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0 Examples of Ultra High Dimensional Econometric Model

e Problem I: Ultra-high dim. covariates selection with endogeneity
@ Inconsistency of Penalized OLS
@ Penalized GMM and Penalized empirical likelihood

© Problem II: Ultra-high dimensional instrumental selection
@ Linear model: 2SLS with many weak instruments
@ Nonlinear model: ultra-high dimensional sieve approximation

© Implementation and Simulation
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Cross-country Growth Regression

@ Estimating the effect of an initial GDP per capita on the growth
rates of GDP per capita.

@ Solow-Swan-Ramsey model: poorer countries should grow faster,
and catch up with richer countries.
= effect of initial GDP on growth rate should be negative

@ Rejected using a simple bivariate regression ( Barro and
Sala-i-Martin 1995)

@ Conditional effects: For countries with similar characteristics, the
effect of initial GDP on growth rate is negative.



Cross-country Growth Regression

Yi=ao+ailogG+x/ B +¢

y: growth rate; G: initial GDP
Xx: country’s char.: measures of edu, policies, trade openness, saving
rates, investment rate, etc.

Hy: a1 < 0.

@ Barro and Lee (1994): p = 62, n = 90.

@ Severe criticism of literature for relying on ad hoc covariate
selection (Levine and Renelt 92)

@ Development of a data-driven procedure for covariates selection is
essential.



Home price prediction

@ Housing market based on state-level panel data can capture
state-specific dynamics and variations

@ If focus on local levels, including only macroeconomic variable
cannot capture the cross-sectional correlation among local levels.

p
Yitrs = Z YitBik + X[ 0 + €i tys.
k=1
@ X: macroeconomic variables
@ p ~ 1000; n < 200 for monthly sales data in ten years.

@ Only a few county-level info. should be useful conditioning on
national factors.



Examples of Ultra High Dimensional Econometric Model

Home price prediction

Fan, Lv and Qi (2011): monthly repeated sales of 352 largest counties
in US from January 2000 to December 2009(n = 120)
Testing periods: 2006.1-2009.12

Miami-Miami Beach-Ke.. = Fort Lauderdale-Pompa.. | Charlotte-Gastonia-Roc..

WA AN

black: historical data

blue: OLS with national house-price appreciation only
red: penalized variable selection



Labor Economics: Wage regression

Effect of education on future income

@ Response: log-wage
y = E(y|x) +e.

@ Nonparametric sieve approx. E(y|x) = >, BiPi(x) +r,
P1(x), ..., Po(x) are either polynomials or spline transformations.

@ No guarantee that r is small using low-order polynomials.

@ Possible oscillatory behavior associated with advanced degrees
= higher order



Labor Economics: Wage regression

Belloni and Chernozhukov 11

Traditional vs LASSO approximations
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Instrumental Selection

y:90+91Z+WT’7+U1

z=x"B+w'd+ w

@ y :wage; z : education.
@ Angrist and Krueger: 180 IV’s

@ Two approaches in classical literature:

@ use 3 leading IV’s: large variance
@ use 180 IV’s: large bias

@ 37 Lasso selected IV’s. (Belloni and Chernozhukov 11)
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Model setting

@ Consider
y,':X,-Tﬁo—i-e,', i:1,...,n.

dim(x) =p >> n.
@ Allow p = exp(n®), for some « € (0, 1).
@ Assume ([ to be sparse.

Bo = (Bos, 0) where dim(SBys) = s << n.

@ Accordingly, x = (xg, Xy): important and unimportant
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Examples of Ultra High Dimensional Econometric Model

Two Problems in This Talk
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Problem [: Ultra-high dim. covariates selection

y=x"Bo+e¢ Bo=(fos:0)

@ x may contain many endogenous components.

@ How to achieve oracle property?

(%) Hﬁs;— Bos|l = Op(y/s/n+/log s).
Q P(Bn=0)—1.

© {5 has asymptotic normality.

@ Solution: penalized GMM and penalized EL.
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Problem Il: Ultra high dim. instrumental selection

@ dim(w) can be ultra high.
Y =X&Bos+e

Xg = OgwW + v

@ dim(w) = O(exp(n®)), o € (0,1). Many instruments are weak.

@ Solution: Penalized LS in 2SLS.
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Problem [: Ultra-high dim. covariates selection with endogeneity

Problem I: Ultra-high dimensional covariates
selection
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Problem [: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

Penalized OLS

@ Find 3 as:

. 1L P
B=argmin > (v = xi8)* + 3 Pall3)
i=1 j=1
@ Pp: penalty function.

e Lasso: Py(|5;]) = AnlBj|, where A, — 0.
@ SCAD (Fan and Li 2001), etc.

@ Key assumption:
E(e[xs,xy) =0
@ Unimportant predictors are artificially added; more desirable to
assume only
E(E‘Xs) =0
@ In many cases, important covariates are also endogenous.
Instead,
E(elw) = 0.
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Problem [: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

A simulation example

Bo = (25, _4,7,1.570,...,0), p = 107n — 100
(X17 ...,X4) = (21,~--,Z4),X/' = (Z] +2)(€+ 1)

where z ~ Np(0,X), X = 0.5/l

Penalized OLS +SCAD
A=02 MX=07 Xx=12 MX=17

TP-Mean 4 4 4 4
FP-Mean 5.25 5.34 5.24 5.14
FP-Median 5 6 5 5

(0.901) (0.799) (0.912) (0.83)
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Problem [: Ultra-high dim. covariates selection with endogeneity Inconsistency of Penalized OLS

Inconsistency of POLS

Theorem 1

Suppose |Exie| >> 0 for some x;. If 3 = (BL, 3])T is POLS estimator,
then either || s — Bos|| +P 0, or

limsup P(Gy = 0) < 1.

n—oo

The inconsistency of POLS comes from the fact that, when x; is
endogenous,

E(y —x"Bo)x; =0
is misspecified.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Ultra-high dim. covariates selection with endogeneity

@ Consider more general

E[g(y,XT/Bo)’W] = 07 /80 = (5037 0)

e linear model: g =y — x7 3

o logit model: g = y — exp(x” B)/(1 + exp(x7 o))
e probit model: g = y — &(x7 f)

@ Both important and unimportant covariates are possibly
endogenous

@ w: a set of valid instrumental variables.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Penalized GMM

@ Let v be p-dim. technical instruments.

v = (f1(w), ..., fr(W)).

If dim(w) > dim(x), v € w.

@ For fixed 5 € RP, let v(3) contain only components {v; : 5; # 0}
eg.,p=3,5=(1,0,-2), thenv(s) = (vq, v3).

@ Define

LGMM - [7Zg Yi, X ] W[fZg Yi, X (/8)]

o
Qavm(B) = Lamm(B) + Z Pn(|8i])-
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Pn: penalty function.
@ P, is concave, increasing on [0, 0), differentiable
Q P,(07) > n""2; P)(t) = o(1) when t > ¢ > 0.
© maxsy 0 |Pr (o) = o(1).

Examples
@ Lasso (Tibshirani 1986): Pa(t) = Anlt|
@ SCAD (Fan and Li 2001): Py(t) = An[An + [{° E2ocleat]

(a—1)An
© MCP (Zhang 2009): P,(f) = Ik 15(517)\,7 — t)4dt.
@ Hard thresholding (Antoniadis 1996): a = 1.
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im. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

x 10
--=SCAD (Fan and Li 2001)
— Lasso (Tibshirani 1986)
----SCAD
—LASSO
__________________ N fomrmrmrmrmm \\
8 0 0.1 *
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Problem [: Ultra-high dim. covariates selection with endogeneity

Penalized GMM and Penalized empirical likelihood

Oracle properties of PGMM

Either £(g(y.x fo)[xs) = 0 or E(g(y.x" fo)w) = 0
0 < ¢ < Amin(ExsV(Bos)) < Amax(ExsV(fos)™) < M.
Theorem 1

s®log s = o(n). Under regularity conditions, there exists a strictly local
minimizer of Qg

n | )
18s — Bosll = Op(y/ S22 1 V/sPy(min(|fos])))-

n
Q P(By=0)—1.
@ Asymptotic normality of Ss.
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Problem I: Ultra-high dim. covariates selection with endogeneity Penalized GMM and Penalized empirical likelihood

Penalized empirical likelihood

Le(B) = max —Zlog{1 + ATy = x BBy (2.1)

AcRKIBlo N

Qe (B) = Lec(B) + Z Pn(154])- (2.2)

Theorem 2
s*log s = o(n), there exists a strictly local minimizer of Qg, :

Q
135 ~ Bosll = Op(y/ 29 - VaPy(min(5os))).

Q P(Ay=0)—1.
@ Asymptotic normality of s.
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Problem II: Ultra-high dimensional instrumental selection Linear model: 2SLS with many weak instruments

Problem IlI: Ultra-high dimensional instrumental
selection
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Linear model: 2SLS with many weak instruments
Ultra high dim. instrumental selection

Suppose oracle property is achieved, w.p.a.1, we identity:

El9(y,x5Bos)|W] = 0.

@ Optimal IV: A(w) = D(w)"Q(w)~", (Newey 01)

D(w) = E(%92=)jw) | Q(w) = E(g(y. % Bos)9(y. X Bos) |w).

@ Q(w): homoskedasticity.

@ dim(w) can be ultra high.

Y =X&hos + €
Xs = OoW + v
D(w) = ©ow. But many instruments are weak.
@ Including many weak IV’s in 2SLS is severely biased.
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Linear model: 2SLS with many weak instruments
Linear model

@ Method based on MSE: (Donald&Newey 01, Kuersteiner&Okui 10)

e dim(w) <« n.
@ requires natural ordering of IV’s.
o In general, computationally infeasible: NP-hard.

@ Proposed method: on the first stage,
; nly TR,
0 =argmin n E(XS/ —W; 0)" + 21 Pn(161])-
i= =
X=06v, 6= (0,..07.
@ We allow dim(w) = o(exp(v/T)).

@ LASSO: [|6) — fo/|| = Op(y/ =85+ /51A,),

SCAD: |6 — 6oy = Op(y/ =951,
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Linear model: 2SLS with many weak instruments
Recent literature proposed methods based on /; penalty: (Belloni et al.
10, Garcia 11, Can&Fan 11)

@ computationally efficient

@ Lasso: choice of A\, is very restrictive.

@ )\, large= miss many important IVs.
e )\, small= include too many weak IVs, complicated model

@ Adaptive lasso: Ps(|8;]) = |5;|~ " \nlBj]-

e requires initial estimator, which is hard to obtain when w is ultra
high dimensional.
o iterative algorithm may permanently remove important IVs.

@ Proposed method allows more adaptive penalties.
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Linear model: 2SLS with many weak instruments
Nonlinear model

@ Optimal IV:

99(Bos)
D(w)=E w
(W) = E(=552%" )
@ Estimate based on sieve approx. (Newey 01)

P1
D(w) = 6ifi(w)+r, p<n.
i=

@ No guarantee r is small if p; is small.
@ Goal: allow for higher order polynomials
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Nonlinear model: ultra-high dimensional sieve approximation
Ultra-high dim. sieve approximation

@ Assumption:
@ There is a large set of technical IV's v = (fi(w), ..., o, (w)) T
(possibly p > n):

D(w) = ©ov + a(w), max(— Za,w, Op(c?)

I<s
© maxi<s X7 0o < M, min<g e, [0ori] = hn > nme2

max<s #{/: i € T)} = s1 = o(n).
@ Penalized estimator:

1 < 8(yx6
) = m'7§:”73 Zp
b =arg GmnH( 0Bs n([61)-

Dw)=6v, &= (04,..,05)7.
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Problem II: Ultra-high dimensional instrumental selection Nonlinear model: ultra-high dimensional sieve approximation

Theorem 2

There exists a strictly local minimizer 0, = (s, 0s), s.t.

A slogs silogs a
H9/s90/,s||=Op(\/ ng +\/1 ng /s 4+ /scn

+v/81Pp(hn)).
lim P(dy =0)=1.
n—oo

s1slog s N s?log s

1o~ p
n;|D/(vv,-)—D/(vv,-)\2=Op( p -

+sTn~2 + s7cq + 7 Po(hn)®).
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Implementation and Simulation

Implementation
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Smoothing

Lanm is not continuous.

n

Lawm(B) = [l > (i —x B)xi(B

i=1

p 1 n T
:ZW/ [nZ(yi_X/
j=1 i=1
1 n
Le() = max_ Z log(1+ AT (y; —
= max
NERK j=1,...,

-
B)xil(B; # 0)] [,17 > i

T n
)] w [:, S - xfﬁ)xm]

i=1
n

XiTB)Xij/(ﬁj # 0)]

i=1

X/ B)xi(B)

ng CN - XTI £ 0),

j=1
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Implementation and Simulation

o Replace /(3 # 0) with K(52/an),
@ op — 0
e K(0)=0, K(+) =1,
o lim; oo K'(£)t =0, lim;_, oo K (1)t < 0.
o K(.)< M.
@ Kernel K is similar to a cdf, as in smoothed maximum score.
Horowitz (1992)

@ Example: K(t) = 0.5(®(t) — 0.5).

Theorem 3

Under regularity conditions of P, K,, and Theorems 1-4, smoothed
PGMM and PEL achieve oracle properties.
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Simulation

E(e|xs) = 0, without knowing Xg.
y=x"Bo+e
Bo =(2.5,—4,7,1.5,0,...,0), e ~ N(O, 1).
z~ Np(0,%),%; =05,

(X1, X8) = (24, ., 24), X = (Zj + 2)(e + 1)
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Implementation and Simulation

Table: POLS and PGMM when p = 50, n = 200

POLS PGMM
A=005 A=01 A=05 A=1 A=005 A=01 A=02 A=04
MSEg 0.145 0.133 0.629 1477 0.261 0.184 0.194 0.979
(0.053) (0.043) (0.301)  (0.329) (0.094) (0.069) (0.076) (0.245)
MSEy 0.126 0.068 0.072 0.095 0.001 0 0.001 0.003
(0.035) (0.016) (0.016)  (0.019) (0.010) ©) (0.009) (0.014)
TP-Mean 5 5 4.82 3.63 5 5 5 45
Median 5 5 5 4 5 5 5 45
(0) (0) (0.385)  (0.504) (0) (0) () (0.503)
FP-Mean 37.68 35.36 8.84 2.58 0.08 0 0.02 0.14
Median 38 35 8 2 0 0 0 0
(2.902) (3.045) (3.334)  (1.557) (0.337) (0) (0.141) (0.569)
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Sensitivity to minimal signal

5421.5%54:—0.5

Table: Penalized GMM when p = 20, 54 = —0.5

) 0.001 0.005 001 005 0.1 0.5
MSEs  0.112 0.136 0.137 0.156 0.142  0.433

(0.090) (0.117) (0.102) (0.117) (0.083) (0.158)
TP-Mean 4.96 492 494 491 496 425

Median 5 5 5 5 5 4
(0.197) (0.273) (0.239) (0.288) (0.197) (0.435)

FP-Mean 11.28 3.88 1.135 0.020 0 0

Median 11 3 1 1 0 0

(1.545) (2.447) (2.139) (0.141)  (0) (0)
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Conclusion

@ Many applications in economics contains ultra. high dim.
regressors

@ Careful about POLS for variable selection

@ PGMM/ PEL allow endogeneity in ultra high dim. estimation and
selection.

@ Allow ultra high dim. instruments for 2SLS
@ Allow ultra high dim. sieve approx. for optimal IV.
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