Ultra High Dimensional Variable Selection with Endogenous Variables

Yuan Liao Princeton University

Joint work with Jianqing Fan

Job Market Talk January, 2012

1 / 39

イロト イ押 トイヨ トイヨト

Outline

- [Examples of Ultra High Dimensional Econometric Model](#page-2-0)
- [Problem I: Ultra-high dim. covariates selection with endogeneity](#page-14-0) **•** [Inconsistency of Penalized OLS](#page-15-0)
	- **[Penalized GMM and Penalized empirical likelihood](#page-18-0)**
- 3 [Problem II: Ultra-high dimensional instrumental selection](#page-24-0) [Linear model: 2SLS with many weak instruments](#page-24-0) [Nonlinear model: ultra-high dimensional sieve approximation](#page-29-0)
	- [Implementation and Simulation](#page-31-0)

Examples of Ultra High Dimensional Econometric Model

Cross-country Growth Regression

- Estimating the effect of an initial GDP per capita on the growth rates of GDP per capita.
- Solow-Swan-Ramsey model: poorer countries should grow faster, and catch up with richer countries. \Rightarrow effect of initial GDP on growth rate should be negative
- Rejected using a simple bivariate regression (Barro and Sala-i-Martin 1995)
- **Conditional** effects: For countries with similar characteristics, the effect of initial GDP on growth rate is negative.

Cross-country Growth Regression

$$
y_i = a_0 + a_1 \log G_i + \mathbf{x}_i^T \beta + \epsilon_i
$$

y: growth rate; *G*: initial GDP

x: country's char.: measures of edu, policies, trade openness, saving rates, investment rate, etc.

$$
H_0: a_1<0.
$$

- Barro and Lee (1994): $p = 62$, $n = 90$.
- **•** Severe criticism of literature for relying on ad hoc covariate selection (Levine and Renelt 92)
- Development of a data-driven procedure for covariates selection is essential.

Home price prediction

- Housing market based on state-level panel data can capture state-specific dynamics and variations
- **If focus on local levels, including only macroeconomic variable** cannot capture the cross-sectional correlation among local levels.

$$
y_{i,t+s} = \sum_{k=1}^p y_{kt} \beta_{ik} + \mathbf{x}_t^T \theta_i + \epsilon_{i,t+s}.
$$

- **x**: macroeconomic variables
- *p* \approx 1000; *n* $<$ 200 for monthly sales data in ten years.
- Only a few county-level info. should be useful conditioning on national factors.

Home price prediction

Fan, Lv and Qi (2011): monthly repeated sales of 352 largest counties in US from January 2000 to December $2009(n = 120)$ Testing periods: 2006.1-2009.12

black: historical data blue: OLS with national house-price appreciation only red: penalized variable selection

Labor Economics: Wage regression

Effect of education on future income

• Response: log-wage

$$
y = E(y|x) + \epsilon.
$$

- Nonparametric sieve approx. $E(y|x) = \sum_{i=1}^{p} \beta_i P_i(x) + r$, $P_1(x), ..., P_p(x)$ are either polynomials or spline transformations.
- No quarantee that *r* is small using low-order polynomials.
- **•** Possible oscillatory behavior associated with advanced degrees ⇒ higher order

Labor Economics: Wage regression

Belloni and Chernozhukov 11

 $($ ロ) $($ $($ $)$ $)$ $($ $)$ 9 / 39

Instrumental Selection

$$
y = \theta_0 + \theta_1 z + w^T \gamma + u_1
$$

$$
z = x^T \beta + w^T \delta + u_2
$$

- *y* : wage; *z* : education.
- Angrist and Krueger: 180 IV's
- Two approaches in classical literature:
	- **1** use 3 leading IV's: large variance
	- ² use 180 IV's: large bias
- 37 Lasso selected IV's. (Belloni and Chernozhukov 11)

Model setting

o Consider

$$
y_i = \mathbf{x}_i^T \beta_0 + \epsilon_i, \quad i = 1, ..., n.
$$

dim(*x*) = $p \gg n$.

- Allow $p = exp(n^{\alpha})$, for some $\alpha \in (0,1)$.
- Assume β_0 to be sparse.

$$
\beta_0=(\beta_{0S},0) \text{ where } \dim(\beta_{0S})=s<
$$

11 / 39

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ │ 경

• Accordingly, $\mathbf{x} = (\mathbf{x}_s, \mathbf{x}_N)$: important and unimportant

Two Problems in This Talk

12 / 39

 Ω

メロメメ 倒 メメ きょくきょうき

Problem I: Ultra-high dim. covariates selection

$$
\mathbf{y} = \mathbf{x}^T \beta_0 + \epsilon, \quad \beta_0 = (\beta_{0S}, 0)
$$

- **x** may contain many endogenous components.
- How to achieve oracle property?

\n- **①**
$$
\|\hat{\beta}_S - \beta_{0S}\| = O_p(\sqrt{s/n}\sqrt{\log s}).
$$
\n- **②** $P(\hat{\beta}_N = 0) \rightarrow 1.$
\n- **③** $\hat{\beta}_S$ has asymptotic normality.
\n

● Solution: penalized GMM and penalized EL.

Problem II: Ultra high dim. instrumental selection

dim(**w**) can be ultra high.

$$
\mathbf{y} = \mathbf{x}_{\mathcal{S}}^T \beta_{0\mathcal{S}} + \epsilon
$$

$$
\bm{x}_{\mathcal{S}}=\bm{\Theta_0}\bm{w}+\bm{v}
$$

 $\textsf{dim}(\textbf{w}) = O(\textsf{exp} (n^{\alpha})), \, \alpha \in (0,1).$ Many instruments are weak.

• Solution: Penalized LS in 2SLS.

Problem I: Ultra-high dimensional covariates selection

15 / 39

E

イロト イ団 トイ ヨ トイ ヨ トー

Penalized OLS

• Find $\hat{\beta}$ as:

$$
\hat{\beta} = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^n (y_i - \mathbf{x}'_i \beta)^2 + \sum_{j=1}^p P_n(|\beta_j|).
$$

- *Pn*: penalty function.
	- Lasso: $P_n(|\beta_j|) = \lambda_n |\beta_j|$, where $\lambda_n \to 0$.
	- SCAD (Fan and Li 2001), etc.
- Key assumption:

$$
E(\epsilon|\bm{x}_{\mathcal{S}},\bm{x}_{\textit{N}})=0
$$

Unimportant predictors are artificially added; more desirable to assume only

$$
E(\epsilon|\mathbf{x}_{\mathcal{S}})=0
$$

• In many cases, important covariates are also endogenous. Instead,

$$
E(\epsilon|\mathbf{w})=0.
$$

16 / 39

イロト イ押 トイヨ トイヨ トーヨ

A simulation example

$$
\beta_0=(2.5,-4,7,1.5,0,...,0), p=10, n=100.
$$

$$
(x_1,...,x_4)=(z_1,...,z_4), x_j=(z_j+2)(\epsilon+1)
$$

 $% \mathcal{L}_{\mathcal{A}}\left(\mathcal{A},\mathcal{A}\right) =\mathcal{A}\left(\mathcal{A},\mathcal{A}\right) ,$ $\mathcal{A}_{\mathcal{B}}\left(\mathcal{A},\mathcal{A}\right) =\mathcal{A}\left(\mathcal{A},\mathcal{A}\right)$

18 / 39

イロト イ押 トイヨ トイヨ トーヨ

Inconsistency of POLS

Theorem 1

 $Suppose$ $|Ex_{l}e| >> 0$ *for some* x_{l} *. If* $\tilde{\beta} = (\tilde{\beta}_{\cal S}^{T},\tilde{\beta}_{\cal N}^{T})^{T}$ *<i>is POLS estimator, then either* $\|\tilde{\beta}_\mathcal{S} - \beta_{0S}\| \twoheadrightarrow^\rho 0$, or

$$
\limsup_{n\to\infty} P(\tilde{\beta}_N=0)<1.
$$

The inconsistency of POLS comes from the fact that, when *x^l* is endogenous,

$$
E(y - \mathbf{x}^T \beta_0) x_l = 0
$$

is misspecified.

Ultra-high dim. covariates selection with endogeneity

• Consider more general

$$
E[g(y, \mathbf{x}^T \beta_0)|\mathbf{w}] = 0, \quad \beta_0 = (\beta_{0S}, 0).
$$

• linear model:
$$
g = y - \mathbf{x}^T \beta_0
$$

- logit model: $g = y \exp(\mathbf{x}^T \beta_0)/(1 + \exp(\mathbf{x}^T \beta_0))$
- probit model: $g = y \Phi(\mathbf{x}^T\beta_0)$
- Both important and unimportant covariates are possibly endogenous
- **w**: a set of valid instrumental variables.

Penalized GMM

Let **v** be *p*-dim. technical instruments.

$$
\mathbf{v}=(f_1(\mathbf{w}),...,f_p(\mathbf{w})).
$$

If dim(**w**) \ge dim(**x**), **v** \in **w**.

For fixed $\beta \in \mathbb{R}^p$, let **v**(β) contain only components $\{v_i : \beta_i \neq 0\}$ e.g., $p = 3$, $\beta = (1, 0, -2)$, then **v**(β) = (**v**₁, **v**₃).

o Define

$$
L_{GMM}(\beta) = \left[\frac{1}{n}\sum_{i=1}^n g(y_i, \mathbf{x}_i^T \beta) \mathbf{v}_i(\beta)\right]^T W \left[\frac{1}{n}\sum_{i=1}^n g(y_i, \mathbf{x}_i^T \beta) \mathbf{v}_i(\beta)\right]
$$

$$
Q_{GMM}(\beta)=L_{GMM}(\beta)+\sum_{i=1}^p P_n(|\beta_i|).
$$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ │ 경 20 / 39

Pn: penalty function.

1 P_n is concave, increasing on $[0, \infty)$, differentiable

2
$$
P'_n(0^+) > n^{-1/2}
$$
; $P'_n(t) = o(1)$ when $t > c > 0$.

$$
\text{max}_{\beta_{0j}\neq 0} |P''_n(\beta_{0j})^*| = o(1).
$$

Examples

¹ Lasso (Tibshirani 1986): *Pn*(*t*) = λ*n*|*t*|

3 SCAD (Fan and Li 2001):
$$
P_n(t) = \lambda_n[\lambda_n + \int_{\lambda_n}^{\infty} \frac{(a\lambda_n - t)_+}{(a-1)\lambda_n} dt]
$$

- 3 MCP (Zhang 2009): $P_n(t) = \int \frac{1}{a}(a\lambda_n t)_+ dt$.
- 4 Hard thresholding (Antoniadis 1996): $a = 1$.

メロトメ 御 トメ 君 トメ 君 トー 君 299 22 / 39

 $($ ロ) $($ $($ $)$ $)$ $($ $)$

23 / 39

Oracle properties of PGMM

Either
$$
E(g(y, \mathbf{x}^T \beta_0) | \mathbf{x}_S) = 0
$$
 or $E(g(y, \mathbf{x}^T \beta_0) | \mathbf{w}) = 0$
 $0 < c < \lambda_{\text{min}} (E\mathbf{x}_S \mathbf{v}(\beta_{0S})^T) \leq \lambda_{\text{max}} (E\mathbf{x}_S \mathbf{v}(\beta_{0S})^T) < M$.

Theorem 1

1

s 3 log *s* = *o*(*n*)*. Under regularity conditions, there exists a strictly local minimizer of QGMM :*

$\|\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}\| = O_p($ r *s* log *s* $\frac{29}{n}$ $\sqrt{s}P'_n(\text{min}(|\beta_{0S}|))).$

$$
P(\hat{\beta}_N=0)\rightarrow 1.
$$

3 Asymptotic normality of $\hat{\beta}_{\mathcal{S}}$.

Penalized empirical likelihood

$$
L_{EL}(\beta) = \max_{\lambda \in \mathbb{R}^{k|\beta|_0}} \frac{1}{n} \sum_{i=1}^n \log\{1 + \lambda^T[(y_i - \mathbf{x}_i^T \beta) \mathbf{v}_i(\beta)]\}.
$$
 (2.1)

$$
Q_{EL}(\beta) = L_{EL}(\beta) + \sum_{j=1}^p P_n(|\beta_j|).
$$
 (2.2)

Theorem 2

s 4 log *s* = *o*(*n*)*, there exists a strictly local minimizer of QEL:* 1 $\|\hat{\beta}_{\mathcal{S}} - \beta_{0\mathcal{S}}\| = O_p($ r *s* log *s* $\frac{29}{n}$ + $\sqrt{s}P'_n(\text{min}(|\beta_{0S}|))).$

\n- $$
P(\hat{\beta}_N = 0) \rightarrow 1
$$
.
\n- Asymptotic normality of $\hat{\beta}_S$.
\n

Problem II: Ultra-high dimensional instrumental selection

25 / 39

E

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ...

Ultra high dim. instrumental selection

Suppose oracle property is achieved, w.p.a.1, we identity:

 $E[g(y, \mathbf{x}_{S}^{T}\beta_{0S})|\mathbf{w}] = 0.$

Optimal IV: $A(\mathbf{w}) = D(\mathbf{w})^T \Omega(\mathbf{w})^{-1}$, (Newey 01)

 $D(\mathbf{w}) = E(\frac{\partial g(\beta_{0S})}{\partial \beta_{S}})$ $\frac{\partial f(\beta_{0S})}{\partial \beta_{S}}|\mathbf{w})\Big|, \quad \Omega(\mathbf{w})=E(g(\mathbf{y},\mathbf{x}^T\beta_{0S})g(\mathbf{y},\mathbf{x}^T\beta_{0S})^T|\mathbf{w}).$

- Ω(**w**): homoskedasticity.
- **o** dim(**w**) can be ultra high.

$$
\mathbf{y} = \mathbf{x}_{\mathcal{S}}^T \beta_{0S} + \epsilon
$$

$$
\bm{x}_{\mathcal{S}}=\bm{\Theta}_0\bm{w}+\bm{v}
$$

 $D(\mathbf{w}) = \Theta_0 \mathbf{w}$. But many instruments are weak.

Including many weak IV's in 2SLS is severely [bia](#page-24-0)[se](#page-26-0)[d](#page-24-0)[.](#page-25-0)

Linear model

- Method based on MSE: (Donald&Newey 01, Kuersteiner&Okui 10)
	- \bullet dim(**w**) $\ll n$.
	- requires natural ordering of IV's.
	- In general, computationally infeasible: NP-hard.
- Proposed method: on the first stage,

$$
\hat{\theta}_I = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^n (x_{SI} - \mathbf{w}_I^T \theta)^2 + \sum_{j=1}^p P_n(|\theta_j|).
$$

$$
\hat{\mathbf{x}} = \hat{\Theta} \mathbf{v}, \quad \hat{\Theta} = (\hat{\theta}_1, ..., \hat{\theta}_s)^T.
$$

We allow dim $(\textbf{w}) = o(\textsf{exp}($ √ *T*)).

• LASSO:
$$
\|\hat{\theta}_I - \theta_{0I}\| = O_p(\sqrt{\frac{s_1 \log s_1}{n}} + \sqrt{s_1} \lambda_n),
$$

SCAD: $\|\hat{\theta}_I - \theta_{0I}\| = O_p(\sqrt{\frac{s_1 \log s_1}{n}}).$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ... 27 / 39 Recent literature proposed methods based on *l*¹ penalty: (Belloni et al. 10, Garcia 11, Can&Fan 11)

- **•** computationally efficient
- Lasso: choice of λ_n is very restrictive.
	- λ_n large \Rightarrow miss many important IVs.
	- λ_n small⇒ include too many weak IVs, complicated model
- Adaptive lasso: $P_n(|\beta_j|) = |\tilde{\beta}_j|^{-1} \lambda_n |\beta_j|.$
	- requires **initial estimator**, which is hard to obtain when **w** is ultra high dimensional.
	- iterative algorithm may permanently remove important IVs.
- **•** Proposed method allows more adaptive penalties.

29 / 39

イロト イ押 トイヨ トイヨ トー

Nonlinear model

• Optimal IV:

$$
D(\mathbf{w}) = E(\frac{\partial g(\beta_{0S})}{\partial \beta_S}|\mathbf{w})
$$

• Estimate based on sieve approx. (Newey 01)

$$
D(\mathbf{w})=\sum_{i=1}^{p_1}\theta_i f_i(\mathbf{w})+r, \quad p_1\ll n.
$$

- No guarantee r is small if p_1 is small.
- Goal: allow for higher order polynomials

Ultra-high dim. sieve approximation

• Assumption:

1 There is a large set of technical IV's $\mathbf{v} = (f_1(w),...,f_{p_1}(w))^T$ (possibly $p \gg n$):

$$
D(\mathbf{w}) = \Theta_0 \mathbf{v} + a(\mathbf{w}), \quad \max_{l \leq s} (\frac{1}{n} \sum_{i=1}^n a_l(w_i)^2) = O_p(c_n^2)
$$

Q
$$
\max_{l \leq s} \sum_{i \notin T_i} |\theta_{0l,i}| < n^{-\alpha_1}
$$
, $\min_{l \leq s, i \in T_i} |\theta_{0l,i}| = h_n > n^{-\alpha_2}$
 $\max_{l \leq s} \#\{i : i \in T_l\} = s_1 = o(n)$.

• Penalized estimator:

$$
\hat{\theta}_I = \arg \min_{\theta} \frac{1}{n} \sum_{i=1}^n \left(\frac{\partial g(y_i, \hat{\mathbf{x}}_i^T \hat{\beta}_S)}{\partial \beta_{SI}} - \mathbf{v}_i^T \theta \right)^2 + \sum_{j=1}^p P_n(|\theta_j|).
$$

$$
\hat{D}(\mathbf{w}) = \hat{\Theta} \mathbf{v}, \quad \hat{\Theta} = (\hat{\theta}_1, ..., \hat{\theta}_s)^T.
$$

 Ω 30 / 39

Theorem 2

There exists a strictly local minimizer $\hat{\theta}_l = (\hat{\theta}_{lS}, \hat{\theta}_{lS})$, *s.t.*

$$
\|\hat{\theta}_{\mathsf{IS}} - \theta_{0\mathsf{I},\mathsf{S}}\| = O_p(\sqrt{\frac{s \log s}{n}} + \sqrt{\frac{s_1 \log s_1}{n}} + \sqrt{s_1} n^{-\alpha_1} + \sqrt{s_1} c_n \n+ \sqrt{s_1} P'_n(h_n)).
$$
\n
$$
\lim_{n \to \infty} P(\hat{\theta}_{\mathsf{IN}} = 0) = 1.
$$
\n
$$
\frac{1}{n} \sum_{i=1}^n |\hat{D}_i(\mathbf{W}_i) - D_i(\mathbf{W}_i)|^2 = O_p(\frac{s_1 s \log s_1}{n} + \frac{s_1^2 \log s_1}{n} + s_1^2 n^{-2\alpha_1} + s_1^2 c_n^2 + s_1^2 P'_n(h_n)^2).
$$

メロメメ 御きメ 電子メモン 31 / 39

Implementation

32 / 39

 QQ

メロトメ 倒 トメ ミトメ ミトー 毛

Smoothing

LGMM is not continuous.

$$
L_{GMM}(\beta) = \left[\frac{1}{n}\sum_{i=1}^n(y_i - x_i^T\beta)x_i(\beta)\right]^T W \left[\frac{1}{n}\sum_{i=1}^n(y_i - x_i^T\beta)x_i(\beta)\right]
$$

=
$$
\sum_{j=1}^p w_j \left[\frac{1}{n}\sum_{i=1}^n(y_i - x_i^T\beta)x_{ij}I(\beta_j \neq 0)\right]^T \left[\frac{1}{n}\sum_{i=1}^n(y_i - x_i^T\beta)x_{ij}I(\beta_j \neq 0)\right]
$$

$$
L_{EL}(\beta) = \max_{\lambda} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \lambda^{T}(y_{i} - x_{i}^{T}\beta)x_{i}(\beta)
$$

=
$$
\max_{\lambda_{j} \in \mathbb{R}^{k}, j=1,...,p} \frac{1}{n} \sum_{i=1}^{n} \log(1 + \sum_{j=1}^{p} \lambda_{j}^{T}(y_{i} - x_{i}^{T}\beta)x_{ij}I(\beta_{j} \neq 0)),
$$

$\mathsf{Replace}\ \mathit{I}(\beta_j\neq 0) \text{ with }\ \mathit{K}(\beta_j^2/\sigma_n),$

- $\sigma_n \to 0$
- $K(0) = 0, K(+\infty) = 1,$
- $\lim_{t\to\infty} K'(t)t = 0$, $\lim_{t\to\infty} K''(t)t < \infty$.
- \bullet *K*(.) < *M*.
- Kernel *K* is similar to a cdf, as in smoothed maximum score. Horowitz (1992)
- \bullet Example: *K*(*t*) = 0.5(Φ(*t*) − 0.5).

Theorem 3

Under regularity conditions of Pn, Kn, and Theorems 1-4, smoothed PGMM and PEL achieve oracle properties.

Simulation

 $E(\epsilon|\mathbf{x}_S) = 0$, without knowing \mathbf{x}_S .

$$
y = x^T \beta_0 + \epsilon
$$

$$
\beta_0 = (2.5, -4, 7, 1.5, 0, ..., 0), \epsilon \sim N(0, 1).
$$

$$
z \sim N_p(0, \Sigma), \Sigma_{ij} = 0.5^{|i-j|}.
$$

$$
(x_1, ..., x_4) = (z_1, ..., z_4), x_j = (z_j + 2)(\epsilon + 1)
$$

イロンス個 メスきメスきょうき 299 35 / 39

Table: POLS and PGMM when $p = 50$, $n = 200$

		POLS			PGMM			
	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda=0.5$	$\lambda = 1$	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.2$	$\lambda = 0.4$
MSE _s	0.145	0.133	0.629	1.417	0.261	0.184	0.194	0.979
	(0.053)	(0.043)	(0.301)	(0.329)	(0.094)	(0.069)	(0.076)	(0.245)
MSE_N	0.126	0.068	0.072	0.095	0.001		0.001	0.003
	(0.035)	(0.016)	(0.016)	(0.019)	(0.010)	(0)	(0.009)	(0.014)
TP-Mean	5	5	4.82	3.63	5	5	5	4.5
Median	5	5	5	4	5	5	5	4.5
	(0)	(0)	(0.385)	(0.504)	(0)	(0)	(0)	(0.503)
FP-Mean	37.68	35.36	8.84	2.58	0.08		0.02	0.14
Median	38	35	8	\overline{c}	0	O		0
	(2.902)	(3.045)	(3.334)	(1.557)	(0.337)	(0)	(0.141)	(0.569)

Sensitivity to minimal signal

$$
\beta_4=1.5\rightarrow\beta_4=-0.5
$$

Table: Penalized GMM when $p = 20$, $\beta_4 = -0.5$

	0.001	0.005	0.01	0.05	0.1	0.5°
MSE _S	0.112	0.136	0.137	0.156	0.142	0.433
	(0.090)	(0.117)	(0.102)	(0.117)	(0.083)	(0.158)
TP-Mean	4.96	4.92	4.94	4.91	4.96	4.25
Median	5	5	5	5	5	4
	(0.197)	(0.273)	(0.239)	(0.288)	(0.197)	(0.435)
FP-Mean	11.28	3.88	1.135	0.020	0	O
Median	11	3			O	0
	(1.545)	(2.447)	(2.139)	(0.141)	(0)	(0)

Conclusion

- Many applications in economics contains ultra. high dim. regressors
- Careful about POLS for variable selection
- PGMM/ PEL allow endogeneity in ultra high dim. estimation and selection.
- Allow ultra high dim. instruments for 2SLS
- • Allow ultra high dim. sieve approx. for optimal IV.

Some references

- HANSEN, L. (1982). Large sample properties of generalized method of moments estimators. *Econometrica,* **50** 1029-1054
- F OWEN, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. *Biometrika*, **75**, 237-249.
- ANDREWS, D. (1999). Consistent moment selection procedures for generalized method of moments estimation. *Econometrica*, **67** 543-564
- CANER, M. (2009). Lasso-type GMM estimator. *Econometric Theory,* **25** 270-290
- BELLONI, A. and CHERNOZHUKOV, V. (2011). High-Dimensional Sparse Econometric Models, an Introduction. In *Ill-Posed Inverse Problems and High-Dimensional Estimation*, Springer Lecture Notes in Statistics.
- SALIA-I-MARTIN, X. (1997). I Just Ran Two Million Regressions. *The American Economic Review* **87**, 178-183.