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@ Sparse model :

e many zeros and a few “large” components.
o Lasso works well

@ Dense model:

@ no large parameters and very many small non-zero parameters
o Ridge works well

Motivation of this work: sparsity is restrictive in some cases:

@ predictions
@ nonparametric fitting

@ Treatment effect inference with many controls.

In these applications, variable selection is not a requirement.
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A dense+sparse model

A basic assumption for non-sparse models:

=L+ L

dense signal ~ sparse signal
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lava: a new technique for signal recovery

Let ¢(data, 6) be a loss function.
é\lava = E"" 8\7

where

~

) | ,
(3.5)=arg , min_ {f(data, 5 +0) + X318+ Al }.

@ />-part captures dense signal; ¢1-part captures sparse signal.
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Risk comparison in Z ~ N(6, 1)
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one-dimensional case

Consider shrinkage estimation:
d(Z) = arg mein(Z — 0)? + Py(6)

We set
Px(0) = Xa|B)? + M1|6], O0=8+0

@ To compare with related methods:
o Lasso: Py(0) = \|9]
o elastic net: Py(6) = X\|0)? + A\1]0|
o Ridge: P\(0) = \|0)?
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@ Weighted average of the soft-thresholding and the data.

dlava(Z) - B+g

= (1—k)Z+ k(soft th.), k Az

:l—i-/\z

By shrinking towards the data, robust to non-sparse signals.

@ Does not produce sparse solutions.
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Figure: Shrinkage functions
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lava in the regression model

Y =Xb+ U, U~ N(O,o2l,),

é\lava - B"i'g’ 1
5.6 in =Y =X NI2 + Mol|Bl12 + A1l6]]1.
(8,9) argﬁfj;el%pnll (B4 )2 + A2llBl2 + Arll0]]1
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Computations

o If we knew ¢, then ridge solution :
B(6) = (X'X + nhaly) 1X! (Y — XO).
e Substitute 3 = 3(6) into the objective function,
~ .1 3 2 CIOIE
5 = ang i {21V = X(30) + DB + 22 FOIB + Mol |

@ So lava is given by: L
6 = p(d)+ 0.
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De-densify: another look at Lava

Theorem (A Key Characterization of the Profiled Lava Program)

Define ridge-projection matrices,
Py, = X(X'X + n\aly)* X" and Ky, = I, — Py,,

and transformed data, Yy = K}f Y and X = Ki\éz X. Then

JERP

- (1.~ o~
d = arg min {;HY — X413 +)\1||(5||1}.
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De-densify: another look at Lava

@ In other words, “de-densify” first, then lasso
Step 1: Ridge-projection matrices,
Py, = X(X'X + nxal,) 1X" and Ky, = I, — Py,,
and transformed data, Y = Kl/2 Y and X = Kl/2 X.

Step 2: Run lasso on (Y, X).
@ Why are the signals for the “transformed data” sparse?

Y = X6+ 0+ K> X5
—_———
projected off

@ Taking the transformation Kiéz removes the dense component.
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Choices of tuning parameters

Data-driven choices

e min-SURE: R
Suppose R(#)) is Stein's Unbiased Risk Estimator for method 6,

arg m)in ﬁ(@,\)

@ K-fold cross validation.
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Inference with many controls

@ Consider the model

yi = dia+ X,-/9 + €
di = X/v+u

Belloni et al. (14) used double-post-selection.
o What if 6,y =dense + sparse ?
@ Obtain confidence intervals for « that is more robust to the signal

e Example: § =~ =(3,q,...,q); where g is the small coefficient.
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Figure: Coverage probability: tuning chosen by 5-fold CV
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Monte-Carlo

e n=100,p = 2n.
@ Gaussian regression,
0=(3.q,..4q),
@ The tuning parameters are selected by numerically minimizing the
SURE and 5-fold CV.
e Consider an independent design X ~ N(0,/).
o Calculate averaged %HX@— X0ol|5 from 100 replications.
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Figure: Risk comparisons: tuning chosen by 5-fold CV

Approximated risk, p=2n, 2=I

;¢ |—Lava
‘ —Post-lava

& == Lasso
---Ridge

: —elastic net

0.05

01 015 02 025 03 035 04
size of small coefficients

Chernozhukov, Hansen & Liao

lava

Risk relative to lava, p=2n,==I

H S —post-lava
3.5 B . -~ Lasso
H K ---Ridge
3 K —elastic net
25

Relative Risk

0.05

0. 15 02 025 03 035 04
size of small coefficients

INFORMS APS 2017

17 / 21



Risk

Figure: Risk comparisons: tuning chosen by min-SURE
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Theorem (Deviation Bounds for Lava in Regression)

We have that with probability 1 — a — € (note that || Ky, || <1)

1, .~ 1/2

;||X91ava — X635 < —|| K / X(8 = Go)|I3l Kn, || + = ||Dridge(>\2)\|§
< inf Bi(dg) V B K B B ,
< (%ﬂé),eﬁg’:%wo_%{( 1(d0) 2(50))” x|+ Bz + Ba(fo) }

bound of Dyigge(X2)

2332 2552c2V/2 log(2p/ax
Bi(do) = L P sk
L2(C 50,)\1,)\2) nL2(C,(5o,)\1,>\2)
Ba(fo) = —|| K% X Boll3 = 2°2284S(S + Aal) ™o,

2
By = 2% [ fu®) + V2 1P, I Iee@7e)]

22
Ba(Bo) = — || Kx, XBoll3 = 2280 Viz o < 2°Ba(Bo) | Ko, I

S —— S — S — S — S —
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@ Does not require identification of (g, d0). “inf" finds the best split.
@ In dense models, lava works similarly to ridge.

© In sparse models, lava works similarly to lasso.
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Conclusions

@ Lava is designed for “sparse+dense” models.

@ Complements other approaches to structured sparsity: fused sparsity,
matrix decomposition, etc.

@ Extendable to more general M- and Z- estimations.
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