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Abstract
This supplementary material contains the proof of Theorem 7.1 in the main paper.
The following lemma is useful.

Lemma 0.1. For a general loss function L, suppose it is twice differentiable in a neighbor-

hood of B,. Assume
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where we denote P, (07) = liminf, ,o+ P! (t) and k, = an++/sP.(d,) as given in Theorem B.1
of the main paper. In addition, assume \/sk, = o(P.(0")). Then Condition A in Theorem
B.2 of the main paper is satisfied.

Proof. 1t L, is continuously differentiable in a neighborhood of 3,, by the mean value theo-
rem, there exists A € (0, 1) such that for h = A8+ (1 — \)Tg3,
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where we used the fact that sgn(h;) = sgn(f;) for [ ¢ S. Suppose we have (which we will

prove later)
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the following event then holds with probability approaching one:
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A, = {%%X 0 n(ﬁ)‘ < PT/L(OJF)/Q} .

b
Conditioning on the event A,,, by the continuity, there is a neighborhood H of B such that
for any B € H, maxgs |0L,(8)/05| < P.,(07)/2. Also by the continuity of P/ (-) in a right-
neighborhood of 0, we can make H sufficiently small so that there is a 6 > 0 sufficiently

small, maxgey 1¢s |5 < and
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s 0,(8)/051] < PL(6)/
In addition, since T(8) = B and |8 — B> = | T8 - B||>+ | T8 — B|* > | T8 — BI|?, we have
B € H implies that both T3 and h = (3%, \3%)” are also inside H, where h and X € (0,1)
are defined as before. This then implies that max;¢g |0L,(h)/05| < P, (6)/2 uniformly over

B € H, and maxgey i¢s |Fi| < . Hence, the non-increasingness of P, (-) implies
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This with (0.3) implies the inequality (B.6) of the main paper. Because P(A,,) — 1, we have
our conclusion.

It then remains to prove (0.4). By the triangular inequality,
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By assumption, maxgs |0L,(8,)/081] = 0,(P,(07)). For the first term on the right hand
side, apply the mean value theorem (note that E and (3, only differ in the coordinates in S),
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where B = (Bg, 0)” lies on the line segment joining B and 3,, and we used the Cauchy-



Schwarz inequality that ||Bg — Boslli < v/5llBs — Bosll. From the assumption, there is a
fixed neighborhood B¢ € U C B where the radius of U does not shrink as n increases, such
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Hence for any € > 0,
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This implies that max;¢s jes |0%Ln(8 (B)/06,08;] = 0,(P.(07)/(v/5ky,)), which yields that for
)-

¢ defined in (0.5), & = 0,(v/skn PL(0T)/(kny/s)) = 0,(P,,(07)). This proves (0.4).
[

Verifying conditions in Theorems B.1 and B.2 for the smoothed FGMM
For simplicity, we focus on the linear model where g(Y, XTB) =Y —X*j3. Generalization

to a more general nonlinear model is straightforward.

Proof. First of all, we restrict on the oracle space. For any 8 = (84,0), Lg(8g,0) is given
by
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We have Vgl(Byg) = 01 + 02, where
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with Jg = diag{\ﬁfr(FS,l)flK(/Bg&l/hn), e ,@(ngs)*lK(ﬂgsﬁ/hn)}, and
T = diag{(Zs,1) K (GRsa/hn), -+ 580(Zs ) K (B /1) }. By assumption,
|EXsFS|l2 + | EXsZE|l2 = O(1) and E(e|W) = 0. Therefore, 91 = O,(1/slogp/n).
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where r; = (7 3001, €iFs;0)?/Vat(Fs;) + (5 301, €i2s54)* /Vai(Zs;). We have max;<, [r;| =
O,(slogp/n). Also, for each j € S, and t; = f§;/hn,
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For any small v > 0, if h.™7 = o(mingeg |Box|?), then m = O(exp(—iz)) = o(1).
This implies 02 = O,(1/slogp/n).
For the Hessian matrix, V2[(8Bys) = X + G1 + G2 + G3 + G4. We look at these terms
one after another. G, = (K’(ﬁg&l/hn)Qﬁog,lal/hn, e ,K’(ﬁ0257s/hn)260575a8/hn), where
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We have max;<s ||| = O,(y/slogp/n). Thus for t; = 5§;/hy, because s/logp/n = O(1)
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We also have Gy = diag{ K" (83,1 /hn)4B5s171/ % - -+ s K" (B5s.s/ Tn) 4635475/ ha } - As before,
max;<, || = Op(slogp/n). Thus
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the last equality follows since we have shown ﬁ;/‘;%' = o(1). Moreover,
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Note that max;<, |K((3g,/hn) — 1| = o(1), which gives [|G4l|2 = 0,(1). Finally,
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where Q = diag{vai(Fs,)'},<, and Q = diag{var(Zs,) '} ,<.. Therefore all the cigenvalues



of 3 are bounded way from zero. This implies Apin(V?1(B,s)) is bounded away from zero.
Thus we have verified all the conditions in Theorem B.1 of the main paper.
To verify the conditions of Theorem B.2, it suffices to verify those in Lemma 0.1 above.

More concretely, we verify
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For (0.7), note that Sy = 0 when [ ¢ S. Thus we have
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Because sy/logp/nmaxggs jes |EX,V;| = o(P.(07)),
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As for (0.8), we know that for k ¢ S, 0°L(Bg,0)/08108k = aiu, + asy. + as g, where
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There is a neighborhood U of 8,4 that doest not shrink with n, such that uniformly in
I,k <p, supgcp |arm] is Op(1). In addition, az; = ay k. Finally,
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where J1(Bg) = diag{K (8% ;/hn)/var(Fs;)}j<s,



and Jy(Bg) = diag{ K (8% ;/hn)/vVar(Zs;)}<s. Therefore,
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where we used the fact that )\maX(EAEAT) < )\maX(EAAT) for any random vector A that
has finite expectation. This implies (0.8).

Proof of Theorem 7.1

We now can apply Theorem B.2 to conclude that there is a local minimizer ,B'/ = (B;, B;v)
of Qk(+) such that P([AS'IN = 0) — 1. In addition, for an arbitrarily small ¢ > 0, the local
minimizer B, is strict with probability at least 1 — e for all large n. The remainder of the
proof is the same as that of Theorem 4.1 (iii).
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