Endogeneity in Ultrahigh Dimension

Yuan Liao Princeton University

Joint work with

Jianqing Fan

 $1/40$

 \Rightarrow

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Outline

- [More realistic models](#page-11-0)
- 3 [Focussed Generalized Method of Moments](#page-15-0)
	- **•** [Definition](#page-15-0)
	- [Rationale behind construction](#page-19-0)
	- **•** [Implementation](#page-23-0)
- 4 [Oracle Property and Global Minimization](#page-26-0)

 $2/40$

イロト イ押ト イヨト イヨト

5 [Semi-parametric Efficiency](#page-30-0)

[Simulation](#page-35-0)

Problem of Endogeneity

 $3/40$

 299

メロトメ 御 トメ 君 トメ 君 トー 君

Motivation

• Consider

$$
Y_i = \mathbf{X}_i^T \beta_0 + \varepsilon_i, \quad i = 1, ..., n.
$$

dim(X) = p >> *n*.

- Assume β_0 to be sparse.
- $X = (X_S, X_N)$: important and unimportant
- Oracle property has been based on a Key Assumption:

either $E(\varepsilon X) = 0$ or $E(\varepsilon|\mathbf{X})=0$

 $4/40$

イロンス個 メスきメスきょうき

• A regressor is called:

Exogenous if uncorrelated with error

Endogenous if correlated with error

 $5/40$

イロト イ押 トイヨ トイヨ トーヨ

- \bullet $E(\varepsilon X) = 0$, $E(\varepsilon |X) = 0 \Rightarrow$ ALL regressors are exogenous.
- Very restrictive/unrealistic assumption
- Endogeneity arises easily due to large pool of regressors:
	- omitted variables,
	- self-selection bias,
	- **•** causality studies
	- etc.

Example: Endogeneity in low dimension

Wage regression in labor economics (Card 1995):

 $log(Wage) = \beta Edu + \varepsilon$.

- \bullet β : effect of education on wage.
- \bullet ε : economic shocks, unmeasurable abilities, family background.... **ALL other confounding factors**.
- \bullet *E*(ε |*Edu*) \neq 0: Education is endogenous.

Example: Endogeneity in high dimension

• Solow-Swan-Ramsey model: poorer countries should grow faster, and catch up with richer countries

 $GrowthRate = \beta log(GDP) + \mathbf{x}_S^T \mathbf{\beta}_S + \varepsilon.$

(Levine and Renelt 92, Barro and Lee 94)

- **x***S*: important regressors. ε: unobservable factors.
- Working model:

$$
GrowthRate = \beta \log(GDP) + \mathbf{x}^T \beta + \varepsilon.
$$

x: ALL possible affecting Growth Rate: population, fertility, education, etc.

 \bullet UN database: 10 years quarterly rates, no more than $n = 40$ samples. *p* > 100.

• True model:

$$
\textbf{Y} = \textbf{X}_\mathcal{S}^{\mathcal{T}}\boldsymbol{\beta}_{0\mathcal{S}} + \boldsymbol{\varepsilon}
$$

- \bullet ε : other factors, unmeasurable.
- Working model:

$$
Y = \mathbf{X}_S^T \boldsymbol{\beta}_{0S} + \mathbf{X}_N^T \boldsymbol{\beta}_N + \varepsilon
$$

- X_S , X_N : all are related to Y. But once X_S in, effect of X_N is insignificant, \Rightarrow $\beta_N = 0$.
- But since dim(\mathbf{X}_N) is large, some can affect Y via unmeasurable $factors \Rightarrow E(\varepsilon|\mathbf{X}_N) \neq 0.$
- No-endogeneity in low dimension: easy to test; *maybe* O.K. to assume
- Model specification test:

$$
H_0: E(\varepsilon \bm{X})=0
$$

Hausman (78), Bierens (82), Staniswalis and Severini (91), Stute (97), Davidson and Halunga (10).

No-endogeneity in high dimension: hard to test. NOT O.K. to assume.

Problem of Endogeneity

Inconsistency of penalized least squares

Theorem 1

PLS is consistent only if ALL regressors are exogenous.

- **PLS results in false scientific discoveries**
- Numerical example:

$$
\beta_{0j} = 0, \text{ for } 6 \le j \le p.
$$

$$
Z \sim N_p(0, \Sigma)
$$

$$
X_j = Z_j \text{ for } j \le 5, \quad X_j = (Z_j + 5)(\varepsilon + 1), \text{ for } 6 \le j \le p.
$$

Table: PLS and FGMM over 100 replications. $p = 50$, $n = 300$

		PLS		FGMM		
	$\lambda = 0.05$	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 0.1$ $\lambda = 0.05$ $\lambda = 0.4$		
MSE _s	0.145	0.629	1.417	0.979 0.261 0.184		
	(0.053)	(0.301)	(0.329)	(0.094) (0.245) (0.069)		
MSE_N	0.126	0.072	0.095	0.001 0.003 0		
	(0.035)	(0.016)	(0.019)	(0.010) (0.014) (0)		
TP	5	4.82	3.63	5 5 4.5		
	(0)	(0.385)	(0.504)	(0) (0) (0.503)		
FP	37.68	8.84	2.58	0.14 0.08 0		
	(2.902)	(3.334)	(1.557)	(0) (0.337) (0.569)		

oracle: $TP = 5$, $FP = 0$

A more realistic model

 $12/40$

KOX KOX KEX KEX LE YORO

We assume only:

$$
E(\varepsilon|\bm{X}_{\mathcal{S}})=0.
$$

- Only important regressors are assumed to be exogenous.
- Goal: under the above assumption, achieve the

oracle property:

- Identify important regressors with high probability. 2) Statistical inference on nonzero coefficients of β_0 .
- **•** In addition, achieve semi-parametric efficient estimation.

How do we achieve oracle property?

• Moment conditions:

$$
\mathbf{A}\boldsymbol{\beta}_0=\mathbf{B}.
$$

Example: $E(\varepsilon \mathbf{X}) = 0 \Rightarrow$

$$
E[(Y - \mathbf{X}^T \boldsymbol{\beta}_0) \mathbf{X}] = 0.
$$

When $\text{\sf dim}(\mathsf{B}) > \text{\sf dim}(\beta_0),$ $\mathsf{A}\mathsf{y} = \mathsf{B}$ has no solution in general.

Over-identification:

$$
E(\varepsilon|\mathbf{X}_S)=0 \Rightarrow \forall f, E[(Y-\mathbf{X}_S^T\boldsymbol{\beta}_{0S})f(\mathbf{X}_S)]=0.
$$

For true set S_0 ,

$$
\min_{\boldsymbol{\beta}_{S_0}}\|{\mathbf{A}}_{S_0}{\boldsymbol{\beta}}_{S_0}-{\mathbf{B}}_{S_0}\|^2=0
$$

 $\beta_{S_0} = \beta_{0S}$ is the unique solution.

• For any other set $S \neq S_0$, can assume

$$
\min_{\beta_S} \|\mathbf{A}_S \beta_S - \mathbf{B}_S\|^2 >> 0
$$

• To achieve oracle property, we solve:

$$
\min_{S} \min_{\beta_S} \|\mathbf{A}_S \beta_S - \mathbf{B}_S\|^2.
$$

 $15/40$

メロメメ 御きメ 重き メ 差す 一番

This leads to $S = S_0$, $\beta_S = \beta_{0S}$.

Focussed Generalized Method of Moments

16 / 40

 Ω

メロメメ 御 メメ きょく きょうき

Generalized Method of Moments

- Suppose $\mathsf{Em}(\mathsf{Z},\beta_0)=0$, where dim $(m)\geq \mathsf{dim}(\beta).$
- GMM estimates β_0 by (Hansen 1982):

$$
\hat{\boldsymbol{\beta}}_{\text{GMM}} = \arg \min_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} m(Z_i, \boldsymbol{\beta})^T W \frac{1}{n} \sum_{i=1}^{n} m(Z_i, \boldsymbol{\beta}).
$$

Assuming known likelihood is sometimes too restrictive, hence GMM provides a very robust way of estimation and inference.

Focussed GMM

$$
L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_j \neq 0)} \left[\frac{1}{\widehat{\text{var}}(f_1(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_1(X_{ij}) \right)^2 + \frac{1}{\widehat{\text{var}}(f_2(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_2(X_{ij}) \right)^2 \right]
$$

$$
= \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) V_i(\beta) \right]^T W(\beta) \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) V_i(\beta) \right]
$$

Q_{FGMM}(β) = L_{FGMM}(β) + $\sum_{i=1}^{p} P_n(|\beta_i|)$.

Example:

$$
\mathbf{V} = \begin{pmatrix} f_1(X_{ij}) \\ f_2(X_{ij}) \end{pmatrix} = \begin{pmatrix} X_{ij} \\ |X_{ij} - \bar{X}_j| \end{pmatrix}.
$$

Five Questions

$$
L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_j \neq 0)} \left[\frac{1}{\widehat{\text{var}}(f_1(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_1(X_{ij}) \right)^2 + \frac{1}{\widehat{\text{var}}(f_2(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_2(X_{ij}) \right)^2 \right]
$$

- ¹ Why *f*1, *f*2, why not just *f*1? **over-identification**
- **2** How to choose f_1 and f_2 ?
- **3** Why indicator?
- 4 How to minimize numerically?
- ⁵ Global minimum or local minimum?

Why two functions f_1 and f_2 ?

Consider L_0 penalty. Suppose restrict to $\boldsymbol{\beta} = (0,...,0,\beta_p)^T,$

$$
Q_{\text{FGMM}}(\beta_{p}) = \left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-X_{ip}\beta_{p})f_{1}(X_{ip})\right]^{2}+\lambda_{n}.
$$

minimum is λ_n . But on the oracle space $\beta = (\beta_S, 0)$,

$$
\min_{\beta=(\beta_{\mathcal{S}}^{\mathcal{T}},0)^{\mathcal{T}},\beta_{\mathcal{S},j}\neq 0} Q_{\mathsf{FGMM}}(\beta) \geq s\lambda_n.
$$

• With f_1 only, $\forall S$, dim(\mathbf{B}_S) = $\|\boldsymbol{\beta}_S\|_0$,

$$
\|\mathbf{A}_\mathcal{S}\boldsymbol{\beta}_\mathcal{S} - \mathbf{B}_\mathcal{S}\|^2
$$

is always minimized to zero.

Over-Identification

For any *S* ⊂ {1, ..., *p*}, consider

$$
\underbrace{E[(Y - \mathbf{X}_S^T\boldsymbol{\beta}_S)f_1(\mathbf{X}_S)] = 0}_{|S| \text{ equations}}, \quad \underbrace{E[(Y - \mathbf{X}_S^T\boldsymbol{\beta}_S)f_2(\mathbf{X}_S)] = 0}_{|S| \text{ equations}}.
$$

- Satisfied by $S = S_0$ and $\beta = \beta_0$ since $E[Y \mathbf{X}_S^T\beta_0|\mathbf{X}_S] = 0$.
- No solution if $S \neq S_0$, since equations (2|S|) are twice as many as unknowns ($|\beta_5|_0$).

• Solving

$$
\min_{S} \min_{\beta_{S}} ||E[(Y - \mathbf{X}_{S}^{T} \beta_{S})f_{1}(\mathbf{X}_{S})]||^{2} + ||E[(Y - \mathbf{X}_{S}^{T} \beta_{S})f_{1}(\mathbf{X}_{S})]||^{2}
$$

leads to $\beta^* = \beta_0$.

Why indicator?

• The restriction

$$
E[(Y - \mathbf{X}^T \boldsymbol{\beta}_0) f(X_j)] = 0
$$

may be mis-specified if X_j is $\boldsymbol{\mathsf{endogenous}},$ i.e., $E(\epsilon|X_j) \neq 0.$

- Hence without $\mathit{I}_{\beta_j\neq0},\ \mathcal{Q}_{\mathsf{FGMM}}(\beta_0)$ can be large.
- Including indicator:
	- rules out endogenous variables
	- produces sparse solution
- **•** Penalty is still needed, since indicator only does sure-screening.

Pn: penalty function.

 \bullet *P_n* is concave, increasing on [0, ∞), differentiable

$$
P'_n(0^+) > n^{-1/2}; P'_n(t) = o(1) \text{ when } t > c > 0.
$$

$$
\bullet \ \max_{\beta_{0j}\neq 0} |P''_n(\beta_{0j})^*|=o(1).
$$

Examples

- **1** Bridge (Frank and Friedman 1993): $P_n(t) = \lambda_n|t|^t$
- 2 SCAD (Fan 1997): $P_n(t) = \lambda_n[\lambda_n + \int_{\lambda_n}^{\infty}$ $(a\lambda_n-t)_+$ $\frac{(a\lambda_n - t) +}{(a-1)\lambda_n} dt$
- **3** MCP (Zhang 2009): $P_n(t) = \int \frac{1}{a}$ $\frac{1}{a}(a\lambda_n-t)+dt$.
- 4 Hard thresholding (Antoniadis 1996): $a = 1$.

Implementation: Smoothing

- $\mathsf{Replace} \ I(\beta_j \neq 0) \ \text{with} \ K(\beta_j^2/h_n),$ $h_n \to 0$ • $K(0) = 0, K(+\infty) = 1,$ $\lim_{t\to\infty}|K'(t)t|=0$, $\lim_{t\to\infty}|K''(t)t|<\infty$.
	- \bullet *K*(.) $< M$.

• Example:

$$
K\left(\frac{t^2}{h_n}\right)=\frac{\exp(t^2/h_n)-1}{\exp(t^2/h_n)+1}.
$$

• Minimize smoothed FGMM:

$$
L_K(\beta) = \sum_{j=1}^p K\left(\frac{\beta_j^2}{h_n}\right) \left[\frac{1}{\widehat{\text{var}}(X_j)} \left(\frac{1}{n} \sum_{i=1}^n g(Y_i, \mathbf{X}_i^T \beta) X_{ij}\right)^2 + \frac{1}{\widehat{\text{var}}(X_j^2)} \left(\frac{1}{n} \sum_{i=1}^n g(Y_i, \mathbf{X}_i^T \beta) X_{ij}^2\right)^2\right].
$$

 $24/40$

$$
K\left(\frac{t^2}{h_n}\right)=\frac{\exp(t^2/h_n)-1}{\exp(t^2/h_n)+1}.
$$

メロメメ 御き メミメメミメン 差 299 25 / 40

Algorithm: coordinate descent

1 Initialize
$$
\beta^{(1)} = \hat{\beta}^*
$$
, where $\hat{\beta}^*$ solves for

$$
\min_{\boldsymbol{\beta}\in\mathbb{R}^p} \frac{1}{n}\sum_{i=1}^n [g(Y_i,\mathbf{X}_i^T\boldsymbol{\beta})]^2 + \sum_{j=1}^p P_n(|\beta_j|)
$$

Successively for
$$
k = 1, ..., p
$$
,

$$
t^* = \mathrm{argmin}_{t} L_K(\beta_{(-k)}^{(l)}, t) + P'_n(|\beta_k^{(l)}|)|t|.
$$

Uupdate $\beta_k^{(l)} = t^*$ if L_K strictly decreases.

³ Repeat Step 2 until convergence.

Oracle Property and Global Minimization

Oracle properties of PGMM

Theorem 1

1

Assume only $E(\epsilon|\mathbf{X}_S) = 0$ *, but possibly* $E(\epsilon|\mathbf{X}) \neq 0$ *. Under regularity conditions, there exists a strict local minimizer of QFGMM :*

$$
\|\hat{\beta}_S-\beta_{0S}\|=O_p(\sqrt{\frac{s\log s}{n}}+\sqrt{s}P'_n(\min(|\beta_{0S}|))).
$$

28 / 40

(□) (n) (三)

$$
P(\hat{\beta}_N=0)\rightarrow 1.
$$

 \bullet Asymptotic normality of $\hat{\beta}_{\mathcal{S}}.$

Global Minimization

Assumption 1 (over-identification)

∀ε > 0*,* ∃δ > 0 *such that*

$$
\lim_{n\to\infty} P\left(\min_{S\neq\emptyset} \inf_{\|\boldsymbol{\beta}_S-\boldsymbol{\beta}_{0S}\|_{\infty}>\varepsilon} \left\|\frac{1}{n}\sum_{i=1}^n (Y_i - \mathbf{X}_{S,i}^T\boldsymbol{\beta}_S) \left(\frac{f_1(\mathbf{X}_{S,i})}{f_2(\mathbf{X}_{S,i})}\right)\right\| > \delta\right) = 1.
$$

Rationale: Due to over-identification,

$$
M = ||E[(Y - \mathbf{X}_{S}^{T}\boldsymbol{\beta}_{S})f_{1}(\mathbf{X}_{S})]||^{2} + ||E[(Y - \mathbf{X}_{S}^{T}\boldsymbol{\beta}_{S})f_{2}(\mathbf{X}_{S})]||^{2} = 0
$$

has a unique solution $\mathcal{S} = \mathcal{S}_0,$ $\beta_{\mathcal{S}} = \beta_{0\mathcal{S}_0}.$

 M is large whenever β is not close to $\beta_0.$

Theorem 2

The local minimizer of $\widehat{β}$ *satisfies:* $∀ε$

$$
\lim_{n\to\infty}P\left(Q_{FGMM}(\widehat{\boldsymbol{\beta}})<\min_{S\neq\emptyset}\inf_{\|\boldsymbol{\beta}_S-\boldsymbol{\beta}_{0S}\|_\infty>\varepsilon}Q_{FGMM}(\boldsymbol{\beta})\right)=1.
$$

Semi-parametric Efficiency

 $31/40$

 299

 \Rightarrow

メロメメ 御 メメ きょく モメー

How do we choose f_1 and f_2 ?

- f_1 and f_2 only affect asym. variance
- Hence do not matter if focus is on oracle only.
- But if efficiency is also of interest, follow a **two-step** procedure. Step 1 Run FGMM, obtain $\hat{S}, \hat{\boldsymbol{\beta}}_{\mathcal{S}}$.

$$
P(\hat{S} = S_0) \rightarrow 1, \widehat{\boldsymbol{\beta}}_S \rightarrow^{\rho} \boldsymbol{\beta}_{0S_0}
$$

Step 2 Obtain semiparametric efficient estimation from model

$$
E[(Y - \mathbf{X}_{\hat{S}}^T \boldsymbol{\beta}_0)|\mathbf{X}_{\hat{S}}] = 0
$$

イロメ イ何 メ イヨ メ スヨメー

32 / 40

semi-parametric efficiency

Solve EE for $\widehat{\boldsymbol{\beta}}_{\mathcal{S}}^*$ *S* :

$$
E_n[(Y - \mathbf{X}_S^T \boldsymbol{\beta}_S) \mathbf{X}_S \sigma(\mathbf{X}_S)^{-2}] = 0, \quad \sigma(\mathbf{X}_S)^2 = E(\varepsilon^2 |\mathbf{X}_S).
$$

Assume we can consistently estimate $\sigma(\mathbf{X}_{\mathcal{S}})^2.$

Theorem 3

 G *iven model* $E(Y - \mathbf{X}_{S}^{T} \boldsymbol{\beta}_{0S} | \mathbf{X}_{S}) = 0$ *,*

$$
\sqrt{n}(\widehat{\boldsymbol{\beta}}_{\mathcal{S}}^* - \boldsymbol{\beta}_{0\mathcal{S}}) \rightarrow^d N(0, [\boldsymbol{E}(\sigma(\boldsymbol{X}_{\mathcal{S}})^{-2}\boldsymbol{X}_{\mathcal{S}}\boldsymbol{X}_{\mathcal{S}}^T)]^{-1});
$$

[*E*(σ(**X***S*) [−]2**X***S***X** *T S*)]−¹ *achieves the semi-parametric efficiency bound.*

Extension

• Extend to nonlinear conditional moment restriction:

$$
E(g(y, \mathbf{x}^T \beta_0) | \mathbf{x}_S) = 0.
$$

 $34/40$

イロト イ押 トイヨ トイヨ トーヨ

- **•** Examples:
	- logistic regression: $g = y \exp(\mathbf{x}^T\beta)/(1 + \exp(\mathbf{x}^T\beta))$
	- Poisson regression: $g = y \exp(\mathbf{x}^T \beta)$

$$
L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_j \neq 0)} \left[\frac{1}{\widehat{\text{var}}(f_1(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_1(X_{ij}) \right)^2 + \frac{1}{\widehat{\text{var}}(f_2(X_j))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^T \beta) f_2(X_{ij}) \right)^2 \right]
$$

- ¹ Why not just *f*1? **over-identification**
- ² How to choose *f*¹ and *f*2? **semi-para. efficiency**
- ³ Why indicator? **endogeneity**
- ⁴ How to minimize numerically? **kernel-smoothing**
- ⁵ Global minimum or local minimum? **near-global**

Simulation

K ロ → K 御 → K 君 → K 君 → 三君 → の Q Q → 36 / 40

[Simulation](#page-36-0)

Simulation

$$
Y = \mathbf{X}^T \beta_0 + \epsilon
$$

 $(\beta_{01}, \beta_{02}, \beta_{03}, \beta_{04}, \beta_{05}) = (5, -4, 7, -1, 1.5); \quad \beta_{0j} = 0$, for $6 \le j \le p$. **X** is generated from :

$$
Z = (Z_1, ..., Z_p)^T \sim N_p(0, \Sigma), \quad (\Sigma)_{ij} = 0.5^{|i-j|},
$$

 $(X_1, ..., X_{100}) = (Z_1, ..., Z_{100}), \quad X_i = (Z_i + 5)(\epsilon + 1),$ for $101 \le i \le p$.

important: exogenous

unimportant: first 95 exogenous; others endogenous

Table: 100 replicates, $n = 200$, $p = 300$

PLS			FGMM				
	$\lambda = 0.1$	$\lambda = 0.5$	$\lambda = 0.1$	post-FGMM	$\lambda = 0.2$	post-FGMM	
MSE _S	0.278	0.712	0.215	0.190	0.241	0.188	
	(0.089)	(0.342)	(0.085)	(0.068)	(0.174)	(0.069)	
MSE_N	0.541	0.118	0.018		0.006		
	(0.083)	(0.056)	(0.042)		(0.011)		
TP-Mean	5	4.733	5		4.97		
Median	5	5	5		5		
	(0)	(0.445)	(0)		(0.171)		
FP-Mean	206.26	31.14	3.56		3.58		
Median	207	31	3		3		
	(13.658)	(9.024)	(2.231)		(2.235)		

 $f_1(\mathbf{X}) = \mathbf{X}$, $f_2(\mathbf{X}) = \mathbf{X}^2$; SCAD(λ)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 | X 9 Q Q 38 / 40

[Simulation](#page-38-0)

Conclusion

- Endogeneity \bullet arises easily in high dim. regression
	- **•** causes inconsistency of least squares
	- **o** causes false scientific discoveries

FGMM • achieves oracle property in presence of endogeneity

- achieves global minimization
- uses over-identification: ∀*f*, $E((Y - \mathbf{X}_{S}^{T} \boldsymbol{\beta}_{0S})f(\mathbf{X}_{S})) = 0$
- Others smoothed FGMM
	- semi-parametric efficiency
- Future \bullet Important regressors have to be exogenous.
	- Can use Instrumental Variables to allow endogenous important regressors.

Some references

HANSEN, L. (1982). Large sample properties of generalized method of moments estimators. *Econometrica,* **50** 1029-1054

- CANER, M. (2009). Lasso-type GMM estimator. *Econometric Theory,* **25** 270-290
- BELLONI, A. and CHERNOZHUKOV, V. (2011). High-Dimensional Sparse Econometric Models, an Introduction. In *Ill-Posed Inverse Problems and High-Dimensional Estimation*, Springer Lecture Notes in Statistics.