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This paper studies inference in linear models with a high-dimensional
parameter matrix that can be well approximated by a “spiked low-rank ma-
trix.” A spiked low-rank matrix has rank that grows slowly compared to its
dimensions and nonzero singular values that diverge to infinity. We show that
this framework covers a broad class of models of latent variables, which can
accommodate matrix completion problems, factor models, varying coefficient
models and heterogeneous treatment effects. For inference, we apply a proce-
dure that relies on an initial nuclear-norm penalized estimation step followed
by two ordinary least squares regressions. We consider the framework of es-
timating incoherent eigenvectors and use a rotation argument to argue that
the eigenspace estimation is asymptotically unbiased. Using this framework,
we show that our procedure provides asymptotically normal inference and
achieves the semiparametric efficiency bound. We illustrate our framework
by providing low-level conditions for its application in a treatment effects
context where treatment assignment might be strongly dependent.

1. Introduction. We study inference for linear low-rank models:

Y = X ◦ � + E,

where (Y,X,�,E) are n×p matrices with both n,p → ∞ and ◦ denotes the matrix element-
wise product. We observe data (X,Y ), and E represents unobserved statistical noise. The
model parameter is the matrix coefficient �. We assume � follows an approximate spiked
low-rank model: � can be well approximated by a low-rank matrix whose rank J is either
fixed or grows slowly compared to n,p and whose largest J singular values diverge with
(n,p). Our main goal is performing statistical inference on both sparse and dense linear
combinations of elements of �.

Under the approximate spiked low-rank model structure, nuclear-norm regularization pro-
vides a natural benchmark approach to estimating �. There is a substantial literature that stud-
ies rates of convergence of nuclear-norm penalized estimators; see, for example, Koltchinskii,
Lounici and Tsybakov (2011) and Negahban and Wainwright (2011) for prominent examples.
Providing results in low-rank models that allow for ready construction of inferential objects
such as confidence intervals has been a topic in the more recent literature. For example, Xia
and Yuan (2021) and Chen et al. (2019) study inference in settings where the matrix param-
eter of interest has an exact low-rank structure with fixed rank and elements of X are i.i.d.
copies from an unknown distribution.

We contribute to this literature by establishing asymptotic normality for low-rank estima-
tors. Our method starts with an initial estimator of � obtained using nuclear-norm regular-
ization from which we extract the right singular vectors. We then treat the extracted singular
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vectors as data and obtain estimates of the left singular vectors and updated estimates of the
right singular vectors by applying additional least squares steps. The final estimator is then
the product of the estimated left and right singular vectors. We make use of a rotation argu-
ment to show that, in terms of estimating the space of the singular vectors, the regularization
bias of the first step nuclear-norm penalized estimation aligns with the space spanned by the
true singular vectors. Thus, the inference using additional least squares steps is not affected
by the regularization bias.

We prove that our estimator for linear functionals of the low-rank matrix is asymptotically
normal. We also establish the semiparametric efficiency bound and show that our estimator
attains the efficiency bound. The notion of semiparametric efficiency in the presence of high-
dimensional nuisance parameters is adopted from Janková and van de Geer (2018). Our result
is novel relative to Janková and van de Geer (2018) because they deal with sparse models
while we look at linear combinations of a low-rank matrix.

Our conditions allow possible strong dependence within X, which is useful in many con-
texts. For example, in the matrix completion context, we can accommodate persistence in
observed and missing entries rather than relying on independent missingness. In our treat-
ment effects example, allowing strong dependence allows us to consider scenarios where
units are first in the control state for a period of time and then enter the treated state and
remain there until the end of the sample period.

We rely on two key technical conditions in establishing asymptotic normality of our pro-
posed estimator. We first assume � has spiked singular values (SSV), which requires that the
nonzero singular values are large. This condition ensures that the rank of � can be consis-
tently estimated and that the singular vectors are estimated sufficiently well for use in Stage
2 of the procedure. In the inference context, to make entrywise inference for the low-rank
matrix, the SSV condition on the singular values seem necessary.

The second condition relates to incoherent singular vectors as defined in, for example,
Candès and Plan (2010), Candès and Recht (2009), Keshavan, Montanari and Oh (2010) and
Chen et al. (2020). This condition requires that the signals on the singular vectors should
be approximately evenly distributed across their entries. Under the incoherence condition,
we use a “rotation” argument to show that our approach provides asymptotically unbiased
estimates of the eigenvector space. We note that incoherence does rule out the setting of
“sparse PCA,” which needs a separate treatment and often requires explicit debiasing steps
as in, for example, Janková and van de Geer (2021).

We note that the SSV and incoherence conditions are strong and are often absent in the lit-
erature when probability bounds are derived. However, probability bounds for the Frobenius
risk in general cannot imply the asymptotic distribution of estimators. In particular, one of
the objects of interest in this paper is to make inference on sparse linear combinations of rows
(or columns) of �, including elementwise inference. Recent developments for perturbation
bounds of entrywise eigenanalysis require SSV to make entrywise inference for a low-rank
matrix; see, for example, Abbe et al. (2020).

To further illustrate that both conditions seem necessary for good performance, we pro-
vide new minimax theory on convergence rates without them. These results verify that it is
impossible to guarantee entrywise consistency without SSV or incoherence and show that,
for dense linear combinations, the optimal rates one can achieve without these conditions are
potentially much worse than those available under them. Finally, as these minimax rates do
show that inference for dense linear combinations may proceed without SSV or incoherence,
we provide an alternative inference for dense functionals when these conditions are relaxed.

The low-rank model being considered has wide applicability. We show that the function
class of reproducing kernel Hilbert space (RKHS) can be approximated using a spiked low-
rank model, and we verify the SSV and incoherent conditions in RKHS.



INFERENCE FOR LOW-RANK MODELS 1311

The literature. Low-rank regression has been extensively studied in the literature. Much
of this work focuses on deriving sharp deviation bounds for low-rank estimators; see, for
instance, Recht (2011), Gross (2011), Rohde and Tsybakov (2011), Koltchinskii, Lounici
and Tsybakov (2011), Dray and Josse (2015), Zhu, Wang and Samworth (2022), Candès
and Plan (2010), Hastie et al. (2015), Keshavan, Montanari and Oh (2010) and Sun and
Zhang (2012). As with Xia and Yuan (2021) and Chen et al. (2019), our paper complements
the literature by providing asymptotic distributional results. A key difference between our
work and Xia and Yuan (2021) and Chen et al. (2019) is that our approach does not rely on
explicit debiasing steps to achieve asymptotic normality. Rather, we rely on the fact that � is
a “product parameter” obtained by multiplication of left and right singular vectors to verify
that our procedure produces sufficiently regular estimators for asymptotic normality to hold
without explicit debiasing.

Our paper is related to Chernozhukov et al. (2018), which considers inference in linear
panel data models with multivariate coefficient matrices that admit factor structures. There are
several important differences between the two papers. Because Chernozhukov et al. (2018)
consider estimation of multiple matrix parameters, they employ a complicated orthogonal-
ization step to deal with the fact that regularization bias in any of the matrix parameters
spills over and impacts estimation of all other matrix parameters. Chernozhukov et al. (2018)
also rely on strong conditions on regressors while our conditions allow the regressor in our
model to be strongly persistent. This generalization allows us to handle matrix completion
problems with “systematic missingness”. We also provide several new optimality results to
establish semiparametric efficiency and minimaxity. Finally, we explicitly allow for the low-
rank structure to be an approximation by accounting for approximation errors and allowing
the rank of the approximating low-rank structure to increase with the sample size. Admitting
these characteristics broadens the applicability of the method. For example, nonparametric
models under RKHS cannot be formulated as exact low-rank models with fixed rank but can
be approximated by low-rank models with slowly growing rank.

Throughout the paper, we denote the maximum and minimum singular values of a matrix A

as ψmax(A) and ψmin(A). We use ψj(A) to denote the j th largest singular value of A. We use

‖A‖F , ‖A‖ and ‖A‖(n) = ∑min{n,p}
k=1 ψk(A) to respectively denote the matrix Frobenius norm,

operator norm and nuclear norm. We let ‖A‖max = maxij |(A)ij | be the elementwise norm.
Let vec(A) denote the vector that stacks the columns of A. For two stochastic sequences, we
write an � bn if an = OP (bn) and bn = OP (an), which means an/bn = OP (1). Finally, a ∨b

means max(a, b).

2. Estimation procedure.

2.1. Spiked low-rank matrices. Consider the following model:

yij = xij θij + εij , i ≤ n, j ≤ p,(1)

where we observe data (yij , xij ) and εij is the noise term. Let (Y,X,�,E) denote the n × p

matrices of (yij , xij , θij , εij ). Then the matrix form of (1) is

Y = X ◦ � + E,

where ◦ denotes the matrix elementwise product. The goal is to make inference about linear
combinations of elements of �. Throughout the paper, we impose that � and its associated
singular values/vectors are random. Suppose � can be decomposed as

� = �0 + R,(2)

where �0 and R are n × p matrices satisfying the following conditions:
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(i) �0 is a rank J matrix where J is either bounded or grows slowly compared to (n,p).
In addition, the nonzero singular values of �0 are “spiked”:

ψ1(�0) ≥ · · · ≥ ψJ (�0) ≥ ψnp, ψj (�0) = 0 ∀j > J

for some sequence ψnp → ∞.
(ii) R is the low-rank approximation error whose entries rij satisfy

max
i,j

|rij | ≤ OP (rnp)

for some sequence rnp → 0.
(iii) Let U0 = [u1, . . . , un]′ and V0 = [v1, . . . , vp]′, respectively, denote the n × J and p ×

J matrices that collect the left singular vectors and right singular vectors of �0 corresponding
to the nonzero singular values. We assume incoherent singular-vectors:

max
j≤p

‖vj‖ = OP

(√
Jp−1

)
, max

i≤n
‖ui‖ = OP

(√
Jn−1

)
.

Given the approximate low-rank structure of �, a natural estimation strategy is nuclear-
norm penalized optimization:

�̃ = arg min
�∈A‖Y − X ◦ �‖2

F + ν‖�‖(n),(3)

where A = {� : ‖�‖max ≤ M} and ν is a tuning parameter. Imposing the max-norm con-
straint with a large constant M > 0 helps stabilize the solution; see, for example, Klopp
(2014). Nuclear-norm penalized regression is natural as the solution is easy to compute. An-
other option would be to explicitly penalize the matrix rank; however, obtaining the solution
to the rank penalized problem is in general difficult unless all elements of X are equal to
one. Statistical properties of (3), focusing on the minimax rate for ‖�̃−�‖F , have been well
studied in the literature; see, for example, Koltchinskii, Lounici and Tsybakov (2011) and
Negahban and Wainwright (2011). It is also well known that the singular values of �̃ suffer
from shrinkage biases, so �̃ is not suitable for inference.

We assume that J , the rank of the low-rank component �0, is known for simplicity. For
instance, in the treatment effect study where the parameter matrix is approximated by a low-
rank structure via a sieve representation, the rank equals the sieve dimension, which could
be prespecified. In cases where rank is unknown, it can be consistently estimated. For exam-
ple, one can apply the singular value thresholding method where the cut-off value for “large
singular values” can be chosen to dominate the noise level; see, for example, Onatski (2010)
and Fan, Guo and Zheng (2022).

2.2. The proposed estimation procedure. Let the singular value decomposition of �0 be

�0 = U0D0V
′
0 := �0V

′
0, �0 := U0D0.

Here, D0 is the J × J diagonal matrix containing the nonzero singular values of �0, and U0
and V0 are respectively the n × J left singular vector matrix of �0 and p × J right singular
vector matrix of �0 corresponding to the nonzero singular values. Let γ ′

0,i for i = 1, . . . , n

denote the rows of �0, and let v′
0,j for j = 1, . . . , p denote the rows of V0.

ALGORITHM 2.1. Fix i ≤ n. Estimate θij (j = 1, . . . , p) as follows:

Step 1 Sample splitting. Randomly split the sample into {1, . . . , n}\{i} = I∪Ic disjointly,
so that |I|0 = �(n − 1)/2�. Let

GI := (YI,XI,�I),
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respectively, denote the |I|0 × p submatrices of G := (Y,X,�) for observations i ∈ I . Esti-
mate the low-rank matrix �I as

�̃I = arg min‖�I‖max<M
‖YI − XI ◦ �I‖2

F + ν‖�I‖(n).(4)

We provide a specific feasible choice for ν when discussing the simulation example in Sec-
tion 6. Let ṼI = (ṽ1, . . . , ṽp)′ be the p ×J matrix whose columns are the first J eigenvectors
of �̃′

I�̃I .
Step 2 Unbiased estimate of �0,V0. Using data Ic, obtain

γ̂k,I = arg min
γ

p∑
j=1

[
ykj − xkj · γ ′ṽj

]2
, k ∈ Ic ∪ {i}.

Update estimates of V0 as V̂I = (v̂1,I, . . . , v̂p,I)′, where

v̂j,I = arg min
v

∑
k∈Ic∪{i}

[
ykj − xkj · γ̂ ′

k,Iv
]2

, j = 1, . . . , p.

Step 3 Exchange I and Ic. Repeat steps 1–2 with I and Ic exchanged to obtain γ̂k,Ic for
k ∈ I ∪ {i} and V̂Ic . Define the estimator for θij as

θ̂ij = 1

2

[
γ̂ ′
i,I v̂j,I + γ̂ ′

i,Ic v̂j,Ic

]
.

We only iterate least squares once in step 2. The least squares steps following the use
of nuclear-norm penalized estimation are analogous to approaches in the sparse regression
setting that rely on refitting the least squares using selected regressors in a first step, such
as post-lasso, for example, Belloni and Chernozhukov (2013). The motivation is similar in
wanting to alleviate shrinkage biases induced in the initial penalized estimation step. In addi-
tion, we split the sample {1, . . . , n}\{i} = I ∪ Ic so that i is excluded from both subsamples.
Splitting in this way ensures that the εij for the i of interest are independent of observations
in both subsamples assuming independence across i.

Stage 2, which involves two least squares estimation steps, is the essential stage to alle-
viating shrinkage bias. It starts with treating Ṽ from the penalized regression as observed
data. A key ingredient of the analysis is to establish that this step produces an approximately
unbiased estimator �̂, which then allows construction of a well-behaved estimator �̂ in the
final step. Given its importance, we provide the intuition for this step in Section 3.

REMARK 2.1. The proposed procedure is similar to the “alternating minimization” (Alt-
Min) method in the literature, for example, Hastie et al. (2015) and Jain, Netrapalli and Sang-
havi (2013). There are two key differences. The first is that the AltMin procedure would
iterate until convergence. In contrast, we only iterate once and good asymptotic statistical
properties are guaranteed. The second difference is that penalization is often carried through-
out iterations in the AltMin procedure. Thus, AltMin-type estimators have asymptotic shrink-
age biases, which complicates establishing asymptotic normality. By employing unpenalized
least squares in Stage 3, our procedure ensures the final estimator does not have large shrink-
age bias asymptotically.

3. Discussion. We make use of a “rotation” argument and the structure of the low-rank
matrix parameter to prove that eigenspace estimation is approximately unbiased if singular
vectors are incoherent. Before turning to the matrix parameter setting, we introduce the main
idea in the context of estimating a scalar parameter that is itself a product of two parameters.
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3.1. Inference about product parameters. Consider the problem of estimating a scalar
parameter θ that can be written as the product of another two scalar parameters:

θ = γβ, γ,β ∈ R.

Suppose some initial estimate β̃ can be obtained for β , which is consistent but may have
first-order bias. In addition, suppose that θ can be identified as the unique minimizer of a
population loss function:

θ = arg min
a∈AQ(a),

where Q(·) is the loss function and A is the parameter space. Let Qn(·) denote the sample
version of Q and suppose both Qn and Q are twice continuously differentiable. Let Q̇n(a) =
d
da

Qn(a), Q̇(a) = d
da

Q(a) and Q̈(a) = d2

da2 Q(a). Let (γ,β, θ) represent the true values of
the parameters.

We consider an iterative procedure to estimate θ that mimics the approach we propose in
the matrix parameter setting:

(i) Obtain γ̂ = arg minγ Qn(γ β̃)

(ii) Obtain β̂ = arg minβ Qn(γ̂ β)

(iii) Set θ̂ = γ̂ β̂ .
In step (i), standard analysis based on Taylor expansion leads to

γ̂ − γ = G−1βQ̇n(θ) + G−1∂2
γ,βQ(γβ)(β̃ − β) + o

(|γ̂ − γ |), 1(5)

where G = −∂2
γ,γ Qn(γβ). The first term in the expansion is the score, which leads to asymp-

totic normality in usual cases. The second term reflects the effect of the initial estimate β̃ .
In general, the second term will lead to poor performance of γ̂ if the initial estimator

β̃ is ill-behaved. One approach, dating back to at least Neyman (1959), is to rely on ap-
propriately “orthogonalized” scores. This property would correspond to basing estimation
on an objective function that satisfied ∂2

γ,βQ(γβ) = 0 at the population level in the present
case; see, for example, Chernozhukov, Hansen and Spindler (2015) for a review of such ap-
proaches.

The fact that the “product parameter” θ , rather than γ itself, is the object of interest allows
a new argument in this paper. The key is that the loss function depends on θ only through the
product of (γ,β). It is straightforward to verify that

∂2
γ,βQ(γβ) = γ Q̈(θ)β + Q̇(θ)︸ ︷︷ ︸

score=0

= γ Q̈(θ)β.

Substituting this expression for ∂2
γ,βQ(γβ) into (5) then produces

γ̂ − γ = G−1βQ̇n(θ) + G−1γ Q̈(θ)β(β̃ − β) + o
(|γ̂ − γ |).

An important observation is that the second term G−1γ Q̈(θ)β(β̃ − β) is proportional to γ .
We can move it to the left-hand side of the expansion for γ̂ to obtain

γ̂ − Hγ = G−1βQ̇n(θ) + o
(|γ̂ − γ |)

for H := 1 + G−1Q̈(θ)β(β̃ − β). Hence, γ̂ estimates a “rotated” version of γ with no first-
order bias. As such, in the sense of estimating the “space” of γ , the effect β̃ − β is negligible

1We have 0 = ∂γ Qn(γ̂ β̃) = ∂γ Qn(γβ) + ∂2
γ,βQn(γβ)(β̃ − β) + ∂2

γ,γ Qn(γβ)(γ̂ − γ ) + O
(|γ̂ − γ |2 + |β̂ −

β|2)
, and ∂γ Qn(γβ) = βQ̇n(θ). Inverting ∂2

γ,γ Qn(γβ) leads to (5).
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as it is “absorbed” by the rotation matrix. In addition, H is asymptotically invertible since
H →P 1.

Moving on to step (ii), it is clear that β̂ estimated in this step will be an approximately un-
biased estimator for H−1β . The rotation matrices will then cancel in estimating the parameter
of interest:

θ̂ := γ̂ β̂ = γHH−1β + oP (1) = θ + oP (1).

After appropriate scaling, the leading term hidden in the oP (1) in the final expression
will also be asymptotically normal. It is this cancellation of rotation matrices that under-
lies our “rotation-unbiasedness.” Furthermore, in models where

√
n-consistency is attain-

able,
√

n(θ̂ − θ) is asymptotically normal as long as the initial estimator satisfies |β̃ − β| =
oP (n−1/4).

The intuition of “rotation-unbiasedness” as described above has also been observed previ-
ously in the literature. Keshavan, Montanari and Oh (2010) studied local geometric properties
in Grassmann manifold and related optimization algorithms. Sun and Luo (2016) examined
the local geometry of the loss f (�,V ) = ‖Y − �V ′‖2

F in the matrix completion context. Our
observation aligns with theirs, but we use this observation in the context of estimation bias.
In our setting, the geometry of product-parameter γβ ensures that the effect of first-step es-
timation error β̃ − β is aligned with the space of the true γ . This alignment results in our
ability to establish asymptotic normality of our final estimator without relying on any addi-
tional debiasing schemes beyond the use of a single set of least squares steps in step 2 of our
algorithm.

3.2. Eigenspace estimation. In the low-rank inference context, recall that �0 = �0V
′
0,

which is the product of two parameters. Related to the simple example in the previous section,
we think about V0 as β and use the singular vectors Ṽ extracted from the nuclear-norm
regularized estimator as its initial estimate.

Write �̂ = (γ̂1, . . . , γ̂n)
′ and Ṽ = (ṽ1, . . . , ṽp)′. Then for each i ≤ n,

γ̂i = arg min
γ

Qi(γ, Ṽ ), Qi(γ, Ṽ ) :=
p∑

j=1

[
yij − xij · γ ′ṽj

]2
.

Then for some J × J matrix G−1, Taylor expansion leads to

γ̂i − γi = G−1∂γ Qi(γi,V0) + ∂2Qi(γi,V0)

∂γ ∂vec(V )
vec(Ṽ − V0) + higher-order terms.

The leading term G−1∂γ Qi(γi,V ) is asymptotically normal if V0 is incoherent. The second
term satisfies

∂2Qi(γi,V )

∂γ ∂vec(V )
vec(Ṽ − V0) = H1γi + �i

for some rotation matrix H1 and higher-order term �i .
The term H1γi is a rotated version of γi . Defining H := I + H1 and moving H1γi to the

left-hand side then yields the matrix form expansion:

�̂ − �0H = ∂�Qp(�,V0)G
−1 + higher-order terms,

where ∂�Qp(�,V0) is an n × J matrix whose ith row is the transpose of ∂γ Qi(γi,V0). Fol-
lowing the logic outlined in Section 3.1, we have that the follow-up estimator V̂ will recover
an appropriately rotated version of V to cancel with H . Consequently,

�̂ = �̂V̂ ′ ≈ �0HH−1V ′
0 = �0V

′
0 = �0.
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It will then follow that �̂ is approximately unbiased with sampling distribution that can
be approximated by a centered Gaussian distribution. As in the simpler scalar case, the key
feature we take advantage of is that we only need the estimated V0 to have the same span as
the actual V0 if our goal is inference about � or the space spanned by the singular vectors.

3.3. Sample splitting. Our argument for demonstrating that the higher-order term, �i is
asymptotically negligible relies on sample splitting. The structure of �i is

�i = B

p∑
j=1

(ṽj − vj )εij xij

for some matrix B .
For a fixed i, let I ⊂ {1, . . . , n}\i be a subset of unit indexes that does not include i; and

let

DI = {
(ykj , xkj ) : k ∈ I, j ≤ p

}
.

Our approach uses only data DI , rather than making use of the full data set, for the initial
nuclear-norm penalized regression from which we extract singular vectors for the subsequent
OLS rotation-debiasing step. Maintaining independence across i, estimation errors in the
initial estimator of the singular vectors are then independent of variables indexed by i because
i /∈ I . Assuming εij is independent across subjects i = 1, . . . , n, we then have that εij xij is
independent of estimation error in the singular vectors, ṽj −vj . We can then easily argue that
�i has no impact on the asymptotic distribution of the final estimator.

4. Asymptotic results. We now present our main results. In Section 4.1, we lay out key
conditions and state our result on asymptotic normality. We then provide a brief discussion
of semiparametric efficiency in Section 4.2 and then highlight the role of the key SSV and
incoherence conditions in Section 4.3 where we present novel minimax results. Finally, we
present an alternative estimation scheme for dense linear combinations in Section 4.4.

4.1. Asymptotic normality. The goal is to establish inferential theory for the linear func-
tional θ ′

i g. Here, θ ′
i denotes the ith row of �, and g = (g1, . . . , gp)′ ∈ Rp is a vector of

weights of interest with nonzero weights collected in

G = {j ≤ p : gj �= 0}.
Inference on a linear combination of a column of � can be carried out similarly by switching
the roles of i and j . Two examples of g are of particular interest.

Sparse weights: g is a sparse vector with a bounded number of nonzero elements:

|G| = O(1).(6)

θ ′
i g thus corresponds to a linear combination of a small number of elements and may be used

when we are particularly interested in just a few components of θi . The sparse g scenario
includes g = ej where ej = (0, . . . ,0,1,0, . . . ,0) is the j th standard vector for a particular
j in which case θ ′

i g = θij .
Dense weights: g is a dense vector, in the sense that |G| = O(p), but

max
j≤p

|gj | < Cp−1 for some C > 0.(7)

In this case, θ ′
i g typically represents a weighted average of all components of θi and includes

g = ( 1
p
, . . . , 1

p
)′ as a special case.

The following assumption formally quantifies the requirement of g. Consider the matrix
of standardized right singular vectors:

V̄ ′ = √
pV ′

0.
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ASSUMPTION 4.1. For some constants c,C > 0,

c <
∥∥V̄ ′g

∥∥ ≤ C, ‖g‖ < C.

In addition, g satisfies either (6) or (7).

The next assumption restricts the noise data generating process (DGP).

ASSUMPTION 4.2 (DGP for εij ). (i) εij is conditionally independent across i ≤ n and
j ≤ p, given (�,X). Also, E(εij |�,X) = 0 and maxij E[ε4

ij |�,X] < C almost surely. (ii)
At least one of the following holds:

a minij Var(εij |�,X) > c.
b εij can be decomposed as εij = eij xij with minij Var(eij |�,X) > c.

Assumption 4.2(ii) is stated in a way that specifically covers the well-known matrix com-
pletion problem:

y∗
ij = θij + eij ,

where y∗
ij may not be observable, and xij indicates the observability for each element. Then

εij = eij xij .
The assumption below restricts the DGP of the design variable xij . The restrictions im-

posed are mild, and the assumption is stated so as to cover a variety of cases. Specifically,
conditions (a)–(c) in Assumption 4.3 allow for various types of dependence among the xij .

ASSUMPTION 4.3 (DGP for xij ). (i) maxij |xij | < C and xij is independent of �. (ii) At
least one of the following holds:

a x2
ij does not vary across i ≤ n.

b x2
ij is independent across (i, j). In addition, Ex2

ij does not vary with i.

c xij ∈ {0,1}. Also, define Bi := {j ≤ p : xij = 1}. Then there is a set B̄ ⊆ {1, . . . , p}, so
that

max
i≤n

p∑
j=1

1{j ∈ B̄ � Bi} = oP (dn,p), dn,p :=
(

min{n,p,ψnp}p
(n + p)J + ‖R‖2

(n)

)
J−(2+d+2b),

(8)

where B̄ � Bi = [B̄ ∩ Bc
i ] ∪ [B̄c ∩ Bi] is the symmetric difference of two sets, and d, b ≥ 0

are constants defined in Assumption 4.6 below.

Under Condition (ii)a, we can accommodate both conventional factor models by setting
xij = 1 for all i, j as well as conditional empirical factor models, where xij = xj , with vary-
ing coefficients. An example of the latter is an asset pricing model with risk premia that vary
across assets and over time where xj represents the common time-varying market factor.

Condition (ii)b could cover examples of PCA with missing data under heterogeneous miss-
ing probabilities as in Zhu, Wang and Samworth (2022). In this case, we may take j to repre-
sent subjects and i to represent the index of repeated sampling within subject. The condition
also accommodates scenarios where xij represents a treatment indicator where random as-
signment of subjects i to treatment states occurs independently in each period j . Such a
structure may approximate some digital experimentation settings.

Condition (ii)c allows for some types of strong dependence in xij across both i and j but
restricts xij to be binary as would be appropriate in missing data, matrix completion and treat-



1318 CHERNOZHUKOV, HANSEN, LIAO AND ZHU

ment assignment settings. In this condition, the set Bi represents unit-specific “observation
times” for unit i; and the set B̄ is common to all units. The quantity maxi≤n

∑n
j=1 1{j ∈ B̄ �

Bi} thus measures the difference between the “unit specific” observation times and the “com-
mon” observation times. Condition (iii)c requires that these differences should be negligible.
Hence, all units should be observed at approximately the same time. For instance, suppose
every unit is observed most of the time in the sense that

max
i≤n

p∑
j=1

1{j : xij = 0} = oP (dn,p).

Then Condition (ii)c holds with B̄ = {1, . . . , p}.
Next, recall that vj and ui are respectively the j th right singular vector and the ith left

singular vector of �0.

ASSUMPTION 4.4 (Incoherent singular vectors).

E max
j≤p

‖vj‖2 = O
(
Jp−1)

, E max
i≤n

‖ui‖2 = O
(
Jn−1)

.

The incoherence condition ensures that information regarding the eigenspace accumu-
lates as the dimension increases and allows us to apply our “rotation” argument to ar-
gue that estimating the eigenvector space is asymptotically unbiased. We provide low-level
conditions that are sufficient for the incoherence condition in a treatment effects context
where the low-rank matrix is formulated using nonparametric sieve representations in equa-
tion (17).

The next assumption places restrictions on various moments.

ASSUMPTION 4.5 (Moment bounds). There are matrices Ai,Bj whose eigenvalues are
bounded away from zero and infinity, so that

max
i≤n

∥∥∥∥∥
p∑

j=1

x2
ij vj v

′
j − Ai

∥∥∥∥∥ = oP

(
J−1/2)

, max
j≤p

∥∥∥∥ n

|S|
∑
i∈S

x2
ij uiu

′
i − Bj

∥∥∥∥ = oP

(
J−1/2)

.

This should hold for S being sets {1, . . . , n},I and Ic.

Finally, we present the required conditions on ψnp , the signal strength of the nonzero
singular values. Recall that ψj(A) denotes the j th largest singular value of A. We allow
the eigengap to change with J , depending on constants b, d ≥ 0. This generality complicates
statement of the condition but is needed to accommodate settings where the rank J is allowed
to increase with sample sizes. We provide low-level conditions that are sufficient for the
following assumption in the context of a treatment effect example in Lemma 5.2.

ASSUMPTION 4.6 (Signal-noise). There are constants b, d ≥ 0 such that:
(i) ψnp ≤ ψJ (�0) < ψ1(�0) ≤ OP (J bψnp) for a sequence ψnp → ∞ that satisfies

n−1/2pJ 7/2+2d+5b + (p ∨ n)3/4J 5/4+d+2b = o(ψnp).

(ii) Eigengap: There are c,C > 0 and a sequence ψnp → ∞ so that with probability ap-
proaching one,

ψj(�0) − ψj+1(�0) ≥ cψnpJ−d, j = 1, . . . , J.

(iii) The rank J satisfies

J 3+2d+6b = oP

(
min{√p,

√
n,p/

√
n}).
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(iv) The low-rank approximation error matrix R = (rij )n×p satisfies

max
ij

|rij |2(p ∨ n)2J 3+4b = o(1).

THEOREM 4.1. Suppose g is either dense or sparse, in the sense of (6) and (7). Suppose
Assumptions 4.1–4.6 hold, and the nuclear-norm tuning parameter satisfies ν > C(

√
n + p)

for some constant C > 0. Then for a fixed i ≤ n,

θ̂ ′
i g − θ ′

i g√
s2
np,1 + s2

np,2

→d N(0,1),

where, with Lj = ∑n
i=1 x2

ij γiγ
′
i and B̄ = ∑p

j=1(Ex2
ij )vj v

′
j ,

s2
np,1 :=

p∑
j=1

n∑
t=1

Var(εtj |�,X)
[
γ ′
i L

−1
j γt

]2
x2
tj g

2
j ,

s2
np,2 :=

p∑
j=1

Var(εij |�,X)x2
ij

[
v′
j B̄

−1V ′
0g

]2
.

To estimate the asymptotic variance, we need to preserve the rotation invariance property
of the asymptotic variance. We therefore estimate s2

np,k separately within subsamples and
produce the final asymptotic variance estimator by averaging the results across subsamples.
We consider the homoscedastic case where Var(εij |�,X) = σ 2

j for some constant σ 2
j , j =

1, . . . , p. In this case, standard errors can be estimated as

ŝ2
np,1 := 1

4

p∑
j=1

∑
t /∈I

σ̂ 2
j

[
γ̂ ′
i,IL̂−1

j,I γ̂t

]2
x2
tj g

2
j + 1

4

p∑
j=1

∑
t /∈Ic

σ̂ 2
j

[
γ̂ ′
i,Ic L̂

−1
j,Ic γ̂t

]2
x2
tj g

2
j ,

ŝ2
np,2 := 1

2

p∑
j=1

σ̂ 2
j x2

ij

[
ṽ′
j,IB̂−1

I Ṽ ′
Ig

]2 + 1

2

p∑
j=1

σ̂ 2
j x2

ij

[
ṽ′
j,Ic B̂

−1
Ic Ṽ ′

Icg
]2

,

σ̂ 2
j := 1

n

∑
t /∈I

(
ytj − xtj · γ̂ ′

t,I v̂j,I
)2 + 1

n

∑
t /∈Ic

(
ytj − xtj · γ̂ ′

t,Ic v̂j,Ic

)2
,

where L̂j,I = ∑
t /∈I x2

tj γ̂t γ̂
′
t , and B̂I = ∑p

j=1 x2
ij ṽj,I ṽ′

j,I , and L̂j,Ic and B̂Ic are defined sim-
ilarly.

It is interesting to note that σ 2
np := s2

np,1 + s2
np,2 = OP ( 1

n
‖g‖2 + 1

p
) in the case of fixed J .

Thus, in this setting, the scaling of the asymptotic variance depends heavily on ‖g‖2.

4.2. Semiparametric efficiency. The semiparametric efficiency bound for the case of
sparse g was established by Chen et al. (2019) (Lemma 2) in matrix completion settings
and by Iwakura and Okui (2014) (Theorem 4.5) in pure factor models. Our asymptotic vari-
ance attains these previously established bounds if eij is i.i.d. homoscedastic Gaussian, so we
do not further discuss semiparametric efficiency in the sparse setting.

We now provide a semiparametric efficiency bound in the case of dense g and verify that
our estimator achieves this bound. For concreteness, suppose we are interested in h(�) = θ ′

1g

where θ ′
1 is the first row of � and g is dense. In providing our result, we will allow for a wide

range of distributions for x1j while maintaining the assumption that the error term is Gaussian
to make calculation tractable.
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Specifically, we suppose that xij follows the distribution f and eij ∼ N(0, σ 2) are inde-
pendent across (i, j). Let μf = Ef x2

1j . Under Assumptions 4.1–4.6, the dominant term in
the asymptotic variance is

s2
np,2 = σ 2

p∑
j=1

x2
ij

[
v′
j B̄

−1V ′
0g

]2

= s2∗(�,f,σ ) + oP

(
s2
np,2

)
where s2∗(�,f,σ ) = σ 2μ−1

f

∥∥V ′
0g

∥∥2
,

and we also have s2
np,1 = oP (s2

np,2). Hence, θ̂ ′
i g−θ ′

i g = OP (‖V ′
0g‖) with asymptotic variance

s2
np,1 + s2

np,2 = s2∗(�,f,σ )
(
1 + oP (1)

)
in this case.

The following result verifies that s2∗(�,f,σ ) matches with the semiparametric efficiency
bound. The notion of semiparametric efficiency in the presence of high-dimensional nuisance
parameters is adopted from Janková and van de Geer (2018). The idea is to derive the asymp-
totic Cramér–Rao bound for asymptotically unbiased estimators, and needs to be formally
established in the high-dimensional setting. Our result is novel relative to Janková and van de
Geer (2018) because they deal with sparse models and our setting has low-rank matrices as
the nuisance parameters.

THEOREM 4.2. Consider h(�) = θ ′
1g, where θ ′

1 is the first row of � and g is dense. Let
xij ∼ f and eij ∼ N(0, σ 2) be independent across (i, j). Define

M = {
(A,f,σ ) : rank(A) ≤ J, Assumptions 4.1–4.6 hold

}
.

Suppose that T (Y,X) is an asymptotically unbiased estimator of h(�) in the sense that
E(�,f,σ )T (Y,X) − h(�) = o(s∗(�,f,σ )) where E(�,f,σ ) denotes the expectation with re-
spect to a given parameter (�,f,σ ). Then for any sequence of (�,f,σ ) ∈ M,

lim inf
n,p→∞

E(�,f,σ )[T (Y,X) − h(�)]2

s2∗(�,f,σ )
≥ 1.

4.3. The role of spiked singular-values and incoherence. Two key conditions that under-
lie our main results are the incoherence condition, Assumption 4.4 and the spiked singular-
value (SSV) condition, Assumption 4.6. We demonstrate the role of these conditions by pro-
viding minimax theory for estimating θ ′

i g for a sparse or dense g without imposing SSV or
incoherence, in a simple matrix completion problem where the missing indicators xij are
independent Bernoulli random variables.

Define the following set of low-rank matrices:

S =
{
A ∈ Rn×p : rank(A) ≤ J and max

1≤i≤n
max

1≤j≤p
|Aij | ≤ c1

}
for a constant c1 > 0 and for J ≥ 1. Here, J is allowed to be either a fixed constant or a
sequence tending to infinity.

We prove the following result for matrix completion over the space S . Let yij = xij θij +
eij , where xij ∼ Bernoulli(ρj ) and eij ∼ N(0, σ 2

ij ) are independent across (i, j ). Suppose
that there are constants c2, . . . , c6 > 0 such that ρj ∈ (c2,1 − c2) and σij ∈ (c3, c4) for any
(i, j). Let ρ = (ρ1, . . . , ρp)′ and σ = {σij }1≤i≤n,1≤j≤p . In the theorem below, T represents
any measurable function of the data, typically regarded as an “estimator” for h(�) = θ ′

1g.
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THEOREM 4.3 (Minimax rate). Consider estimating h(�) = θ ′
1g = ∑p

j=1 θ1j gj , and let
P(�,f,σ ) denote the probability measure with respect to a given parameter (�,f,σ ). We have
the following results:

1. Sparse g: Let g1 = 1 and gj = 0 for j ≥ 2, that is, h(�) = θ11. Then

inf
T

sup
�∈S

P(�,ρ,σ )

(∣∣T − h(�)
∣∣ > κ

)
> 1/4,(9)

where κ > 0 is a constant depending on (c1, c3) and infT is taken over all measurable func-
tions of the data (X,Y ).

2. Dense g: Let |gj | ∈ [c5/p, c6/p] for all j ∈ {1, . . . , p}. Then

inf
T

sup
�∈S

P(�,ρ,σ )

(∣∣T − h(�)
∣∣ > κp−1/2)

> 1/4,(10)

where κ > 0 is a constant depending on (c1, c3, c5) and infT is taken over all measurable
functions of the data (X,Y ).

Theorem 4.3 gives the minimax rate without SSV and the incoherence condition. It pro-
vides a similar intuition to Koltchinskii, Löffler and Nickl (2020). For instance, (9) shows
that it is impossible to guarantee entrywise consistency for sparse g in the considered setting
without SSV or incoherence.

In addition, equation (10) implies that the rate OP (p−1/2) is minimax optimal for estimat-
ing dense averages in the absence of SSV and incoherence. This rate of convergence is slower
than that obtained in Theorem 4.1, which makes use of SSV and incoherence. For instance,
in the factor model with a finite number of strong factors, Theorem 4.1 implies that the rate
of convergence can be as fast as 1

p

∑
j θ̂ij − 1

p

∑
j θij = OP ( 1√

np
+ 1

p
).2

These minimax results for estimating linear combinations of elements of a low-rank ma-
trix without SSV and incoherence are new to the literature. The result closest to ours is
Koltchinskii, Löffler and Nickl (2020), which provides minimax rates for estimating linear
functionals of the eigenvectors of low-rank matrices. They show that the minimax optimal
rate can be slow if the SSV condition does not hold. Other results on the minimax bounds for
learning an eigenspace can be found in Berthet and Rigollet (2013), Birnbaum et al. (2013)
and Cai, Ma and Wu (2013).

4.4. Dense functional inference without SSV and incoherence. When g is a vector of
dense weights, the second minimax result in Theorem 4.3 suggests that consistency can be
achieved without the SSV and incoherence conditions at the cost of a slower rate of conver-
gence. For completeness, we introduce an alternative estimator that could be used when one
does not wish to impose these assumptions.

Specifically, suppose g = (g1, . . . , gp)′ ∈ Rp is a vector of dense weights as defined in (7),
and we are interested in the functional hi(�) := θ ′

i g. We propose the following estimator in
the spirit of inverse probability weighting:

ĥi(�) =
p∑

j=1

gjyij xij

μ̂2
j,i

, μ̂2
j,i = 1

n − 1

∑
k �=i

x2
kj .

2This rate holds if the factors have zero mean so that V ′
0g = 1

p

∑p
j=1 vj = OP (p−1), which is the case for no-

intercept factor models. Strictly speaking, this setting was ruled out by Assumption 4.1, which requires ‖V ′
0g‖ ≥

cp−1/2. However, Assumption 4.1 is used only for obtaining the asymptotic distribution. This assumption can be
relaxed when only the rate of convergence is of interest.
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Note that this estimator does not require knowing the rank or even that the rank is consistently
estimable. It is defined as the weighted average of the ith row of Y and X with weight
proportional to a leave-one-out estimator of the inverse of μ2

j := Ex2
ij .

Let

Wij := xij εij + x2
ij θij .

THEOREM 4.4. Let g be dense in the sense of (7), and assume Exij εij = 0. Suppose Wij

is independent over j and that EW 4
ij < C, Ex2

ij > c > 0, and Var(Wij ) > c > 0. In addition,
suppose

√
p logp = o(n). Then

s−1
n

√
p

[
ĥi(�) − θ ′

i g
] →d N(0,1),

where s2
n = p

∑p
j=1 g2

j (Ex2
ij )

−2Var(Wij ).

5. Application to heterogeneous treatment effects. As an important illustration, we
show how to apply our framework in a treatment effects setting. Suppose that, for each time
j = 1, . . . , p and each unit i = 1, . . . , n, there is a pair of potential outcomes

Yij (m) = hj,m(ηi) + eij (m), m ∈ {0,1}.(11)

Here, m denotes treatment (m = 1) or control (m = 0) state. In any time period j and for
any unit i, we observe either Yij (1) or Yij (0), but not both, depending on the unit’s realized
treatment state in that period. The treatment effect depends on time-varying functions hj,m(.)

of unit specific state variable ηi ; both hj,m(·) and ηi may be unobservable and random. For
clarity, we focus on the scenario where the goal is to perform statistical inference on a long-
run treatment effect for a given unit i:

τi := 1

p

p∑
j=1

νij ,

where νij = hj,1(ηi) − hj,0(ηi) is the treatment effect for unit i at time j .
Define the treatment status indicator

xij (m) = 1{unit i at period j is in state m} = 1
{
Yij (m) is observable

}
.

Consider the following treatment scenario. Suppose the entire time span {1,2, . . . , p} is di-
vided into two periods,

T0 = {1, . . . , p0} and T1 = {p0 + 1, . . . , p},
where both p0 and p1 := p − p0 are large and both periods are known. We assume

max
i≤n

∑
1
{
j ∈ T0 : xij (0) = 0

} = oP (dn,p0),

max
i≤n

∑
1
{
j ∈ T1 : xij (1) = 0

} = oP (dn,p1),
(12)

where dn,p0 and dn,p1 are slowly growing sequences defined in (8). That is, each unit is in the
control state during most periods in T0, and each unit is the treatment state during most peri-
ods in T1. We thus refer to T0 and T1, respectively, as the “control period” and the “treatment
period.” We refer to this treatment scenario as “systematic treatment,” and note that treatment
assignments are strongly dependent in this setting, which results in an important difference
from much of the literature on inference in matrix completion settings. In terms of our formal
conditions, this scenario corresponds to the case of Assumption 4.1(ii)c.
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5.1. Treatment effect inference. Let θij (m) := hj,m(ηi). We can then rewrite the model
for potential outcomes (11) as

yij (0) = θij (0)xij (0) + εij (0), j ∈ T0,(13)

yij (1) = θij (1)xij (1) + εij (1), j ∈ T1,(14)

where yij (m) = Yij (m)xij (m) and εij (m) = eij (m)xij (m). Let �(m) denote the n×p matrix
of (θij (m))n×p . As, for example, previously note by Athey et al. (2021), it is then clear that
recovering elements of �(m) is equivalent to solving a matrix completion problem.

In Section 5.2, we provide sufficient conditions to establish that �(m) is an approximate
low-rank matrix that satisfies both the SSV and incoherence conditions. Under these condi-
tions, we can then estimate treatment effects by simply applying Algorithm 2.1 twice—once
using the data from period T0 and once using the data from period T1.

Step 1: Apply Algorithm 2.1 to (13) to estimate �(0).
Step 2: Apply Algorithm 2.1 to (14) to estimate �(1).
Step 3: Make inference on the treatment effects from the estimated �(1) − �(0).
Let θ̂ij (m) denote the (i, j) element of the estimated matrix �(m). The average treatment

effect estimator is then given by

τ̂i := 1

p1

∑
j∈T1

θ̂ij (1) − 1

p0

∑
j∈T0

θ̂ij (0).

It is straightforward to extend Theorem 4.1 to this context, which leads to the asymptotic dis-
tribution of the estimated treatment effects. Formal results are to be presented in Section 5.4.

5.2. The low-rank approximation. We show that the matrix formed from elements
hj,m(ηi) can be approximated by a low-rank matrix with a slowly growing rank. To aid in
focusing on the main idea, we suppress the notation “m” throughout this section.

Consider a family of time-varying functions hj (·) of subject-specific latent variables ηi .
Let � be the n × p matrix obtained by setting the (i, j) element of � to hj (ηi). Suppose
hj (·) has a sieve approximation:

hj (ηi) =
J∑

k=1

λj,kφk(ηi) + rij = λ′
j�i + rij ,(15)

where �i := (φ1(ηi), . . . , φJ (ηi))
′ ∈ RJ is a set of sieve transformations of ηi using φk(·) as

the basis functions, λj = (λj,1, . . . , λj,J )′ is the vector of sieve coefficients for hj (·), and rij
is the sieve approximation error. Write � as the n × J matrix of �i , � as the p × J matrix
of λj and R as the n × p matrix of rij . Then the matrix form of (15) is

� = ��′︸︷︷︸
�0

+R.

Clearly, rank(�0) ≤ J , and there is a rotation matrix H so that columns of �H are the right
singular vectors of �0. The error R is naturally present as the sieve approximation error,
which will decrease as more elements are considered in the sieve approximation. It is then
natural to consider sequences where J increases slowly with (n,p).

We now illustrate how both the SSV and incoherence conditions can hold in this setting
under sensible conditions on the functional space and the sieve bases. Suppose hj belongs to
a Hölder class: For some C,β,α > 0,{

h : max
γ1+···+γd=β

∣∣∣∣ ∂βh(x)

∂x
γ1
1 · · · ∂x

γd

d

− ∂βh(y)

∂y
γ1
1 · · · ∂yγd

d

∣∣∣∣ ≤ C‖x − y‖α, for all x, y

}
.
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Further suppose that a common basis, such as polynomials or B-splines are considered. We
will then have

max
ij

|rij | ≤ CJ−a, a = (β + α)/dim(ηi),

which can be made arbitrarily small for sufficiently smooth functions even if J grows slowly.
Now, suppose there exists a b ≥ 0 such that ψJ (�) ≤ ψ1(�) ≤ CJbψJ (�) for some C >

1. It is then easy to show that the sequence ψnp can be taken as

ψnp �
√√√√√J−(2b+1)

n∑
i=1

p∑
j=1

hj (ηi)2.

We then have that the top J singular values grow at this rate, which leads to the SSV condi-
tion.

Finally, write S� = 1
p
�′�, S� = 1

n
�′� and A = S

1/2
� S�S

1/2
� . Also, let G� be a J ×

J matrix whose columns are the eigenvectors of A, and let T be the diagonal matrix of
corresponding eigenvalues. Letting H� := S

−1/2
� G�, it can be verified that

�0�
′
0�H� = pn�H�T and

1

n
(�H�)′�H� = I.

Thus, the columns of 1√
n
�H� are the left singular vectors of �0, and the eigenvalues of npA

equal the first J eigenvalues of �′
0�0. Similarly, we can define H� = S

−1/2
� G� where G�

is a J × J matrix whose columns are the eigenvectors of S
1/2
� S�S

1/2
� . Hence, we have

U0 = n−1/2�H�, V0 = p−1/2�H�.(16)

Thus,

max
i≤n

‖ui‖ ≤ n−1/2 max
i≤n

‖�i‖ψ−1/2
min (S�),

max
j≤p

‖vj‖ ≤ p−1/2 max
j≤p

‖λj‖ψ−1/2
min (S�).

(17)

It then follows that the incoherence condition holds as long as we can obtain proper up-
per bounds for maxj≤p ‖λj‖ and maxi≤n ‖�i‖. For example, if {hj (·) : j ≤ p} is further
restricted to a Hilbert space with a uniform L2- bound,

max
j≤p

∞∑
k=1

λ2
j,k < ∞,

then maxj≤p ‖λj‖ < C.
We formalize the preceding discussion in the following assumption and lemma.

ASSUMPTION 5.1. (i) maxj≤J supη |φj (η)| < C, Eψ−1
min(S�) < C, and ψ−1

min(S�) < C.
(ii) The sieve approximation satisfies

max
ij

|rij | ≤ CJ−a

for some a > 0.
(iii) {hj (·) : j ≤ p} belong to ball H(U,‖‖L2,C) inside a Hilbert space spanned by the

basis {φk : k = 1, . . .} with a uniform L2-bound C:

sup
h∈H(U,‖‖L2 )

‖h‖ ≤ C,

where U is the support of ηi .
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LEMMA 5.1. Suppose Assumption 5.1 holds. Then:
(i) The minimum nonzero singular value ψnp for �0 = ��′ can be taken as

ψ2
np � J−(2b+1)

n∑
i=1

p∑
j=1

hj (ηi)
2, m = 0,1,

which means ψJ (�0) ≥ cψnp for this choice of ψnp .
(ii) The incoherence Assumption 4.4 holds.
(iii) The low-rank approximation error satisfies ‖R‖(n) ≤ C(p ∨ n)3/2J−a .

5.3. Reproducing kernel representation. We now verify the eigengap condition: Let A =
1

pn
��′. There are constants b, d ≥ 0 such that

ψ1(A)/ψJ (A) ≤ OP

(
J b)

,

min
k=1,...,J−1

ψk(A) − ψk+1(A) ≥ cJ−d .
(18)

Below we verify the above conditions when the treatment functions are generated from a
Gaussian process.3

Suppose ηi are uniformly generated from [0,1], and functions hj (·) are independently
generated from a Gaussian process with covariance kernel

K(η1, η2) = Cov
(
hj (η1), hj (η2)

)
,

where K(·, ·) is a continuous positive semidefinite kernel function supported on a compact
set. In addition, suppose the associated integral operator

(Tf )(·) =
∫

K(·, η)f (η) dη

is positive semidefinite. Let {φ̄k(·)} and νk ≥ 0 be the eigenfunctions and eigenvalues of
T . Then by Mercer’s theorem, {φ̄k(·)} is an orthonormal basis so that K has the following
representation:

K(η1, η2) =
∞∑

k=1

νkφ̄k(η1)φ̄k(η2),

where the infinite sum can be approximated arbitrarily well by finite truncation J as J → ∞.
Now consider the n × n matrix 1

p
��′, whose (i, l) element is

1

p

p∑
j=1

hj (ηi)hj (ηl) = K(ηi, ηl) + oP (1) = �̄′
iDλ�̄l + oP (1),

where �̄′
i = (φ̄1(ηi), . . . , φ̄J (ηi)) and Dλ is a diagonal matrix of (ν1, . . . , νJ ). Also, because

the hj are independently generated from the Gaussian process, the oP (1) terms are uniform
over all elements. Thus, we have an approximate low-rank representation of ��′:

��′ =
[∑

j

hj (ηi)hj (ηl)

]
n×n

≈ p�̄Dλ�̄
′.

Because the columns of �̄ are formed from eigenfunctions, its columns are approximately
orthonormal bases as eigenvectors of ��′. Hence, the diagonals of Dλ are also approximately

3We are thankful to one of the referees for suggesting this case.
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the top J eigenvalues of 1
np

��′. This observation heuristically shows that the top eigenvalues

of 1
np

��′ are approximately the same as those of the integral operator T associated with the
reproducing kernel function.

Rigorously, we can verify this condition as follows. The conditions of the lemma below
are required to hold for both m ∈ {0,1} in our treatment effect setting.

LEMMA 5.2. Suppose the eigenvalues of the integral operator T satisfy

νk = Mk−α, k = 1,2, . . .

for some M,α > 0. Further, suppose
√

logn
p

+ rJ + J√
n

= oP (J−α−1), where rJ :=
supη1,η2

|∑k>J νkφ̄k(η1)φ̄k(η2)|. Then the eigengap condition (18) holds. Specifically, let

A = 1
pn

��′,

ψ1(A)/ψJ (Am) ≤ OP

(
Jα)

,

min
k=1,ldots,J−1

ψk(Am) − ψk+1(A) ≥ cJ−(α+1).
(19)

5.4. Inference for treatment effects under systematic assignment. Building on the previ-
ous subsections, suppose hj,m(ηi) has the following sieve representation:

hj,m(ηi) =
J∑

k=1

λj,k,mφk(ηi) + rij (m), m = 0,1.

We then have that the matrix �(m) := (θij (m))n×pm admits an approximate low-rank struc-
ture for each m ∈ {0,1}:

�(m) = �0(m) + R(m), �0(m) = ��′
m,R(m) = (

rij (m)
)
n×pm

,(20)

where �m is the p × J matrix of λj,k,m.
Note that τ̂i estimating a sensible average treatment effect relies on an additional stability

assumption. Define for m ∈ {0,1},

ζij (m) := xij (m)vj (m)′B̄(m)−1 1

pm

∑
j∈Tm

vj (m),

where B̄(m) = ∑
j∈Tm

xij (m)vj (m)vj (m)′. Applying the analysis of Theorem 4.1, we have

τ̂i − τi = ∑
j∈T1

eij ζij (1) − ∑
j∈T0

eij ζij (0) + oP

(
min{p0,p1}−1/2)

+
(

1

p1

∑
j∈T1

θij (1) − 1

p

p∑
j=1

θij (1)

)
−

(
1

p0

∑
j∈T0

θij (0) − 1

p

p∑
j=1

θij (0)

)
.

This expansion yields the asymptotic distribution of τ̂i under the condition that the second
line on the right-hand side is bounded by oP (min{p0,p1}−1/2). That is, we need stability of
treatment and control averages in the sense that the average of θij (0) and θij (1) obtained over
the respective subsamples does not deviate too far from the infeasible average that would be
obtained looking over the entire sample period.
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THEOREM 5.3. Suppose Assumptions 4.1, 4.5, 4.6 hold. Suppose Assumption 5.1 holds
for hj,0 and hj,1. In addition, suppose

1

p1

∑
j∈T1

θij (1) − 1

p

p∑
j=1

θij (1) = oP

(
min{p0,p1}−1/2)

and

1

p0

∑
j∈T0

θij (0) − 1

p

p∑
j=1

θij (0) = oP

(
min{p0,p1}−1/2)

.

Let

s̄2
np,i := ∑

j∈T0

Var(eij |X,η)ζij (0)2 + ∑
j∈T1

Var(eij |X,η)ζij (1)2.

Suppose there is a constant c > 0 so that s̄2
np,i min{p0,p1} > c with probability approaching

one. Then as n,p0,p1 → ∞,

τ̂i − τi

s̄np,i

→d N(0,1).

6. Simulations. We now illustrate the performance of our inferential approach through
a small simulation study in the systematic treatment assignment setting. We report results for
n = p = 400.

To generate data, we first divide the period of observation {1, . . . , p} equally into two
periods T0 and T1 each consisting of pm = p/2 observation times. To generate xij (m), we
generate ni integers j1, . . . , jni

without replacement to form a set Ai(m) = {j1, . . . , jni
} ⊂

Tm. The number ni ≤ N0 is uniformly generated to be less than a predetermined number
N0 ∈ {p1/2

m ,p
1/3
m ,p

1/4
m }. We then set

xij (m) =
{

0 if j ∈ Ai(m),

1 if j /∈ Ai(m).

Hence, for each unit i, xij (m) = 1, with up to N0 exceptions, throughout period Tm whose
total length is pm. In addition, we generate the noise εij independently across both (i, j) and
εij (m) ∼ N (0, σ 2

e ) for σe = 1.
One of the key conditions in this scenario is that the treatment effect should be stable in the

sense that 1
p

∑p
j=1 θij (m) can be well approximated by 1

pm

∑
j∈Tm

θij (m). We thus consider
the simplest possible setting where this condition holds by generating time invariant treatment
functions:

h0(ηi) =
∞∑

k=1

|Wk|
ka

sin(kηi), h1(ηi) =
∞∑

k=1

(|Wk| + 2)

ka
sin(kηi).

Here, ηi ∼ Uniform[−1,1], Wk ∼ N (0,1) and the noise is eij ∼N (0,1). The power param-
eter a > 1 quantifies the decay speed of the sieve coefficients. The left panel of Figure 1 plots
both functions. To illustrate the heterogeneity of τi across i, Figure 1 also plots the histogram
of τi = h1(ηi) − h0(ηi) for i = 1, . . . , n for one simulation replication.

In terms of implementation of our procedure, we also need J and ν. We do not attempt to
infer the rank J from the data. Rather, we look at estimates based on four prespecified values
of the rank: J = 1, . . . ,4. We set the parameter ν for the nuclear-norm penalized optimization
through a simple plug-in procedure. Specifically, we set

ν = 2.2Q̄
(∥∥Z ◦ X(m)

∥∥;0.95
)
,(21)
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FIG. 1. Treatment functions hm(η) with a = 3 and histogram of τi over i = 1, . . . , n.

where Q̄(W ;q) denotes the qth quantile of a random variable W and Z is an n × pm matrix
whose elements zij are generated as N (0, σ̂ 2

e ) independent across (i, j) for some estimated
σ̂ 2

e .4 This choice can be motivated as in Belloni and Chernozhukov (2013) and Chernozhukov
et al. (2018).

We report simulation coverage probabilities of 95% confidence intervals for τ1 formed
using estimated standard errors based on 1000 simulation replications in Table 1. Overall,
the derived asymptotic distributions seem to provide reasonable approximations to the finite-
sample distributions under our simulation settings, and the good performance appears quite
robust to the choice of J in this simulation.

7. Discussion. In the treatment effect study, we approach the problem by separately ap-
plying our generic approach to an initial period where most units are in the control state and
a subsequent period where most units are in the treatment state. The illustration is by no

TABLE 1
Systematic Assignments. Coverage Probabilities of the treatment effect τi

J

N0 Power a 1 2 3 4

p
1/2
m 4 0.952 0.950 0.949 0.948

3 0.947 0.943 0.943 0.942
2 0.952 0.950 0.948 0.949

p
1/3
m 4 0.950 0.950 0.947 0.945

3 0.948 0.946 0.945 0.943
2 0.952 0.950 0.948 0.947

p
1/4
m 4 0.954 0.952 0.949 0.946

3 0.954 0.952 0.951 0.950
2 0.955 0.956 0.950 0.951

Note: This table reports the simulated coverage probability of 95% confidence intervals. The rank J equals the
sieve dimension used. Power a quantifies the decay rate of the sieve coefficients λj,k ∼ k−a . Finally, N0 controls
the number of “exceptions” over time (the maximum number of treated during “control period” and the maximum
number of controlled during “treatment period.”).

4We set σ̂ 2
e by obtaining an initial guess, σ̃ 2

e , from estimating the simple model yij = xij θi + σ−1
e uij where

Var(uij ) = 1. We then obtain an initial solution to the nuclear-norm regularized optimization problem with tuning

parameter set as in (21) with zij ∼ N(0, σ̃ 2
e ). Letting θ̃ij denote the nuclear-norm regularized estimator obtained

with this initial tuning. We then set σ̂ 2
e = 1

np

∑
ij ε̃2

ij , where ε̃ij = yij − xij θ̃ij .
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means exhaustive. For example, one could consider imposing invariance such that the low-
rank matrices in the treatment and control states share the same singular space. Under this
structure, estimation could be coupled rather than treating estimation as two separate prob-
lems. The problem could also be viewed as a tensor completion problem where the third
dimension is the treatment assignment, so that θij (m) denotes the (i, j,m) element of the
low-rank tensor � = (θij (m))n×p×2. Then we may extend the proposed inference procedure
to the tensor-recovery setting. Finally, Chen et al. (2019) used an “auxiliary leave-one-out”
argument without actual sample splitting in the matrix completion setting with homogeneous
missing data. It may be worth extending their approach to the current context. We expect each
of these directions would be interesting for future research.

SUPPLEMENTARY MATERIAL

Inference for low-rank models: Online appendix (DOI: 10.1214/23-AOS2293SUPP;
.pdf). The Online Appendix Chernozhukov et al. (2023) contains all proofs.
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