑙−𝑁) ∶= [1{𝑠 = 𝑙 − 𝑁}]𝑁×𝑇 . In this case, 𝑓 infs,(𝑙) changes {𝑝−1𝑗 𝜔𝑗𝑠, 𝑦𝑗𝑠}𝑗≤𝑁,𝑠=𝑙−𝑁 in 𝑓 infs to
{1,𝑀⋆

𝑗𝑠}𝑗≤𝑁,𝑠=𝑙−𝑁 . So, the leave-one-out estimator constructed from 𝑓 infs,(𝑙) is independent of {𝜔𝑗,(𝑙−𝑁), 𝜀𝑗,(𝑙−𝑁)}𝑗≤𝑁 because 𝑓 infs,(𝑙)

xcludes {𝜔𝑗,(𝑙−𝑁), 𝜀𝑗,(𝑙−𝑁)}𝑗≤𝑁 and 𝜔𝑗𝑠, 𝜀𝑗𝑠 are independent across time.
To define the gradient descent iterates, we denote the singular value decomposition (SVD) of 𝑀⋆ by 𝑈𝑀⋆𝐷𝑀⋆𝑉 ′

𝑀⋆ where
′
𝑀⋆𝑈𝑀⋆ = 𝑉 ′

𝑀⋆𝑉𝑀⋆ = 𝐼𝐾 . 𝐷𝑀⋆ is a 𝐾 × 𝐾 diagonal matrix with singular values in descending order, i.e., 𝐷𝑀⋆ = diag(𝜓1,… , 𝜓𝐾 )
here 𝜓max = 𝜓1 > ⋯ > 𝜓𝐾 = 𝜓min > 0. Then, based on (D.1), we define the following gradient descent iterates:

[

𝑊 𝜏+1

𝑍𝜏+1

]

=
[

𝑊 𝜏 − 𝜂∇𝑊 𝑓 infs(𝑊 𝜏 , 𝑍𝜏 )
𝑍𝜏 − 𝜂∇𝑍𝑓 infs(𝑊 𝜏 , 𝑍𝜏 )

]

(D.3)

here 𝑊 0 = 𝑊 ∶= 𝑈𝑀⋆𝐷
1
2
𝑀⋆ , 𝑍0 = 𝑍 ∶= 𝑉𝑀⋆𝐷

1
2
𝑀⋆ , 𝜏 = 0, 1,… , 𝜏0−1, and 𝜏0 = max{𝑁18, 𝑇 18}. Here, 𝜂 > 0 is the step size. Similarly,

for (D.2), we define
[

𝑊 𝜏+1,(𝑙)

𝑍𝜏+1,(𝑙)

]

=
[

𝑊 𝜏,(𝑙) − 𝜂∇𝑊 𝑓 infs,(𝑙)(𝑊 𝜏,(𝑙), 𝑍𝜏,(𝑙))
𝑍𝜏,(𝑙) − 𝜂∇𝑍𝑓 infs,(𝑙)(𝑊 𝜏,(𝑙), 𝑍𝜏,(𝑙))

]

(D.4)

here 𝑊 0,(𝑙) = 𝑊 , 𝑍0,(𝑙) = 𝑍. Note that the gradient descent iterates in (D.3) and (D.4) cannot be feasibly computed because the
nitial values (𝑊 , 𝑍), the missing probability (𝛱), and the cluster structure are unknown. However, it does not cause any problem in
he paper since we do not need to actually compute 𝑊 𝜏 , 𝑍𝜏 ,𝑊 𝜏,(𝑙), and 𝑍𝜏,(𝑙) and only use their existence and theoretical properties
or the proof. We also define for each 𝜏 and 𝑙,

𝐻𝜏 ∶= arg min
𝑂∈𝐾×𝐾

‖ 𝜏𝑂 − ‖𝐹 , 𝐻𝜏,(𝑙) ∶= arg min
𝑂∈𝐾×𝐾

‖

‖

‖

 𝜏,(𝑙)𝑂 − ‖

‖

‖𝐹
,

𝑄𝜏,(𝑙) ∶= arg min
𝑂∈𝐾×𝐾

‖

‖

‖

 𝜏,(𝑙)𝑂 −  𝜏𝐻𝜏‖
‖

‖𝐹
, where  𝜏 ∶=

[

𝑊 𝜏

𝑍𝜏

]

,  𝜏,(𝑙) ∶=
[

𝑊 𝜏,(𝑙)

𝑍𝜏,(𝑙)

]

,  ∶=
[

𝑊
𝑍

]

,

nd 𝐾×𝐾 is the set of 𝐾 ×𝐾 orthogonal matrix. Importantly, by the definition, 𝐻𝜏,(𝑙) is also independent to the observations in 𝑙.
In this paper, as emphasized in the main text, we consider the non-convex optimization estimator (𝑊 [𝑙], 𝑍[𝑙]) and the leave-

ne-out estimator (�̆� (𝑙), �̆�(𝑙)) at two different stopping points. Let 𝜏∗𝑙 ∶= arg min0≤𝜏<𝜏𝑜
‖

‖

‖

∇𝑓 infs,(𝑙)(𝑊 𝜏,(𝑙), 𝑍𝜏,(𝑙))‖‖
‖𝐹

. First, we use the
topping point 𝜏∗𝑙 , i.e.,

(𝑊 [𝑙], 𝑍[𝑙]) ∶= (𝑊 𝜏∗𝑙 , 𝑍𝜏∗𝑙 ) from (D.3), (�̆� (𝑙), �̆�(𝑙)) ∶= (𝑊 𝜏∗𝑙 ,(𝑙), 𝑍𝜏∗𝑙 ,(𝑙)) from (D.4),

nd �̃� [𝑙] ∶= 𝐻𝜏∗𝑙 , �̆� (𝑙) ∶= 𝐻𝜏∗𝑙 ,(𝑙). For each 𝑙, we set the same iteration number 𝜏∗𝑙 for the non-convex optimization estimator
𝑊 [𝑙], 𝑍[𝑙]) and the leave-one-out estimator (�̆� (𝑙), �̆�(𝑙)) to ensure that they are close to each other. Note that, although the loss
unction (D.1) does not depend on 𝑙, due to 𝜏∗𝑙 , the non-convex optimization estimator (𝑊 [𝑙], 𝑍[𝑙]) depend on 𝑙. Namely, (𝑊 [𝑙], 𝑍[𝑙])
s selected to be close to the leave-one-out estimator (�̆� (𝑙), �̆�(𝑙)) among many gradient descent iterates in (D.3). At last, we choose
[𝑙]
4 so that 𝜓−1∕2

min 𝑊 [𝑙]𝐻 [𝑙]
4 is the left singular vector of 𝑊 [𝑙]𝑍[𝑙]′.

Secondly, we use the stopping point 𝜏∗ ∶= arg min0≤𝜏<𝜏𝑜
‖

‖

‖

∇𝑓 infs(𝑊 𝜏 , 𝑍𝜏 )‖‖
‖𝐹

. For brevity, we will use the same notations for the
stimators. Namely,

(𝑊 [𝑙], 𝑍[𝑙]) ∶= (𝑊 𝜏∗ , 𝑍𝜏∗ ) from (D.3), (�̆� (𝑙), �̆�(𝑙)) ∶= (𝑊 𝜏∗ ,(𝑙), 𝑍𝜏∗ ,(𝑙)) from (D.4),

nd �̃� [𝑙] ∶= 𝐻𝜏∗ , �̆� (𝑙) ∶= 𝐻𝜏∗ ,(𝑙). Also, 𝐻 [𝑙]
4 is defined similarly. Here, we are abusing notation in the sense that (𝑊 [𝑙], 𝑍[𝑙]), �̃� [𝑙] and

[𝑙]
4 do not actually depend on 𝑙. However, this notational abuse is going to make the proofs more streamlined.

emark 1. In the main text, to facilitate understanding and save space, we use simpler notations. Specifically, (𝛽full,𝑡, 𝛽(−𝑡), 𝛽{−𝑖})
n the main text is the same as

(

𝛽full,𝑡, 𝛽(−𝑡), 𝛽{−𝑖}
)

∶=
(

√

𝑁𝑊 [𝑁+𝑡]�̃� [𝑁+𝑡]𝐷
− 1

2
𝑀⋆ ,

√

𝑁�̆� (𝑁+𝑡)�̆� (𝑁+𝑡)𝐷
− 1

2
𝑀⋆ ,

√

𝑁�̆� (𝑖)�̆� (𝑖)𝐷
− 1

2
𝑀⋆

)

.

4 In addition, 𝑓 fsbl(𝑤, 𝑧) is defined by replacing 𝛱 with �̂� from 𝑓 infs(𝑤, 𝑧).
18
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Appendix E. Key part of proofs

As we mentioned in Section 2.3, the key for having an unbiased estimator for 𝑀𝑖𝑡 is showing the following proposition:

Proposition E.1. Suppose assumptions of Theorem C.1 hold.5 Then, there is a 𝐾 ×𝐾 matrix 𝐻2 so that

√

𝑁(𝐹𝑡 −𝐻2𝐹𝑡) =
√

𝑁𝐻2

( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝜀𝑗𝑡

)

+
√

𝑁𝑅𝐹𝑡 ,

max
𝑡

‖

√

𝑁𝑅𝐹𝑡 ‖

= 𝑂𝑃

⎛

⎜

⎜

⎜

⎝

𝜎𝑝
3
2
max𝜗𝑐inv𝑞

11
2 𝜇

3
2𝐾

5
2
√

𝑁 max{
√

log𝑁,
√

log 𝑇 }

𝑝3min min{𝑁, 𝑇 }
+
𝜎2𝑝

5
2
max𝜗𝑐2inv𝑞

3𝜇𝐾2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝜓min𝑝4min min{
√

𝑁,
√

𝑇 }

+
𝜎3𝑝

3
2
max𝑐inv𝑞

5
2𝐾

1
2
√

𝑁 max{𝑁, 𝑇 }
𝜓2
min𝑝

3
min

+
𝑝

1
2
max

√

𝑁
𝑝min

max
𝑖𝑡

|

|

|

𝑀𝑅
𝑖𝑡
|

|

|

⎞

⎟

⎟

⎟

⎠

= 𝑜𝑃 (1).

.1. Important lemmas

An important step is to show that uniformly in 𝑡, the following two terms are negligible:

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 − 𝛽

full,𝑡
𝑗 ), 1

√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

full,𝑡
𝑗 − 𝛽(−𝑡)𝑗 ). (E.1)

The proof follows from Lemma E.2 below.

Lemma E.2. Suppose assumptions of Theorem C.1 hold. Uniformly in 𝑡 ≤ 𝑇 , the two terms in (E.1) are both 𝑜𝑃 (1). Specifically, their
order is

𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝
3
2
max𝜗

1
2 𝑐inv𝑞

9
2 𝜇

1
2𝐾

3
2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝2min min{
√

𝑁,
√

𝑇 }𝜓min

+
𝜎3𝑝

3
2
max𝑐inv𝑞

5
2𝐾

1
2
√

𝑁 max{𝑁, 𝑇 }
𝑝2min𝜓

2
min

⎞

⎟

⎟

⎠

.

n addition, we have the following results:

(𝑖) max
𝑡

‖𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] − �̆� (𝑡+𝑁)�̆� (𝑡+𝑁)
‖𝐹 = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝜗

1
2 𝑞

3
2 𝜇

1
2𝐾

1
2 max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝min𝜓
1∕2
min min{

√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

,

(𝑖𝑖) max
𝑡

‖𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] −𝑊 ‖ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝑞

1
2 max{

√

𝑁,
√

𝑇 }

𝑝min𝜓
1∕2
min

⎞

⎟

⎟

⎠

,

(𝑖𝑖𝑖) max
𝑡

‖𝑊 [𝑡+𝑁]𝑍[𝑡+𝑁]′ −𝑀‖𝐹 = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝max𝜗
1
2 𝑞

7
2 𝜇

1
2𝐾 max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝2min min{
√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

,

(𝑖𝑣) ‖𝑀 −𝑀⋆
‖ = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝑞max{

√

𝑁,
√

𝑇 }
𝑝min

⎞

⎟

⎟

⎠

,

(𝑣) max
𝑡

‖�̆� (𝑡+𝑁)�̆� (𝑡+𝑁) −𝑊 ‖2,∞ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝜗

1
2 𝑞

3
2 𝜇

1
2𝐾

1
2 max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝min𝜓
1∕2
min min{

√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

.

Proof of Lemma E.2. First of all, by Lemmas H.1–H.5, we have (H.1), (H.2), (H.3), (H.4) and (H.5). Hence, we have (i)–(v). Next,
we prove terms in (E.1) are 𝑜𝑃 (1). By Remark 1, the first term is written as

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽𝑗 − 𝛽

full,𝑡
𝑗 ) = 𝑁− 1

2 (𝛽 −
√

𝑁𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁]𝐷
− 1

2
𝑀⋆ )

′𝛺𝑡𝑡

= 𝑁− 1
2 (𝛽 −

√

𝑁𝜓−1∕2
min 𝑊 [𝑡+𝑁]𝐻 [𝑡+𝑁]

4 )′𝛺𝑡𝑡 + 𝜓
−1∕2
min (𝐻 [𝑡+𝑁]

4 − �̃� [𝑡+𝑁]𝐷
− 1

2
𝑀⋆𝜓

−1∕2
min )′𝑊 [𝑡+𝑁]′𝛺𝑡𝑡 (E.2)

5 By Lemma G.1, the assumptions of Theorem C.1 are satisfied under the assumptions of Theorem C.1.
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H

=

T

p

L

‖

where 𝐻 [𝑁+𝑡]
4 is a 𝐾 ×𝐾 matrix introduced in Claim G.2, 𝛺𝑡 = diag

(

𝜔1𝑡,… , 𝜔𝑁𝑡
)

, and 𝑡 = [𝜀1𝑡,… , 𝜀𝑁𝑡]′. As noted in Claim G.2(iii),
we derive from Lemma E.2(iii) that

max
1≤𝑡≤𝑇

‖

‖

‖

𝛽 −
√

𝑁𝜓−1∕2
min 𝑊 [𝑡+𝑁]𝐻 [𝑡+𝑁]

4
‖

‖

‖𝐹
= 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎𝑝max𝜗
1
2 𝑐inv𝑞

9
2 𝜇

1
2𝐾

3
2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝2min min{
√

𝑁,
√

𝑇 }𝜓min

⎞

⎟

⎟

⎠

.

Hence, the first term of (E.2) is 𝑂𝑃

(

𝜎2𝑝
3
2
max𝜗

1
2 𝑐inv𝑞

9
2 𝜇

1
2 𝐾

3
2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝2min min{
√

𝑁,
√

𝑇 }𝜓min

)

. For the second term of (E.2), note that

max
𝑡

‖𝐻 [𝑡+𝑁]
4 − �̃� [𝑡+𝑁]𝐷

− 1
2

𝑀⋆𝜓
1∕2
min‖

(i)
≤ 𝜓1∕2

min𝑂𝑃
(

𝜓−1∕2
min

)

[

max
𝑡

‖𝑊 −𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁]
‖‖𝐷

− 1
2

𝑀⋆‖ + 𝜓
−1∕2
min max

𝑡
‖𝑊 [𝑡+𝑁]𝐻 [𝑡+𝑁]

4 −𝑊𝐷
− 1

2
𝑀⋆𝜓

1∕2
min‖

]

(ii)
= 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝑐inv𝑞2𝐾

1
2 max{

√

𝑁,
√

𝑇 }
𝑝min𝜓min

⎞

⎟

⎟

⎠

.

ere, (i) comes from Claim G.5(i), and (ii) comes from Lemma E.2(ii) and Claim G.5(ii). In addition,

max
𝑡

‖𝑊 [𝑡+𝑁]′𝛺𝑡𝑡‖ ≤ max
𝑡

‖(𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁])′𝛺𝑡𝑡‖ ≤ max
𝑡

‖𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] −𝑊 ‖‖𝛺𝑡𝑡‖ + max
𝑡

‖𝑊 ′𝛺𝑡𝑡‖.

From Lemma E.2(ii), we know max𝑡 ‖𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁]−𝑊 ‖‖𝛺𝑡𝑡‖ = 𝑂𝑃

(

𝜎2𝑝max𝑞
1
2
√

𝑁 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓

1∕2
min

)

. In addition, we have max𝑡 ‖𝑊 ′𝛺𝑡𝑡‖

𝑂𝑃 (𝜎𝑞
1
2𝐾

1
2
√

log 𝑇𝜓1∕2
min ) from the matrix Bernstein inequality because 𝑊 = 𝑈𝑀⋆𝐷

1
2
𝑀⋆ . Hence, the second term of (E.2) is

𝑂𝑃
⎛

⎜

⎜

⎝

𝜎3𝑝
3
2
max𝑐inv𝑞

5
2𝐾

1
2
√

𝑁 max{𝑁, 𝑇 }
𝑝2min𝜓

2
min

+
𝜎2𝑝

1
2
max𝑐inv𝑞

5
2𝐾

√

log 𝑇 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓min

⎞

⎟

⎟

⎠

.

Moreover, the second term of (E.1) can be written as

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

full,𝑡
𝑗 − 𝛽(−𝑡)𝑗 ) = 𝐷

− 1
2

𝑀⋆

(

𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] − �̆� (𝑡+𝑁)�̆� (𝑡+𝑁)
)′
𝛺𝑡𝑡.

hen, we have from Lemma E.2(i) that

max
𝑡

‖𝐷
− 1

2
𝑀⋆

(

𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] − �̆� (𝑡+𝑁)�̆� (𝑡+𝑁)
)′
𝛺𝑡𝑡‖ = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎2𝑝max𝜗
1
2 𝑞

3
2 𝜇

1
2𝐾

1
2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝min𝜓min min{
√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

.

This completes the proof. □

In addition, the following lemma shows the part in which the proofs are different depending on how we define the stopping
oint.

emma E.3. Suppose assumptions of Theorem C.1 hold.6 Then, we have

(1) max
𝑡

‖

1
√

𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡(𝛽

(−𝑡)
𝑗 −𝐻 ′

1𝛽𝑗 )‖ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝
1
2
max𝜗

1
2 𝑞

1
2𝐾

1
2
√

log 𝑇 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓min

⎞

⎟

⎟

⎠

= 𝑜𝑃 (1),

(2) max
𝑡

‖

1
√

𝑁

𝑁
∑

𝑗=1
(𝜔𝑗𝑡 − 𝑝𝑗 )𝐻 ′

1𝛽𝑗 (𝛽
(−𝑡)
𝑗 −𝐻 ′

1𝛽𝑗 )‖ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝max𝜗𝑞
1
2 𝜇

1
2𝐾

√

log 𝑇 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓min

⎞

⎟

⎟

⎠

= 𝑜𝑃 (1).

Proof of Lemma E.3. (1)-i. Case of using 𝜏∗𝑙 as a stopping point:

Let 𝜉𝑡 ∶= 𝛽(−𝑡) − 𝛽𝐻1 =
√

𝑁�̆� (𝑡+𝑁)�̆� (𝑡+𝑁)𝐷
− 1

2
𝑀⋆ − 𝛽𝐻1. To employ matrix Bernstein inequality, we first estimate max𝑡 ‖𝜉𝑡‖2,∞. Note

𝜉𝑡‖2,∞ ≤
√

𝑁𝜓−1∕2
min ‖�̆� (𝑡+𝑁)�̆� (𝑡+𝑁) −𝑊 ‖2,∞. So, by Lemma E.2(v), we have

max
𝑡

‖𝜉𝑡‖2,∞ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝜗

1
2 𝑞

3
2 𝜇

1
2𝐾

1
2
√

𝑁 max{
√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝min𝜓min min{
√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

.

6 By Lemma G.1, it is enough to consider the assumptions of Theorem C.1.
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B

i

w

o
a

d

𝐹

Furthermore, we have

max
𝑡

‖𝜉𝑡‖𝐹 ≤
√

𝑁
(

max
𝑡

‖𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁] − �̆� (𝑡+𝑁)�̆� (𝑡+𝑁)
‖𝐹 + ‖𝑊 −𝑊 [𝑡+𝑁]�̃� [𝑡+𝑁]

‖𝐹

)

‖𝐷
− 1

2
𝑀⋆‖

= 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎𝑝
1
2
max𝑞

1
2𝐾

1
2
√

𝑁 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓min

⎞

⎟

⎟

⎠

.

ecause 𝜉𝑡 only depends on 𝑀⋆ and 𝑌 excluding the 𝑡th column of 𝑌 , conditioning on {, 𝛺}, {𝜀𝑗𝑡}𝑗≤𝑁 are independent of 𝜉𝑡. Hence,
E
[

𝜀𝑗𝑡|, 𝛺, 𝜉𝑡
]

= E
[

𝜀𝑗𝑡|, 𝛺
]

= 0 and, conditioning on {, 𝛺, 𝜉𝑡}, {𝜀𝑗𝑡}𝑗≤𝑁 are independent across 𝑗. Then, by matrix Bernstein
nequality, we have

‖𝜉′𝑡𝛺𝑡𝑡‖ = ‖

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡𝜉

′
𝑡,𝑗‖ ≤ 𝐶

(

𝜎 log 𝑇 log𝑁 max
𝑡

‖𝜉𝑡‖2,∞ + 𝜎
√

log 𝑇 max
𝑡

‖𝜉𝑡‖𝐹
)

ith probability exceeding 1 − 𝑂(𝑇 −100) and so, max𝑡 ‖𝜉′𝑡𝛺𝑡𝑡‖ = 𝑂𝑃

(

𝜎2𝑝
1
2
max𝜗

1
2 𝑞

1
2 𝐾

1
2
√

𝑁 log 𝑇 max{
√

𝑁,
√

𝑇 }
𝑝min𝜓min

)

.

(1)-ii. Case of using 𝜏∗ as a stopping point:
In this case, we note that 𝜉𝑡 is no longer independent of {𝜀𝑗𝑡}𝑗≤𝑁 conditioning on {, 𝛺}, due to the fact that 𝜏∗ does depend

n the full sample. Therefore, we cannot directly apply the Bernstein inequality as in the 𝜏∗𝑙 case. Instead, we apply Lemma H.10
nd obtain the same bound for max𝑡 ‖𝜉′𝑡𝛺𝑡𝑡‖.

(2)-i. Case of using 𝜏∗𝑙 as a stopping point:
The proof is similar to that in (1-i). So, we omit it.
(2)-ii. Case of using 𝜏∗ as a stopping point:
The proof is the same as that in (1-ii) although we use Lemma H.11 instead. □

E.2. Proof of Proposition E.1

First of all, by Claim G.1(i), we can know that there is a 𝐾 × 𝐾 matrix 𝐻1 such that 1
√

𝑁
𝛽𝐻1 is the left singular vector of

𝑀⋆. That is, 1
√

𝑁
𝛽𝐻1 = 𝑈𝑀⋆ . Let 𝐵𝑡 ∶= 1

𝑁
∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗 , 𝐵

∗
𝑡 ∶= 1

𝑁
∑𝑁
𝑗=1 𝜔𝑗𝑡𝐻

′
1𝛽𝑗𝛽

′
𝑗𝐻1 and 𝐵 ∶= 1

𝑁
∑𝑁
𝑗=1 𝑝𝑗𝐻

′
1𝛽𝑗𝛽

′
𝑗𝐻1. Then, we

efine 𝐻2 ∶=
(

𝐼𝐾 + 𝜑
)

𝐻−1
1 where 𝜑 ∶= 1

𝑁 𝐵
−1𝐻 ′

1𝛽
′𝛱

(

𝛽𝐻1 − 𝛽
)

. Note that both 𝐵 and 𝐻2 do not depend on 𝑖 or 𝑡. Because

�̂� =
(

∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1
∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝑦𝑗𝑡 by definition, basic algebras shows the following identity:

𝐹𝑡 −𝐻2𝐹𝑡 = 𝐻2

( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝜀𝑗𝑡

)

+
6
∑

𝑑=1
𝛥𝑑,𝑡,

𝛥1,𝑡 ∶= 𝐵−1
𝑡

1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

− 𝐵−1𝐻 ′
1
1
𝑁

𝑁
∑

𝑗=1

(

𝜔𝑗𝑡 − 𝑝𝑗
)

𝛽𝑗𝐹
′
𝑡𝐻

′−1
1

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

,

𝛥2,𝑡 ∶=
(

𝐵−1
𝑡 − 𝐵−1

) 1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗

(

𝛽′𝑗𝐻1 − 𝛽′𝑗
)

𝐻−1
1 𝐹𝑡,

𝛥3,𝑡 ∶= 𝐵−1 1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)(

𝛽′𝑗𝐻1 − 𝛽′𝑗
)

𝐻−1
1 𝐹𝑡,

𝛥4,𝑡 ∶=
(

𝐵−1
𝑡 − 𝐵∗−1

𝑡

)

𝐻 ′
1
1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝜀𝑗𝑡, 𝛥5,𝑡 ∶=

(

𝐻−1
1 −𝐻2

)

( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗

)−1 ( 𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝜀𝑗𝑡

)

,

𝛥6,𝑡 ∶= 𝐵−1
𝑡

1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝑀

𝑅
𝑗𝑡 .

Step 1. We start from the first term of 𝛥1,𝑡: 𝑃1 ∶= 𝐵−1
𝑡

1
𝑁

∑𝑁
𝑗=1 𝜔𝑗𝑡𝜀𝑗𝑡

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

. We have 𝑃1 = 𝑃1,1 + 𝑃1,2 where

𝑃1,1 ∶= 𝐵−1
𝑡

1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡

(

𝛽𝑗 − 𝛽
(−𝑡)
𝑗

)

= 1
𝑁
𝐵−1
𝑡

(

𝛽 −
√

𝑁�̆� (𝑁+𝑡)�̆� (𝑁+𝑡)𝐷
− 1

2
𝑀⋆

)′

𝛺𝑡𝑡,

𝑃1,2 ∶= 𝐵−1
𝑡

1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝜀𝑗𝑡

(

𝛽(−𝑡)𝑗 −𝐻 ′
1𝛽𝑗

)

= 1
𝑁
𝐵−1
𝑡

(

√

𝑁�̆� (𝑁+𝑡)�̆� (𝑁+𝑡)𝐷
− 1

2
𝑀⋆ − 𝛽𝐻1

)′
𝛺𝑡𝑡.

Note that max𝑡 ‖𝐵−1
𝑡 ‖ = 𝑂𝑃 (

1
𝑝min

) by Claim G.4(iii). Hence, we have by Lemma E.2,

max ‖𝑃 ‖ ≤ max ‖𝐵−1
‖𝑁− 1

2 max ‖𝑁− 1
2 (𝛽 −

√

𝑁�̆� (𝑁+𝑡)�̆� (𝑁+𝑡)𝐷
− 1

2 )′𝛺  ‖
21
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N

i

B

S

S

G

= 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝
3
2
max𝜗

1
2 𝑐inv𝑞

9
2 𝜇

1
2𝐾

3
2 max{

√

𝑁 log𝑁,
√

𝑇 log 𝑇 }

𝑝3min min{
√

𝑁,
√

𝑇 }𝜓min

+
𝜎3𝑝

3
2
max𝑐inv𝑞

5
2𝐾

1
2 max{𝑁, 𝑇 }

𝑝3min𝜓
2
min

⎞

⎟

⎟

⎠

.

ote that max𝑡 ‖𝑃1,2‖ ≤ 1
𝑁 ‖𝐵−1

𝑡 ‖max𝑡 ‖𝜉′𝑡𝛺𝑡𝑡‖. Then, using Lemma E.3, we have

max
𝑡

‖𝑃1,2‖ = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝
1
2
max𝜗

1
2 𝑞

1
2𝐾

1
2
√

log 𝑇 max{
√

𝑁,
√

𝑇 }

𝑝2min

√

𝑁𝜓min

⎞

⎟

⎟

⎠

.

Step 2. By using the same logic in Step 1, we can bound the second term of 𝛥1,𝑡,
𝑃2 ∶= 𝐵−1𝐻 ′

1
1
𝑁

∑𝑁
𝑗=1

(

𝜔𝑗𝑡 − 𝑝𝑗
)

𝛽𝑗𝐹 ′
𝑡𝐻

′−1
1

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

similarly. The only difference is the part using the matrix Bernstein
nequality since {𝜔𝑗𝑡}𝑗≤𝑁 are dependent across 𝑗 while {𝜀𝑗𝑡}𝑗≤𝑁 are independent across 𝑗. We split 𝑃2 like 𝑃2 = 𝑃2,1 + 𝑃2,2 where

𝑃2,1 ∶=
1
𝑁
𝐵−1𝐻 ′

1𝛽
′ (𝛺𝑡 −𝛱

)

(

𝛽 −
√

𝑁�̆� (𝑡+𝑁)�̆� (𝑡+𝑁)𝐷
− 1

2
𝑀⋆

)

𝐻−1
1 𝐹𝑡,

𝑃2,2 ∶=
1
𝑁
𝐵−1𝐻 ′

1𝛽
′ (𝛺𝑡 −𝛱

)

(

√

𝑁�̆� (𝑡+𝑁)�̆� (𝑡+𝑁)𝐷
− 1

2
𝑀⋆ − 𝛽𝐻1

)

𝐻−1
1 𝐹𝑡.

y the same token as the part 𝑃1,1 in Step 1 with the aids of Claims G.1–G.5, we can show that

𝑃2,1 = 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝
3
2
max𝑐inv𝑞

7
2 𝜇𝐾 max{

√

𝑁,
√

𝑇 }

𝜓min𝑝3min min{
√

𝑁,
√

𝑇 }
+
𝜎𝑝

3
2
max𝜗𝑞

11
2 𝜇

3
2𝐾

5
2 max{

√

log𝑁,
√

log 𝑇 }

𝑝3min min{𝑁, 𝑇 }

⎞

⎟

⎟

⎠

.

and so, we omit the proof. In addition, using Lemma E.3, the part 𝑃2,2 can be bounded like

max
𝑡

‖𝑃2,2‖ ≤ 1
√

𝑁
‖𝐵−1

‖max
𝑡

‖

1
√

𝑁
𝐻 ′

1𝛽
′ (𝛺𝑡 −𝛱

)

𝜉𝑡‖max
𝑡

‖𝐻−1
1 𝐹𝑡‖ = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎𝑝max𝜗𝑞
3
2 𝜇𝐾

3
2
√

log 𝑇

𝑝2min

√

𝑁 min{
√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎠

.

tep 3. We bound max𝑡 ‖𝛥2,𝑡‖. By Claim G.1(iv) and Claim G.3(ii)

max
𝑡

‖𝛥2,𝑡‖ ≤ 𝑂𝑃 (1)max
𝑡

‖𝐵−1
𝑡 − 𝐵−1

‖max
𝑗

‖𝐻1𝛽𝑗‖𝑝
1
2
max

1
√

𝑁
‖𝛽𝐻1 − 𝛽‖𝐹 max

𝑡
‖𝐻−1

1 𝐹𝑡‖

= 𝑂𝑃

⎛

⎜

⎜

⎜

⎝

𝜎2𝑝
5
2
max𝑐2inv𝑞

5𝜇𝐾2 max{
√

𝑁,
√

𝑇 }

𝑝4min min{
√

𝑁,
√

𝑇 }𝜓min

+
𝜎𝑝

3
2
max𝑐inv𝜗𝑞3𝜇

3
2𝐾

5
2
√

log 𝑇
√

𝑁 min{
√

𝑁,
√

𝑇 }

⎞

⎟

⎟

⎟

⎠

.

Step 4. We now bound max𝑡 ‖𝛥3,𝑡‖. By Claim G.1(iv) and Claim G.3(ii), we have

max
𝑡

‖𝛥3,𝑡‖ ≤ 𝑂𝑃 (1)‖𝐵−1
‖

1
√

𝑁
‖𝛽 − 𝛽𝐻1‖‖𝛱‖

1
√

𝑁
‖𝛽 − 𝛽𝐻1‖max

𝑡
‖𝐻−1

1 𝐹𝑡‖

= 𝑂𝑃
⎛

⎜

⎜

⎝

𝜎2𝑝2max𝑐
2
inv𝑞

5𝜇
1
2𝐾

3
2 max{

√

𝑁,
√

𝑇 }

𝑝3min min{
√

𝑁,
√

𝑇 }𝜓min

⎞

⎟

⎟

⎠

.

tep 5. We estimate max𝑡 ‖𝛥4,𝑡‖. By Claims G.4(iv) and G.6(i), we have

max
𝑡

‖𝛥4,𝑡‖ ≤ 1
𝑁

max
𝑡

‖𝐵−1
𝑡 − 𝐵∗−1

𝑡 ‖max
𝑡

‖

(

𝛽𝐻1
)′𝛺𝑡𝑡‖ = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎2𝑝2max𝜗𝑐inv𝑞
2𝐾

√

log 𝑇 max{
√

𝑁,
√

𝑇 }

𝑝3min

√

𝑁𝜓min

⎞

⎟

⎟

⎠

.

Step 6. We bound max𝑡 ‖𝛥5,𝑡‖. First, note that 𝐻2 −𝐻−1
1 = 𝜑𝐻−1

1 and ‖𝜑‖ = 𝑂𝑃

(

𝜎𝑝
1
2
max𝑐inv𝑞2𝐾

1
2 max{

√

𝑁,
√

𝑇 }
𝑝min𝜓min

)

as noted in the proof

of Claim G.3. Moreover, by Claim G.4(iv), we have max𝑡 ‖𝐻−1
1 (

∑𝑁
𝑗=1 𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗 )
−1𝐻 ′−1

1 ‖ = ‖(𝑁𝐵∗
𝑡 )

−1
‖ = 𝑂𝑃 (

1
𝑝min𝑁

). Hence, by Claim
.6(i),

max
𝑡

‖𝛥5,𝑡‖ ≤ ‖𝜑‖‖𝐻−1
1 (

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝛽𝑗𝛽

′
𝑗 )
−1𝐻 ′−1

1 ‖max
𝑡

‖

(

𝛽𝐻1
)′𝛺𝑡𝑡‖ = 𝑂𝑃

⎛

⎜

⎜

⎝

𝜎2𝑝
1
2
max𝑐inv𝑞2𝐾

1
2 max{

√

𝑁,
√

𝑇 }
𝑝2min𝜓min

⎞

⎟

⎟

⎠

.

Step 7. Lastly, we bound max𝑡 ‖𝛥6,𝑡‖. Note that

𝛥6,𝑡 =
(

𝐵−1
𝑡 − 𝐵−1

) 1
𝑁

𝑁
∑

𝜔𝑗𝑡𝐻
′
1𝛽𝑗𝑀

𝑅
𝑗𝑡 + 𝐵

−1 1
𝑁

𝑁
∑

𝜔𝑗𝑡
(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

𝑀𝑅
𝑗𝑡
22

𝑗=1 𝑗=1
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b

A

R

A
A
A
A

B
B
B
B

B
C
C
C
C

C
C

C

C
C
F
I
J
J
K

L
L
M

M
M

M
M
N

P
R
S

X
X

Y

+
(

𝐵−1
𝑡 − 𝐵−1

) 1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡

(

𝛽𝑗 −𝐻 ′
1𝛽𝑗

)

𝑀𝑅
𝑗𝑡 + 𝐵

−1 1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝐻

′
1𝛽𝑗𝑀

𝑅
𝑗𝑡 .

By Claims G.1, G.3 and G.4, the last term dominates the first three terms. The last term is

max
𝑡

‖𝐵−1 1
𝑁

𝑁
∑

𝑗=1
𝜔𝑗𝑡𝐻

′
1𝛽𝑗𝑀

𝑅
𝑗𝑡‖ ≤ 1

√

𝑁
‖𝐵−1

‖‖𝛽𝐻1‖𝑝
1
2
max max

𝑖𝑡
|𝑀𝑅

𝑖𝑡 | = 𝑂𝑃
⎛

⎜

⎜

⎝

𝑝
1
2
max
𝑝min

⎞

⎟

⎟

⎠

max
𝑖𝑡

|𝑀𝑅
𝑖𝑡 |

y Claims G.3 and G.4. This completes the proof. □

ppendix F. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105682.
For the sake of brevity, some of the technical proofs and simulation results are relegated to the Supplement.
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