
Submitted to the Annals of Statistics

SUPPLEMENTARY MATERIAL TO “A LAVA ATTACK ON THE
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This supplementary material contains additional simulation re-
sults and omitted proofs for “A lava attack on the recovery of sums
of sparse and dense signals”.

CONTENTS

1 Additional simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 p = n/2 and p = n Simulations . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Highly correlated designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Gaussian sequence model with very high dimension . . . . . . . . . . . . . 2

1.4 Feasible SURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Out-of-sample prediction comparison . . . . . . . . . . . . . . . . . . . . . 3

2 Omitted proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 A simple inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Computation of K
1/2
λ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Author’s addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1. Additional simulations.

1.1. p = n/2 and p = n Simulations. To supplement the simulation results in the
main paper, here we present additional simulation results with p = n/2 and p = n. We
consider a fixed design setting analogous to those considered in the main text in the
p = n/2 setting, and we consider a random design in the p = n setting. We set n = 100
in the simulation experiments.

The results in the fixed design cases are reported in Figures 1 and 2, and the results in
the random design setting are provided in Figure 3. In all cases, we generate covariates
by drawing the rows of X independently from a mean zero multivariate normal with
covariance matrix Σ. For the fixed design settings, we consider an independent design,
Σ = I and a design with a factor covariance structure with Σ = LL′+I where the rows of
L are independently generated from N(0, I3). In the latter case, the columns of X depend
on three common factors. In these two fixed design cases, we generate the design matrix
X once and fix it across simulation replications. In the random design case, we again
draw rows of X independently from a mean zero multivariate normal with covariance
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matrix Σ = I, but resample X in each simulation replication. We compare ols, lasso,
ridge, elastic net, lava, and post-lava in the p = n/2 simulations, and we use lasso, ridge,
elastic net, lava, and post-lava in the p = n simulations. For lasso, ridge, elastic net,
lava, and post-lava, we report one set of results based on using SURE minimization for
penalty parameter selection and a different set of results based on tuning parameters
selected by 5-fold cross-validation. The comparisons are similar to those in the main
paper, with lava and post-lava dominating the other procedures.

1.2. Highly correlated designs. Consider a highly correlated fixed design, where the
regressors are generated as follows:

Xj = Z + 0.5εj , j = 1, ..., 10
Xj = εj , j = 11, ..., p,

where εj ∼ N(0, 1), and Z ∼ U(0, 5) is independent of εj . The first ten regressors depend
on a common component Z, with an equi-mutual-correlation 0.89. The coefficients are
generated as before, and we set n = 100, p = 2n. The tuning parameters for each
method are selected by 5-fold cross-validation. The results are reported in Figure 4. The
comparisons are similar to those in the main paper, with lava and post-lava dominating
the other procedures.

1.3. Gaussian sequence model with very high dimension. We consider a Gaussian
sequence model

Z = θ + ε, ε ∼ Np(0, σ
2Ip), σ2 =

1

n
,

with p = dim(θ) = 10, 000 and n = [6 log(p)] = 55. We set θ = (3, q, ..., q)′ and use the
“canonical plug-in” and optimal (risk minimizing) choices for the tuning parameters.
Figure 5 compares risks of lava, post-lava, lasso, and ridge estimators as functions of
the size of the small coefficients q. The performance is qualitatively similar to that in
the main paper even when p is very large, with lava and post-lava dominating the other
procedures.

1.4. Feasible SURE. Figure 6 plots the results of a feasible SURE minimization pro-
cedure where we conservatively estimate σ2u in the p = 2n setting with random design.
As before in the random design, we draw rows of X independently from a mean zero
multivariate normal with covariance matrix Σ = I and resample the design matrix at
each simulation replication. The conservative estimate of σ2u is then constructed by tak-
ing the estimate of σ2u obtained by using the coefficients obtained from lasso with tuning
parameter selected by minimizing 5-fold cross-validation. Estimation of all methods then
proceeds by taking the SURE minimizing values of tuning parameters given this con-
servative estimate of σ2u. The results are qualitatively similar to those given for the case
of the known error variance σ2u in the sense that lava and post-lava dominate all other
procedures.
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1.5. Out-of-sample prediction comparison. We also compare the out-of-sample pre-
diction performances of the competing estimators within the random design setting.
Specifically, we respectively generate training data {Xtr,i, Ytr,i}i≤n, and testing data
{Xtest,i, Ytest,i}i≤m from a linear model Yi = XT

i θ + Ui, where θ = δ + q(0, 1...., 1)T

is as in the previous simulations. The estimator θ̂e is then obtained using the training
data, whose out-of-sample prediction performance is then evaluated using the testing
data through the out-of-sample percentage of variation explained (PVE):

PVE(e) = 1−
∑m

i=1(Ytest,i −XT
test,iθ̂e)

2∑m
i=1(Ytest,i − Ȳtest)2

, Ȳtest =
1

m

m∑
i=1

Ytest,i.

We set n = 100,m = 50. Figure 7 plots the averaged PVE(e) from 100 replications
as a function of the size of small coefficients q. The tuning parameters are chosen via
minimizing 5-fold cross validation.

2. Omitted proofs.

2.1. A simple inequality. We now prove ‖Kλ2 Xβ0‖22 ≤ ‖K
1/2
λ2

Xβ0‖22‖Kλ2 ‖ ≤ C‖Kλ2 Xβ0‖22
for some C > 0 uniformly in p, n. This implies (3.15) in the main paper.

Let λmax(·) and λmin(·) respectively denote the operator of the maximum and min-

imum eigenvalue. In fact, ‖Kλ2 Xβ0‖22 = ‖K1/2
λ2

K
1/2
λ2

Xβ0‖22 ≤ ‖K
1/2
λ2
‖2‖K1/2

λ2
Xβ0‖22 =

‖K1/2
λ2

Xβ0‖22‖Kλ2 ‖, where the last equality is due to ‖K1/2
λ2
‖2 = λmax(K

1/2
λ2

K
1/2
λ2

) =
λmax(Kλ2) = ‖Kλ2 ‖,

Since ‖Kλ2 ‖ ≤ 1,

‖K1/2
λ2

Xβ0‖22‖Kλ2 ‖ = ‖K−1/2λ2
Kλ2 Xβ0‖22‖Kλ2 ‖ ≤ ‖Kλ2 Xβ0‖22‖‖K

−1/2
λ2
‖2‖Kλ2 ‖

= ‖Kλ2 Xβ0‖22‖K
−1
λ2
‖‖Kλ2 ‖

Let {vj} be the eigenvalues of XX ′. Then

‖K−1λ2 ‖‖Kλ2 ‖ =
λmax(Kλ2)

λmin(Kλ2)
=
nλ2 + maxj≤n vj
nλ2 + minj≤n vj

.

Thus a sufficient condition for ‖K−1λ2 ‖‖Kλ2 ‖ . 1 is that maxj≤n vj . nλ2, which is
equivalent to ‖S‖ . λ2 since S = X ′X/n.

2.2. Computation of K
1/2
λ2

. Let X = MDV be the singular value decomposition of
X: where D is an n × p rectangular diagonal matrix with square roots of the non-
zero eigenvalues of XX ′ on the diagonal, and M is an n × n matrix whose columns
are the eigenvectors of the n × n matrix XX ′. Then from M ′M = In and V V ′ = Ip,

Pλ2 = MD(D′D + nλ2I)−1D′M ′. Hence K
1/2
λ2

= MAM ′, where A = [In − D(D′D +

nλ2I)−1D′]1/2. Note that D(D′D+nλ2I)−1D′ is an n×n diagonal matrix with the jth
diagonal entry as

vj
vj + nλ2

,
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where vj is the jth largest eigenvalue of XX ′. This implies that the jth diagonal entry
of A is

aj =

(
nλ2

vj + nλ2

)1/2

.
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Fig 1. Risk comparison with tuning done by minimizing SURE in the fixed design simulations with
p = n/2. In this figure, we report simulation estimates of risk functions of ols, lava, post-lava, ridge,
lasso, and elastic net in a Gaussian regression model with “sparse+dense” signal structure over the
regression coefficients. We select tuning parameters for each method by minimizing SURE. The size of
“small coefficients” (q) is shown on the horizontal axis. The size of these coefficients directly corresponds
to the size of the “dense part” of the signal, with zero corresponding to the exactly sparse case. Relative
risk plots the ratio of the risk of each estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 2. Risk comparison with tuning done by 5-fold cross-validation in the fixed design simulations with
p = n/2. We select tuning parameters for each method by 5-fold cross-validation. The size of “small
coefficients” (q) is shown on the horizontal axis. Relative risk plots the ratio of the risk of each estimator

to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 3. Risk comparison in the random design simulations with p = n. In the upper panels, we report
results with tuning parameters for each method selected by minimizing SURE. In the lower panels, we
report results with tuning parameters for each method selected by 5-fold cross-validation. The size of
“small coefficients” (q) is shown on the horizontal axis. Relative risk plots the ratio of the risk of each

estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 4. Risk comparison in the highly correlated fixed design simulations with p = 2n. Here the first ten
regressors are highly correlated with a common mutual correlation 0.89. We select tuning parameters for
each method by 5-fold cross-validation. The size of “small coefficients” (q) is shown on the horizontal

axis. Relative risk plots the ratio of the risk of each estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 5. Exact risk functions of lava, post-lava, lasso and ridge in the Gaussian sequence model with
“sparse+dense” signal structure and p = 10, 000. In the upper panels, we report results with tuning
parameters for each method selected by the “canonical plug-in” choices given in the text. In the lower
panels, we report results with the optimal (risk minimizing) choices of penalty levels. The size of “small
coefficient” is shown on the horizontal axis. Relative risk plots the ratio of the risk of each estimator to
the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 6. Risk comparison in the random design simulations with p = 2n. Tuning parameters for each
method are selected by minimizing a feasible version of SURE based on a conservative plug-in estimate
of σ2

u. The size of “small coefficients” (q) is shown on the horizontal axis. Relative risk plots the ratio

of the risk of each estimator to the lava risk, R(θ, θ̂e)/R(θ, θ̂lava).
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Fig 7. Out-of-sample percentage of variation explained (PVE) in the random design simulation with
p = 2n and p = 5n. For each method, the tuning is chosen by minimizing 5-fold cross-validation.
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