Ultra High Dimensional Variable Selection with Endogenous Variables

Yuan Liao Princeton University

Joint work with Jianqing Fan

Job Market Talk January, 2012

1/39

Outline

1

- Examples of Ultra High Dimensional Econometric Model
- 2 Problem I: Ultra-high dim. covariates selection with endogeneity
 - Inconsistency of Penalized OLS
 - Penalized GMM and Penalized empirical likelihood
- Problem II: Ultra-high dimensional instrumental selection
 Linear model: 2SLS with many weak instruments
 Nonlinear model: ultra-high dimensional sieve approximation
 - Implementation and Simulation

Examples of Ultra High Dimensional Econometric Model

Cross-country Growth Regression

- Estimating the effect of an initial GDP per capita on the growth rates of GDP per capita.
- Solow-Swan-Ramsey model: poorer countries should grow faster, and catch up with richer countries.
 ⇒ effect of initial GDP on growth rate should be negative
- Rejected using a simple bivariate regression (Barro and Sala-i-Martin 1995)
- **Conditional** effects: For countries with similar characteristics, the effect of initial GDP on growth rate is negative.

Cross-country Growth Regression

$$y_i = a_0 + a_1 \log G_i + \mathbf{x}_i^T \beta + \epsilon_i$$

y: growth rate; G: initial GDP

x: country's char.: measures of edu, policies, trade openness, saving rates, investment rate, etc.

$$H_0: a_1 < 0.$$

- Barro and Lee (1994): *p* = 62, *n* = 90.
- Severe criticism of literature for relying on ad hoc covariate selection (Levine and Renelt 92)
- Development of a data-driven procedure for covariates selection is essential.

Home price prediction

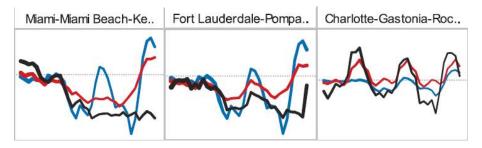
- Housing market based on state-level panel data can capture state-specific dynamics and variations
- If focus on local levels, including only macroeconomic variable cannot capture the cross-sectional correlation among local levels.

$$\mathbf{y}_{i,t+s} = \sum_{k=1}^{p} \mathbf{y}_{kt} \beta_{ik} + \mathbf{x}_{t}^{T} \theta_{i} + \epsilon_{i,t+s}.$$

- x: macroeconomic variables
- $p \approx 1000$; n < 200 for monthly sales data in ten years.
- Only a few county-level info. should be useful conditioning on national factors.

Home price prediction

Fan, Lv and Qi (2011): monthly repeated sales of 352 largest counties in US from January 2000 to December 2009(n = 120)Testing periods: 2006.1-2009.12



black: historical data blue: OLS with national house-price appreciation only red: penalized variable selection

Labor Economics: Wage regression

Effect of education on future income

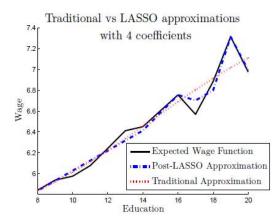
Response: log-wage

$$\mathbf{y} = \mathbf{E}(\mathbf{y}|\mathbf{x}) + \epsilon.$$

- Nonparametric sieve approx. $E(y|x) = \sum_{i=1}^{p} \beta_i P_i(x) + r$, $P_1(x), ..., P_p(x)$ are either polynomials or spline transformations.
- No guarantee that *r* is small using low-order polynomials.
- Possible oscillatory behavior associated with advanced degrees ⇒ higher order

Labor Economics: Wage regression

Belloni and Chernozhukov 11



Instrumental Selection

$$y = \theta_0 + \theta_1 z + w^T \gamma + u_1$$
$$z = x^T \beta + w^T \delta + u_2$$

- *y* : wage; *z* : education.
- Angrist and Krueger: 180 IV's
- Two approaches in classical literature:
 - use 3 leading IV's: large variance
 - use 180 IV's: large bias
- 37 Lasso selected IV's. (Belloni and Chernozhukov 11)

Model setting

Consider

$$y_i = \mathbf{x}_i^T \beta_0 + \epsilon_i, \quad i = 1, ..., n.$$

 $\dim(x) = p >> n.$

- Allow $p = exp(n^{\alpha})$, for some $\alpha \in (0, 1)$.
- Assume β_0 to be sparse.

$$eta_0 = (eta_{0\mathcal{S}}, 0)$$
 where $\dim(eta_{0\mathcal{S}}) = s << n$

• Accordingly, $\mathbf{x} = (\mathbf{x}_{S}, \mathbf{x}_{N})$: important and unimportant

Two Problems in This Talk

Problem I: Ultra-high dim. covariates selection

$$\mathbf{y} = \mathbf{x}^T \beta_0 + \epsilon, \quad \beta_0 = (\beta_{0S}, \mathbf{0})$$

- x may contain many endogenous components.
- How to achieve oracle property?

1
$$\|\hat{\beta}_S - \beta_{0S}\| = O_p(\sqrt{s/n}\sqrt{\log s}).$$

2 $P(\hat{\beta}_N = 0) \rightarrow 1.$
3 $\hat{\beta}_S$ has asymptotic normality.

Solution: penalized GMM and penalized EL.

Problem II: Ultra high dim. instrumental selection

• dim(w) can be ultra high.

$$\mathbf{y} = \mathbf{x}_{\mathcal{S}}^{\mathcal{T}} \beta_{\mathbf{0}\mathcal{S}} + \epsilon$$

$$\mathbf{x}_{\mathcal{S}} = \Theta_0 \mathbf{w} + \mathbf{v}$$

• dim(\mathbf{w}) = $O(\exp(n^{\alpha}))$, $\alpha \in (0, 1)$. Many instruments are weak.

• Solution: Penalized LS in 2SLS.

Problem I: Ultra-high dimensional covariates selection

Penalized OLS

• Find $\hat{\beta}$ as:

$$\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}'_i \beta)^2 + \sum_{j=1}^{p} P_n(|\beta_j|).$$

- *P_n*: penalty function.
 - Lasso: $P_n(|\beta_j|) = \lambda_n |\beta_j|$, where $\lambda_n \to 0$.
 - SCAD (Fan and Li 2001), etc.
- Key assumption:

$$E(\epsilon | \mathbf{x}_{S}, \mathbf{x}_{N}) = 0$$

 Unimportant predictors are artificially added; more desirable to assume only

$$E(\epsilon | \mathbf{x}_{S}) = 0$$

 In many cases, important covariates are also endogenous. Instead,

$$E(\epsilon | \mathbf{w}) = 0.$$

(a) < (a) < (b) < (b)

A simulation example

$$\beta_0 = (2.5, -4, 7, 1.5, 0, ..., 0), p = 10, n = 100.$$

$$(x_1,...,x_4) = (z_1,...,z_4), x_j = (z_j + 2)(\epsilon + 1)$$

where $z \sim N_{p}(0, \Sigma), \Sigma_{ij} = 0.5^{|i-j|}$.

	Penali	zed OLS	+SCAD	
	$\lambda = 0.2$	$\lambda = 0.7$	$\lambda = 1.2$	$\lambda = 1.7$
TP-Mean	4	4	4	4
FP-Mean	5.25	5.34	5.24	5.14
FP-Median	5	6	5	5
	(0.901)	(0.799)	(0.912)	(0.83)

18/39

Inconsistency of POLS

Theorem 1

Suppose $|Ex_{I\epsilon}| >> 0$ for some x_{I} . If $\tilde{\beta} = (\tilde{\beta}_{S}^{T}, \tilde{\beta}_{N}^{T})^{T}$ is POLS estimator, then either $\|\tilde{\beta}_{S} - \beta_{0S}\| \not\rightarrow^{p} 0$, or

$$\limsup_{n\to\infty} P(\tilde{\beta}_N=0)<1.$$

The inconsistency of POLS comes from the fact that, when x_l is endogenous,

$$E(y - \mathbf{x}^T \beta_0) x_l = 0$$

is misspecified.

Ultra-high dim. covariates selection with endogeneity

Consider more general

$$E[g(y, \mathbf{x}^T \beta_0) | \mathbf{w}] = \mathbf{0}, \quad \beta_0 = (\beta_{0S}, \mathbf{0}).$$

• linear model:
$$g = y - \mathbf{x}^T \beta_0$$

- logit model: $g = y \exp(\mathbf{x}_{\tau}^{T}\beta_{0})/(1 + \exp(\mathbf{x}^{T}\beta_{0}))$
- probit model: $g = y \Phi(\mathbf{x}^T \beta_0)$
- Both important and unimportant covariates are possibly endogenous
- w: a set of valid instrumental variables.

Penalized GMM

• Let v be p-dim. technical instruments.

$$\mathbf{v} = (f_1(\mathbf{w}), ..., f_p(\mathbf{w})).$$

If dim(\mathbf{w}) \geq dim(\mathbf{x}), $\mathbf{v} \in \mathbf{w}$.

For fixed β ∈ ℝ^p, let v(β) contain only components {v_l : β_l ≠ 0}
 e.g., p = 3, β = (1, 0, -2), then v(β) = (v₁, v₃).

Define

$$L_{GMM}(\beta) = \left[\frac{1}{n}\sum_{i=1}^{n}g(y_{i},\mathbf{x}_{i}^{T}\beta)\mathbf{v}_{i}(\beta)\right]^{T}W\left[\frac{1}{n}\sum_{i=1}^{n}g(y_{i},\mathbf{x}_{i}^{T}\beta)\mathbf{v}_{i}(\beta)\right]$$
$$Q_{GMM}(\beta) = L_{GMM}(\beta) + \sum_{i=1}^{p}P_{n}(|\beta_{i}|).$$

P_n: penalty function.

() P_n is concave, increasing on $[0, \infty)$, differentiable

2
$$P'_n(0^+) > n^{-1/2}$$
; $P'_n(t) = o(1)$ when $t > c > 0$.

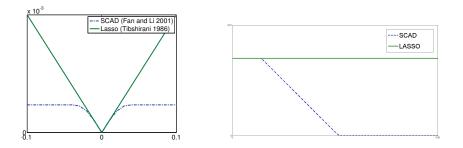
3
$$\max_{eta_{0j}
eq 0} |P_n''(eta_{0j})^*| = o(1).$$

Examples

1 Lasso (Tibshirani 1986): $P_n(t) = \lambda_n |t|$

3 SCAD (Fan and Li 2001):
$$P_n(t) = \lambda_n [\lambda_n + \int_{\lambda_n}^{\infty} \frac{(a\lambda_n - t)_+}{(a-1)\lambda_n} dt]$$

- **3** MCP (Zhang 2009): $P_n(t) = \int \frac{1}{a} (a\lambda_n t)_+ dt$.
- **4** Hard thresholding (Antoniadis 1996): a = 1.



Oracle properties of PGMM

Either
$$E(g(y, \mathbf{x}^T \beta_0) | \mathbf{x}_S) = 0$$
 or $E(g(y, \mathbf{x}^T \beta_0) | \mathbf{w}) = 0$
 $0 < c < \lambda_{\min}(E \mathbf{x}_S \mathbf{v}(\beta_{0S})^T) \le \lambda_{\max}(E \mathbf{x}_S \mathbf{v}(\beta_{0S})^T) < M.$

Theorem 1

 $s^3 \log s = o(n)$. Under regularity conditions, there exists a strictly local minimizer of Q_{GMM} :

$$\|\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}\| = O_p(\sqrt{\frac{s\log s}{n}} + \sqrt{s}P'_n(\min(|\beta_{0\mathcal{S}}|))).$$

2
$$P(\hat{\beta}_N = 0) \rightarrow 1.$$

3 Asymptotic normality of $\hat{\beta}_{S}$.

Penalized empirical likelihood

$$L_{EL}(\beta) = \max_{\lambda \in \mathbb{R}^{k|\beta|_0}} \frac{1}{n} \sum_{i=1}^n \log\{1 + \lambda^T [(\mathbf{y}_i - \mathbf{x}_i^T \beta) \mathbf{v}_i(\beta)]\}.$$
(2.1)
$$Q_{EL}(\beta) = L_{EL}(\beta) + \sum_{j=1}^p P_n(|\beta_j|).$$
(2.2)

Theorem 2

 $s^4 \log s = o(n)$, there exists a strictly local minimizer of Q_{EL} :

$$\|\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}\| = O_{\mathcal{P}}(\sqrt{\frac{s\log s}{n}} + \sqrt{s}P'_{n}(\min(|\beta_{0\mathcal{S}}|))).$$

P($\hat{\beta}_N = 0$) \rightarrow 1.
Asymptotic normality of $\hat{\beta}_S$.

Problem II: Ultra-high dimensional instrumental selection

Ultra high dim. instrumental selection

Suppose oracle property is achieved, w.p.a.1, we identity:

 $E[g(y, \mathbf{x}_{S}^{T}\beta_{0S})|\mathbf{w}] = 0.$

• Optimal IV: $A(\mathbf{w}) = D(\mathbf{w})^T \Omega(\mathbf{w})^{-1}$, (Newey 01)

 $D(\mathbf{w}) = E(\frac{\partial g(\beta_{0S})}{\partial \beta_S} | \mathbf{w}) |, \quad \Omega(\mathbf{w}) = E(g(y, \mathbf{x}^T \beta_{0S}) g(y, \mathbf{x}^T \beta_{0S})^T | \mathbf{w}).$

- Ω(w): homoskedasticity.
- dim(w) can be ultra high.

$$\mathbf{y} = \mathbf{x}_{\mathcal{S}}^{\mathcal{T}} \beta_{\mathbf{0}\mathcal{S}} + \epsilon$$

$$\mathbf{x}_{\mathcal{S}} = \Theta_0 \mathbf{w} + \mathbf{v}$$

 $D(\mathbf{w}) = \Theta_0 \mathbf{w}$. But many instruments are weak.

Including many weak IV's in 2SLS is severely biased.

Linear model

- Method based on MSE: (Donald&Newey 01, Kuersteiner&Okui 10)
 - dim(**w**) ≪ *n*.
 - requires natural ordering of IV's.
 - In general, computationally infeasible: NP-hard.
- Proposed method: on the first stage,

$$\hat{\theta}_{l} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} (x_{Sl} - \mathbf{w}_{i}^{T} \theta)^{2} + \sum_{j=1}^{p} P_{n}(|\theta_{j}|).$$
$$\hat{\mathbf{x}} = \hat{\Theta} \mathbf{v}, \quad \hat{\Theta} = (\hat{\theta}_{1}, ..., \hat{\theta}_{s})^{T}.$$

• We allow dim(\mathbf{w}) = $o(\exp(\sqrt{T}))$.

• LASSO:
$$\|\hat{\theta}_l - \theta_{0l}\| = O_p(\sqrt{\frac{\underline{s_1 \log s_1}}{n}} + \sqrt{\underline{s_1}}\lambda_n),$$

SCAD: $\|\hat{\theta}_l - \theta_{0l}\| = O_p(\sqrt{\frac{\underline{s_1 \log s_1}}{n}}).$

Recent literature proposed methods based on l_1 penalty: (Belloni et al. 10, Garcia 11, Can&Fan 11)

- computationally efficient
- Lasso: choice of λ_n is very restrictive.
 - $\lambda_n \text{ large} \Rightarrow \text{ miss many important IVs.}$
 - λ_n small \Rightarrow include too many weak IVs, complicated model
- Adaptive lasso: $P_n(|\beta_j|) = |\tilde{\beta}_j|^{-1}\lambda_n|\beta_j|$.
 - requires **initial estimator**, which is hard to obtain when **w** is ultra high dimensional.
 - iterative algorithm may permanently remove important IVs.
- Proposed method allows more adaptive penalties.

Nonlinear model

• Optimal IV:

$$D(\mathbf{w}) = E(rac{\partial g(eta_{0S})}{\partial eta_S} | \mathbf{w})$$

• Estimate based on sieve approx. (Newey 01)

$$D(\mathbf{w}) = \sum_{i=1}^{p_1} heta_i f_i(\mathbf{w}) + r, \quad p_1 \ll n.$$

- No guarantee r is small if p_1 is small.
- Goal: allow for higher order polynomials

Ultra-high dim. sieve approximation

• Assumption:

• There is a large set of technical IV's $\mathbf{v} = (f_1(w), ..., f_{p_1}(w))^T$ (possibly $p \gg n$):

$$D(\mathbf{w}) = \Theta_0 \mathbf{v} + \mathbf{a}(\mathbf{w}), \quad \max_{l \leq s} (\frac{1}{n} \sum_{i=1}^n a_i (w_i)^2) = O_p(c_n^2)$$

2
$$\max_{l \le s} \sum_{i \notin T_l} |\theta_{0l,i}| < n^{-\alpha_1}, \quad \min_{l \le s, i \in T_l} |\theta_{0l,i}| = h_n > n^{-\alpha_2}$$

 $\max_{l \le s} \#\{i : i \in T_l\} = s_1 = o(n).$

Penalized estimator:

$$\hat{\theta}_{l} = \arg\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial g(y_{i}, \hat{\mathbf{x}}_{i}^{T} \hat{\beta}_{S})}{\partial \beta_{Sl}} - \mathbf{v}_{i}^{T} \theta \right)^{2} + \sum_{j=1}^{p} P_{n}(|\theta_{j}|).$$
$$\hat{D}(\mathbf{w}) = \hat{\Theta} \mathbf{v}, \quad \hat{\Theta} = (\hat{\theta}_{1}, ..., \hat{\theta}_{S})^{T}.$$

30/39

Theorem 2

There exists a strictly local minimizer $\hat{\theta}_{l} = (\hat{\theta}_{lS}, \hat{\theta}_{lS})$, s.t.

$$\begin{split} |\hat{\theta}_{lS} - \theta_{0l,S}|| &= O_p(\sqrt{\frac{s\log s}{n}} + \sqrt{\frac{s_1\log s_1}{n}} + \sqrt{s_1}n^{-\alpha_1} + \sqrt{s_1}c_n \\ &+ \sqrt{s_1}P'_n(h_n)).\\ \lim_{n \to \infty} P(\hat{\theta}_{lN} = 0) = 1.\\ \frac{1}{n}\sum_{i=1}^n |\hat{D}_l(\boldsymbol{W}_i) - D_l(\boldsymbol{W}_i)|^2 &= O_p(\frac{s_1s\log s_1}{n} + \frac{s_1^2\log s_1}{n} \\ &+ s_1^2n^{-2\alpha_1} + s_1^2c_n^2 + s_1^2P'_n(h_n)^2). \end{split}$$

<ロ><一><一><一><一><一><一><一</td>31/39

Implementation

Smoothing

 L_{GMM} is not continuous.

$$L_{GMM}(\beta) = \left[\frac{1}{n}\sum_{i=1}^{n}(y_i - x_i^T\beta)x_i(\beta)\right]^T W\left[\frac{1}{n}\sum_{i=1}^{n}(y_i - x_i^T\beta)x_i(\beta)\right]$$
$$= \sum_{j=1}^{p}w_j\left[\frac{1}{n}\sum_{i=1}^{n}(y_i - x_i^T\beta)x_{ij}I(\beta_j \neq 0)\right]^T\left[\frac{1}{n}\sum_{i=1}^{n}(y_i - x_i^T\beta)x_{ij}I(\beta_j \neq 0)\right]$$

$$L_{EL}(\beta) = \max_{\lambda} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \lambda^{T} (y_{i} - x_{i}^{T} \beta) x_{i}(\beta))$$

$$= \max_{\lambda_{j} \in \mathbb{R}^{k}, j=1, \dots, p} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \sum_{j=1}^{p} \lambda_{j}^{T} (y_{i} - x_{i}^{T} \beta) x_{ij} I(\beta_{j} \neq 0)),$$

- Replace $I(\beta_j \neq 0)$ with $K(\beta_j^2/\sigma_n)$,
 - $\sigma_n \rightarrow 0$
 - $K(0) = 0, K(+\infty) = 1,$
 - $\lim_{t\to\infty} K'(t)t = 0$, $\lim_{t\to\infty} K''(t)t < \infty$.
 - K(.) < M.
- Kernel K is similar to a cdf, as in smoothed maximum score. Horowitz (1992)

• Example:
$$K(t) = 0.5(\Phi(t) - 0.5)$$
.

Theorem 3

Under regularity conditions of P_n , K_n , and Theorems 1-4, smoothed PGMM and PEL achieve oracle properties.

Simulation

 $E(\epsilon | \mathbf{x}_{S}) = 0$, without knowing \mathbf{x}_{S} .

$$\mathbf{y} = \mathbf{x}^{\mathsf{T}}\beta_0 + \epsilon$$

 $eta_0 = (2.5, -4, 7, 1.5, 0, ..., 0), \ \epsilon \sim N(0, 1).$ $z \sim N_p(0, \Sigma), \Sigma_{ij} = 0.5^{|i-j|}.$ $(x_1, ..., x_4) = (z_1, ..., z_4), x_j = (z_j + 2)(\epsilon + 1)$

> <ロト < 団 ト < 巨 ト < 巨 ト 三 の Q () 35/39

Table: POLS and PGMM when p = 50, n = 200

	POLS				PGMM			
	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.4$
MSE _S	0.145	0.133	0.629	1.417	0.261	0.184	0.194	0.979
-	(0.053)	(0.043)	(0.301)	(0.329)	(0.094)	(0.069)	(0.076)	(0.245)
MSE _N	0.126	0.068	0.072	0.095	0.001	0	0.001	0.003
	(0.035)	(0.016)	(0.016)	(0.019)	(0.010)	(0)	(0.009)	(0.014)
TP-Mean	5	5	4.82	3.63	5	5	5	4.5
Median	5	5	5	4	5	5	5	4.5
	(0)	(0)	(0.385)	(0.504)	(0)	(0)	(0)	(0.503)
FP-Mean	37.68	35.36	8.84	2.58	0.08	0	0.02	0.14
Median	38	35	8	2	0	0	0	0
	(2.902)	(3.045)	(3.334)	(1.557)	(0.337)	(0)	(0.141)	(0.569)

Sensitivity to minimal signal

$$\beta_4 = 1.5 \rightarrow \beta_4 = -0.5$$

Table: Penalized GMM when p = 20, $\beta_4 = -0.5$

λ	0.001	0.005	0.01	0.05	0.1	0.5
MSE _S	0.112	0.136	0.137	0.156	0.142	0.433
	(0.090)	(0.117)	(0.102)	(0.117)	(0.083)	(0.158)
TP-Mean	4.96	4.92	4.94	4.91	4.96	4.25
Median	5	5	5	5	5	4
	(0.197)	(0.273)	(0.239)	(0.288)	(0.197)	(0.435)
FP-Mean	11.28	3.88	1.135	0.020	0	0
Median	11	3	1	1	0	0
	(1.545)	(2.447)	(2.139)	(0.141)	(0)	(0)

<ロ> <回> <回> <回> <回> <回> <回> <回> <回</p>

Conclusion

- Many applications in economics contains ultra. high dim. regressors
- Careful about POLS for variable selection
- PGMM/ PEL allow endogeneity in ultra high dim. estimation and selection.
- Allow ultra high dim. instruments for 2SLS
- Allow ultra high dim. sieve approx. for optimal IV.

Some references

- HANSEN, L. (1982). Large sample properties of generalized method of moments estimators. *Econometrica*, **50** 1029-1054
- OWEN, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, **75**, 237-249.
- ANDREWS, D. (1999). Consistent moment selection procedures for generalized method of moments estimation. *Econometrica*, **67** 543-564
- CANER, M. (2009). Lasso-type GMM estimator. *Econometric Theory*, **25** 270-290
 - BELLONI, A. and CHERNOZHUKOV, V. (2011). High-Dimensional Sparse Econometric Models, an Introduction. In *III-Posed Inverse Problems and High-Dimensional Estimation*, Springer Lecture Notes in Statistics.
 - SALIA-I-MARTIN, X. (1997). I Just Ran Two Million Regressions. *The American Economic Review* **87**, 178-183.