Endogeneity in Ultrahigh Dimension

Yuan Liao Princeton University

Joint work with

Jianqing Fan

< ロ > < 回 > < 回 > < 回 > < 回 > -

э

1/40

Outline

- More realistic models
- Focussed Generalized Method of Moments
 - Definition
 - Rationale behind construction
 - Implementation
- Oracle Property and Global Minimization
- 5 Semi-parametric Efficiency

Simulation

Problem of Endogeneity

Motivation

Consider

$$Y_i = \mathbf{X}_i^T \beta_0 + \varepsilon_i, \quad i = 1, ..., n.$$

 $\dim(\mathbf{X}) = p >> n.$

- Assume β_0 to be sparse.
- $\mathbf{X} = (\mathbf{X}_{S}, \mathbf{X}_{N})$: important and unimportant
- Oracle property has been based on a Key Assumption:

either $E(\varepsilon \mathbf{X}) = 0$ or $E(\varepsilon | \mathbf{X}) = 0$

A regressor is called:

Exogenous if uncorrelated with error

Endogenous if correlated with error

- $E(\varepsilon \mathbf{X}) = 0$, $E(\varepsilon | \mathbf{X}) = 0 \Rightarrow$ ALL regressors are exogenous.
- Very restrictive/unrealistic assumption
- Endogeneity arises easily due to large pool of regressors:
 - omitted variables,
 - self-selection bias,
 - causality studies
 - etc.

Example: Endogeneity in low dimension

• Wage regression in labor economics (Card 1995):

 $\log(Wage) = \beta Edu + \varepsilon.$

- β : effect of education on wage.
- ε: economic shocks, unmeasurable abilities, family background....
 ALL other confounding factors.
- $E(\varepsilon | Edu) \neq 0$: Education is endogenous.

Example: Endogeneity in high dimension

 Solow-Swan-Ramsey model: poorer countries should grow faster, and catch up with richer countries

GrowthRate = $\beta \log(GDP) + \mathbf{x}_{S}^{T} \beta_{S} + \varepsilon$.

(Levine and Renelt 92, Barro and Lee 94)

- \mathbf{x}_{S} : important regressors. ε : unobservable factors.
- Working model:

GrowthRate =
$$\beta \log(GDP) + \mathbf{x}^T \beta + \varepsilon$$
.

x: ALL possible affecting Growth Rate: population, fertility, education, etc.

UN database: 10 years quarterly rates, no more than n = 40 samples. p > 100.

• True model:

$$\mathbf{Y} = \mathbf{X}_{\mathcal{S}}^{T} \boldsymbol{\beta}_{\mathbf{0}\mathcal{S}} + \boldsymbol{\varepsilon}$$

- ε : other factors, unmeasurable.
- Working model:

$$\mathbf{Y} = \mathbf{X}_{\mathcal{S}}^{T} \boldsymbol{\beta}_{0\mathcal{S}} + \mathbf{X}_{\mathcal{N}}^{T} \boldsymbol{\beta}_{\mathcal{N}} + \varepsilon$$

- X_S, X_N: all are related to Y. But once X_S in, effect of X_N is insignificant, ⇒ β_N = 0.
- But since dim(X_N) is large, some can affect Y via unmeasurable factors ⇒ E(ε|X_N) ≠ 0.

- No-endogeneity in low dimension: easy to test; maybe O.K. to assume
- Model specification test:

$$H_0: E(\varepsilon \mathbf{X}) = 0$$

Hausman (78), Bierens (82), Staniswalis and Severini (91), Stute (97), Davidson and Halunga (10).

 No-endogeneity in high dimension: hard to test. NOT O.K. to assume.

Problem of Endogeneity

Inconsistency of penalized least squares

Theorem 1

PLS is consistent only if ALL regressors are exogenous.

- PLS results in false scientific discoveries
- Numerical example:

$$eta_{0j} = 0, ext{ for } 6 \leq j \leq p.$$

 $Z \sim N_p(0, \Sigma)$
 $X_j = Z_j ext{ for } j \leq 5, \quad X_j = (Z_j + 5)(\varepsilon + 1), ext{ for } 6 \leq j \leq p.$

Table: PLS and FGMM over 100 replications. p = 50, n = 300

		PLS		FGMM			
	$\lambda = 0.05$	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.4$	
MSE _S	0.145	0.629	1.417	0.261	0.184	0.979	
	(0.053)	(0.301)	(0.329)	(0.094)	(0.069)	(0.245)	
MSE _N	0.126	0.072	0.095	0.001	0	0.003	
	(0.035)	(0.016)	(0.019)	(0.010)	(0)	(0.014)	
TP	5	4.82	3.63	5	5	4.5	
	(0)	(0.385)	(0.504)	(0)	(0)	(0.503)	
FP	37.68	8.84	2.58	0.08	0	0.14	
	(2.902)	(3.334)	(1.557)	(0.337)	(0)	(0.569)	

oracle: TP= 5, FP=0

A more realistic model

We assume only:

$$E(\varepsilon | \mathbf{X}_{S}) = 0.$$

- Only important regressors are assumed to be exogenous.
- Goal: under the above assumption, achieve the

oracle property:

- Identify important regressors with high probability.
 Statistical inference on nonzero coefficients of β₀.
- In addition, achieve semi-parametric efficient estimation.

How do we achieve oracle property?

Moment conditions:

$$\mathbf{A}\boldsymbol{\beta}_0 = \mathbf{B}.$$

Example: $E(\varepsilon \mathbf{X}) = \mathbf{0} \Rightarrow$

$$E[(Y - \mathbf{X}^T \beta_0)\mathbf{X}] = 0.$$

- When $dim(\mathbf{B}) > dim(\beta_0)$, $\mathbf{Ay} = \mathbf{B}$ has no solution in general.
- Over-identification:

$$\boldsymbol{E}(\varepsilon|\boldsymbol{X}_{\mathcal{S}}) = \boldsymbol{0} \Rightarrow \forall \boldsymbol{f}, \boldsymbol{E}[(\boldsymbol{Y} - \boldsymbol{X}_{\mathcal{S}}^{T}\boldsymbol{\beta}_{0\mathcal{S}})\boldsymbol{f}(\boldsymbol{X}_{\mathcal{S}})] = \boldsymbol{0}.$$

For true set S_0 ,

$$\min_{oldsymbol{eta}_{\mathcal{S}_0}} \| oldsymbol{\mathsf{A}}_{\mathcal{S}_0} oldsymbol{eta}_{\mathcal{S}_0} - oldsymbol{\mathsf{B}}_{\mathcal{S}_0} \|^2 = 0$$

 $\beta_{\mathcal{S}_0} = \beta_{0\mathcal{S}}$ is the unique solution.

• For any other set $S \neq S_0$, can assume

$$\min_{oldsymbol{eta}_{\mathcal{S}}} \| oldsymbol{\mathsf{A}}_{\mathcal{S}} oldsymbol{eta}_{\mathcal{S}} - oldsymbol{\mathsf{B}}_{\mathcal{S}} \|^2 >> 0$$

• To achieve oracle property, we solve:

$$\min_{\mathcal{S}} \min_{\beta_{\mathcal{S}}} \|\mathbf{A}_{\mathcal{S}}\beta_{\mathcal{S}} - \mathbf{B}_{\mathcal{S}}\|^2.$$

15/40

This leads to $S = S_0$, $\beta_S = \beta_{0S}$.

Definition

Focussed Generalized Method of Moments

Generalized Method of Moments

- Suppose $Em(Z, \beta_0) = 0$, where $dim(m) \ge dim(\beta)$.
- GMM estimates β_0 by (Hansen 1982):

$$\hat{\boldsymbol{\beta}}_{GMM} = \arg\min_{\boldsymbol{\beta}} \frac{1}{n} \sum_{i=1}^{n} m(Z_i, \boldsymbol{\beta})^T W \frac{1}{n} \sum_{i=1}^{n} m(Z_i, \boldsymbol{\beta}).$$

• Assuming known likelihood is sometimes too restrictive, hence GMM provides a very robust way of estimation and inference.

Definition

Focussed GMM

$$L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_{j} \neq 0)} \left[\frac{1}{\widehat{\operatorname{var}}(f_{1}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T} \beta) f_{1}(X_{ij}) \right)^{2} + \frac{1}{\widehat{\operatorname{var}}(f_{2}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T} \beta) f_{2}(X_{ij}) \right)^{2} \right]$$
$$= \left[\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T} \beta) \mathbf{V}_{i}(\beta) \right]^{T} \mathbf{W}(\beta) \left[\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T} \beta) \mathbf{V}_{i}(\beta) \right]^{2}$$
$$Q_{\text{FGMM}}(\beta) = L_{\text{FGMM}}(\beta) + \sum_{i=1}^{p} P_{n}(|\beta_{i}|).$$

Example:

$$\mathbf{V} = \begin{pmatrix} f_1(X_{ij}) \\ f_2(X_{ij}) \end{pmatrix} = \begin{pmatrix} X_{ij} \\ |X_{ij} - \bar{X}_j| \end{pmatrix}.$$
18/40

Definition

Five Questions

$$L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_{j}\neq0)} \left[\frac{1}{\widehat{\operatorname{var}}(f_{1}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T}\beta) f_{1}(X_{ij}) \right)^{2} + \frac{1}{\widehat{\operatorname{var}}(f_{2}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T}\beta) f_{2}(X_{ij}) \right)^{2} \right]$$

- **Why** f_1 , f_2 , why not just f_1 ? **over-identification**
- **2** How to choose f_1 and f_2 ?
- Why indicator?
- How to minimize numerically?
- Global minimum or local minimum?

Why two functions f_1 and f_2 ?

• Consider L_0 penalty. Suppose restrict to $\beta = (0, ..., 0, \beta_p)^T$,

$$Q_{\text{FGMM}}(\beta_{p}) = \left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - X_{ip}\beta_{p})f_{1}(X_{ip})\right]^{2} + \lambda_{n}.$$

minimum is λ_n . But on the oracle space $\beta = (\beta_S, 0)$,

$$\min_{eta = (eta_{\mathcal{S}}^{ op}, 0)^{ op}, eta_{\mathcal{S}, j}
eq 0} Q_{\mathsf{FGMM}}(eta) \geq s \lambda_n.$$

• With f_1 only, $\forall S$, dim(\mathbf{B}_S) = $\|\boldsymbol{\beta}_S\|_0$,

$$\|\mathbf{A}_{\mathcal{S}}\boldsymbol{\beta}_{\mathcal{S}} - \mathbf{B}_{\mathcal{S}}\|^2$$

is always minimized to zero.

Over-Identification

• For any
$$S \subset \{1, ..., p\}$$
, consider

$$\underbrace{E[(Y - \mathbf{X}_{S}^{T}\beta_{S})f_{1}(\mathbf{X}_{S})] = 0}_{|S| \text{ equations}}, \quad \underbrace{E[(Y - \mathbf{X}_{S}^{T}\beta_{S})f_{2}(\mathbf{X}_{S})] = 0}_{|S| \text{ equations}}.$$

- Satisfied by $S = S_0$ and $\beta = \beta_0$ since $E[Y \mathbf{X}_S^T \beta_0 | \mathbf{X}_S] = 0$.
- No solution if $S \neq S_0$, since equations (2|S|) are twice as many as unknowns ($|\beta_S|_0$).

Solving

$$\min_{\mathcal{S}} \min_{\boldsymbol{\beta}_{\mathcal{S}}} \|\boldsymbol{E}[(\boldsymbol{Y} - \boldsymbol{X}_{\mathcal{S}}^{T} \boldsymbol{\beta}_{\mathcal{S}}) f_{1}(\boldsymbol{X}_{\mathcal{S}})]\|^{2} + \|\boldsymbol{E}[(\boldsymbol{Y} - \boldsymbol{X}_{\mathcal{S}}^{T} \boldsymbol{\beta}_{\mathcal{S}}) f_{1}(\boldsymbol{X}_{\mathcal{S}})]\|^{2}$$

leads to $\beta^* = \beta_0$.

Why indicator?

The restriction

$$E[(Y - \mathbf{X}^T \boldsymbol{\beta}_0) f(X_j)] = 0$$

may be mis-specified if X_i is **endogenous**, i.e., $E(\epsilon|X_i) \neq 0$.

- Hence without $I_{\beta_j \neq 0}$, $Q_{\text{FGMM}}(\beta_0)$ can be large.
- Including indicator:
 - rules out endogenous variables
 - produces sparse solution
- Penalty is still needed, since indicator only does sure-screening.

P_n: penalty function.

1 P_n is concave, increasing on $[0, \infty)$, differentiable

2
$$P'_n(0^+) > n^{-1/2}$$
; $P'_n(t) = o(1)$ when $t > c > 0$.

^③ max_{β_{0j}≠0}
$$|P''_n(β_{0j})^*| = o(1).$$

Examples

- **①** Bridge (Frank and Friedman 1993): $P_n(t) = \lambda_n |t|^r$
- SCAD (Fan 1997): $P_n(t) = \lambda_n [\lambda_n + \int_{\lambda_n}^{\infty} \frac{(a\lambda_n t)_+}{(a-1)\lambda_n} dt]$
- **OMCP** (Zhang 2009): $P_n(t) = \int \frac{1}{a} (a\lambda_n t)_+ dt$.
- Hard thresholding (Antoniadis 1996): a = 1.

Implementation: Smoothing

Replace *l*(β_j ≠ 0) with *K*(β_j²/h_n),
h_n→0 *K*(0) = 0, *K*(+∞) = 1,
lim_{t→∞} |*K*''(t)t| = 0, lim_{t→∞} |*K*''(t)t| < ∞. *K*(.) < *M*.

• Example:

$$K\left(\frac{t^2}{h_n}\right) = \frac{\exp(t^2/h_n) - 1}{\exp(t^2/h_n) + 1}.$$

Minimize smoothed FGMM:

$$L_{\mathcal{K}}(\beta) = \sum_{j=1}^{p} \mathcal{K}\left(\frac{\beta_{j}^{2}}{h_{n}}\right) \left[\frac{1}{\widehat{\operatorname{var}}(X_{j})}\left(\frac{1}{n}\sum_{i=1}^{n}g(Y_{i},\mathbf{X}_{i}^{T}\beta)X_{ij}\right)^{2} + \frac{1}{\widehat{\operatorname{var}}(X_{j}^{2})}\left(\frac{1}{n}\sum_{i=1}^{n}g(Y_{i},\mathbf{X}_{i}^{T}\beta)X_{ij}^{2}\right)^{2}\right].$$

<ロ> (四) (四) (三) (三) (三) (三)

$$K\left(\frac{t^2}{h_n}\right) = \frac{\exp(t^2/h_n) - 1}{\exp(t^2/h_n) + 1}.$$

< □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ 25/40

Algorithm: coordinate descent

① Initialize
$$eta^{(1)}=\widehat{eta}^{*}$$
, where \widehat{eta}^{*} solves for

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n [g(\boldsymbol{Y}_i,\boldsymbol{X}_i^T\boldsymbol{\beta})]^2 + \sum_{j=1}^p P_n(|\beta_j|)$$

3 Successively for
$$k = 1, ..., p$$
,

$$t^* = \operatorname{argmin}_t L_{\mathcal{K}}(\beta_{(-k)}^{(l)}, t) + P'_n(|\beta_k^{(l)}|)|t|.$$

Uupdate $\beta_k^{(l)} = t^*$ if L_K strictly decreases.

Repeat Step 2 until convergence.

Oracle Property and Global Minimization

Oracle properties of PGMM

Theorem 1

1

Assume only $E(\varepsilon | \mathbf{X}_S) = 0$, but possibly $E(\varepsilon | \mathbf{X}) \neq 0$. Under regularity conditions, there exists a strict local minimizer of Q_{FGMM} :

$$\|\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}\| = O_{p}(\sqrt{\frac{s\log s}{n}} + \sqrt{s}P'_{n}(\min(|\beta_{0\mathcal{S}}|))).$$

$$P(\hat{\beta}_N = 0) \to 1.$$

3 Asymptotic normality of $\hat{\beta}_{S}$.

Global Minimization

Assumption 1 (over-identification)

 $\forall \varepsilon > 0$, $\exists \delta > 0$ such that

$$\lim_{n\to\infty} P\left(\min_{S\neq\emptyset} \inf_{\|\beta_{S}-\beta_{0S}\|_{\infty}>\varepsilon} \left\| \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{S,i}^{T}\beta_{S}) \begin{pmatrix} f_{1}(\mathbf{X}_{S,i}) \\ f_{2}(\mathbf{X}_{S,i}) \end{pmatrix} \right\| > \delta \right) = 1.$$

Rationale: Due to over-identification,

$$M = \|E[(Y - \mathbf{X}_{S}^{\mathsf{T}}\beta_{S})f_{1}(\mathbf{X}_{S})]\|^{2} + \|E[(Y - \mathbf{X}_{S}^{\mathsf{T}}\beta_{S})f_{2}(\mathbf{X}_{S})]\|^{2} = 0$$

has a unique solution $S = S_0$, $\beta_S = \beta_{0S_0}$.

M is large whenever β is not close to β_0 .

Theorem 2

The local minimizer of $\widehat{\boldsymbol{\beta}}$ satisfies: $\forall \varepsilon$

$$\lim_{n\to\infty} P\left(Q_{FGMM}(\widehat{\beta}) < \min_{S\neq\emptyset} \inf_{\|\beta_S - \beta_{0S}\|_{\infty} > \varepsilon} Q_{FGMM}(\beta)\right) = 1.$$

Semi-parametric Efficiency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How do we choose f_1 and f_2 ?

- f₁ and f₂ only affect asym. variance
- Hence do not matter if focus is on oracle only.
- But if efficiency is also of interest, follow a **two-step** procedure. Step 1 Run FGMM, obtain \hat{S} , $\hat{\beta}_{S}$.

$$P(\hat{S}=S_0)
ightarrow \mathsf{1}, \widehat{oldsymbol{eta}}_{\mathcal{S}}
ightarrow^p oldsymbol{eta}_{0S_0}$$

Step 2 Obtain semiparametric efficient estimation from model

$$E[(Y - \mathbf{X}_{\hat{S}}^{T} eta_{0}) | \mathbf{X}_{\hat{S}}] = 0$$

semi-parametric efficiency

Solve EE for $\widehat{\boldsymbol{\beta}}_{\boldsymbol{S}}^*$:

$$E_n[(Y - \mathbf{X}_S^T \beta_S) \mathbf{X}_S \sigma(\mathbf{X}_S)^{-2}] = 0, \quad \sigma(\mathbf{X}_S)^2 = E(\varepsilon^2 | \mathbf{X}_S).$$

Assume we can consistently estimate $\sigma(\mathbf{X}_S)^2$.

Theorem 3

Given model $E(Y - \mathbf{X}_{S}^{T}\beta_{0S}|\mathbf{X}_{S}) = 0$,

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}_{S}^{*}-\boldsymbol{\beta}_{0S})\rightarrow^{d}N(0,[\boldsymbol{E}(\boldsymbol{\sigma}(\boldsymbol{X}_{S})^{-2}\boldsymbol{X}_{S}\boldsymbol{X}_{S}^{T})]^{-1});$$

 $[E(\sigma(\mathbf{X}_{S})^{-2}\mathbf{X}_{S}\mathbf{X}_{S}^{T})]^{-1}$ achieves the semi-parametric efficiency bound.

Extension

• Extend to nonlinear conditional moment restriction:

$$E(g(y, \mathbf{x}^T \beta_0) | \mathbf{x}_S) = 0.$$

- Examples:
 - logistic regression: $g = y \exp(\mathbf{x}^T \beta) / (1 + \exp(\mathbf{x}^T \beta))$
 - Poisson regression: $g = y \exp(\mathbf{x}^T \beta)$

$$L_{\text{FGMM}}(\beta) = \sum_{j=1}^{p} I_{(\beta_{j}\neq0)} \left[\frac{1}{\widehat{\operatorname{var}}(f_{1}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T}\beta) f_{1}(X_{ij}) \right)^{2} + \frac{1}{\widehat{\operatorname{var}}(f_{2}(X_{j}))} \left(\frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mathbf{X}_{i}^{T}\beta) f_{2}(X_{ij}) \right)^{2} \right]$$

- Why not just *f*₁? **over-identification**
- How to choose f₁ and f₂? semi-para. efficiency
- Why indicator? endogeneity
- How to minimize numerically? kernel-smoothing
- Global minimum or local minimum? near-global

< □ > < 部 > < E > < E > E の Q () 36/40

Simulation

$$Y = \mathbf{X}^T \beta_0 + \epsilon$$

 $(\beta_{01}, \beta_{02}, \beta_{03}, \beta_{04}, \beta_{05}) = (5, -4, 7, -1, 1.5); \quad \beta_{0i} = 0, \text{ for } 6 \le j \le p.$ X is generated from :

$$Z = (Z_1, ..., Z_p)^T \sim N_p(0, \Sigma), \quad (\Sigma)_{ij} = 0.5^{|i-j|},$$

 $, ..., X_{100}) = (Z_1, ..., Z_{100}), \quad X_j = (Z_j + 5)(\varepsilon + 1), \text{ for } 101 \le j \le p.$

 $(X_1$

imp

unimportant: first 95 exogenous; others endogenous

Table: 100 replicates, n = 200, p = 300

PLS			FGMM				
	$\lambda = 0.1$	$\lambda = 0.5$	$\lambda = 0.1$	post-FGMM	$\lambda = 0.2$	post-FGMM	
MSE _S	0.278	0.712	0.215	0.190	0.241	0.188	
	(0.089)	(0.342)	(0.085)	(0.068)	(0.174)	(0.069)	
MSE _N	0.541	0.118	0.018		0.006		
	(0.083)	(0.056)	(0.042)		(0.011)		
TP-Mean	5	4.733	5		4.97		
Median	5	5	5		5		
	(0)	(0.445)	(0)		(0.171)		
FP-Mean	206.26	31.14	3.56		3.58		
Median	207	31	3		3		
	(13.658)	(9.024)	(2.231)		(2.235)		

 $f_1(\mathbf{X}) = \mathbf{X}, \quad f_2(\mathbf{X}) = \mathbf{X}^2; \operatorname{SCAD}(\lambda)$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 38/40

Conclusion

Endogeneity

- arises easily in high dim. regression
- causes inconsistency of least squares
- causes false scientific discoveries

FGMM • achieves oracle property in presence of endogeneity

- achieves global minimization
- uses over-identification: $\forall f$, $E((Y - \mathbf{X}_{S}^{T}\beta_{0S})f(\mathbf{X}_{S})) = 0$
- Others smoothed FGMM
 - semi-parametric efficiency

Future • Important regressors have to be exogenous.

• Can use Instrumental Variables to allow endogenous important regressors.

Some references

HANSEN, L. (1982). Large sample properties of generalized method of moments estimators. *Econometrica*, **50** 1029-1054

- CANER, M. (2009). Lasso-type GMM estimator. *Econometric Theory*, **25** 270-290
- BELLONI, A. and CHERNOZHUKOV, V. (2011). High-Dimensional Sparse Econometric Models, an Introduction. In *III-Posed Inverse Problems and High-Dimensional Estimation*, Springer Lecture Notes in Statistics.