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Examples of Ultra High Dimensional Econometric Model

Cross-country Growth Regression

Estimating the effect of an initial GDP per capita on the growth
rates of GDP per capita.

Solow-Swan-Ramsey model: poorer countries should grow faster,
and catch up with richer countries.
⇒ effect of initial GDP on growth rate should be negative

Rejected using a simple bivariate regression ( Barro and
Sala-i-Martin 1995)

Conditional effects: For countries with similar characteristics, the
effect of initial GDP on growth rate is negative.
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Examples of Ultra High Dimensional Econometric Model

Cross-country Growth Regression

yi = a0 + a1 log Gi + xT
i β + εi

y : growth rate; G: initial GDP
x: country’s char.: measures of edu, policies, trade openness, saving
rates, investment rate, etc.

H0 : a1 < 0.

Barro and Lee (1994): p = 62, n = 90.
Severe criticism of literature for relying on ad hoc covariate
selection (Levine and Renelt 92)
Development of a data-driven procedure for covariates selection is
essential.
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Examples of Ultra High Dimensional Econometric Model

Home price prediction

Housing market based on state-level panel data can capture
state-specific dynamics and variations
If focus on local levels, including only macroeconomic variable
cannot capture the cross-sectional correlation among local levels.

yi,t+s =

p∑
k=1

yktβik + xT
t θi + εi,t+s.

x: macroeconomic variables
p ≈ 1000; n < 200 for monthly sales data in ten years.
Only a few county-level info. should be useful conditioning on
national factors.
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Examples of Ultra High Dimensional Econometric Model

Home price prediction

Fan, Lv and Qi (2011): monthly repeated sales of 352 largest counties
in US from January 2000 to December 2009(n = 120)
Testing periods: 2006.1-2009.12

black: historical data
blue: OLS with national house-price appreciation only
red: penalized variable selection
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Examples of Ultra High Dimensional Econometric Model

Labor Economics: Wage regression

Effect of education on future income
Response: log-wage

y = E(y |x) + ε.

Nonparametric sieve approx. E(y |x) =
∑p

i=1 βiPi(x) + r ,
P1(x), ...,Pp(x) are either polynomials or spline transformations.

No guarantee that r is small using low-order polynomials.

Possible oscillatory behavior associated with advanced degrees
⇒ higher order
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Examples of Ultra High Dimensional Econometric Model

Labor Economics: Wage regression

Belloni and Chernozhukov 11
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Examples of Ultra High Dimensional Econometric Model

Instrumental Selection

y = θ0 + θ1z + wTγ + u1

z = xTβ + wT δ + u2

y : wage; z : education.
Angrist and Krueger: 180 IV’s
Two approaches in classical literature:

1 use 3 leading IV’s: large variance
2 use 180 IV’s: large bias

37 Lasso selected IV’s. (Belloni and Chernozhukov 11)
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Examples of Ultra High Dimensional Econometric Model

Model setting

Consider
yi = xT

i β0 + εi , i = 1, ...,n.

dim(x) = p >> n.
Allow p = exp(nα), for some α ∈ (0,1).
Assume β0 to be sparse.

β0 = (β0S,0) where dim(β0S) = s << n.

Accordingly, x = (xS,xN): important and unimportant
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Examples of Ultra High Dimensional Econometric Model

Two Problems in This Talk
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Examples of Ultra High Dimensional Econometric Model

Problem I: Ultra-high dim. covariates selection

y = xTβ0 + ε, β0 = (β0S,0)

x may contain many endogenous components.

How to achieve oracle property?

1 ‖β̂S − β0S‖ = Op(
√

s/n
√

log s).
2 P(β̂N = 0)→ 1.
3 β̂S has asymptotic normality.

Solution: penalized GMM and penalized EL.
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Examples of Ultra High Dimensional Econometric Model

Problem II: Ultra high dim. instrumental selection

dim(w) can be ultra high.

y = xT
Sβ0S + ε

xS = Θ0w + v

dim(w) = O(exp(nα)), α ∈ (0,1). Many instruments are weak.

Solution: Penalized LS in 2SLS.
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Problem I: Ultra-high dim. covariates selection with endogeneity

Problem I: Ultra-high dimensional covariates
selection
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Problem I: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

Penalized OLS

Find β̂ as:

β̂ = arg min
β

1
n

n∑
i=1

(yi − x′iβ)2 +

p∑
j=1

Pn(|βj |).

Pn: penalty function.
Lasso: Pn(|βj |) = λn|βj |, where λn → 0.
SCAD (Fan and Li 2001), etc.

Key assumption:
E(ε|xS,xN) = 0

Unimportant predictors are artificially added; more desirable to
assume only

E(ε|xS) = 0

In many cases, important covariates are also endogenous.
Instead,

E(ε|w) = 0.
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Problem I: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

A simulation example

β0 = (2.5,−4,7,1.5,0, ...,0), p = 10,n = 100.

(x1, ..., x4) = (z1, ..., z4), xj = (zj + 2)(ε+ 1)

where z ∼ Np(0,Σ),Σij = 0.5|i−j|.

Penalized OLS +SCAD
λ = 0.2 λ = 0.7 λ = 1.2 λ = 1.7

TP-Mean 4 4 4 4
FP-Mean 5.25 5.34 5.24 5.14

FP-Median 5 6 5 5
(0.901) (0.799) (0.912) (0.83)
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Problem I: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

Inconsistency of POLS

Theorem 1

Suppose |Exlε| >> 0 for some xl . If β̃ = (β̃T
S , β̃

T
N )T is POLS estimator,

then either ‖β̃S − β0S‖9p 0, or

lim sup
n→∞

P(β̃N = 0) < 1.

The inconsistency of POLS comes from the fact that, when xl is
endogenous,

E(y − xTβ0)xl = 0

is misspecified.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Ultra-high dim. covariates selection with endogeneity

Consider more general

E [g(y ,xTβ0)|w] = 0, β0 = (β0S,0).

linear model: g = y − xTβ0
logit model: g = y − exp(xTβ0)/(1 + exp(xTβ0))
probit model: g = y − Φ(xTβ0)

Both important and unimportant covariates are possibly
endogenous
w: a set of valid instrumental variables.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Penalized GMM

Let v be p-dim. technical instruments.

v = (f1(w), ..., fp(w)).

If dim(w) ≥ dim(x), v ∈ w.
For fixed β ∈ Rp, let v(β) contain only components {vl : βl 6= 0}
e.g., p = 3, β = (1,0,−2), then v(β) = (v1, v3).
Define

LGMM(β) = [
1
n

n∑
i=1

g(yi ,xT
i β)vi(β)]T W [

1
n

n∑
i=1

g(yi ,xT
i β)vi(β)]

QGMM(β) = LGMM(β) +

p∑
i=1

Pn(|βi |).

20 / 39



Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Pn: penalty function.
1 Pn is concave, increasing on [0,∞), differentiable
2 P′n(0+) > n−1/2; P′n(t) = o(1) when t > c > 0.
3 maxβ0j 6=0 |P′′n (β0j)

∗| = o(1).

Examples
1 Lasso (Tibshirani 1986): Pn(t) = λn|t |
2 SCAD (Fan and Li 2001): Pn(t) = λn[λn +

∫∞
λn

(aλn−t)+
(a−1)λn

dt ]

3 MCP (Zhang 2009): Pn(t) =
∫ 1

a (aλn − t)+dt .
4 Hard thresholding (Antoniadis 1996): a = 1.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Oracle properties of PGMM

Either E(g(y ,xTβ0)|xS) = 0 or E(g(y ,xTβ0)|w) = 0

0 < c < λmin(ExSv(β0S)T ) ≤ λmax(ExSv(β0S)T ) < M.

Theorem 1

s3 log s = o(n). Under regularity conditions, there exists a strictly local
minimizer of QGMM :

1

‖β̂S − β0S‖ = Op(

√
s log s

n
+
√

sP ′n(min(|β0S|))).

2 P(β̂N = 0)→ 1.
3 Asymptotic normality of β̂S.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Penalized empirical likelihood

LEL(β) = max
λ∈Rk|β|0

1
n

n∑
i=1

log{1 + λT [(yi − xT
i β)vi(β)]}. (2.1)

QEL(β) = LEL(β) +

p∑
j=1

Pn(|βj |). (2.2)

Theorem 2

s4 log s = o(n), there exists a strictly local minimizer of QEL:
1

‖β̂S − β0S‖ = Op(

√
s log s

n
+
√

sP ′n(min(|β0S|))).

2 P(β̂N = 0)→ 1.
3 Asymptotic normality of β̂S.
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Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Problem II: Ultra-high dimensional instrumental
selection
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Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Ultra high dim. instrumental selection
Suppose oracle property is achieved, w.p.a.1, we identity:

E [g(y ,xT
Sβ0S)|w] = 0.

Optimal IV: A(w) = D(w)T Ω(w)−1, (Newey 01)

D(w) = E(∂g(β0S)
∂βS

|w) , Ω(w) = E(g(y ,xTβ0S)g(y ,xTβ0S)T |w).

Ω(w): homoskedasticity.

dim(w) can be ultra high.

y = xT
Sβ0S + ε

xS = Θ0w + v

D(w) = Θ0w. But many instruments are weak.

Including many weak IV’s in 2SLS is severely biased.

26 / 39



Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Linear model

Method based on MSE: (Donald&Newey 01, Kuersteiner&Okui 10)

dim(w)� n.
requires natural ordering of IV’s.
In general, computationally infeasible: NP-hard.

Proposed method: on the first stage,

θ̂l = arg min
θ

1
n

n∑
i=1

(xSl −wT
i θ)2 +

p∑
j=1

Pn(|θj |).

x̂ = Θ̂v, Θ̂ = (θ̂1, ..., θ̂s)T .

We allow dim(w) = o(exp(
√

T )).

LASSO: ‖θ̂l − θ0l‖ = Op(
√

s1 log s1
n +

√
s1λn),

SCAD: ‖θ̂l − θ0l‖ = Op(
√

s1 log s1
n ).
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Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Recent literature proposed methods based on l1 penalty: (Belloni et al.
10, Garcia 11, Can&Fan 11)

computationally efficient

Lasso: choice of λn is very restrictive.

λn large⇒ miss many important IVs.
λn small⇒ include too many weak IVs, complicated model

Adaptive lasso: Pn(|βj |) = |β̃j |−1λn|βj |.
requires initial estimator, which is hard to obtain when w is ultra
high dimensional.
iterative algorithm may permanently remove important IVs.

Proposed method allows more adaptive penalties.
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Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Nonlinear model

Optimal IV:

D(w) = E(
∂g(β0S)

∂βS
|w)

Estimate based on sieve approx. (Newey 01)

D(w) =

p1∑
i=1

θi fi(w) + r , p1 � n.

No guarantee r is small if p1 is small.
Goal: allow for higher order polynomials
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Problem II: Ultra-high dimensional instrumental selection Nonlinear model: ultra-high dimensional sieve approximation

Ultra-high dim. sieve approximation

Assumption:
1 There is a large set of technical IV’s v = (f1(w), ..., fp1 (w))T

(possibly p � n):

D(w) = Θ0v + a(w), max
l≤s

(
1
n

n∑
i=1

al (wi )
2) = Op(c2

n)

2 maxl≤s
∑

i /∈Tl
|θ0l,i | < n−α1 , minl≤s,i∈Tl |θ0l,i | = hn > n−α2

maxl≤s #{i : i ∈ Tl} = s1 = o(n).

Penalized estimator:

θ̂l = arg min
θ

1
n

n∑
i=1

(
∂g(yi , x̂

T
i β̂S)

∂βSl
− vT

i θ)2 +

p∑
j=1

Pn(|θj |).

D̂(w) = Θ̂v, Θ̂ = (θ̂1, ..., θ̂s)T .
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Problem II: Ultra-high dimensional instrumental selection Nonlinear model: ultra-high dimensional sieve approximation

Theorem 2

There exists a strictly local minimizer θ̂l = (θ̂lS, θ̂lS), s.t.

‖θ̂lS − θ0l,S‖ = Op(

√
s log s

n
+

√
s1 log s1

n
+
√

s1n−α1 +
√

s1cn

+
√

s1P ′n(hn)).

lim
n→∞

P(θ̂lN = 0) = 1.

1
n

n∑
i=1

|D̂l(Wi)− Dl(Wi)|2 = Op(
s1s log s1

n
+

s2
1 log s1

n

+s2
1n−2α1 + s2

1c2
n + s2

1P ′n(hn)2).
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Implementation and Simulation

Implementation
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Implementation and Simulation

Smoothing

LGMM is not continuous.

LGMM(β) =

[
1
n

n∑
i=1

(yi − xT
i β)xi(β)

]T

W

[
1
n

n∑
i=1

(yi − xT
i β)xi(β)

]

=

p∑
j=1

wj

[
1
n

n∑
i=1

(yi − xT
i β)xij I(βj 6= 0)

]T [
1
n

n∑
i=1

(yi − xT
i β)xij I(βj 6= 0)

]

LEL(β) = max
λ

1
n

n∑
i=1

log(1 + λT (yi − xT
i β)xi(β)

= max
λj∈Rk ,j=1,...,p

1
n

n∑
i=1

log(1 +

p∑
j=1

λT
j (yi − xT

i β)xij I(βj 6= 0)),
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Implementation and Simulation

Replace I(βj 6= 0) with K (β2
j /σn),

σn → 0
K (0) = 0, K (+∞) = 1,
limt→∞ K ′(t)t = 0, limt→∞ K ′′(t)t <∞.
K (.) < M.

Kernel K is similar to a cdf, as in smoothed maximum score.
Horowitz (1992)
Example: K (t) = 0.5(Φ(t)− 0.5).

Theorem 3
Under regularity conditions of Pn, Kn, and Theorems 1-4, smoothed
PGMM and PEL achieve oracle properties.
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Implementation and Simulation

Simulation

E(ε|xS) = 0, without knowing xS.

y = xTβ0 + ε

β0 = (2.5,−4,7,1.5,0, ...,0), ε ∼ N(0,1).

z ∼ Np(0,Σ),Σij = 0.5|i−j|.

(x1, ..., x4) = (z1, ..., z4), xj = (zj + 2)(ε+ 1)
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Implementation and Simulation

Table: POLS and PGMM when p = 50, n = 200
POLS PGMM

λ = 0.05 λ = 0.1 λ = 0.5 λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.4
MSES 0.145 0.133 0.629 1.417 0.261 0.184 0.194 0.979

(0.053) (0.043) (0.301) (0.329) (0.094) (0.069) (0.076) (0.245)
MSEN 0.126 0.068 0.072 0.095 0.001 0 0.001 0.003

(0.035) (0.016) (0.016) (0.019) (0.010) (0) (0.009) (0.014)
TP-Mean 5 5 4.82 3.63 5 5 5 4.5
Median 5 5 5 4 5 5 5 4.5

(0) (0) (0.385) (0.504) (0) (0) (0) (0.503)
FP-Mean 37.68 35.36 8.84 2.58 0.08 0 0.02 0.14
Median 38 35 8 2 0 0 0 0

(2.902) (3.045) (3.334) (1.557) (0.337) (0) (0.141) (0.569)
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Implementation and Simulation

Sensitivity to minimal signal

β4 = 1.5→ β4 = −0.5

Table: Penalized GMM when p = 20, β4 = −0.5

λ 0.001 0.005 0.01 0.05 0.1 0.5
MSES 0.112 0.136 0.137 0.156 0.142 0.433

(0.090) (0.117) (0.102) (0.117) (0.083) (0.158)
TP-Mean 4.96 4.92 4.94 4.91 4.96 4.25
Median 5 5 5 5 5 4

(0.197) (0.273) (0.239) (0.288) (0.197) (0.435)
FP-Mean 11.28 3.88 1.135 0.020 0 0
Median 11 3 1 1 0 0

(1.545) (2.447) (2.139) (0.141) (0) (0)
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Implementation and Simulation

Conclusion

Many applications in economics contains ultra. high dim.
regressors
Careful about POLS for variable selection
PGMM/ PEL allow endogeneity in ultra high dim. estimation and
selection.
Allow ultra high dim. instruments for 2SLS
Allow ultra high dim. sieve approx. for optimal IV.
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Implementation and Simulation
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