Endogeneity in Ultrahigh Dimension

Yuan Liao
Princeton University

Joint work with

Jianging Fan

1/40



|
Outline

0 Problem of Endogeneity
e More realistic models

e Focussed Generalized Method of Moments
@ Definition
@ Rationale behind construction
@ Implementation

0 Oracle Property and Global Minimization
e Semi-parametric Efficiency
e Simulation



Problem of Endogeneity

Problem of Endogeneity

/40



Motivation

@ Consider
Yi=XBo+e;, i=1,..,n.
dim(X) =p >>n.
@ Assume 3, to be sparse.
@ X = (Xg, Xy): important and unimportant
@ Oracle property has been based on a Key Assumption:

either E(=X) = 0

or E(¢]X) =0



Problem of Endogeneity

@ A regressor is called:
Exogenous if uncorrelated with error

Endogenous if correlated with error

@ E(¢X) =0, E(¢|X) = 0 = ALL regressors are exogenous.

@ Very restrictive/unrealistic assumption

@ Endogeneity arises easily due to large pool of regressors:

e omitted variables,
self-selection bias,
causality studies
etc.



Example: Endogeneity in low dimension

@ Wage regression in labor economics (Card 1995):
log(Wage) = SEdu + «.

@ (3. effect of education on wage.

@ c: economic shocks, unmeasurable abilities, family background....
ALL other confounding factors.

@ E(e|Edu) # 0: Education is endogenous.



Example: Endogeneity in high dimension

@ Solow-Swan-Ramsey model: poorer countries should grow faster,
and catch up with richer countries

GrowthRate = (log(GDP) + xLB8g + ¢.

(Levine and Renelt 92, Barro and Lee 94)
@ Xg: important regressors. : unobservable factors.
@ Working model:

GrowthRate = 3log(GDP) + x' 8 + ¢.

x: ALL possible affecting Growth Rate: population, fertility,
education, etc.

@ UN database: 10 years quarterly rates, no more than n = 40
samples. p > 100.



Problem of Endogeneity

@ True model:
Y =X&Bos +¢
@ c: other factors, unmeasurable.
@ Working model:
Y = X5Bos + XNBn + €
@ Xg, Xy: all are related to Y. But once Xg in, effect of Xy is
insignificant, = By = 0.

@ But since dim(Xy) is large, some can affect Y via unmeasurable
factors = E(e|Xy) # 0.



Problem of Endogeneity

@ No-endogeneity in low dimension: easy to test; maybe O.K. to
assume

@ Model specification test:
Hy: E(eX)=0

Hausman (78), Bierens (82), Staniswalis and Severini (91), Stute
(97), Davidson and Halunga (10).

@ No-endogeneity in high dimension: hard to test. NOT O.K. to
assume.
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Problem of Endogeneity

Inconsistency of penalized least squares

Theorem 1
PLS is consistent only if ALL regressors are exogenous. J

@ PLS results in false scientific discoveries
@ Numerical example:

50/':0, for6§j§p.

Xj=Zforj<5 Xi=(Z+5)(c+1), for6<j<p.
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Problem of Endogeneity

Table: PLS and FGMM over 100 replications. p = 50, n = 300

PLS FGMM

A=005 A=05 A=1 A=005 A=01 A=04

MSEs  0.145  0.629  1.417 0.261 0.184 0979
(0.053)  (0.301) (0.329) (0.094)  (0.069)  (0.245)

MSEy  0.126 0072  0.095 0.001 0 0.003
(0.035)  (0.016) (0.019) (0.010) 0)  (0.014)

TP 5 4.82 3.63 5 5 45

(0) (0.385)  (0.504) (0) 0)  (0.503)

FP 37.68 8.84 2.58 0.08 0 0.14
(2.902)  (3.334) (1.557) (0.337) 0)  (0.569)

oracle: TP=5, FP=0
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More realistic models

A more realistic model
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More realistic models

We assume only:
E(e|Xs) = 0.

@ Only important regressors are assumed to be exogenous.
@ Goal: under the above assumption, achieve the
oracle property:

@ Identify important regressors with high probability.
© Statistical inference on nonzero coefficients of 3.

@ In addition, achieve semi-parametric efficient estimation.
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How do we achieve oracle property?

@ Moment conditions:
AIBO = B
Example: E(eX) =0 =
E[(Y — X7 Bo)X] = 0.

@ When dim(B) > dim(3,), Ay = B has no solution in general.
@ Over-identification:

E(e|Xs) = 0 = Vf, E[(Y — X§Bos)f(Xs)] = 0.

For true set Sy,
min [|As,Bs, — Bs,[* =0

So
Bs, = Bos is the unique solution.
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More realistic models

@ For any other set S # Sy, can assume

min |AsBs — Bs|* >> 0
S

@ To achieve oracle property, we solve:

minmin ||A — Bg|l%.
anmi |AsBs — Bs||

This leads to S = Sy, Bs = Bys-

15/40



Focussed Generalized Method of Moments Definition

Focussed Generalized Method of Moments
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Generalized Method of Moments

@ Suppose Em(Z, By) = 0, where dim(m) > dim(3).
@ GMM estimates 3, by (Hansen 1982):

. R
Baum = arg mﬂm - > m(Z,-,B)TWE > m(Z,B).

i=1 i=1

@ Assuming known likelihood is sometimes too restrictive, hence
GMM provides a very robust way of estimation and inference.
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Definition
Focussed GMM

Lraum(B) =

Qravm(B)

Example:

Z (B#0)

Jj=1

1 n
var( f1 < /

j=1

1 1o
(kX)) (n 2

=1

1 n
[n ;( Yi =X/ B)Vi(8)
P
Leamm(B) + Y, Pal|Bil)-
i=1

2
(Y = X7 B)fi (X ))

2
(Yi— X,-Tﬁ)fz(xij)>
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Five Questions

2
1 n

Lrawm(8) Z’(ﬂﬁéo) {var A(X (nZ (Yi = X[ B)f (X )>
i=1

Jj=1

n 2
oy (3350 X800

@ Why fi, f,, why not just f;? over-identification
@ How to choose f; and £?

© Why indicator?

© How to minimize numerically?

@ Global minimum or local minimum?
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Rationale behind construction
Why two functions f; and £?

@ Consider Ly penalty. Suppose restrict to 3 = (0, ..., 0, 5p)7,

2
Qramm(Bp) = Z(Y XipBo)fi(Xip)| + An.
minimum is \,. But on the oracle space 8 = (3s,0),

min Qramm(B) > SAn.
B=(BL.0)7.8s ;#0

@ With f; only, VS, dim(Bs) = ||Bsllo,

IAsBs — Bs||?

is always minimized to zero.

20/40



Over-ldentification

@ Forany S c {1,..., p}, consider

E[(Y -~ XEBs)fi(Xs)] =0,  E[(Y — XIBs)h(Xs)] = 0.

| S| equations |S| equations

e Satisfied by S = Sy and 8 = 3, since E[Y — X58,Xs] = 0.
@ No solution if S # Sy, since equations (2|S| ) are twice as many
as unknowns (|Bslo)-

@ Solving

min néin IEI(Y = XEBs)i (Xs)lIP + IEL(Y — X§Bs)f (Xs)]?

S

leads to 8* = B,.
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i L 1] sansiuion
Why indicator?

@ The restriction
E(Y = X"Bo)f(X)] =0
may be mis-specified if X; is endogenous, i.e., E(¢|X;) # 0.
@ Hence without /5.0, Qramm(Bo) can be large.

@ Including indicator:

@ rules out endogenous variables
@ produces sparse solution

@ Penalty is still needed, since indicator only does sure-screening.
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Focussed Generalized Method of Moments Rationale behind construction

Pn: penalty function.

@ P, is concave, increasing on [0, cc), differentiable
Q@ P,(0%)>n"12, Pi(t) = o(1) when t > ¢ > 0.

Q maxg, 20 |Py(Boj)*| = o(1).

Examples
@ Bridge (Frank and Friedman 1993): Pp(t) = A\p|t|”

@ SCAD (Fan 1997): Py(t) = A[An + [ro {0 dl]

@ MCP (Zhang 2009): P,(t) = [ L(a\, — t);at.
© Hard thresholding (Antoniadis 1996): a = 1.
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iz v iar
Implementation: Smoothing

@ Replace /(; # 0) with K(ﬁj?/hn),
e h —»0
e K(0) =0, K(4+o0) =1,
o limi oo |[K'(1)t| = 0, iMoo |[K"(1)t] < 0.
e K(.)< M.

@ Example:
K 2\ exp(t?/hp) — 1
hn) — exp(t2/hp) +1
@ Minimize smoothed FGMM:

(1) el ()

n 2
1 1 T 2
+W)(/‘2) (ngg(yl,xl ﬁ)Xu> }
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Focussed Generalized Method of Moments Implementation

2
K(/h )

—h =0.01
n
-===h =0.1
n
h =0.5
n
1
0.5~ -
0 I
-2 -1 2

hn

)

_exp(t2/hp) — 1
~exp(t2/hy) +1°
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iz v iar
Algorithm: coordinate descent

@ Initialize 3(") = 3", where 3 solves for

min fZ[g (Vi X/ B)12 + Z P(1B11)

BERP N
Jj=1

© Successively for k =1,....p,
t* = argmin Lk (B 4, 1) + Pa(|B )1

Uupdate B,((I) = t* if Lk strictly decreases.
© Repeat Step 2 until convergence.
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Oracle Property and Global Minimization

Oracle Property and Global Minimization
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Oracle Property and Global Minimization

Oracle properties of PGMM

Theorem 1

Assume only E(¢|Xg) = 0, but possibly E(<|X) # 0. Under regularity
conditions, there exists a strict local minimizer of Qrgum:

o

n |
18s — Bosll = O/ 22 4 /sP(min(|os]))-

n
Q P(fy=0)— 1.
@ Asymptotic normality of .
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Global Minimization

Assumption 1 (over-identification)
Ve > 0, 36 > 0 such that

lim P min inf

n=reo (875@ 1Bs—Bhosllsc>e || 1

f(xs:')>
E (Y;—X ’ >0 =1.
— SIBS < (XS,i)

Rationale: Due to over-identification,

M = ||E[(Y = XZBs)h(Xs)II? + | EI(Y — X5Bs)(Xs)]|* =0

has a unique solution S = Sy, B85 = Bys,-

M is large whenever 3 is not close to 3.
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Oracle Property and Global Minimization

Theorem 2
The local minimizer of f% satisfies: Ve

lim P 3 ' inf =1.
Jim_ (QFGMM(ﬂ) < min IIﬂs—glslloo% QFGMM(ﬂ))
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Semi-parametric Efficiency

Semi-parametric Efficiency
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How do we choose f; and £?

@ fi and £, only affect asym. variance

@ Hence do not matter if focus is on oracle only.

@ But if efficiency is also of interest, follow a two-step procedure.
Step 1 Run FGMM, obtain 5, 3.

P(§=Sy) = 1,85 —* Bos,

Step 2 Obtain semiparametric efficient estimation from
model
EI(Y — X}B0) Xg] = 0
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semi-parametric efficiency

Solve EE for B*s
Enl(Y —X5B5)Xso(Xs) 2] =0, o(Xs)? = E(c?|Xs).

Assume we can consistently estimate o(Xs)?.

Theorem 3
Given model E(Y — X5B,5/Xs) = 0,

Vn(Bs — Bos) =9 N(0, [E(0(Xs) 2 XsXD)]™");

[E(a(Xs) 2XsX1)]~" achieves the semi-parametric efficiency bound.

v
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Extension

@ Extend to nonlinear conditional moment restriction:

E(g(y,x" Bo)|xs) = 0.

@ Examples:
e logistic regression: g = y — exp(x’ 8)/(1 + exp(x” 3))
e Poisson regression: g = y — exp(x'3)
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Semi-parametric Efficiency

p n 2
Leawm(8) = > lawo) {A(f:(xm (:, S (v - X B)f (x,-,-))

j=1 i=1

n 2
1 1
+W(Xj)) (n Z(Y/ - XiTﬁ)f2(Xij)>

i=1

@ Why not just f;? over-identification

© How to choose f; and f,? semi-para. efficiency
© Why indicator? endogeneity

© How to minimize numerically? kernel-smoothing
@ Global minimum or local minimum? near-global
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Simulation
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Simulation

Y =XTBy+¢
(Bo1, Boz, Bos, Boa, Bos) = (5,—4,7,—1,1.5); By =0, for6 <j<p.
X'is generated from :
Z=(Z,....2Zp)" ~ Np(0,%), (X);j=0.5"

(X1,..., X100) = (Z1, .., Z100),  Xj= (£ +5)(e+1), for 101 <j < p.

important: exogenous
unimportant: first 95 exogenous; others endogenous
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Table: 100 replicates, n = 200, p = 300

PLS FGMM
A=01 AX=05]| A=01 postFGMM | A =0.2 post-FGMM
MSEg 0.278 0.712 0.215 0.190 0.241 0.188
(0.089) (0.342) | (0.085) (0.068) (0.174) (0.069)
MSEy 0.541 0.118 0.018 0.006
(0.083) (0.056) | (0.042) (0.011)
TP-Mean 5 4.733 5 4.97
Median 5 5 5 5
(0) (0.445) (0) (0.171)
FP-Mean 206.26 31.14 3.56 3.58
Median 207 31 3 3
(13.658) (9.024) | (2.231) (2.235)

f(X) =X, £(X)= X3 SCAD())
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Conclusion

Endogeneity

FGMM

Others

Future

@ arises easily in high dim. regression

causes inconsistency of least squares

causes false scientific discoveries

achieves oracle property in presence of endogeneity
achieves global minimization

uses over-identification: Vf,

E((Y — XEBos)f(Xs)) = 0

smoothed FGMM

semi-parametric efficiency

Important regressors have to be exogenous.

Can use Instrumental Variables to allow endogenous
important regressors.
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