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Problem of Endogeneity

Motivation

Consider
Yi = XT

i β0 + εi , i = 1, ...,n.

dim(X) = p >> n.
Assume β0 to be sparse.
X = (XS,XN): important and unimportant
Oracle property has been based on a Key Assumption:

either E(εX) = 0

or E(ε|X) = 0
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Problem of Endogeneity

A regressor is called:

Exogenous if uncorrelated with error

Endogenous if correlated with error

E(εX) = 0, E(ε|X) = 0⇒ ALL regressors are exogenous.
Very restrictive/unrealistic assumption
Endogeneity arises easily due to large pool of regressors:

omitted variables,
self-selection bias,
causality studies
etc.
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Problem of Endogeneity

Example: Endogeneity in low dimension

Wage regression in labor economics (Card 1995):

log(Wage) = βEdu + ε.

β: effect of education on wage.
ε: economic shocks, unmeasurable abilities, family background....
ALL other confounding factors.
E(ε|Edu) 6= 0: Education is endogenous.
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Problem of Endogeneity

Example: Endogeneity in high dimension

Solow-Swan-Ramsey model: poorer countries should grow faster,
and catch up with richer countries

GrowthRate = β log(GDP) + xT
SβS + ε.

(Levine and Renelt 92, Barro and Lee 94)
xS: important regressors. ε: unobservable factors.
Working model:

GrowthRate = β log(GDP) + xTβ + ε.

x: ALL possible affecting Growth Rate: population, fertility,
education, etc.
UN database: 10 years quarterly rates, no more than n = 40
samples. p > 100.
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Problem of Endogeneity

True model:
Y = XT

Sβ0S + ε

ε: other factors, unmeasurable.
Working model:

Y = XT
Sβ0S + XT

NβN + ε

XS,XN : all are related to Y . But once XS in, effect of XN is
insignificant,⇒ βN = 0.
But since dim(XN) is large, some can affect Y via unmeasurable
factors⇒ E(ε|XN) 6= 0.
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Problem of Endogeneity

No-endogeneity in low dimension: easy to test; maybe O.K. to
assume
Model specification test:

H0 : E(εX) = 0

Hausman (78), Bierens (82), Staniswalis and Severini (91), Stute
(97), Davidson and Halunga (10).
No-endogeneity in high dimension: hard to test. NOT O.K. to
assume.
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Problem of Endogeneity

Problem of Endogeneity

Inconsistency of penalized least squares

Theorem 1
PLS is consistent only if ALL regressors are exogenous.

PLS results in false scientific discoveries
Numerical example:

β0j = 0, for 6 ≤ j ≤ p.

Z ∼ Np(0,Σ)

Xj = Zj for j ≤ 5, Xj = (Zj + 5)(ε+ 1), for 6 ≤ j ≤ p.
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Problem of Endogeneity

Table: PLS and FGMM over 100 replications. p = 50, n = 300

PLS FGMM
λ = 0.05 λ = 0.5 λ = 1 λ = 0.05 λ = 0.1 λ = 0.4

MSES 0.145 0.629 1.417 0.261 0.184 0.979
(0.053) (0.301) (0.329) (0.094) (0.069) (0.245)

MSEN 0.126 0.072 0.095 0.001 0 0.003
(0.035) (0.016) (0.019) (0.010) (0) (0.014)

TP 5 4.82 3.63 5 5 4.5
(0) (0.385) (0.504) (0) (0) (0.503)

FP 37.68 8.84 2.58 0.08 0 0.14
(2.902) (3.334) (1.557) (0.337) (0) (0.569)

oracle: TP= 5, FP=0
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More realistic models

A more realistic model
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More realistic models

We assume only:
E(ε|XS) = 0.

Only important regressors are assumed to be exogenous.
Goal: under the above assumption, achieve the

oracle property:

1 Identify important regressors with high probability.
2 Statistical inference on nonzero coefficients of β0.

In addition, achieve semi-parametric efficient estimation.
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More realistic models

How do we achieve oracle property?

Moment conditions:
Aβ0 = B.

Example: E(εX) = 0⇒

E [(Y − XTβ0)X] = 0.

When dim(B) > dim(β0), Ay = B has no solution in general.
Over-identification:

E(ε|XS) = 0⇒ ∀f ,E [(Y − XT
Sβ0S)f (XS)] = 0.

For true set S0,
min
βS0

‖AS0βS0
− BS0‖

2 = 0

βS0
= β0S is the unique solution.
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More realistic models

For any other set S 6= S0, can assume

min
βS

‖ASβS − BS‖2 >> 0

To achieve oracle property, we solve:

min
S

min
βS
‖ASβS − BS‖2.

This leads to S = S0, βS = β0S.
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Focussed Generalized Method of Moments Definition

Focussed Generalized Method of Moments
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Focussed Generalized Method of Moments Definition

Generalized Method of Moments

Suppose Em(Z ,β0) = 0, where dim(m) ≥ dim(β).
GMM estimates β0 by (Hansen 1982):

β̂GMM = arg min
β

1
n

n∑
i=1

m(Zi ,β)T W
1
n

n∑
i=1

m(Zi ,β).

Assuming known likelihood is sometimes too restrictive, hence
GMM provides a very robust way of estimation and inference.
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Focussed Generalized Method of Moments Definition

Focussed GMM

LFGMM(β) =

p∑
j=1

I(βj 6=0)

 1
v̂ar(f1(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f1(Xij)

)2

+
1

v̂ar(f2(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f2(Xij)

)2


=

[
1
n

n∑
i=1

(Yi − XT
i β)Vi(β)

]T

W(β)

[
1
n

n∑
i=1

(Yi − XT
i β)Vi(β)

]

QFGMM(β) = LFGMM(β) +

p∑
i=1

Pn(|βi |).

Example:

V =

(
f1(Xij)
f2(Xij)

)
=

(
Xij

|Xij − X̄j |

)
.
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Focussed Generalized Method of Moments Definition

Five Questions

LFGMM(β) =

p∑
j=1

I(βj 6=0)

 1
v̂ar(f1(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f1(Xij)

)2

+
1

v̂ar(f2(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f2(Xij)

)2


1 Why f1, f2, why not just f1? over-identification
2 How to choose f1 and f2?
3 Why indicator?
4 How to minimize numerically?
5 Global minimum or local minimum?
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Focussed Generalized Method of Moments Rationale behind construction

Why two functions f1 and f2?

Consider L0 penalty. Suppose restrict to β = (0, ...,0, βp)T ,

QFGMM(βp) =

[
1
n

n∑
i=1

(Yi − Xipβp)f1(Xip)

]2

+ λn.

minimum is λn. But on the oracle space β = (βS,0),

min
β=(βT

S ,0)T ,βS,j 6=0
QFGMM(β) ≥ sλn.

With f1 only, ∀S, dim(BS) = ‖βS‖0,

‖ASβS − BS‖2

is always minimized to zero.
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Focussed Generalized Method of Moments Rationale behind construction

Over-Identification

For any S ⊂ {1, ...,p}, consider

E [(Y − XT
SβS)f1(XS)] = 0︸ ︷︷ ︸
|S| equations

, E [(Y − XT
SβS)f2(XS)] = 0︸ ︷︷ ︸
|S| equations

.

Satisfied by S = S0 and β = β0 since E [Y − XT
Sβ0|XS] = 0.

No solution if S 6= S0, since equations (2|S| ) are twice as many
as unknowns (|βS|0).
Solving

min
S

min
βS

‖E [(Y − XT
SβS)f1(XS)]‖2 + ‖E [(Y − XT

SβS)f1(XS)]‖2

leads to β∗ = β0.
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Focussed Generalized Method of Moments Rationale behind construction

Why indicator?

The restriction
E [(Y − XTβ0)f (Xj)] = 0

may be mis-specified if Xj is endogenous, i.e., E(ε|Xj) 6= 0.
Hence without Iβj 6=0, QFGMM(β0) can be large.
Including indicator:

rules out endogenous variables
produces sparse solution

Penalty is still needed, since indicator only does sure-screening.
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Focussed Generalized Method of Moments Rationale behind construction

Pn: penalty function.
1 Pn is concave, increasing on [0,∞), differentiable
2 P ′n(0+) > n−1/2; P ′n(t) = o(1) when t > c > 0.
3 maxβ0j 6=0 |P ′′n (β0j)

∗| = o(1).

Examples
1 Bridge (Frank and Friedman 1993): Pn(t) = λn|t |r

2 SCAD (Fan 1997): Pn(t) = λn[λn +
∫∞
λn

(aλn−t)+
(a−1)λn

dt ]

3 MCP (Zhang 2009): Pn(t) =
∫ 1

a (aλn − t)+dt .
4 Hard thresholding (Antoniadis 1996): a = 1.
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Focussed Generalized Method of Moments Implementation

Implementation: Smoothing

Replace I(βj 6= 0) with K (β2
j /hn),

hn → 0
K (0) = 0, K (+∞) = 1,
limt→∞ |K ′(t)t | = 0, limt→∞ |K ′′(t)t | <∞.
K (.) < M.

Example:

K
(

t2

hn

)
=

exp(t2/hn)− 1
exp(t2/hn) + 1

.

Minimize smoothed FGMM:

LK (β) =

p∑
j=1

K

(
β2

j

hn

)[
1

v̂ar(Xj)

(
1
n

n∑
i=1

g(Yi ,XT
i β)Xij

)2

+
1

v̂ar(X 2
j )

(
1
n

n∑
i=1

g(Yi ,XT
i β)X 2

ij

)2 ]
.
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Focussed Generalized Method of Moments Implementation

−2 −1 0 1 2
0

0.5

1

t

 

 

K
(t

2 /h
n)

h
n
=0.01

h
n
=0.1

h
n
=0.5

K
(

t2

hn

)
=

exp(t2/hn)− 1
exp(t2/hn) + 1
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Focussed Generalized Method of Moments Implementation

Algorithm: coordinate descent

1 Initialize β(1) = β̂
∗
, where β̂

∗
solves for

min
β∈Rp

1
n

n∑
i=1

[g(Yi ,XT
i β)]2 +

p∑
j=1

Pn(|βj |)

2 Successively for k = 1, ...,p,

t∗ = argmintLK (β
(l)
(−k), t) + P ′n(|β(l)k |)|t |.

Uupdate β(l)k = t∗ if LK strictly decreases.
3 Repeat Step 2 until convergence.
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Oracle Property and Global Minimization

Oracle Property and Global Minimization
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Oracle Property and Global Minimization

Oracle properties of PGMM

Theorem 1
Assume only E(ε|XS) = 0, but possibly E(ε|X) 6= 0. Under regularity
conditions, there exists a strict local minimizer of QFGMM :

1

‖β̂S − β0S‖ = Op(

√
s log s

n
+
√

sP ′n(min(|β0S|))).

2 P(β̂N = 0)→ 1.
3 Asymptotic normality of β̂S.
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Oracle Property and Global Minimization

Global Minimization

Assumption 1 (over-identification)
∀ε > 0, ∃δ > 0 such that

lim
n→∞

P

(
min
S 6=∅

inf
‖βS−β0S‖∞>ε

∥∥∥∥∥1
n

n∑
i=1

(Yi − XT
S,iβS)

(
f1(XS,i)
f2(XS,i)

)∥∥∥∥∥ > δ

)
= 1.

Rationale: Due to over-identification,

M = ‖E [(Y − XT
SβS)f1(XS)]‖2 + ‖E [(Y − XT

SβS)f2(XS)]‖2 = 0

has a unique solution S = S0, βS = β0S0
.

M is large whenever β is not close to β0.
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Oracle Property and Global Minimization

Theorem 2

The local minimizer of β̂ satisfies: ∀ε

lim
n→∞

P

(
QFGMM(β̂) < min

S 6=∅
inf

‖βS−β0S‖∞>ε
QFGMM(β)

)
= 1.
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Semi-parametric Efficiency

Semi-parametric Efficiency
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Semi-parametric Efficiency

How do we choose f1 and f2?

f1 and f2 only affect asym. variance
Hence do not matter if focus is on oracle only.
But if efficiency is also of interest, follow a two-step procedure.

Step 1 Run FGMM, obtain Ŝ, β̂S.

P(Ŝ = S0)→ 1, β̂S →p β0S0

Step 2 Obtain semiparametric efficient estimation from
model

E [(Y − XT
Ŝ
β0)|XŜ] = 0
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Semi-parametric Efficiency

semi-parametric efficiency

Solve EE for β̂
∗
S:

En[(Y − XT
SβS)XSσ(XS)−2] = 0, σ(XS)2 = E(ε2|XS).

Assume we can consistently estimate σ(XS)2.

Theorem 3

Given model E(Y − XT
Sβ0S|XS) = 0,

√
n(β̂

∗
S − β0S)→d N(0, [E(σ(XS)−2XSXT

S)]−1);

[E(σ(XS)−2XSXT
S)]−1 achieves the semi-parametric efficiency bound.
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Semi-parametric Efficiency

Extension

Extend to nonlinear conditional moment restriction:

E(g(y ,xTβ0)|xS) = 0.

Examples:
logistic regression: g = y − exp(xTβ)/(1 + exp(xTβ))
Poisson regression: g = y − exp(xTβ)
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Semi-parametric Efficiency

LFGMM(β) =

p∑
j=1

I(βj 6=0)

 1
v̂ar(f1(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f1(Xij)

)2

+
1

v̂ar(f2(Xj))

(
1
n

n∑
i=1

(Yi − XT
i β)f2(Xij)

)2


1 Why not just f1? over-identification
2 How to choose f1 and f2? semi-para. efficiency
3 Why indicator? endogeneity
4 How to minimize numerically? kernel-smoothing
5 Global minimum or local minimum? near-global
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Simulation

Simulation
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Simulation

Simulation

Y = XTβ0 + ε

(β01, β02, β03, β04, β05) = (5,−4,7,−1,1.5); β0j = 0, for 6 ≤ j ≤ p.

X is generated from :

Z = (Z1, ...,Zp)T ∼ Np(0,Σ), (Σ)ij = 0.5|i−j|,

(X1, ...,X100) = (Z1, ...,Z100), Xj = (Zj + 5)(ε+ 1), for 101 ≤ j ≤ p.

important: exogenous
unimportant: first 95 exogenous; others endogenous
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Simulation

Table: 100 replicates, n = 200, p = 300

PLS FGMM
λ = 0.1 λ = 0.5 λ = 0.1 post-FGMM λ = 0.2 post-FGMM

MSES 0.278 0.712 0.215 0.190 0.241 0.188
(0.089) (0.342) (0.085) (0.068) (0.174) (0.069)

MSEN 0.541 0.118 0.018 0.006
(0.083) (0.056) (0.042) (0.011)

TP-Mean 5 4.733 5 4.97
Median 5 5 5 5

(0) (0.445) (0) (0.171)
FP-Mean 206.26 31.14 3.56 3.58
Median 207 31 3 3

(13.658) (9.024) (2.231) (2.235)

f1(X) = X, f2(X) = X2; SCAD(λ)
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Simulation

Conclusion

Endogeneity arises easily in high dim. regression
causes inconsistency of least squares
causes false scientific discoveries

FGMM achieves oracle property in presence of endogeneity
achieves global minimization
uses over-identification: ∀f ,
E((Y − XT

Sβ0S)f (XS)) = 0
Others smoothed FGMM

semi-parametric efficiency
Future Important regressors have to be exogenous.

Can use Instrumental Variables to allow endogenous
important regressors.
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Simulation
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