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Abstract

In recent years high dimensional sparse models have gained considerable impor-

tance in several areas of economics and finance, which have emerged to deal with many

new applications. In an ultra high dimensional sparse model, the number of regressors

and candidate moment conditions can be possibly much larger than the sample size

(growing in an exponential rate), but only a relatively small number of these regressors

are important that interprets the main features of the regression function. The goal

is to achieve the oracle property: identifying the important variables with high proba-

bility, when both the important and unimportant regressors are possibly endogenous.

We derive sufficient conditions and necessary conditions for a general penalized mini-

mization to achieve the oracle property, using a general form of penalty functions. We

then show that the penalized GMM and penalized empirical likelihood are consistent in

both estimation and selection when (i) the unimportant covariates are endogenous but

the important ones are not, or (ii) the important covariates are also possibly endoge-

nous and a set of valid instrumental variables are available. However, the penalized

OLS is not. Finally, we develop new results for estimating the optimal instruments

in the conditional moment restricted model with the number of instruments growing

exponentially fast. This extends Belloni et al (2010) to the possibly nonlinear models

as well as more general penalty that allows for SCAD, Lasso, and many other penalty

functions.
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1 Introduction

In recent years high dimensional models have gained considerable importance in several

areas of economics and finance, which have emerged to deal with many new applications.

In such models the overall number of regressors grows extremely fast with the sample size.

For example, in housing price regression, the house price in one county may depend on

several other counties, most likely its geographic neighbors. Since the correlation among

the neighbor counties is unknown, initially the regression equation may include about one

thousand counties in the country. Econometricians, however, may only observe a relatively

small size of data series.

Example 1.1 (Housing price panel data). The local housing price has cross-sectional cor-

relation with the housing price in the surrounding counties, and probably in other states.

To predict s period ahead housing price appreciation yi,t+s in county i, incorporating lagged

variables of additional counties in other states may contribute additional predicting power:

yi,t+s =

p∑
k=1

yktβik + xTt θi + εi,t+s,

where ykt denotes the log-price of county k at period t, and xt is a vector of national indices

such as the per capita personal income, population, mortgage rate, the stock market index,

etc. Since the cross-sectional correlation is unknown, p can be large (around 1000 counties

in the US), while the sample size is typically less than two hundred for a data set containing

the monthly repeated sales data in ten years (Fan, Lv and Lei (2011)).

Example 1.2 (Wage regression). The expected wage function is approximated by a regres-

sion function with regressors being the transformations of education and experience:

yi =

p∑
k=1

Pk(wi)βk + εi,

where the transformation Pk are usually polynomials or B-splines. Empirical evidence shows

that low-degree polynomials approximation, with relatively less smoothness flexibility, may

fail to capture the information of the entire function provided by the data ( Belloni and

Chernozhukov (2010)). As the high-degree terms can also have large coefficients, the number

of coefficients p can be large relative to the sample size.

Example 1.3 (Instrumental selection). Consider a linear instrumental variable model as in
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Angrist and Krueger (1991) and Belloni and Chernozhukov (2011):

yi = θ0 + θ1xi + wT
i γ + εi,

xi = zTi β + wT
i δ + ui,

with E(εi|wi, zi) = E(ui|wi, zi) = 0. Here yi, xi, and wi denote wage, education, and a

vector of control variables respectively, and zi denotes a vector of instrumental variables

that have direct effect on education and indirectly on the wage. The data set in Angrist and

Krueger (1991) contains a total of 180 instruments in zi. It is well known that using only a

few instruments results in an estimator of the schooling coefficient θ1 with a large variance,

while using all the 180 instruments results in a large bias. On the other hand, Belloni and

Chernozhukov (2011) showed that using just 37 instruments selected by the Lasso technique

(Tibshirani 1996) can produce a nearly efficient estimator with a small bias at the same

time.

Besides, high dimensional data have also emerged in many other fields of sciences, engi-

neering and humanities. Examples include marketing, microarray data in genomics, signal

processing, among others.

We assume that the parameters enter the model as the coefficients of a linear combination

of the covariates as in xTβ0, where dim(x) = p grows with the sample size n. we consider an

ultra high dimensional pool of covariates, meaning that, p = O(exp(nα)), for some α ∈ (0, 1).

Hence p can grow non-polynomially with n, as in the so-called NP-dimensional problem.

Sparse modeling has been widely used to deal with high dimensionality, which assumes that

many components of β0 are either exactly or near zero. As a result, the true structural

parameter can be partitioned as β0 = (βT0S, β
T
0N)T , with β0N = (≈)0. Accordingly, the

covariates can be partitioned as x = (xTS ,x
T
N)T , called important regressors and unimportant

regressors. The sparsity structure typically assumes that, although p, the number of total

candidates, is NP-dimensional, the number of important regressors s = dim(xS) grows slowly

with the sample size: s = o(n). As in Example 1.1, conditional on xt, only a small number

of counties are useful for predicting the housing price (Fan, Lv and Qi (2010)).

The goal of ultra high dimensional modeling is to (1) achieve the variable selection con-

sistency (identify the nonzero components β0S and therefore the important regressors with

probability approaching one), and (2) make inference on β0S. This is called the oracle prop-

erty of high dimensional model selection and estimation (Fan and Li (2001), Zou (2006), and

Belloni and Chernozhukov (2009)). While the majority of the literature has achieved this
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property by minimization a penalized objective function taken the form

Loss function + Penalization,

they all assume that all the candidate covariates in x are exogenous, i.e., uncorrelated with

the regression error term. The most popular choices of the loss function in ultra high di-

mensional modeling are least squares, negative log-likelihood and their various modifications

(see, e.g., Bradic, Fan and Wang (2010) and Fan and Lv (2011)).

Has the goal of recovering the oracle been really achieved? Note that the unimportant

regressors are artificially added into the model, while oracle knows what the true important

regressors are, which does not depend on what kind of unimportant regressors are present.

Consequently, a real “mimicking oracle” procedure should be the one under which the oracle

property is achieved regardless of whether the unimportant regressors are correlated with

the residual or not. Therefore the exogeneity assumption on the unimportant regressors is

stronger than that is enough ideally to recover the true sparsity structure, and none of the

proposed methods in the literature developed a simultaneous test to check this assumption.

Besides, in the application of econometrics, there are also many examples in which the

important covariates are also endogenous such as the education in studying the effect of

schooling on the wage. We will show in this paper that in the presence of endogenous

covariates, the penalized OLS is inconsistent in variable selection.

We consider a more general framework of the ultra high dimensional variable selection

problem, and derive both sufficient condition and necessary condition for a penalized mini-

mization procedure to achieve the oracle property, where both the loss function (the leading

term of the objective function) and the penalty function can take a very general form. We

propose the penalized GMM (PGMM) and penalized empirical likelihood (PEL), and study

their asymptotic behaviors. We first consider the case where only the important covariates

are required to be exogenous, allowing for arbitrary unimportant covariates. This setting has

immediate application interests in finance, biology and machine learnings, and our results

significantly contribute to the recent statistical literature on variable selections. We then

allow the important covariates to be also endogenous, and construct the GMM objective

function using the valid instrumental variables. It will be shown that both PGMM and PEL

achieve the oracle properties in the presence of endogeneity. In particular, the estimator

converges in probability to β0S at the near oracle rate Op(
√

(s log s)/n) (Belloni and Cher-

nozhukov (2009), Fan and Lv (2011)). This is achieved because both of the two procedures

fully take advantages of the correctly specified moment conditions defined by the exogenous

variables, while the penalized OLS does cannot.
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In addition, we develop new results for estimating the optimal instruments in nonlinear

conditional moment restricted models. It is well known that the optimal instruments involve

a conditional expectation, whose functional form is unknown unless strong assumptions on

the conditional distribution of the endogenous variables are imposed. The idea of using

nonparametric estimates of the optimal instruments was proposed by Newey (1990), where

he used a slowly growing sieve approximation. The most important feature of our method is

that we consider many more instruments (ultra high dimensional) for estimation, but only

a few of the instruments are important while most of others’ contributions are negligible. In

addition, we let the identities of the important instruments be unknown as in Belloni, Chen,

Chernozhukov and Hansen (2010), which substantially generalizes the classical parametric

models as well as the slowly-growing sieve models for the optimal instruments.

Recently, there are some related works in the shrinkage GMM literature that allows for

endogeneity such as Caner and Zhang (2009) and Liao (2010). They assume the number of

covariates and/or the moment conditions are either finite or growing slowly with the sample

size, and include all the candidate moment conditions to construct the GMM objective func-

tion. However, it is a completely different story in the ultra high dimensional models since

the candidate moment conditions (possibly misspecified due to the possible endogeneity) is

much more than the observed data. When p increases exponentially fast in n, including

all the p moment conditions can lead to inconsistency as p can be much larger than n. It

requires us develop a new technique to show the consistency of PGMM and PEL. Therefore

our results also constitute essential contributions to the GMM with many moment condi-

tion literature. The objective function is designed in a way that uses only a portion of

the candidate covariates or instruments, depending on the subspace of the nonzero compo-

nents of the function argument. This leads our objective function to being discontinuous.

We apply a kernel smoothing technique to smooth the objective function for the numerical

implementation.

In the literature of model selection, a penalty term attached to an objective function is

commonly used. Such a technique can date back at least to the seminal paper of Akaike

(1974). In applied statistics, the famous Lasso (Tibshirani (1996)) and its various modifica-

tions, e.g., adaptive Lasso (Zou (2006)), bridge estimators (Huang, Horowitz and Ma (2008)),

post-Lasso (Belloni and Chernozhukov (2009)), have been widely used for penalization. Fan

and Li (2001) pioneered in proposing properties that a penalized estimator should possess,

and introduced the smoothly clipped absolute deviation (SCAD) penalty that satisfies these

properties (See Fan and Li (2001) for details). In addition, a number of researchers proposed

various penalty functions for different application problems, for example, hard-thresholding

in Antoniadis (1996), minimax concave penalty (MCP) in Zhang (2009), Dantzig selector in
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(Candes and Tao (2007)), among others (See Fan and Lv (2010) as an excellent review). In

the econometrics literature, Andrews and Lu (2001) used an L0 penalty (penalizes the degree

of overidentification) to select the true combination of moment conditions and parameter

components. Caner and Zhang (2009) developed penalized GMM method when the param-

eter is identified by a set of unconditional moment conditions. More recent work is found in

Huang, Horowitz and Wei (2010) for selecting the nonparametric additive components, and

in Belloni et al (2010) for selecting the instrumental variables using Lasso and Post-Lasso

to estimate the optimal instruments, and Belloni and Chernozhukov (2011) for the Lasso

quantile regression. Other related works in ultra high dimensional models are done by Fan

and Song (2010) and Fan and Lv (2011). It is also worth to mention that, the penaliza-

tion technique has been aware of for a long history in the Bayesian literature, as the prior

distribution plays a natural role of the penalty attached to the log-likelihood.

The remainder of this paper is as follows: Section 2 defines a general class of penalty

functions that to be used in this paper, and give model-robust sufficient and necessary

conditions for a general penalized optimization procedure to achieve the oracle property.

Section 3 and 4 show respectively how penalized GMM and penalized EL are constructed to

select the important covariates when there are ultra-high many unimportant ones, potentially

endogenous. We also show that in this case, the penalized OLS is inconsistent in variable

selection. Section 5 extends the previous results to the generalized sparsity condition, in

which the coefficients of the unimportant covariates are not zero but small. It also allows

the conditional moment restrictions are subject to local perturbations. Section 6 studies

the case when the important covariates are also endogenous, with the help of instrumental

variables. We also demonstrate how sparse models can be used to estimate the optimal

instruments in nonlinear models. Numerical implementations and simulation results are

demonstrated in Sections 7 and 8. Finally, Section 9 concludes.

Throughout the paper, we denote by ‖A‖ =
√
tr(AAT ) as the Frobenius norm of a

matrix A, ‖α‖ =
√
αTα as the Euclidean norm of a vector α. For two sequences an, bn 6= 0,

write an ≺ bn (equivalently, bn � an) if an = o(bn). |β|0 denotes the number of nonzero

components of vector β. For βS ∈ Rs, let B(βS, rn) = {β ∈ Rs : ‖β − βS‖ < rn}. In

addition, P ′n(t) and P ′′n (t) denote the first and second derivatives of a penalty function Pn(t).

Finally, we write w.p.1. as brevity for “with probability one”.
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2 Penalized Optimization

2.1 Penalty function

The penalized optimization takes the general form:

β̂ = arg min
β
Ln(β) + Pen(β),

in which Ln is the objective function (or loss function) such as negative log-likelihood, least

square, GMM, and EL, and Pen(β) serves as the penalty term. It is usually assumed that

the true structural parameter β0 is identified through: Ln(β0) < Ln(β) + op(1) for any

β ∈ Rdim(β0)/{β0} with probability approaching 1. Minimizing Ln directly may not yield a

consistent estimator in L2 norm in high dimensional models. For example, if each component

of the Ln minimizer β̂ is root-n consistent, the overall L2 distance is ‖β̂ − β0‖ = Op(
√
p/n),

which does not converge when p � n. Therefore, a penalization is necessary.

Over the past decades, many penalty functions have been introduced in high dimensional

variable selection problems to serve as the regularization. Some of the most popular penalty

functions are: the adaptive Lasso (Zou 2006), elastic net (Zou and Hastie 2005), SCAD (Fan

and Li 2001, Fan and Lv 2011), Dantzig selector (Candes and Tao 2007, Fan and Lv 2008),

and the weighted l1- penalty (Bradic, Fan and Wang 2010). Recently, Fan and Lv (2011)

proposed a class of penalty functions that satisfy a set of general regularity conditions for the

variable selection consistency. In this paper, we consider a similar class of penalty functions:

For any β = (β1, ..., βs)
T ∈ Rs, and |βj| 6= 0, j = 1, ..., s, define

η(β) = lim sup
ε→0+

max
j≤s

sup
t1<t2

(t1,t2)∈(|βj |−ε,|βj |+ε)

−P
′
n(t2)− P ′n(t1)

t2 − t1
, (2.1)

which is maxj≤s−P ′′n (|βj|) if the second derivative of Pn is continuous.

Let

dn =
1

2
min{|β0j| : β0j 6= 0, j = 1, ..., p}.

Assumption 2.1. dn � s/
√
n, and dn is bounded away from infinity.

Let Pen(β) =
∑p

j=1 Pn(|βj|), where Pn(t) is a prespecified penalty function. We now

define a class of penalty functions to be used throughout the paper:

Assumption 2.2. The penalty function Pn(t) : [0,∞)→ R satisfies:

(i) Pn(0) = 0

(ii) Pn(t) is concave, increasing on [0,∞), and has a continuous derivative P ′n(t) when t > 0.

8



(iii) lim inft→0+ P
′
n(t) � s

√
(log s)/n.

(iv) P ′n(dn) = o(s−1/2)

(v) There exists c > 0 such that supβ∈B(β0S ,cdn)
η(β) = o(1).

Note that the concavity of Pn implies that η(β) ≥ 0 for all β ∈ Rs. These conditions

are needed for establishing the oracle properties of the penalized optimization. They are

standard and are satisfied by many commonly used penalty functions. We check these

conditions for some popular penalties in the following examples.

Example 2.1 (Lasso (Tibshirani (1986))). Consider

Pn(t) = λnt.

We have P ′n(t) = λn and P ′′n (t) = 0. Condition (i)(ii) are satisfied naturally. Condition

(iii)(iv) hold as long as s/
√
n ≺ λn ≺ s−1/2. Finally, for all β ∈ Rs, η(β) = 0. Therefore

Lasso satisfies Assumption 2.2 if s/
√
n ≺ λn ≺ s−1/2, which also requires s3 = o(n).

Example 2.2 (lq Penalty for q ≤ 1). For q ∈ (0, 1], and some λn > 0, consider

Pn(t) = λnt
q, t ≥ 0.

Note that when q = 1, Pn corresponds to Lasso. When q < 1, P ′n(t) = λnqt
q−1 and P ′′n (t) =

λnq(q− 1)tq−2. Condition (i)(ii) are satisfied naturally. For each fixed n, lim inft→0+ P
′
n(t) =

∞, which implies (iii) as long as λn > 0 for all n. In addition, P ′n(dn) = λnqd
q−1
n = o(s−1/2)

if λn = o(d1−qn s−1/2). Finally, η(β0S) = λnq(1− q) 1
minj∈AS |β0Sj |

2−q .

There exists a neighborhood of β0S, such that supβ∈N1
η(β) ≤ λnq(1 − q)dn/2 = o(1)

as λn → 0, which implies (v). Hence when q < 1, lq penalty satisfies Assumption 2.2 if

0 < λn ≺ min{d1−qn s−1/2, d2−qn }.

Example 2.3 (SCAD (Fan and Li 2001)). For some a > 2, and λn > 0, consider

P ′n(t) = λn

[
I(t ≤ λn) +

(aλn − t)+
(a− 1)λn

I(t > λn)

]
,

with Pn(0) = 0, t ≥ 0. We have P ′′n (t) = 0 when t > aλn. All the conditions can be easily

verified as long as s/
√
n = o(λn) and λn → 0.

Example 2.4 (MCP (Zhang 2009)). For a ≥ 1 and λn > 0, consider

P ′n(t) =
(aλn − t)+

a
, t ≥ 0.

9



with Pn(0) = 0. We have P ′′(t) = 0 when t > aλn. All the conditions are satisfied as long as

s/
√
n = o(λn) and λn → 0. In particular, when a = 1, this is the hard-thresholding penalty

introduced by Antoniadis (1996).

2.2 Ultra high dimensional variable selection consistency

In this subsection, we give general consistency results for the ultra high dimensional

variable selection and estimation. The following theorems summarize the variable selection

consistency theorems in the literature, which provide sufficient conditions for the penalized

optimization (GMM, MLE, LS, etc) to have oracle properties in ultra high dimension.

Define AS = {j ∈ {1, ..., p} : β0j 6= 0}, and B = {β ∈ Rp : βj = 0 if j /∈ AS}. The

variable selection aims to recover AS with high probability. Our first theorem restricts

the penalized optimization onto the s-dimensional subspace B. In what follows, denoted

by λmin(A), λmax(A) as the smallest and largest eigenvalues of a square matrix A. For any

β = (βTS , 0)T ∈ B, write Ln(βS, 0) = Ln(β).

Theorem 2.1 (Oracle Consistency). Suppose Ln(βS, 0) is twice differentiable with respect to

βS in a neighborhood of β0S restricted on the subspace B, and there exist a positive sequence

{an}∞n=1 such that an/dn → 0, and a constant c > 0 such that:

(i) ‖∂βSLn(β0S, 0)‖ = Op(an),

(ii) ∂2βSLn(βS, 0) = Σ(βS) + M(βS), where λmin(Σ(β0S)) > c, and ‖M(β0S)‖ < c
2

with

probability approaching 1, and Σ(.),M(.) are element-wise continuous on a neighborhood of

β0S.

In addition, suppose Assumption 2.1, 2.2 are satisfied. Then there exists a strictly local

minimizer (β̂TS , 0)T of Qn(βS, 0) = Ln(βS, 0) +
∑

j∈AS Pn(|βj|) subject to (βTS , 0)T ∈ B such

that

‖β̂S − β0S‖ = Op(an +
√
sP ′n(dn)).

In penalized optimization estimator, normally the rate of convergence depends on both

‖∂βSLn(β0S, 0)‖ and the penalty Pn. Condition (i) requires that the score function should be

asymptotically unbiased, whose rate is usually the leading term of the rate of convergence

of the estimator. Condition (ii) ensures that asymptotically the Hessian matrix of Ln(βS, 0)

is positive definite at β0S, and also in a neighborhood of β0S because of the continuity of

Σ(.) and M(.). Both conditions are satisfied by the likelihood-type loss function considered

in Fan and Lv (2011) and Bradic, Fan and Wang (2009). It is shown in their papers that

in both GLM (generalized linear model) with penalized likelihood and simple linear model

with composite quasi-likelihood, an =
√
s/n. It will be shown in the subsequent sections

that both PGMM and PEL can achieve the near-oracle rate Op(
√

(s log s)/n).
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The previous theorem assumes that the true support AS were known, which is not ac-

tually. We therefore need to derive the conditions under which AS can be recovered from

the data with probability approaching one. This can be done by demonstrate that the local

minimizer of Qn restricted on B is also a local minimizer on Rp. The following theorem es-

tablishes the sparsity recovery (variable selection consistency) of the penalized optimization

estimator, defined as the local solution to a penalized optimization problem on Rp. For any

β ∈ Rp, define the projection function

Tβ = (β′1, β
′
2, ..., β

′
p)
T ∈ B, β′j =

βj if j ∈ AS
0, if j /∈ AS

.

Theorem 2.2 (Sparsity recovery). Suppose Ln : Rp → R satisfies the conditions in The-

orem 2.1, and Assumptions 2.1 and 2.2 hold. In addition, for β̂S as in Theorem 2.1,

an +
√
sP ′n(dn) = o(1), and suppose there exists a neighborhood N ⊂ Rp of (β̂TS , 0)T , such

that for all γ ∈ N ,

Ln(Tγ)− Ln(γ) ≤
p∑
j=1

Pn(|γj|)−
p∑
j=1

Pn(|(Tγ)j|). (2.2)

Then with probability approaching 1, (β̂TS , 0)T is a strict local minimizer of Qn(β) = Ln(β) +∑p
j=1 Pn(|βj|) on Rp.

In particular, if Ln is continuously differentiable in a neighborhood of β0, then (2.2) holds

with probability approaching one, if for all l /∈ AS,∣∣∣∣∂Ln(β0)

∂βl

∣∣∣∣ = op(P
′
n(0)).

Condition (2.2) ensures that the constrained minimizer of Qn on B is also a local min-

imizer on Rp. This condition is satisfied by the log-likelihood in Fan and Lv (2011) and

Bradic, Fan and Wang (2009), and also by GMM and EL criterion functions.

These sufficient conditions for the variable selection and parameter estimation are general

enough and do not restrict on any specific model. We will see in the subsequent sections

that, with mild regularity conditions on the moments, all the conditions in both Theorem 2.1

and 2.2 are satisfied by PGMM and PEL in conditional moment restricted model. Therefore,

while imposing weaker distributional assumptions on the data generating process than other

competing methods (such as penalized OLS and penalized likelihood), PGMM and PEL

estimators can achieve the oracle property at the oracle convergence rate.
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2.3 Necessary condition

While the current literature has been focusing on the sufficient conditions for the pe-

nalized estimator to achieve the oracle properties, there is relatively much less attention on

the necessary condition for the sparsity recovery in high dimensional problems. Zhao and

Yu (2006) derived an almost necessary condition for the sign consistency, e.g., the signs of

the penalized estimator and the true parameter are equal with probability approaching one.

Zou (2006) provided a necessary condition for the variable selection consistency of the OLS

estimator with Lasso penalty for slowly-growing p. To the authors’ best knowledge, so far

there is no necessary condition for the selection consistency of general penalized optimization

in the ultra high dimensional framework. Such a necessary condition is important, because it

provides us a way to justify whether a typical loss function can result to a consistent variable

selection. We try to answer this question by the following theorem.

Theorem 2.3 (Necessary Condition). Suppose:

(i) With probability one, for all n, Ln(β) is differentiable at β0; for all l /∈ AS, both

lim infn→∞
∂Ln(β0)
∂βl

and lim supn→∞
∂Ln(β0)
∂βl

are continuous at β0.

(ii) There is a local minimizer β̂ = (β̂S, β̂N)T of Ln(β) +
∑n

j=1 Pn(|βj|) that recovers the

sparsity of β0, i.e., β̂N = 0 with probability approaching one, and ‖β̂ − β0‖ = op(1).

(iii) The penalty satisfies: Pn(.) ≥ 0, Pn(0) = 0, P ′n(t) is non-increasing when t ∈ (0, u) for

some u > 0, and limn lim supt→0+ P
′
n(t) = 0.

Then for any l /∈ AS, with probability one,

lim inf
n→∞

∂Ln(β0)

∂βl
≤ 0 ≤ lim sup

n→∞

∂Ln(β0)

∂βl
(2.3)

The last inequality (2.3) requires all the score functions corresponding to the unimportant

covariates should be unbiased. Condition (iii) is satisfied by most of the commonly used

penalty functions such as the l1-penalty (Lasso), SCAD and MCP.

Theorem 2.3 will be applied in Section 3.2 to show that in the simple linear model, in the

presence of endogenous covariates, the penalized GMM can result to the variable selection

consistency, but the penalized OLS cannot.
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3 Penalized GMM

3.1 Oracle property

Our model is put under the conditional moment restriction framework:

E[g(y,xTβ0)|xS] = 0, (3.1)

where y stands for the dependent variable, for some k-dimensional known function g : R ×
R → Rk with fixed k. Here g can be thought of as a residual function. The conditional

moment restricted model was extensively studied by a number of authors: Newey (1993),

Donald, Imbens and Newey (2003), Kitamura, Tripathi and Ahn (2004), etc. Since this

model covers most of the popular statistical models as special cases, such as generalized

linear model and many nonlinear models, it has many important applications in economics,

finance, and many other fields. In the simplest case, g(y,xTβ0) = y−xTβ0 as in the examples

above, equation (3.1) therefore represents an exogeneity condition on the residual term, i.e.,

the regression residual is uncorrelated with the important regressors.

Recently, Caner (2009) considered Lasso-type GMM with the dimension of the struc-

tural parameter p fixed, which was later extended to the elastic-net-penalized (Zou and

Hastie (2005)) GMM by Caner and Zhang (2009), allowing p to grow with n but p/n → 0.

Technically, the oracle property with ultra-high dimension is completely different, because

the dimension of xN and the number of candidate moment conditions is much larger than

the sample size, whose norm, as a result, cannot be bounded even if the support of each

component is compact. We will follow a similar technique as in Fan and Lv (2011) and

Bradic, Fan and Wang (2009), by first restricting the penalized GMM problem onto the

s-dimensional subspace B, and then extend to the entire parameter space.

The conditional moment restriction (3.1) implies that

E[g(y,xTβ0)⊗ xS] = 0, (3.2)

where A⊗B denotes the Kronecker product of two matrices. However, this moment condition

cannot be used directly to construct the GMM criterion function since the true identities

of xS is unknown to us, and p, the number of candidate moment conditions formed by

E[g(y,xTβ0)⊗ x], is much larger than n in the ultra high dimensional setting.

Before formally defining the penalized GMM, let us introduce some additional nota-

tion. For any β ∈ Rp/{0}, and i = 1, ..., n, define a |β|0 dimensional vector Xi(β) =

(Xi,l1 , ..., Xi,lr)
T ∈ R|β|0 , where (βl1, ..., βlr) are the nonzero components of β with r = |β|0.

13



The GMM weight matrix is specified as following: Let {σi}pi=1 be a bounded positive se-

quence that mini≤p σi > c > 0 for some c > 0. The weight matrix is given by a diagonal

matrix W (β) = Ik⊗ diag{σl1 , ..., σlr}, where Ik denotes the k × k identity matrix.

Our GMM criterion function is defined as

LGMM(β) =

[
1

n

n∑
i=1

g(yi,X
T
i β)⊗Xi(β)

]T
W (β)

[
1

n

n∑
i=1

g(yi,X
T
i β)⊗Xi(β)

]
. (3.3)

We consider the penalized GMM criterion function:

QPGMM(β) = LGMM(β) +

p∑
j=1

Pn(|βj|). (3.4)

Observe that LGMM is not continuous, due to the definition of X(β), and hence to study

the large sample property of the PGMM estimator, Taylor’s expansion cannot be applied

directly. However, the penalized minimization of QPGMM can be first constrained on B =

{β ∈ Rp : βj = 0 if j /∈ AS}, and consider L̃GMM(βS) = LGMM(βS, 0) instead, which

is assumed to be twice differentiable. We can then show that if β̂S is a local solution to

minβS L̃GMM(βS) +
∑s

j=1 Pn(|βj|), and that ‖β̂S − β0S‖ = op(1), then (β̂TS , 0)T is also a local

solution to minβ∈Rp QPGMM(β).

In the following assumptions, let Xi = (XT
iS,X

T
iN)T be the partition of Xi, where XiN

and XiS respectively denote the subvector of Xi formed by the indices in AS and AcS.

Assumption 3.1. (i) The true β0 is identified by E(g(y,xTβ0)|xS) = 0.

(ii) (y1, X1), ..., (yn, Xn) are independent and identically distributed.

The identification condition (i) ensures that the important covariates are linearly inde-

pendent with the unimportant covariates. It has the same spirit of the Strong Irrepresentable

Condition in Zhao and Yu (2006), which rules out not only the existence of the same com-

ponents in xS and xN , but also the possibility that the components of xS can be linearly

represented by components of xN . The i.i.d. assumption can be easily relaxed to stationary

ergodic data series with strong mixing structures.

Assumption 3.2. There exist b1, b2 > 0 and r1, r2 > 0 such that for any t > 0,

(i) ∀j ≤ k, P (|gj(y,xTβ0)| > t) ≤ exp(−(t/b1)
r1),

(ii) ∀l ∈ As, P (|xl| > t) ≤ exp(−(t/b2)
r2).

This assumption requires that both the regression residuals and the important covariates

should have exponential tails, which enables us to apply the large deviation theory to show
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‖n−1
∑n

i=1 g(yi,x
T
i β0) ⊗ xiS‖ = Op(

√
s log s/n). The simplest example that satisfies this

assumption is that gj(y,x
Tβ0) is Gaussian and the support of each component in xS is

bounded.

Assumption 3.3. (i) Ex4i <∞ for each component of x.

(ii) E‖g(y,xTβ0)‖4 < ∞. For each i = 1, ..., k, gi(t1, t2) is second order differentiable on

R× R.

(iii) For each (x, y), ∂2

∂β∂βT
gi(y,x

Tβ) is continuous in β in a neighborhood of β0.

The continuity of ∂2

∂β∂βT
gi(y,x

Tβ) at β0 combined with Assumption 3.2(iii) below will be

used to show that the Hessian matrix ∂2βSLGMM(βS, 0) is positive definite in a neighborhood

of βS.

In the following assumptions, let XS = (X1S, ..., XnS)T , and

m(t1, t2) =
∂g(t1, t2)

∂t2
= (m1(t1, t2), ...,mk(t1, t2))

T

qj(t1, t2) =
∂2gj(t1, t2)

∂t22
.

Assumption 3.4. (i) maxj≤k supt1,t2 |mj(t1, t2)| <∞,

(ii) maxj≤k supt1,t2 |qj(t1, t2)| <∞.

This assumption is satisfied by most of the interesting examples in the generalized linear

model. For instance,

• simple linear regression, g(t1, t2) = t1 − t2;

• logit model, g(t1, t2) = t1 − exp(t2)/(1 + exp(t2));

• probit model, g(t1, t2) = t1 − Φ(t2) where Φ(.) denotes the standard normal cdf.

Assumption 3.5. There exist C1 > 0 and C2 > 0 such that

(i) C1 < λmin(ExSxTS ) ≤ λmax(ExSxTS ) < C2.

(ii) minj≤k λmin[(Emj(y,x
T
Sβ0S)xSxTS )2] > C1.

(iii) maxj≤k,l∈AS λmax[(Exlqj(y,x
T
Sβ0S)xSxTS )2] < C2.

Condition (i) is needed for β̂S to converge at a near oracle rate, i.e., an = Op(
√

(s log s)/n)

for an in Theorem 2.1. Condition (ii)(iii) ensure that the Hessian matrix of LGMM(βS, 0) is

positive definite at β0S, which implies the familiar information matrix equality to approxi-

mately hold ∂2L(β0S) = ∂L(β0S)∂L(β0S)T + op(1). In particular, Condition (iii) makes the

oracle property be achieved when s3/2
√

(log s)/n → 0. If Condition (iii) is relaxed, we can
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achieve the same oracle property when s2
√

(log s)/n→ 0. For example, if g(t1, t2) = t1 − t2
as in the simple linear model, (ii) is implied by (i); (iii) automatically holds because

qj(t1, t2) = 0. Similar conditions are also assumed in Bradic, Fan and Wang (2010 Con-

dition 4), and Fan and Lv (2011, Condition 4).

Under these conditions, we can show the oracle property of the local minimizer of the

penalized GMM (3.3).

Theorem 3.1. Suppose Assumptions 2.1, 2.2, 3.1-3.4, and 3.5(i) (ii) hold. If either (a)

Assumption 3.5(iii) and s3 log s = o(n), or (b) s4 log s = o(n) holds, then there exists a

strictly local minimizer β̂ = (β̂TS , β̂
T
N)T of the penalized GMM QPGMM(β) such that:

(i)

‖β̂S − β0S‖ = Op(
√

(s log s)/n+
√
sP ′n(dn)),

where β̂S is a subvector of β̂ formed by the components whose indices are in AS, and

(ii) β̂N = 0 with probability approaching one as n→∞.

If we assume P ′n(dn) = O(
√

log s/n), then ‖β̂S − β0S‖ = Op(
√
s log s/n), which is very

close to the oracle rate Op(
√
s/n).

The asymptotic normality requires an additional assumption as follows: Define

V =
1

n

n∑
i=1

(g(yi,X
T
iSβ0S)⊗XiS)(g(yi,X

T
iSβ0S)⊗XiS)T . (3.5)

Assumption 3.6. (i) For some c > 0, λmin(V ) > c, with probability one.

(ii) P ′n(dn) = o(1/
√
ns).

(iii) There exists C > 0, sup‖β−β0S‖≤C
√

(s log s)/n
η(β) = o((s log s)−1/2).

Conditions (ii) and (iii) are satisfied by the penalty functions SCAD, MCP and hard-

thresholding. However, they are not satisfied by lq-penalty (q ∈ (0, 2)), or the elastic net

(Zou and Hastie (2005)).

Theorem 3.2 (Asymptotic Normality). Suppose the conditions in Theorem 3.1 and As-

sumption 3.6 hold, then the penalized GMM estimator in Theorem 3.1 satisfies: for any unit

vector α ∈ Rs, ‖α‖ = 1,

√
nαTΓ−1/2n Σn(β̂S − β0S)→d N(0, 1),

where Γn = 4AnW (β0)VW (β0)A
T
n , Σn = 2AnW (β0)A

T
n , and

An = 1
n

∑n
i=1(m1(yi,X

T
i β0)XiSXT

iS, ...,mk(yi,X
T
i β0)XiSXT

iS).
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Remark 3.1. 1. The instrument Xi(β) in the definition of PGMM can be replaced with

a cp-dimensional function vector of f(Xi, β) for any fixed integer c ≥ 1, e.g., f(Xi, β) =

(Xi(β)T ,X2
i (β)T )T for c = 2. For each fixed β with |β|0 = r nonzero components, there

are cr instruments in f(X, β) associated, and hence cr(> r) moment conditions are

used to construct the GMM criterion function. In most of the cases, this guarantees

that the parameter is over-identified. Roughly speaking, minimizing the GMM criterion

function on Rr × {0}p−r always identifies a unique solution for any r ≤ p, and due to

the over-identification, the minimum would not be close to zero unless is minimized

on the exact subspace Rs × {0}p−s where β0 lies. Similar results as in Theorem 3.1

can be still obtained. In this case,the true β0 is the global minimizer of E[g(y,xTβ)⊗
f(x, β)]TW (β)E[g(y,xTβ) ⊗ f(x, β)] on Rp due to the over-identification outside of

any small neighborhood of zero.

2. As the GMM criterion function is constructed based on the moment condition

E(g(y,xTβ0)|xS) = 0, it requires all the important covariates are exogenous. In many

econometric applications, the endogeneity also arises from the important covariates.

We will show in Section 6 that with valid instrumental variables, the PGMM still

achieves the oracle property when both the important and unimportant covariates are

possibly endogenous.

3.2 Simple linear model: an example

As an interesting example of application, consider the simple linear model:

y = xTβ0 + ε,

where E(ε|xS) = 0, which implies the moment condition

E(y − xTβ0|xS) = 0.

For example, in a wage equation, y is the logarithm of an individual’s wage, and the objects

of interest in applications include the coefficients of xS such as the years of education, years

of labor-force experience, marital status and labor union membership. On the other hand,

widely available data sets from CPS can contain hundreds or even thousands of variables

that may be correlated to wages but are unimportant. These variables are very likelihood

to be endogenous.

Consider, for example, a true linear regression model y = xTSβ0S + ε, where xS is exoge-

nous. Suppose some components of ε are observable, denoted by xN . The regression error
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term can then be represented as ε = f(xN , u) for some unknown function f , where u rep-

resents the unobservable noise component. Then the regression model can be equivalently

written as

y = xTβ0 + ε,

where x = (xS,xN), and β0 = (β0S, 0). Apparently, xN is correlated with ε.

If there exists some component l /∈ AS such that |E(εxl)| is bounded away from zero, the

penalized OLS does not achieve the variable selection consistency. The inconsistency is not

due to the choice of the penalty (none of the penalty functions in Examples 2.1-2.4 leads

to the consistency), but the limitation of the least square loss function. The penalized OLS

objective function is defined as:

Q̃n(β) =
1

n

n∑
i=1

(yi −XT
i β)2 +

p∑
j=1

Pn(|βj|).

It can be shown that the necessary condition in Theorem 2.3 does not hold for the OLS loss

function.

Theorem 3.3 (Inconsistency of penalized OLS). Suppose xN has an endogenous component

xl, i.e., |E(xNlε)| > c for some c > 0. Assume that Ex4l <∞, Eε4 <∞, and Pn(t) satisfies

the conditions in Theorem 2.3. If β̃ = (β̃TS , β̃
T
N)T is a local minimizer of Q̃n(β) corresponding

to the coefficients of (xS,xN), then either ‖β̃S − β0S‖9p 0, or

lim sup
n→∞

P (β̃N = 0) < 1.

The inconsistency of penalized OLS is due to the fact that the moment condition E[(y−
xTβ0)xl] = 0 is misspecified when xl is endogenous. We can use the penalized GMM instead.

The penalized GMM crierion function is defined as:

QPGMM(β) =

(
1

n

n∑
i=1

Xi(β)(yi −XT
i β)

)T (
1

n

n∑
i=1

Xi(β)(yi −XT
i β)

)
+

p∑
j=1

P ′n(|βj|), (3.6)

where we use an identity weight matrix for simplicity. We can apply the theorem in the pre-

vious section to immediately obtain the oracle property of the local minimizer of QPGMM(β),

which is stated in the following corolary:

Corollary 3.1. Consider the simple linear model:

y = xTβ0 + ε,
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where β0 = (βT0S, 0)T , x = (xTS ,x
T
N)T , and E(ε|xS) = 0. Suppose the penalty satisfies As-

sumption 2.2, and s3 log s = o(n). In addition, suppose Ex4i < ∞, for all i = 1, ..., p,

Eε4 <∞, and there exist c1, c2 > 0 such that c1 < λmin(ExTSxS) ≤ λmax(ExTSxS) ≤ c2. Then

there exists a strict local minimizer β̂ = (β̂TS , β̂
T
N)T of (3.6), satisfying:

1. β̂N = 0 with probability approaching one, and

2. ‖β̂S − β0S‖ = Op(
√

(s log)/n+
√
sP ′n(dn)).

Note that we only require xS to be uncorrelated with the error term, in other words, if

some of the components in xN are endogenous, i.e., correlated with the error term, the GMM

loss function combined with the penalty function that satisfies Assumption 2.2, (SCAD,

Lasso, MCP, Hard-thresholding, etc) can achieve the variable selection consistency. This is

because it is well known that we can select the correct moment conditions using methods

based on GMM (Andrews (1999) and Liao (2010)).

4 Penalized empirical likelihood

4.1 Definition

This section studies the oracle property of the penalized empirical likelihood (PEL), as

an alternative to the penalized GMM. The Empirical likelihood in the conditional moment

restricted model was studied by Kitamura, et al. (2004), Donald, et al. (2003), and Otsu

(2007). In particular, Kitamura, et al. (2004) and Otsu (2007) used a localized empirical

likelihood by imposing a Nadaraya-Watson kernel weight to incorporate the conditional

moment restrictions. However, when the dimension of xS is large, the localization method,

because of the curse of dimensionality, is practically difficulty to handel. To just focus on

the oracle property of PEL (sparsity recovery and the oracle rate of the estimator), we

employ the regular unconditional empirical likelihood, as used in Qin and Lawless (1994).

Otsu (2007) added a penalty term to the empirical likelihood to penalize the roughness the

estimator when the parameter contains a nonparametric component.

Similar to PGMM, we impose a penalty function that belongs to the same penalty class

as before to obtain the PEL. To achieve the oracle property of PEL in the conditional

moment restricted model, there is no need to carry out a kernel weighting for localization as

in Kitamura et al. (2004) and Otsu (2007), nor do we need to introduce the basis functions

of xS as in Donald, et al. (2003). Our PEL objective function is defined as:

QPEL(β) = LEL(β) +

p∑
j=1

Pn(|βj|), (4.1)
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where

LEL(β) = max
λ∈Rk|β|0

1

n

n∑
i=1

log{1 + λT [g(yi,X
T
i β)⊗Xi(β)]}, (4.2)

and Pn(t) satisfies Assumption 2.2.

Similar to PGMM, LEL is not continuous on Rp. However, we can first constrain the

minimization problem of minβ QPEL(β) on B and apply Talyor’s expansion to L̃EL(βS) =

LEL(βS, 0). It will be then shown that a local minimization solution constrained on B is also

a local solution on Rp.

4.2 Oracle property of PEL

We impose the following assumptions in this section. Assumption 4.1 imposes regularity

conditions on the moments. We need the eighth moment of gj(y,x
Tβ0)xS to be finite to

ensure that the score function of LEL(β0S) is unbiased. In addition, E‖∂t2m(y,xTβ0)‖8 <∞
is needed for the remaining term of L̃EL(β0S) to converge to zero in Frobenius norm.

Assumption 4.1. (i) E‖xS‖8 = O(s4), and Ex4l <∞ for all l /∈ AS.

(ii) There exists B > 0, such that E[gj(y,x
Tβ0)xl]

8 < B, for all j = 1, ..., k, l ∈ AS.

The next assumption requires some additional notation: For any subset R = {r1, ..., rq} ⊆
S, let XiR = (Xi,r1 , ..., Xi,rq), i = 1, ..., n, which is a subvector of XiS. Define

V̂R =
1

n

n∑
i=1

[g(yi,X
T
i β0)g(yi,X

T
i β0)

T ]⊗ [XiRX
T
iR]

=
1

n

n∑
i=1

[g(yi,X
T
i β0)⊗XiR][g(yi,X

T
i β0)⊗XiR]T .

In particular, write V̂ = V̂S.

Assumption 4.2. (i) For any subset R ⊆ S, there exists c > 0, such that λmin(V̂R) ≥ c,

w.p.1.

(ii) There exists c2 > 0, λmax(X
T
SXS) ≤ c2n, w.p.1.

Theorem 4.1. Suppose s4 = O(n). Under the assumptions of Theorem 3.1 and Assumptions

4.1, and 4.2, there exists a strictly local minimizer of β̂ = (β̂TS , β̂
T
N)T of the penalized empirical

likelihood QPEL(β) such that:

(i)

‖β̂S − βS‖ = Op(

√
s log s

n
+
√
sP ′n(dn)),
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where β̂S is a subvector of β̂ formed by the components whose indices are in S, and

(ii) β̂N = 0 with probability approaching one as n→∞.

For the asymptotic normality, define

Σ(β0S) =

(
1

n

n∑
i=1

m(yi,X
T
iSβ0S)T ⊗ (XiSXiS)

)
V̂ −1

(
1

n

n∑
i=1

[m(yi,X
T
iSβ0S)T ⊗ (XiSXiS)]T

)
.

Assumption 4.3. There exists c > 0, such that λmin(Σ(β0S)) > c w.p.1.

A sufficient condition for this assumption is that all the eigenvalues of V̂ are

bounded by a fixed constant which does not depend on s, p, n, and the eigenvalues

of
(
1
n

∑n
i=1m(yi,X

T
iSβ0S)T ⊗ (XiSXiS)

) (
1
n

∑n
i=1[m(yi,X

T
iSβ0S)T ⊗ (XiSXiS)]T

)
are bounded

away from zero. For the simple linear model as an example, this is satisfied for all large

enough n if the eigenvalues of ExSxTS are bounded away from both zero and infinity,

Eε2 <∞, and ε and xS are independent.

Under the above assumptions, we can show the asymptotic normality of the PEL esti-

mator:

Theorem 4.2. Under the assumptions of Theorem 4.1, and Assumptions 4.3, the penalized

empirical likelihood estimator in Theorem 4.1 satisfies: for any unit vector α ∈ Rs, ‖α‖ = 1,

√
nαT (AnV̂

−1An)1/2(β̂S − βS)→d N(0, 1).

5 Generalized Sparsity and Local Perturbation

So far we have made the assumptions that the important covariates are exogenous, i.e.,

uncorrelated with the error term, and that the coefficients of the unimportant covariates are

exactly zero. These conditions can be relaxed to allow for local perturbations. We allow the

conditional moment restrictions to have local perturbations:

E[g(y,xTβ0)|xs] = Op(n
−α), for some α > 0. (5.1)

In the linear regression model, this means the important covariates can be weakly dependent

on the error term. In addition, Suppose β0 can be partitioned as: β0 = (βT0S, β
T
0N)T , where β0S

and β0N correspond to the “large” and “small” coefficient components in some sense to be

defined later. Let AS ⊂ {1, ..., p} be a subset containing the indices of the large coefficients,

and let AN ⊂ {1, ..., p} contain the indices of the small coefficients, AN ∩AN = ∅. Hence β0S

and β0N correspond to the components of β0 in AS and AN . Instead of β0N = 0 as in the
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previous sections, the generalized sparsity condition assumes that (Zhang and Huang (2008)

and Horowitz and Huang (2010)):

‖β0N‖1 < ηn,

for some ηn → 0 under l1 norm ‖.‖1.
Under the generalized sparse condition, the endogenous unimportant covariates arise

naturally in the simple linear regression.

Example 5.1. Consider linear regression

y = xTSβ0S + xTNβ0N + ε.

where xS and xN are uncorrelated with ε. Suppose a component of xN , denoted by xl, has

a small but nonzero coefficient |βl| = an, an decays to zero fast, and Exl = 0. In addition,

there is another component of xN , denoted by xk, correlated with xl. We can put x1 into

the error term, by defining ε̃ = xlβl + ε, and writing

y = xTSβ0S + (x−l,−kN )Tβ−l,−k0N + xkβk + ε̃, (5.2)

where x−l,−kN is the vector of unimportant covariates excluding xl and xk. Since xk is cor-

related with xl, xk is endogenous in model (5.2). But the correlation is weak: Eε̃xk =

βlExlxk = Op(an), assuming |Exlxk| is bounded away from infinity. �

In the linear regression model g(y,xTβ0) = y − xTβ0, under the assumption that all

the components in x are uncorrelated of y−xTβ0, Zhang and Huang (2008) gave conditions

under which the Lasso selects exactly the set of nonzero regression coefficients, provided that

these coefficients are bounded away from zero at a certain rate. More recently, Horowitz and

Huang (2010) showed that the adaptive Lasso distinguishes correctly between large and small

coefficients with probability approaching one.

All these results concerning about the generalized sparsity in the literature allow for only

the weak endogeneity, i.e., the correlations between the components of xN and ε decay to

zero. Essentially, the unimportant covariates considered are still exogenous for large enough

n. This section extends the results in the literature to the case when these correlations

are bounded away from zero. It also extends the results in the previous sections to models

with local perturbation (5.1), which then also allows the important covariates to be weakly

correlated with the regression error, without introducing instrumental variables.

Let |β(1)| ≤ ... ≤ |β(p)| be the ordered components of β0 in absolute value. Fix a decaying
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sequence ηn, and let

t = max{k :
k∑
j=1

|β(j)| ≤ ηn}.

Define

AN = {j ∈ {1, ..., p} : |β0,j| ≤ |β(t)|}, AS = {1, ..., p} ∩ AcN .

As before, define

dn =
1

2
min{|β0,j| : j ∈ AS}, s = #AS.

We aim to estimate the small coefficients of β0 to be exactly zero with high probability,

under the assumption that g(y,xTβ0) is weakly correlated with xS, but allow for endogenous

unimportant covariates whose correlation with g(y,xTβ0) can be bounded away from zero.

Theorem 2.3 and Theorem 3.3 can be extended to the generalized sparsity case, which show

that in the presence of endogenous unimportant covariates, the penalized OLS is generally

not consistent for variable selection. However, we can still apply either PGMM or PEL. For

simplicity and brevity, we consider the case when dim(g) = 1, and show the oracle property

of PGMM only. Consistency results of PEL like those in Theorem 4.1 can be naturally

obtained as well.

As in Section 3, the objective function of PGMM is given by:

Q(β) = [
1

n

n∑
i=1

g(yi,X
T
i β)Xi(β)]TW (β)[

1

n

n∑
i=1

g(yi,X
T
i β)Xi(β)] +

p∑
j=1

Pn(|βj|).

In addition to the assumptions in Sections 2 and 3, we impose the following conditions

on the generalized sparsity, local perturbation, as well as the penalty function:

Assumption 5.1. (i) s3(η2n + n−2α) = o(1).

(ii)
√
s(ηn + n−α) = o(lim inft→0+ P

′
n(t)).

For Lasso, SCAD and MCP, lim inft→0+ P
′
n(t) = O(λn). Hence Condition (ii) puts a

restriction of the tuning parameter of the penalty function to depend on the unknown degree

of local perturbations ηn + n−α. Such a condition (that the tuning parameter depends on

the unknown model parameters) is not uncommon in the literature, which is often used in

sensitivity studies and the regularization literature, as in Hall and Horowitz (2005), Chen

and Pouzo (2011).

The effect of the local perturbation and the generalized sparsity condition on the rate of

convergence is demonstrated in the following theorem.
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Theorem 5.1. Under Assumption 5.1 and the assumptions of Theorem 3.1, there exists a

strictly local minimizer β̂ = (β̂TS , β̂
T
N)T of Q(β) such that

‖β̂S − β0S‖ = Op(

√
s log s

n
+

√
s

nα
+
√
sηn +

√
sP ′n(dn)),

and

lim
n→∞

P (β̂N = 0) = 1.

6 Endogenous Important Covariates and Selection of

Optimal Instruments

6.1 Selection of covariates

In many empirical applications, the important covariates are also endogenous. In this

case the moment condition (3.2) is misspecified. However, suppose econometricians observe

a set of instrumental variables w such that

E(g(y,xTβ0)|w) = 0, (6.1)

With the help of the moment condition (6.1), we can also achieve the oracle property of the

estimator, allowing the important covariates to be endogenous.

In the presence of possibly endogenous important covariates, recently Caner and Zhang

(2009) proposed a penalized GMM procedure for variable selection when p diverges but

p = o(n), based on the elastic net of Zou and Zhang (2009). This section extends their

results to the ultra high dimensional case with general penalty functions. The extension is

not trivial because we allow p = O(exp(αn)) for some α ∈ (0, 1).

Let v = (v1, ..., vp)
T = (f1(w), ..., fp(w))T , which can be either a subset of w if a large

set of instrumental variables in w is available, or a p-dimensional vector of instruments

transformed from w by the basis functions (f1, ..., fp), the moment condition (6.1) then

implies

E(g(y,xTβ0)⊗ v) = 0. (6.2)

For any β ∈ Rp/{0}, let v(β) = (vl1, ..., vlr) ∈ Rr be a subset of v such that (βl1, ..., βlr) are

the nonzero components of β with r = |β|0. In particular, we denote by vS = v(β0S). The

GMM weight matrix W (β) is a diagonal matrix defined similarly as in Section 3.1.

Suppose we have (yi,Xi,Vi)
n
i=1 as n i.i.d. observations of (y,x,v). The penalized GMM

objective function is constructed based on (6.2) as follows: for a penalty function Pn(.) that
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belongs to the family described in Section 2,

QIV (β) = (
1

n

n∑
i=1

g(yi,X
T
i β)⊗Vi(β))TW (β)(

1

n

n∑
i=1

g(yi,X
T
i β)⊗Vi(β)) +

p∑
j=1

Pn(|βj|).

Technically, the oracle property of the PGMM procedure is attained by an application of

Theorem 2.1.

For simplicity, in this section we still assume β0 = (βT0S, 0)T , where dim(β0S) = s =

o(n). The results can be also extended to the generalized sparsity condition using the same

techniques in Section 5. We impose the following assumptions.

Assumption 6.1. (i)β0 is identified by E(g(y,xTβ0)|v) = 0.

(ii) maxi≤pEv
2
i <∞, and there exist b > 0 and r > 0 such that for any t > 0,

max
i≤p

P (|vi| > t) ≤ exp(−(t/b)r).

Let

Ṽ = E(g(y,xβ0)⊗ v)(g(y,xβ0)⊗ v)T .

Assumption 6.2. There exists C > 0 such that,

(i) λmin(Ṽ ) > C,

(ii) λmax((ExSvT )(ExSvT )T ) = O(1).

(iii) minj≤k λmin(E(mj(y,x
Tβ0)xSvTS )E(mj(y,x

Tβ0)xSvTS )T ) > C,

(iv) maxj≤k,l∈AS λmax((Exlqj(y,x
Tβ0)xSvTS )(Exlqj(y,x

Tβ0)xSvTS )T ) = o(n/(s2 log s)).

These conditions are parallel to those in Assumption 3.5 when v is used as the instru-

mental variables. Note that in the linear regression model, (iv) is naturally satisfied as

qj ≡ 0.

Assumption 6.3. (i) For some C > 0, sup‖β−β0‖≤C
√

(s log s)/n
η(β) = o((s log s)−1/2).

(ii) lim inft→0+ P
′
n(t) � s

√
(log s)/n.

In the assumption η(β) is defined in (2.2). This assumption is satisfied for Lasso as long as

λn � s
√

log s/n. For SCAD and MCP, P ′′n (t) = 0 when t > aλn, and hence the assumption

is satisfied if dn � λn � s
√

log s/n, where dn denotes the minimal signal min{β0j : j ∈ AS}.

Theorem 6.1. Under Assumptions 2.1, 3.2(i), 3.3, 3.4, 6.1-6.2, and 6.3(ii), there exists a

strictly local minimizer β̂ = (β̂TS , β̂
T
N)T of QIV (β) such that

‖β̂S − β0S‖ = Op(

√
s log s

n
+
√
sP ′n(dn)),
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and

lim
n→∞

P (β̂N = 0) = 1.

In addition, if Assumptions 6.3(i) and 3.6(ii) are satisfied, for any α ∈ Rs, ‖α‖ = 1,

√
nαT Γ̃−1/2n Σ̃n(β̂S − β0S)→d N(0, 1),

where Γ̃n = 4ÃnWSṼ WSÃ
T
n , Σ̃n = 2ÃnWSÃ

T
n , and

Ãn = 1
n

∑n
i=1(m1(yi,X

T
i β0)XiSVT

iS, ...,mk(yi,X
T
i β0)XiSVT

iS).

Remark 6.1. 1. The instrumental variable v can be made of cp-dimensional for any fixed

integer c ≥ 1, when a larger set of transformed instruments are included. Then for each

fixed β with |β|0 = r nonzero components, there are cr instruments in v(β) associated.

In most of the cases, this guarantees that the parameter is over-identified. Roughly

speaking, minimizing the GMM criterion function on Rr × {0}p−r always identifies a

unique solution for any r ≤ p, and due to the over-identification, the minimum would

not be close to zero unless is minimized on the exact subspace Rs × {0}p−s where β0

lies. Similar results as in Theorem 6.1 can be still obtained.

2. An alternative GMM criterion function is constructed using all the candidate instru-

ments (see, e.g., Liao (2011), and Caner and Zhang (2009)). In order for the GMM

criterion function to identify a unique minimizer, we need the number of used instru-

ments to be at least as many as the dimension of the parameter. When p grows much

faster than n as in the ultra high dimensional variable selection problem, however, this

will lead to the inconsistency of GMM. In contrast, our approach uses only a subset

v(β) that depends on the support of each fixed argument, which avoids the inconsis-

tency introduced by using too many moment conditions, and at the same time, always

guarantees the identification of the solution on each subspace Rr × {0}p−r.

3. We can also conduct the variable selection using penalized empirical likelihood as in

Section 4, where the EL objective function is given by

LEL(β) = max
λ∈Rk|β|0

1

n

n∑
i=1

log{1 + λT [g(yi,X
T
i β)⊗Vi(β)]}

Similar conditions as those in Section 4 can be derived to achieve the oracle properties

of the PEL procedure.
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6.2 Selection of the optimal instruments

When β0S is of fixed dimension, we can obtain the semiparametric efficient estimator

of β0S in two steps. In the first step, apply the PGMM procedure as described above to

select the important covariates xS, and obtain a consistent initial estimator β̂S. In the

second step, apply GMM with the estimated optimal weight matrix and instrument using

β̂S. In the linear regression model when Lasso is chosen as the penalty function, the two-step

procedure described above is called post-Lasso in Belloni et al (2010).

After the important covariates are selected in step one, by Theorem 6.1, with probability

approaching one, we identify the following model

E(ρ(Z, β0S)|w) = 0, (6.3)

where ρ(Z, β0S) = g(y,xTSβ0S), and obtain a consistent estimator β̂S. Since we have identified

the support of important covariates AS with high probability, we treat it as a known set.

Hence in the following, we do not distinguish the notation l ≤ s from l ∈ AS.

Suppose ρ(Z, .) is continuously differentiable in β. It is well known that the optimal

instrument that leads to the semiparametric efficient estimation of β0S is given by A(w) =

D(w)TΩ(w)−1 (see, e.g., Chamberlain (1987), Newey (1993)), where

D(w) = E(
∂ρ(β0S)

∂βS
|w),Ω(w) = E(ρ(Z, β0S)ρ(Z, β0S)′|w).

Our goal is to estimate D(w) and Ω(w) nonparametrically in the presence of many instru-

mental variables.

For simplicity, we consider only the single moment condition case dim(ρ) = 1, and restrict

ourselves to the homoskedastic case where Ω(w) = Ω is a constant matrix independent of

w, which can be consistently estimated by

Ω̂ =
1

n

n∑
i=1

g(yi, X̂
T

iSβ̂S)g(yi, X̂
T

iSβ̂S)T .

Here X̂iS is the vector of covariates selected by the penalized GMM described previously.

Suppose there is a very large list of technical instruments v = (v1, ..., vp1)
T . To avoid

introducing redundant notation, we set p1 = p, and v can be thought of as the instruments

used to select the important covariates in Section 6.1. In this subsection, we aim to provide

a consistent instrumental selection procedure to estimate D(w) in the presence of many

instruments, which can be even ultra high dimensional. Recently Belloni et al (2010) and
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Belloni et al (2011) proposed a Lasso procedure to estimate D(w) in linear models, and de-

rived an asymptotic theory for the resulting IV estimators. However, to our best knowledge,

there has not been a formal study of the ultra high dimensional instrument selection problem

for the possibly nonlinear models as well as the effect of using more general (and possibly

more design-adaptive) penalty functions. Some of the alternative penalties allowed are more

design-adaptive than Lasso, as illustrated in Fan and Li (2001), and Antoniadis and Fan

(2001). In addition, the effect of the generalized sparsity condition under which the opti-

mal instruments are allowed to weakly depend on many unimportant technical instrumental

variables is still unclear yet.

Our method is based on a key assumption on the generalized sparse model of instrumental

variables

Assumption 6.4. (i)There exists an s × p matrix Θ0 = (θ01, ..., θ0s)
T , a vector function

a(w), and a nonnegative sequence cn → 0 such that

D(w) = Θ0v + a(w), max
l≤s

(
1

n

n∑
i=1

al(Wi)
2) = Op(c

2
n). (6.4)

(ii) There exist α1 ∈ (1
2
,∞] and α2 ∈ (0, 1

2
) such that, for each l ≤ s, we have partition

{1, ..., p} = Tl ∩ T cl with

max
l≤s

∑
i/∈Tl

|θ0l,i| < n−α1 , min
l≤s,i∈Tl

|θ0l,i| = hn > n−α2 ,

max
l≤s

#{i : i ∈ Tl} = s1 = o(n). (6.5)

When v is a vector of functions of w, it can be taken as a large number of series terms

with respect to w such as B-splines, dummies, polynomials, and various interactions. Then

Condition (i) is simply the nonparametric sieve approximation assumption as in Newey

(1990) and Belloni et al (2011). Condition (ii) states that for each p-dimensional sieve

coefficient θ0l, only a few number of its components are “big”, whose indices are collected

in the important set Tl. The rest components are comparatively much smaller, and satisfy

the generalized l1 sparsity condition
∑

i/∈Tl |θ0l,i| < n−α1 . Roughly speaking, it allows the

sieve approximation of each component of D(w) to be a function of only a few important

instruments and many unimportant instruments, and lets the identities of the important

instruments (whose indices support is Tl) be unknown. Hence we substantially generalize

the classical parametric model of optimal instruments.

For each l, let θ0l,S = (θ0l,j : j ∈ Tl), and θ0l,N = (θ0l,j : j /∈ Tl), corresponding to the

subvectors of large and small coefficients in θ0l. The sieve coefficient is then partitioned into
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θ0l = (θT0l,S, θ
T
0l,N)T . Accordingly, define vlS = (vi : i ∈ Tl) as the subvector of v consisting

of the instruments that are important to Dl(w). Our goal is to identify θ0l,S from θ0l,N with

high probability, and consistently estimate Dl(w) using only the important instruments for

each l.

Consider the penalized least square criterion function:

Ql(θ) =
1

n

n∑
i=1

(
∂ρ(Zi, β̂S)

∂βSl
−VT

i θ)
2 +

p∑
j=1

Pn(|θj|). (6.6)

The penalized least square estimator of Θ0 as well as the optimal instrument D(w) is defined

as:

θ̂l = arg min
θ
Ql(θ),

D̂(w) = Θ̂v, Θ̂ = (θ̂1, ..., θ̂s)
T .

We impose the following conditions:

Assumption 6.5. (i) ‖β̂S − β0S‖ = Op(
√

(s log s)/n).

(ii) There exists M > 0 such that for any β1, β2 ∈ Rs and each z,

max
l≤s
|∂ρ(z, β1)

∂βSl
− ∂ρ(z, β2)

∂βSl
| ≤M‖β1 − β2‖.

Condition (i) requires the initial estimator of β0S be consistent, and this is guaranteed by

Theorem 6.1 in the last subsection. In addition, if O(P ′n(dn)) is dominated by O(
√

log s/n),

the rate of convergence then simplifies to Op(
√

(s log s)/n). We only consider the case when

the model structural function is differentiable, whose derivative is Lipschitz continuous.

Assumption 6.6. (i) C1 < minl≤s λmin(EvlSvTlS) < maxl≤s λmax(EvlSvTlS) < C2, and

maxl≤pEv
2
l < C2 for some C1 > 0, C2 > 0.

(ii) max{cn,
√

log p/n} = o(P ′n(0+)).

(iii) For each l, let el = ∂βlρ(Z, β0S)−Dl(W). Then maxl≤s P (|el| > t) ≤ exp(−(t/b)r) for

some b > 0 and r > 0.

Condition (i) states that EvlSvTlS should be well-behaved. While it is a standard assump-

tion in the sieve approximation literature that the population Gram matrix of the fourier

basis functions has eigenvalues bounded from above and below (e.g., Newey (1997)), our con-

dition here requires only a small proportion of the transformed IV’s satisfy this assumption.

Sufficient conditions for (i) can be found, for example, in Belloni et al (2010). Condition (ii)

places the regularity condition on the penalty function as before, and Condition (iii) requires

an exponential tail for ∂βlρ(Z, β0S)−Dl(W).
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Let θ̂l = (θ̂lS, θ̂lS) be the partition corresponding to the positions of θ0l,S and θ0l,N .

Therefore, θ̂lS = {θ̂lj : j ∈ Tl}, and θ̂lN = {θ̂lj : j ∈ T cl }. The following theorem derives the

asymptotic properties of the penalized least square estimation procedure.

Theorem 6.2. Under the assumptions of Theorem 6.1 and Assumptions 6.4-6.6, for each

l, Ql(θl) has a strictly local minimizer θ̂l = (θ̂lS, θ̂lS), such that

‖θ̂lS − θ0l,S‖ = Op(

√
s log s

n
+

√
s1 log s1

n
+
√
s1n

−α1 +
√
s1cn +

√
s1P

′
n(hn)).

lim
n→∞

P (θ̂lN = 0) = 1.

In addition,

1

n

n∑
i=1

|D̂l(Wi)−Dl(Wi)|2 = Op(
s1s log s1

n
+
s21 log s1

n
+ s21n

−2α1 + s21c
2
n + s21P

′
n(hn)2).

With the estimate D̂(w) and Ω̂, it is straightforward to construct the optimal GMM and

obtain the semiparametric efficient estimator of β0S.

7 Implementation

In this section we discuss the implementation for numerically minimizing the penalized

objective function in PGMM and PEL.

7.1 Smoothed PGMM and smoothed PEL

The GMM objective function (3.3) is given by

LGMM(β) =

[
1

n

n∑
i=1

g(yi,X
T
i β)⊗Xβ

i

]T
W (β)

[
1

n

n∑
i=1

g(yi,X
T
i β)⊗Xβ

i

]

=

p∑
j=1

wj

[
1

n

n∑
i=1

g(yi, x
T
i β)xijI(βj 6= 0)

]T [
1

n

n∑
i=1

g(yi, x
T
i β)xijI(βj 6= 0)

]

where I(βj 6= 0) is the indicator function. Note that for each fixed subset S ⊂ {1, ..., p}, this

objective function is continuous in β on {β ∈ Rp : βj = 0 if j ∈ S}, but is not continuous in

β globally on Rp. As there are 2p subsets like S, minimizing QGMM(β) = LGMM(β)+Penalty
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is generally NP-hard, i.e., there are no polynomial time algorithms to solve the problem1.

The same discontinuity problem also applies to the PEL objective function.

We overcome this discontinuity problem by applying the “smoothing” technique as in

Horowitz (1992), which approximates the indicator function by a continuous smooth function

K : [0,∞)→ R such that:

(i) 0 ≤ K(t) < M for some finite M and all t ≥ 0.

(ii) K(0) = 0 and limt→∞K(t) = 1.

(iii) limt→∞K
′(t)t = 0, and lim supt→∞K

′′(t)t2 <∞.

We can set K(t) = F (t)−F (0)
1−F (0)

, where F (t) is a continuous cumulative distribution function.

For a pre-determined small number hn, LGMM is approximated by a continuous function in

β:

LK(β) =

p∑
j=1

wj

[
1

n

n∑
i=1

g(yi, x
T
i β)xijK(

β2
j

hn
)

]T [
1

n

n∑
i=1

g(yi, x
T
i β)xijK(

β2
j

hn
)

]
.

The objective function of PEL can be approximated in a similar manner. Note that

LEL(β) = max
λ

1

n

n∑
i=1

log(1 + λT (g(yi,X
T
i β)⊗Xi(β)))

= max
λj∈Rk,j=1,...,p

1

n

n∑
i=1

log(1 +

p∑
j=1

λTj g(yi,X
T
i β)xijI(βj 6= 0)),

which can be replaced with

LK(β) = max
λj∈Rk,j=1,...,p

1

n

n∑
i=1

log(1 +

p∑
j=1

λTj g(yi,X
T
i β)xijK(

β2
j

hn
)).

The smoothed version of the objective function based on the instrumental variables in Section

6.1 is straightforward.

Remark 7.1. If hn = o(min{β0j : j ∈ AS}), it can be shown that minimizing either the

smoothed PGMM or the smoothed PEL also leads to the oracle property, and the results

in Theorems 3.1, 3.1, 4.1, 4.2 and 6.1 still hold. This can be done by directly checking the

sufficient conditions derived in Section 2. The detailed proof is omitted here, and is available

from the authors.

1In a special case when g(y,xTβ) = y − xTβ, and xS is independent of xN , the problem can be solved
in polynomial time. It can be shown that, with the identification condition: ∀ε > 0,∃δ > 0 such that
inf‖β0S−βS‖>ε,β=(βTS ,β

T
N )T 6=0 LGMM (βS , βN ) > δ, minimizing LGMM + SCAD can be carried out by a back-

ward elimination procedure.
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7.2 Second order approximation

As remarked in Section 3 and Section 6, the instrument in the definition of PGMM can be

replaced with a cp-dimensional function vector of f(Xi, β) (or f(Vi, β) if the IV is available).

In most of the cases, this guarantees that the parameter is over-identified. Roughly speaking,

minimizing the GMM criterion function on Rr × {0}p−r always identifies a unique solution

for any r ≤ p, and due to the over-identification, the minimum would not be close to zero

unless is minimized on the exact subspace Rs × {0}p−s where β0 lies. In this case,the true

β0 is the global minimizer of E[g(y,xTβ)⊗ f(x, β)]TW (β)E[g(y,xTβ)⊗ f(x, β)] on Rp due

to the over-identification outside of any small neighborhood of zero.

We employ the iterative coordinate algorithm (Fan and Lv (2011)): minimize one coordi-

nate of β at a time with fixed other coordinates obtained from previous steps and successive

replacements. The penalty function is approximated by local linear approximation as in

Zou and Li (2008). Specifically, suppose we have obtained β(l) at step l. For k ∈ {1, ..., p},
denote by β

(l)
(−k) as a (p− 1)-dimensional vector consisting of all the components of β(l) but

β
(l)
k . Write (β

(l)
(−k), t) as the p-dimensional vector that replaces the kth component of β(l)

with t. Optimization (7.1) is a univariate minimization problem, which can be carried out

by golden section search. To speed up the convergence, we can also use the second order

approximation of LK(β
(l)
(−k), t) along the kth component:

LK(β
(l)
(−k), t) ≈ L̂K(β

(l)
(−k), t) ≡ LK(β(l)) +

∂LK(β(l))

∂βk
(t− β(l)

(k)) +
1

2

∂2LK(β(l))

∂β2
k

(t− β(l)
(k))

2.

We solve for

β
(l+1)
k = arg min

t
L̂K(β

(l)
(−k), t) + P ′n(|β(l)

k |)|t|. (7.1)

For the remaining component at this step, let β
(l+1)
(−k) = β

(l)
(−k). We accept β

(l+1)
k as the updated

kth component of β(l+1) only if LK(β
(l+1)
(−k) , t) + P ′n(|β(l+1)

k |)|t| strictly decreases. Update

k → k + 1, l→ l + 1.

When the second order approximation is combined with SCAD, the local linear approx-

imation of SCAD is not needed. As demonstrated in the appendix of Fan and Lv (2011),

when Pn(t) is defined using SCAD, the penalized optimization of the following form

min
β∈R

1

2
(z − β)2 + ΛPn(|β|)

has an analytical solution.
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8 Monte Carlo Experiments

8.1 Design 1

To test our proposed method for variable selection, we simulate a simple linear model:

y = xTβ0 + ε, ε ∼ N(0, 1).

(β01, β02, β03, β04, β05) = (5,−4, 7,−1, 1.5); β0j = 0, for 6 ≤ j ≤ p.

For simplicity, the distribution of the error term is set to be homoskedastic. The p-

dimensional vector of covariates x is generated from the following process:

z = (z1, ..., zp)
T ∼ Np(0,Σ), (Σ)ij = 0.5|i−j|,

z is independent of ε,

(x1, ..., x5) = (z1, ..., z5), xj = (zj + 5)(ε+ 1), for 6 ≤ j ≤ p.

The unimportant covariates are correlated with both important covariates and the error

term.

The data contains n = 200 i.i.d. copies of (y, x). Penalized OLS and PGMM are

carried out separately for comparison. The simulation results in Fan and Lv (2011) favored

SCAD over Lasso in high dimensional variable selection when all the candidate covariates are

exogenous. Hence in our simulation we use SCAD with pre-determined tuning parameters of

λ as the penalty function, and look at its behavior when endogenous covariates are present.

We use the logistic cumulative distribution function with h = 0.1 for smoothing:

F (t) =
exp(t)

1 + exp(t)
, K

(
β2
j

h

)
= 2F

(
β2
j

h

)
− 1.

After the minimization procedure, a coefficient βj is selected if |βj| > 10−4. There are 100

replications per experiment. Three performance measures are used to compare the methods.

The first measure is the mean squared error (MSE) of the important covariates, determined

by the average of ‖β̂S − β0S‖, where AS = {1, ..., 5}. The second measure is the number of

correctly selected non-zero coefficients, i.e., the true positive (TP), and the third measure is

the number of incorrectly selected coefficients, i,e., the false positive (FP). In addition, the

standard error over the 100 replications of each measure is also reported. In each simulation,

we initiate β(0) = (0, ..., 0)T , and run a penalized OLS for λ = 0.01 to obtain the initial value

for the penalized GMM procedure. The results of the simulation are summarized in Table
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1-3, which compare the performance measures of penalized OLS and PGMM for three values

of p.

Table 1: Performance Measures of POLS and PGMM when p = 15

POLS PGMM
λ = 0.05 λ = 0.1 λ = 0.5 λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.4

MSE-Mean 0.147 0.138 0.626 1.452 0.193 0.177 0.203 0.953
(0.055) (0.052) (0.306) (0.320) (0.066) (0.067) (0.061) (0.241)

TP-Mean 5 5 4.85 3.57 5 5 5 4.55
Median 5 5 5 4 5 5 5 5

(0) (0) (0.357) (0.497) (0) (0) (0) (0.5)
FP-Mean 9.356 8.84 2.7 1.34 0.099 0.090 0.02 0.04
Median 10 9 3 1 0 0 0 0

(0.769) (0.987) (1.127) (0.553) (0.412) (0.288) (0.218) (0.197)

POLS has non-negligible false positives (FP). The average FP decreases as the magnitude

of the penalty parameter increases, however, with an increasing average MSE as well since

larger penalties also incorrectly miss the important covariates. For λn = 1, the median of

the number of selected nonzero parameters is only 4. In contrast, PGMM performs quite

well in selecting the important covariates, and in correctly eliminating the unimportant

covariates. Note that the average MSE of PGMM is only slightly larger than that of POLS

when λ = 0.05 and 0.1. However, it has error-free selection of the important covariates, and

almost no false positives. Note that λ = 0.4 is a large tuning parameter that results to some

incorrectly eliminated important covariates, and a larger MSE.

Table 2: Performance Measures of POLS and PGMM when p = 50

POLS PGMM
λ = 0.05 λ = 0.1 λ = 0.5 λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.4

MSE-Mean 0.145 0.133 0.629 1.417 0.261 0.176 0.204 0.979
(0.053) (0.043) (0.301) (0.329) (0.094) (0.069) (0.069) (0.245)

TP-Mean 5 5 4.82 3.63 5 5 5 4.5
Median 5 5 5 4 5 5 5 4.5

(0) (0) (0.385) (0.504) (0) (0) (0) (0.503)
FP-Mean 37.68 35.36 8.84 2.58 0.08 0.03 0.02 0.14
Median 38 35 8 2 0 0 0 0

(2.902) (3.045) (3.334) (1.557) (0.337) (0.171) (0.141) (0.569)
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Table 3: Performance Measures of POLS and PGMM when p = 300

POLS PGMM
λ = 0.05 λ = 0.1 λ = 0.5 λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.4

MSE-Mean 0.186 0.159 0.650 1.430 0.274 0.187 0.187 1.009
(0.073) (0.054) (0.304) (0.310) (0.086) (0.102) (0.068) (0.276)

TP-Mean 5 5 4.82 3.62 5 5 5 4.45
Median 5 5 5 4 5 5 5 4

(0) (0) (0.384) (0.487) (0) (0) (0) (0.557)
FP-Mean 227.96 210.47 42.78 7.94 0.11 0 0 0.05
Median 227 211 42 7 0 0 0 0

(10.767) (11.38) (11.773) (5.635) (0.37) (0) (0) (0.330)

8.2 Design 2

Consider the model

y = xTβ0 + ε,

x = v + u,

where (β01, β02, β03, β04, β05) = (5,−4, 7,−1, 1.5), β0j = 0, for 6 ≤ j ≤ p. Here x is a p × 1

vector of covariates, and v is a p×1 vector of instrumental variables, generated independently

from N(0, 1), also independently of ε. The error terms (ε,u) are generated from Np+1(0,Σ),

where Σ = (0.95|i−j|)(p+1)×(p+1). All the components in x are endogenous.

The simulations are carried out for p = 10, 50 and 300 three levels. One hundred repli-

cations are conducted for each p, with n = 200 observations generated each time. We still

use SCAD as the penalty function. In each simulation, we initiate β(0) = (0, ..., 0)T , and

run a penalized OLS for λ = 0.01 to obtain the initial value for the penalized GMM proce-

dure. The results are summarized in the following table for different choices of the tuning

parameters of SCAD in the PGMM step.

The performance of the estimators is quite consistent for the three levels of p. The

magnitude of the penalty λ = 0.01 is relatively small so that there are a small number of

false positives. However, the penalty λ = 1 is a bit too much which results to a nonzero

coefficient to be falsely eliminated. Also, the minimal nonzero signal |β4| = 1 turns out

to be large enough so that the penalized GMM can do a perfect job in identifying all the

nonzero and zero coefficients under some appropriate penalty level, i.e., λ = 0.1 for p = 10

and λ = 0.5 for p = 50 and 300.
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Table 4: Performance Measures of Penalized GMM

p = 10 p = 50 p = 300
λ = 0.01 λ = 0.1 λ = 1 λ = 0.01 λ = 0.3 λ = 1 λ = 0.01 λ = 0.3 λ = 1

MSE-Mean 0.111 0.290 0.896 0.104 0.113 0.825 0.111 0.156 0.873
(0.039) (0.117) (0.244) (0.037) (0.039) (0.205) (0.040) (0.116) (0.219)

TP-Mean 5 5 4.82 5 5 4.88 5 5 4.77
Median 5 5 5 5 5 5 5 5 5

(0) (0) (0.412) (0) (0) (0.356) (0) (0) (0.423)
FP-Mean 0.43 0 0 1.150 0 0 1.663 0 0
Median 0 0 0 1 0 0 1 0 0

(0.624) (0) (0) (1.067) (0) (0) (2.081) (0) (0)

To study the sensitivity of our procedure to the minimal nonzero signals, we run another

set of simulations in which we change β4 = −0.5 and keep all the remaining parameters the

same as before. The minimal nonzero signal becomes |β4| = 0.5, and we run for p = 20.

Table 5 indicates that the minimal signal is too small so that it is not as easily distinguishable

from the zero coefficients as before.

Table 5: Performance Measures of Penalized GMM when p = 20, β4 = −0.5

λ 0.001 0.005 0.01 0.05 0.1 0.5
MSE-Mean 0.112 0.136 0.137 0.156 0.142 0.433

(0.090) (0.117) (0.102) (0.117) (0.083) (0.158)
TP-Mean 4.96 4.92 4.94 4.910 4.960 4.250
Median 5 5 5 5 5 4

(0.197) (0.273) (0.239) (0.288) (0.197) (0.435)
FP-Mean 11.28 3.88 1.135 0.020 0 0
Median 11 3 1 1 0 0

(1.545) (2.447) (2.139) (0.141) (0) (0)

9 Conclusion

We consider the ultra high dimensional variable selection problem in which the number of

regressors grows exponentially fast with the sample size. The true parameter is assumed to be

sparse in the sense that many components are exactly zero. We give sufficient and necessary

conditions for a general penalized optimization to achieve the consistency for both variable
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selection and estimation, and apply these results to the conditional moment restricted model,

which covers a board range of statistical models in application.

An interesting finding is that, when there exists an endogenous variable whose true

regression coefficient is zero, the penalized OLS does not satisfy the necessary condition of

variable selection regardless of the penalty selected from a large family of penalty functions.

We then propose two alternative solutions to the above inconsistency problem, by either

penalized GMM or penalized EL. It is shown that both of the procedures possess the oracle

property asymptotically.

The oracle property can be also achieved when the important covariates are also poten-

tially endogenous, with the help of instrumental variables. In addition, in the presence of

many instruments (possibly ultra-high dimensional), the optimal instrument is estimated by

a sparse model, where the only a few instruments are important. We allow for the general-

ized sparsity condition on the nonparametric sieve approximation to the optimal instrument,

and derive the oracle properties.
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A Proofs for Section 2

Throughout the Appendix, C will denote a generic positive constant that may be different in different

uses, and |α| will denote the “absolute value” of a vector α taken coordinately.

A.1 Proof of Theorem 2.1

Lemma A.1. Under Assumptions 2.1 and 2.2, if β ∈ Rs and ‖β − β0S‖ = o(1), then for all large n,

|
s∑
j=1

Pn(|βj |)− Pn(|β0S,j |)| ≤ ‖β − β0S‖
√
sP ′n(dn)

Proof. By Taylor’s expansion, there exists β∗ lies on the line segment joining β and β0S ,
∑s
j=1(Pn(|βj |) −

Pn(|β0S,j |) = (P ′n(|β∗1 |), ..., P ′n(|β∗s |))(β − β0S) ≤ ‖β − β0S‖
√
smaxj≤s P

′
n(|β∗j |). If ‖β − β0S‖ = o(1), then

maxj≤s |β∗j − β0S,j | = o(1). Hence for all large n, min{|β∗j | : j ≤ s} > dn. Since P ′n is non-increasing (as Pn

is concave), Pn(|β∗j |) ≤ P ′n(dn) for all j ≤ s. Therefore
∑s
j=1(Pn(|βj |)− Pn(|β0S,j |) ≤ ‖β − β0S‖

√
sP ′n(dn).

Q.E.D.

Proof of Theorem 2.1

The proof is a generalization of the proof of Theorem 3 in Fan and Lv (2011). Let kn = an +
√
sP ′n(dn),

and write Q1(βS) = Qn(βS , 0), and L1(βS) = Ln(βS , 0). Then ∂jL1(βS) = ∂jβSLn(βS , 0), for j = 1, 2. Define

Na = {β ∈ Rs : ‖β − β0S‖ ≤ kna} for some a > 8
c > 0 where c is such that λmin(Σ(β0S)) > c. Let ∂Na

denotes the boundary of Na. If Q1(β0S) < minβS∈∂Na Q1(βS), then by the continuity of Q1, there exists a

local minimizer of Q1 inside Na. Equivalently, there exists a local minimizer of Qn restricted on B inside

{β = (βTS , 0)T : βS ∈ Na}. Hence it suffices to show that P (Q1(β0S) < minβS∈∂Na Q1(βS)) →p 1, and that

the local minimizer is strict.

For any βS ∈ ∂Na, there exists β∗ lying on the segment joining βS and β0S such that by the Taylor’s

expansion on L1:

Q1(βS)−Q1(β0S) = (βS −β0S)T∂L1(β0S) +
1

2
(βS −β0S)T∂2L1(β∗)(βS −β0S) +

s∑
j=1

[Pn(|βSj |)−Pn(|β0S,j |)]

By Condition (i), (βS − β0S)T∂L1(β0S) ≥ −‖βS − β0S‖an w.p.a.1. In addition, Condition (ii) yields (βS −
β0S)TΣ(β0S)(βS − β0S) > c‖βS − β0S‖2, and |(βS − β0S)TM(β0S)(βS − β0S)| ≤ ‖βS − β0S‖2 c2 . Hence by

the continuity of Σ and M , and that ‖βS − β0S‖ → 0, (βS − β0S)T∂2L1(β∗)(βS − β0S) > c
2‖βS − β0S‖

2. By

Lemma A.1,
∑s
j=1[Pn(|βSj |)− Pn(|β0S,j |)] ≥ −

√
sP ′n(dn)‖βS − β0S‖. Hence w.p.a.1,

min
β∈∂Na

Q1(β)−Q1(β0S) ≥ kna(
c

4
kna− an −

√
sP ′n(dn)) > kna(2kn − an −

√
sP ′n(dn)) ≥ 0

It remains to show that the local minimizer in Na (denoted by β̂S) is strict. For each h ∈ R/{0}, define

τ(h) = lim supε→0+ sup t1<t2
(t1,t2)∈(|h|−ε,|h|+ε)

−P
′
n(t2)−P

′
n(t1)

t2−t1 . By the concavity of Pn, τ ≥ 0. For βS ∈ Na, we

know that L1 is twice differentiable. Let A(βS) = ∂2L1(βS)− diag{τ(βS1), ..., τ(βSs)}. Since ‖β̂S − β0S‖ =

op(1), by Condition (ii), for any nonzero α ∈ Rs,

αTA(β̂S)α ≥ c

2
αTα− αTαmax

j≤s
τ(β̂Sj)
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By Assumption 2.2, maxj≤s τ(β̂Sj) ≤ supβ∈N1
η(β) = op(1). Therefore A(β̂S) is positive definite w.p.a.1.

Q.E.D.

A.2 Proof of Theorem 2.2

By Theorem 2.1, there exists a neighborhood N2 ⊂ N , such that, for any γ ∈ N2, we can write Tγ =

(γTS , 0). Note that Qn(Tγ) ≥ Qn(β̂), where β̂ = (β̂S , 0)T . Thus it suffices to show that Qn(Tγ) ≤ Qn(γ). In

fact, Qn(Tγ)−Qn(γ) = Ln(Tγ)− Ln(γ)− (
∑p
j=1 Pn(γj)−

∑s
j=1 Pn(|(Tγ)j |)) ≤ 0, by Condition (2.2).

If Ln is continuously differentiable in a neighborhood of β0, by the mean value theorem, there exists

λ > 0 such that for h = λγ + (1− λ)Tγ,

Qn(Tγ)−Q(γ) =
∑
l/∈AS

∂Ln(h)

∂βl
(−γl)−

∑
l/∈AS

P ′n(|hl|)|γl| ≤
∑
l/∈AS

(∣∣∣∣∂Ln(h)

∂βl

∣∣∣∣− P ′n(|hl|)
)
γl|.

It thus suffices to show |∂Ln(h)∂βl
| ≤ P ′n(|hl|) for each l /∈ AS . By assumption, |∂Ln(β0)

∂βl
| = op(P

′
n(0)), and

β0N = 0. Therefore, there exists δ > 0 such that if ‖β−β0‖ < δ, |∂Ln(β)∂βl
| < P ′n(|βl|). We know that w.p.a.1,

‖β̂S −β0S‖ < δ/2, thus as long as ‖γ− (β̂T0S , 0)T ‖ < δ/2 almost surely, the triangular inequality then implies

‖h− β0‖ < δ w.p.a.1, which gives the desired result.

Q.E.D.

A.3 Proof of Theorem 2.3

Proof. Write P ′n(0+) = lim supt→0+ P
′
n(t). Suppose the necessary condition does not hold, then there exists

l /∈ AS , such that either one of the two cases holds with probability bounded away from zero:

(i) lim infn→∞
∂Ln(β0)
∂βl

> P ′(0), or

(ii) lim supn→∞
∂Ln(β0)
∂βl

< −P ′(0).

We show that both cases lead to contradiction:

Case (i): By the continuity of lim inf ∂βlLn(.), there exists a convex neighborhood U of β0 such that

for all t ∈ U , lim infn→∞
∂Ln(t)
∂βl

> P ′(0). Let r = −c for some c > 0. Define β = (β̂TS , β
T
2 )T , where

β2 = (0, ..., 0, r, 0, ...0)T , with r on the lth position of β. Since β̂ = (β̂TS , 0)T is a local minimizer, there

exists a neighborhood N of β̂, such that when c > 0 is small enough, β ∈ N , and Qn(β̂) ≤ Qn(β), which

is Ln(β̂) − Ln(β) ≤ Pn(|r|). As ‖β̂ − β0‖ = op(1), N can be made small enough such that both β and β̂

are inside U (β̂ converges to be inside the interior of U). Applying the mean value theorem to both sides of

Ln(β̂)− Ln(β) ≤ Pn(|r|) yields

c∂βlLn(h) = −r∂βlLn(h) ≤ P ′n(|u|)|r| ≤ P ′n(0+)c

for some |u| < |r|, and h lying on the segment joining β̂ and β. The last inequality follows from the fact

that P ′n is nonincreasing.

By the convexity of U , h ∈ U . These arguments imply that the following event occurs with probability

bounded away from zero:

P ′(0) < lim inf
n→∞

∂Ln(h)

∂βl
≤ lim

n
P ′n(0+)

which is a contradiction.
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Case (ii): Let r = c > 0. Define the same β as in case (i). For small enough c, Ln(β̂)−Ln(β) ≤ Pn(|r|).
In addition, − lim supn→∞

∂Ln(t)
∂βl

> P ′(0) for all t in some convex neighborhood U of β0. On the other hand,

by mean value theorem and the fact that P ′n is decreasing, −r∂βlLn(h) ≤ P ′n(0+)c, which is −c∂βlLn(h) ≤
P ′n(0+)c, for some h described as before. Hence with probability bounded away from zero,

− lim sup
n→∞

∂Ln(h)

∂βl
≤ lim

n
P ′n(0+)

By the same argument, h can be made inside U , which implies a contradiction. Q.E.D.

B Proofs for Section 3

B.1 Proof of Theorem 3.1

Lemma B.1. Suppose (A1, ..., Ak), (W1, ...,Wk) are 2k a× a matrices. Let λ1 = max{|λij | : i = 1, ..., k, j =

1, ..., a}, and λ2 = max{|λ∗ij | : i = 1, ..., k, j = 1, ..., a}, where |λij |, |λ∗ij | denote the jth eigenvalues of

Ai and Wi. Let B1, B2 be matrices so that the products in the follows are defined, A = (A1, ..., Ak)and

W = diag{W1, ...,Wk}. Then

(i) ‖AB1‖2 ≤ kλ21‖B1‖2,

(ii) ‖WB2‖2 ≤ λ22‖B2‖2.

Proof. (i) Write B1 = (MT
1 , ...,M

T
k )T , then AB1 =

∑k
i=1AiMi. By Cauchy-Schwarz inequality, ‖AB1‖ ≤∑k

i=1 ‖AiMi‖ ≤ |λ1|
∑k
i=1 ‖Mi‖ ≤ |λ1|

√
k(
∑k
i=1 ‖Mi‖2)1/2 = |λ1|

√
k‖B1‖.

(ii) Write B2 = (HT
1 , ...,H

T
k )T , then ‖WB2‖2 =

∑k
i=1 ‖WiHi‖2 ≤ λ22

∑k
i=1 ‖Hi‖2 = λ22‖B2‖2. Q.E.D.

Theorem 3.1: Consistency

For any β = Rp, we can write Tβ = (βTS , 0)T . Define

L̃GMM (βS) =

[
1

n

n∑
i=1

g(yi,X
T
iSβS)⊗XiS

]T
W (β0)

[
1

n

n∑
i=1

g(yi,X
T
iSβS)⊗XiS

]

Then L̃GMM (βS) = LGMM (βS , 0). We proceed by verifying the conditions in Theorem 2.1.

Condition (i): ∂L̃GMM (β0S) = 2An(β0S)W (β0)
[
1
n

∑n
i=1 g(yi,X

T
iSβ0S)⊗XiS

]
, where

An(β) ≡ 1

n

n∑
i=1

m(yi,X
T
i β)T ⊗ (XiSX

T
iS)

=
1

n

n∑
i=1

(m1(yi,X
T
i β)XiSX

T
iS , ...,mk(yi,X

T
i β)XiSX

T
iS). (B.1)

By Assumptions 3.4 and 3.5(i), the absolute values of the eigenvalues of

{ 1n
∑n
i=1mj(yi,X

T
i β)XiSX

T
iS}kj=1 are uniformly bounded across j = 1, ..., k by a constant C > 0 with

probability approaching one. In addition, the elements in W (β0) are bounded. Hence by Lemma B.1,

‖∂L̃GMM (β0S)‖ ≤ Op(1)‖ 1

n

n∑
i=1

g(yi,X
T
iSβ0S)⊗XiS‖.
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Using the Bernstein inequality with Assumption 3.2, it can be shown that

max
l∈AS ,j≤k

| 1
n

n∑
i=1

gj(yi,X
T
iSβ0S)xli| = Op(

√
log s

n
).

Hence ‖∂L̃GMM (β0S)‖ = Op(
√

(s log s)/n).

Condition (ii) Straightforward but tedious calculation yields ∂2L̃GMM (β0S) = Σ(β0S) + M(β0S),

where Σ(β0S) = 2An(β0S)W (β0S)An(β0S)T , and M(β0S) = 2
∑k
j=1Bj(β0S)Hj(β0S), with (suppose XiS =

(xil1 , ..., xils)
T )

Hj(β0S)s2×s = Is ⊗

[
W (β0S)

1

n

n∑
i=1

gj(yi,X
T
iSβ0S)XiS

]
,

Bj(β0S) =
1

n

n∑
i=1

(xil1qj(yi,x
T
i β0)XiSX

T
iS , ..., xilsqj(yi,x

T
i β0)XiSX

T
iS).

It is not hard to obtain ‖M(β0S)‖ = Op(s
2
√

(log s)/n). Given Assumption 3.5(iii), we can achieve a sharper

bound of ‖M(β0S)‖ as following: By Lemma B.1 and Assumption 3.5 (iii),

‖Bj(β0S)Hj(β0S)‖2 ≤ Op(s)‖Hj(β0S)‖2 ≤ C2
2s‖Hj(β0S)‖2 = Op(

s3 log s

n
).

Thus ‖M(β0S)‖ ≤
∑k
j=1 ‖Bj(β0S)Hj(β0S)‖ = Op(

√
s3 log s/n1/2). By Theorem 2.1, we have

‖β̂S − β0S‖ = Op(
√

(s log s)/n+
√
sP ′n(dn)).

Theorem 3.1: Sparsity: To show the sparsity, we check (2.2) in Theorem 2.2.

For some neighborhood N of (β̂TS , 0)T , and ∀γ ∈ N , write γ = (γTS , γ
T
N )T , Tγ = (γTS , 0)T . For all θ ∈ Rp,

define

F (θ) =

[
1

n

n∑
i=1

g(yi, X
T
i θ)⊗Xi(γS)

]T
W (γS)

[
1

n

n∑
i=1

g(yi, X
T
i θ)⊗Xi(γS)

]
Hence LGMM (T(γ)) = F (Tγ). One can then check that LGMM (γ) = F (γ) + ξ2(γ), where

ξ2(γ) =

k∑
j=1

(
1

n

n∑
i=1

gj(yi,X
T
i γ)Xi(γN ))TW γN (

1

n

n∑
i=1

gj(yi,X
T
i γ)Xi(γN )) ≥ 0,

and W γN = diag{σl : l ∈ AN}. Hence LGMM (Tγ)− LGMM (γ) ≤ F (Tγ)− F (γ).

Note that Tγ−γ = (0,−γTN )T . By the mean value theorem, there exists λ ∈ (0, 1), for h = (γTS ,−λγTN )T ,

F (Tγ)− F (γ) = −
∑

l/∈AS ,γl 6=0

γNl

[
1

n

n∑
i=1

∂

∂βl
g(yi,X

T
i h)⊗Xi(γS)

]T
W (γS)

[
1

n

n∑
i=1

g(yi,X
T
i h)⊗Xi(γS)

]
≡

∑
l/∈AS ,γl 6=0

γNlal(h).
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By the mean value theorem, there exists λ2 ∈ (0, 1),

p∑
j=1

(Pn(|γj |)− Pn(|(Tγ)j)|) =
∑

l/∈AS ,γl 6=0

|γl|P ′n(λ2|γl|).

Hence it suffices to show that for each l /∈ AS , and γl 6= 0,

|γlal(h)| ≤ |γl|P ′n(λ2|γl|). (B.2)

Since E(g(y,xTβ0)|xS) = 0, by Assumptions 2.1, 3.3, |al(β0)| ≤ C
√
s
√

(s log s)/n = Op(s log s/
√
n) ≺

lim inft→0+ P
′
n(t). By the continuity of al, |al(β̂T , 0)| < lim inft→0+ P

′
n(t) with probability approaching 1.

Note that h ∈ N . For small enough N , again by continuity, |al(h)| < 1
2 lim inft→0+ P

′
n(t) w.p.a.1. Hence

|al(h)| < 1
2P
′
n(λ2|γl|), which yields (D.1). Q.E.D.

B.2 Proof of Theorem 3.2

Let P ′n(|β̂S |) = (P ′n(|β̂S1|), ..., P ′n(|β̂Ss|))T . The asymptotic normality builds on the following lemma.

Lemma B.2. Let Q1(β1), L1(β1) and β̂S satisfy the conditions in Theorem 2.1. Suppose there exists an

s× s matrix Ωn, such that:

(i) For any unit vector α ∈ Rs, ‖α‖ = 1,

αTΩn∂L1(β0S)→d N(0, 1)

(ii) ‖Ωn[P ′n(|β̂S |) ◦ sgn(β̂S)]‖ = op(1).

Then for any unit vector α ∈ Rs,

αTΩnΣn(β0S)(β̂S − β0S)→d N(0, 1).

Proof. The KKT condition of β̂S is given by

−P ′n(|β̂S |) ◦ sgn(β̂S) = ∂L1(β̂S)

where ◦ denotes the Hadamard product of two vectors. By the mean value theorem, there exists β∗ lying

on the segment joining β0S and β̂S such that ∂L1(β̂S) = ∂L1(β0S) + (Σ(β∗) + M(β∗))(β̂S − β0S). Since

‖β̂S − β0S‖ = op(1), ‖β∗ − β0S‖ = op(1). By the continuity of Σ(.) and M(.), we have Σ(β∗) + M(β∗) =

Σ(β0S) +M(β0S) = Σ(β0S) + op(1). Therefore,

(Σ(β0S) + op(1))(β̂S − β0S) = −P ′n(|β̂S |) ◦ sgn(β̂S)− ∂L1(β0S). (B.3)

For any unit vector α ∈ Rs, by Condition (ii), ‖αTΩn[P ′n(|β̂S |) ◦ sgn(β̂S)]‖ = op(1). Hence the result follows

immediately from B.3 and Condition (i). Q.E.D.

Lemma B.3. Under Assumption 2.1, 2.2, for an, β̂S defined in Theorem 2.1,

‖P ′n(|β̂S |) ◦ sgn(β̂S)‖ = Op(max
β∈N1

η(β)an +
√
sP ′n(dn)),
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where N1 = {β ∈ Rs : ‖β − β0S‖ ≤ C
√

(s log s)/n}, for C > 0 in Assumption 3.6.

Proof. Write P ′n(|β̂S |) ◦ sgn(β̂S) = (v1, ..., vs)
T , with vi = P ′n(|β̂Si|)sgn(β̂Si). |vi| ≤ |P ′n(|β̂Si|) −

P ′n(|βSi|)| + P ′n(|βSi|) ≤ maxβ∈N1
η(β)|β̂Si − βSi| + P ′n(dn). By Minkowski’s inequality, ‖P ′n(|β̂S |) ◦

sgn(β̂S)‖ ≤
√∑s

i=1 maxN1
η(β)2|β̂Si − βSi|2 +

√
sP ′n(dn) = maxβ∈N1

η(β)‖β̂S − β0S‖ +
√
sP ′n(dn) =

Op(maxβ∈N1 η(β)(an +
√
sP ′n(dn)) +

√
sP ′n(dn)). Q.E.D.

Lemma B.4. Let Ωn =
√
nΓ
−1/2
n . Then for any unit vector α ∈ Rs,

αTΩn∂L̃GMM (β0S)→d N(0, 1)

Proof. ∂L̃GMM (β0S) = 2AnW
β0SBn, where Bn = 1

n

∑n
i=1 g(yi,X

T
iSβ0S) ⊗ XiS . V ar(

√
nBn) =

V ar(g(yi,X
T
iSβ0S)⊗XiS) ≡ V0. Let H = −2

√
nEAnW

β0SBn, then

V ar(H) = 4EAnW
β0SV0W

β0SEATn ≡ G

By CLT, αTG−1/2H →d N(0, σ2), where σ2 = αTG−1/2GG−1/2α = 1. Note that An →p EAn and

V →p V0, hence Γn →p G. By Slutsky’s theorem, αT
√
nΓ
−1/2
n ∂L̃GMM (β0S)→d N(0, 1).

Proof of Theorem 3.2: It remains to check that for Ωn =
√
nΓ
−1/2
n , Condition (ii) in Lemma B.2

holds.

For M = P ′n(|β̂S |) ◦ sgn(β̂S), by Assumption 3.5 and Lemma B.3,
√
nλmin(Γn)−1/2‖M‖ ≤

√
cn(max η(β)

√
s log s/n +

√
sP ′n(dn)) = Op(

√
smax η(β) +

√
nsP ′n(dn)) = op(1). Hence ‖ΩnM‖ ≤√

nλmin(Γn)−1/2‖M‖ = op(1). Q.E.D.

B.3 Proof of Corollary 3.1

The theorem is proved by straightforward checking Assumptions 3.1-3.4, and applying Theorem 3.1.

B.4 Proof of Theorem 3.3

Proof. Let {xil}ni=1 be the i.i.d. data of xNl. Under the theorem assumptions, by the strong law of large

number 1
n

∑n
i=1 εixil → E(xNlε) 6= 0 with probability one. Note that in penalized OLS, Ln(β) = 1

n

∑n
i=1(yi−

XT
i β)2. Hence ∂βlLn(β0) = − 2

n

∑n
i=1 xil(yi − XT

i β0) = − 2
n

∑n
i=1 xilεi. Thus ∂βlLn(β0) → −2E(xNlε)

almost surely. Therefore, with probability one, either lim supn ∂βlLn(β0) = lim infn ∂βlLn(β0) > 0, or

lim supn ∂βlLn(β0) = lim infn ∂βlLn(β0) < 0. This contradicts with the necessary condition of Theorem 2.3.

Q.E.D.

C Proofs for Section 4

C.1 Preliminary results

Write ψ(zi, β) = g(yi,X
T
i β) ⊗ Xβ

i = (ψ1, .., ψsk)T . Then ψ(zi, β0) = g(yi,X
T
i β0) ⊗ XiS , and

∂βSψ(zi, β0) = (m1(yi,X
T
iSβS)XiSX

T
iS , ...,mk(yi,X

T
iSβS)XiSX

T
iS). Let

|∂βSψ(zi, β0)| = (|m1(yi,X
T
iSβS)|XiSX

T
iS , ..., |mk(yi,X

T
iSβS)|XiSX

T
iS). For any matrix A = (qj(yi,x

T
i β0))

other than ∂βSψ(zi, β0), write |A| = (|qj(yi,xTi β0)|). Finally, let V̂ = 1
n

∑n
i=1 ψ(zi, β0)ψ(zi, β0)T .
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Lemma C.1. For some a > 0, and a random matrix X, if E‖X‖a < ∞, then max1≤i≤n ‖Xi‖ = o(n1/a)

almost surely.

Proof. Note that ‖X‖ = ‖vec(X)‖. The result then follows immeidately from Lemma D.2 in Kitamura, et

al. (2004).

Lemma C.2. If there exists B > 0 such that for some p > 1, Eψj(z, β0)2p < B for all j = 1, ..., sk, then

maxi≤n ‖ψ(zi, β0)‖ = o(n1/2ps1/2) almost surely.

Proof. Applying Holder inequality, we have E‖ψ(z, β0)‖2p = E(
∑ks
j=1 ψj(z, β0)2)p

≤ (ks)p/q
∑ks
j=1Eψj(z, β0)2p ≤ (sk)p/q+1B, where 1/p + 1/q = 1. Therefore, E‖Z‖2p < ∞, where Z =

ψ(z, β0)/(sk)1/2. By Lemma C.1, maxi≤n ‖Z‖ = o(n1/2p) almost surely, which is maxi≤n ‖ψ(zi, β0)‖ =

o(s1/2n1/2p) w.p.1.

In this section, we assume s4 = O(n), and p = 4. Hence maxi≤n ‖ψ(zi, β0)‖ = o(n1/8s1/2)

Lemma C.3. Under Assumptions 4.1(ii), 4.2(i), ‖λ(β0)‖ = Op(
√
s log s/n).

Proof. Write λ(β0) = ρθ, where ρ = ‖λ(β0)‖, and ‖θ‖ = 1. Since λ(β0) = arg max
∑n
i=1 log(1+λTψ(zi, β0)),

the first order condition implies 1
n

∑n
i=1

ψ(zi,β0)
1+λ(β0)Tψ(zi,β0)

= 0, hence

0 = ‖θ‖ × ‖ 1

n

n∑
i=1

ψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
‖ ≥ |θT 1

n

n∑
i=1

ψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
|

=

∣∣∣∣∣θT 1

n

n∑
i=1

ψ(zi, β0)− θT 1

n

n∑
i=1

ψ(zi, β0)λ(β0)Tψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)

∣∣∣∣∣
≥ θT

1

n

n∑
i=1

ψ(zi, β0)ψ(zi, β0)Tλ(β0)

1 + λ(β0)Tψ(zi, β0)
−

∣∣∣∣∣θT 1

n

n∑
i=1

ψ(zi, β0)

∣∣∣∣∣
≥ ρθT

1

n

n∑
i=1

ψ(zi, β0)ψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
θ − ‖ 1

n

n∑
i=1

ψ(zi, β0)‖.

Note that 0 ≤ 1 + λ(β0)Tψ(zi, β0) ≤ 1 + ρmaxi≤n ‖ψ(zi, β0)‖. By Assumption 4.2(i),

λmin( 1
n

∑
i ψ(zi, β0)ψ(zi, β0)T ) = λmin(V̂ ) ≥ c, and ‖ 1n

∑n
i=1 ψ(zi, β0)‖ = Op(

√
s log s/n), hence

0 ≥ cρ

1 + ρmaxi≤n ‖ψ(zi, β0)‖
+Op(

√
s log s

n
)

which implies ρ = Op(
√
s log s/n/(1 −

√
s log s/nmaxi ‖ψ(zi, β0)‖)) = Op(

√
s log s/n), by Lemma C.2. In

addition,

‖λ(β0)‖max
i≤n
‖g(zi, β0)⊗XiS‖ = op(sn

−3/8) = O(s−1/2) (C.1)

1 + λ(β0)T [g(zi, β0)⊗XiS ] ≥ 1− ‖λ(β0)‖max
i≤n
‖g(zi, β0)⊗XiS‖ ≥

1

2
. (C.2)

Lemma C.4. Under Assumptions 3.5(i), 4.1(ii), 4.2(i),

‖ 1

n

n∑
i=1

∂βSψ(zi, β0)λ(β0)ψ(zi, β0)T

(1 + λ(β0)Tψ(zi, β0))2
‖ = op(1/

√
s)
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Proof. Write a = 1
n

∑n
i=1

∂βSψ(zi,β0)λ(β0)ψ(zi,β0)
T

(1+λ(β0)Tψ(zi,β0))2
, then by (C.2), ‖a‖ ≤ ‖ 1n

∑n
i=1

|∂βSψ(zi,β0)||λ(β0)ψ(zi,β0)
T |

(1+λ(β0)Tψ(zi,β0))2
‖

≤ C‖ 1n
∑n
i=1 |∂βSψ(zi, β0)‖λ(β0)ψ(zi, β0)T ‖|. Since 1

n

∑n
i=1 |∂ψ(zi, β0)| = 1

n (XT
S |Λ1|XS , ...,X

T
S |Λk|XS), by

Assumption3.2(i) and Lemma B.1, ‖a‖ ≤ C‖λ(β0)‖maxi≤n ‖ψ(zi, β0)‖ = op(1/
√
s), where the last equality

is due to (C.1).

Lemma C.5. Under Assumptions 3.5(i), 4.1(ii), 4.2(i),

‖V̂ −1 1

n

n∑
i=1

∂ψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
‖ = Op(

√
s)

Proof. Since V̂ −1 is positive definite,

‖V̂ −1 1

n

n∑
i=1

∂ψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
‖ ≤ ‖V̂ −1 1

n

n∑
i=1

|∂ψ(zi, β0)|T

1 + λ(β0)Tψ(zi, β0)
‖

≤ Cλmin(V̂ )−1‖ 1

n

n∑
i=1

|∂βSψ(zi, β0)|T ‖ = C‖ 1

n
(XT

S |Λ1|XS , ...,X
T
S |Λk|XS)‖ = Op(

√
s).

Lemma C.6. Under Assumptions 4.1(ii), 4.2(i),

‖V̂ −1 1

n

n∑
i=1

ψ(zi, β0)[λ(β0)Tψ(zi, β0)]2

1 + λ(β0)Tψ(z,β0)
‖ = op(1/

√
n)

Proof. Let A = 1
n

∑n
i=1

[λ(β0)
Tψ(zi,β0)]

2

1+λ(β0)Tψ(z,β0)
. One can check that A = 1

n

∑n
i=1 λ(β0)Tψ(zi, β0). Hence the left-

hand-side ≤ C maxi≤m ‖ψ(zi, β0)‖‖A‖ ≤ op(1/
√
s)‖ 1n

∑n
i=1 ψ(zi, β0)‖ = op(1/

√
n)

Lemma C.7. Under Assumptions 4.1(ii), 4.2(i),

∂λ(β0) =

(
1

n

n∑
i=1

∂ψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
− 1

n

n∑
i=1

∂ψ(zi, β0)λ(β0)ψ(zi, β0)T

(1 + λ(β0)Tψ(zi, β0))2

)
V̂ −1(1 + op(1))

Proof. Since 1
n

∑n
i=1

ψ(zi,β)
1+λ(β)Tψ(zi,β)

= 0, for all β ∈ Rp, taking derivative with respect to β, and plugging-in

β0, we have 1
n

∑n
i=1

ψ(zi,β0)ψ(zi,β0)
T

(1+λ(β0)Tψ(zi,β0))2
∂λ(β0)T = 1

n

∑n
i=1

∂ψ(zi,β0)
T

1+λ(β0)Tψ(zi,β0)
− 1
n

∑n
i=1

ψ(zi,β0)λ(β0)
T ∂βSψ(zi,β0)

T

(1+λ(β0)Tψ(zi,β0))2
.

Since c1 ≤ λmin(V̂ ) ≤ λmax(V̂ ) ≤ c2, and λ(β0)Tψ(zi, β0)→p 0 uniformly in i ≤ n, we have(
1

n

n∑
i=1

ψ(zi, β0)ψ(zi, β0)T

(1 + λ(β0)Tψ(zi, β0))2

)−1
= V̂ −1(1 + op(1))

Lemma C.8. Under Assumptions 3.5(i), 4.1(ii), 4.2(i), ‖∂λ(β0)‖ = Op(
√
s).

Proof. By Lemma C.7, ‖∂λ(β0)‖ = A+B+op(A+B), where A = ‖V̂ −1 1
n

∑n
i=1

∂ψ(zi,β0)
T

1+λ(β0)Tψ(zi,β0)
‖ = Op(

√
s),

by Lemma C.5, and B = ‖V̂ −1 1
n

∑n
i=1

ψ(zi,β0)λ(β0)
T ∂βSψ(zi,β0)

T

(1+λ(β0)Tψ(zi,β0))2
‖ = op(s

−1/2), by Lemma C.4. Q.E.D.

Lemma C.9. For any vector function f(z, β), differentiable w.r.t. β, let F (β) = 1
n

∑n
i=1 log{1 +

λ(β)T f(z, β)}, where λ(β) is such that 1
n

∑n
i=1

f(zi,β)
1+λ(β)T f(zi,β)

= 0, then ∂βF (β) = (∆1 + ∆2 + ∆3)(β),
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where:

∆1(β) =

(
1

n

n∑
i=1

∂βf(zi, β)

)(
1

n

n∑
i=1

f(zi, β)f(zi, β)T

)−1(
1

n

n∑
i=1

f(zi, β)

)

∆2(β) =
1

n

n∑
i=1

∂βf(zi, β)

1 + λ(β)T f(zi, β)

(
1

n

n∑
i=1

f(zi, β)f(zi, β)T

)−1
1

n

n∑
i=1

f(zi, β)[λ(β)T f(zi, β)]2

1 + λ(β)T f(zi, β)

∆3(β) =
1

n

n∑
i=1

−∂βf(zi, β)λ(β)T f(zi, β)

1 + λ(β)T f(zi, β)

(
1

n

n∑
i=1

f(zi, β)f(zi, β)T

)−1
1

n

n∑
i=1

f(zi, β).

Proof. It is not hard to verify that ∆1 + ∆3 = ∂F (β) − A, where A = 1
n

∑n
i=1

∂f(zi,β)
1+λ(β)T f(zi,β)

[λ(β) −(
1
n

∑n
i=1 f(zi, β)f(zi, β)T

)−1 1
n

∑n
i=1 f(zi, β)]. Hence it remains to show ∆2 = A. Note that 0 =

1
n

∑n
i=1

f(zi,β)
1+λ(β)T f(zi,β)

= 1
n

∑n
i=1 f(zi, β){1 − f(zi, β)Tλ(β) + [λ(β)T f(zi,β)]

2

1+λ(β)T f(zi,β)
}, which implies λ(β) −(

1
n

∑n
i=1 f(zi, β)f(zi, β)T

)−1 1
n

∑n
i=1 f(zi, β) =

(
1
n

∑n
i=1 f(zi, β)f(zi, β)T

)−1 1
n

∑n
i=1

f(zi,β)[λ(β)
T f(zi,β)]

2

1+λ(β)T f(zi,β)
.

Q.E.D.

C.2 Proof of Theorem 4.1

As in the proof of Theorem 3.1, we check the conditions in Theorem 2.1. For any β ∈ Rp, let Tβ =

(βTS , 0)T . Define L̃EL(βS) = LEL(βS , 0) = LEL(Tβ).

Lemma C.10. Under Assumptions 3.5(i), 4.1(ii), 4.2(i),

∂L̃EL(β0S) = Ξ(β0S)(1 + op(1))

where Ξ(β0S) = 1
n

∑n
i=1 ∂ψ(zi, β0S)V̂ −1 1

n

∑n
i=1 ψ(zi, β0S).

Proof. L̃EL(βS) = maxλ
1
n

∑n
i=1 log(1 + λTψ(zi, βS)), where ψ(zi, βS) = g(yi,X

T
iSβ1) ⊗XiS , which is dif-

ferentiable w.r.t. βS . Hence by Lemma C.9, ∂L̃EL(β0S) =
∑3
i=1 ∆i(β0S), with f(zi, β0S) = ψ(zi, β0S), and

∆1(β0S) = Ξ(β0S). The result follows from equations (C.3)-(C.5) below.

Lemma C.11. Under Assumptions 3.5(i), 4.1(ii), 4.2(i), ‖∂L̃EL(β0S)‖ = Op(
√
s log s/n)

Proof. From the proof of Lemma C.9, ∂L̃EL(β0S) = Ξ(β0S)+∆2(β0S)+∆3(β0S), with f(z, β) replaced with

ψ(z, β0S). By Assumption 3.2(i) and Lemma B.1(i),

‖Ξ(β0S)‖ ≤ ‖ 1

n
(XiS |Λ1|XT

iS , ...,XiS |Λk|XT
iS)V̂ −1| 1

n

n∑
i=1

ψ(zi, β0S)‖| = Op(
√
s log s/n). (C.3)

By Lemma C.6, and the fact that 1
n

∑
i |∂βSψ(zi, β0S)| = 1

n (XiS |Λ1|XT
iS , ...,XiS |Λk|XT

iS),

‖∆2(β0S)‖ = ‖ 1

n

n∑
i=1

∂βSψ(zi, β0S)

1 + λ(β0S)Tψ(zi, β0S)
V̂ −1

1

n

n∑
i=1

ψ(zi, β0S)[λ(β0S)Tψ(zi, β0S)]2

1 + λ(β0S)Tψ(zi, β0S)
‖

≤ C‖ 1

n
(XiS |Λ1|XT

iS , ...,XiS |Λk|XT
iS)|V̂ −1 1

n

n∑
i=1

ψ(zi, β0S)[λ(β0S)Tψ(zi, β0S)]2

1 + λ(β0S)Tψ(zi, β0S)
‖|

= op(1/
√
n). (C.4)
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Finally,

‖∆3(β0)‖ ≤ C‖λ(β0S)‖max
i≤n
‖ψ(zi, β0S)‖‖ 1

n

n∑
i=1

|∂βSψ(zi, β0S)‖V̂ −1 1

n

n∑
i=1

ψ(zi, β0S)‖|

= op(1/
√
n). (C.5)

Lemma C.12. ∂2L̃EL(β0S) = Σ(β0S) +M(β), where ‖M(β0S)‖ = op(1).

Proof. Straightforward but tedious calculation yields ∂2L̃EL(β0S) =
∑4
i=1 Ti, where

T1 =
1

n

n∑
i=1

∂λ(β0)∂ψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)

T2 = − 1

n

n∑
i=1

∂βSψ(zi, β0)λ(β0)λ(β0)T∂βSψ(zi, β0)T

[1 + λ(β0)Tψ(zi, β0)]2

T3 = − 1

n

n∑
i=1

∂λ(β0)ψ(zi, β0)λ(β0)T∂βSψ(zi, β0)T

[1 + λ(β0)Tψ(zi, β0)]2

T4 =
1

n

n∑
i=1

1

1 + λ(β0)Tψ(zi, β0)

ks∑
j=1

∇2
βSψj(zi, β0)λj(β0).

The result follows from Lemma C.13-C.16 below. Q.E.D.

Lemma C.13. Under Assumptions 3.5(i), 4.1(ii), 4.2(i), T1 = Σ(β0S) + T11, where ‖T11‖ = op(1).

Proof. By Lemma C.7,

T1 =

(
1

n

n∑
i=1

∂ψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
− 1

n

n∑
i=1

∂ψ(zi, β0)λ(β0)ψ(zi, β0)T

(1 + λ(β0)Tψ(zi, β0))2

)
V̂ −1(1 + op(1))

× 1

n

n∑
i=1

∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
= A+B +Rn

where ‖Rn‖ = op(1), and

A =
1

n

n∑
i=1

∂βSψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
V̂ −1

1

n

n∑
i=1

∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)

B = − 1

n

n∑
i=1

∂ψ(zi, β0)λ(β0)ψ(zi, β0)T

(1 + λ(β0)Tψ(zi, β0))2
V̂ −1

1

n

n∑
i=1

∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)

By Lemma C.4, C.5, ‖B‖ = op(s
−1/2√s) = op(1). In addition, A = Σ(β0S) + A1 + A2, where Σ(β0S) =

1
n

∑n
i=1 ∂βSψ(zi, β0)V̂ −1 1

n

∑n
i=1 ∂βSψ(zi, β0)T ,

‖A1‖ = ‖ 1

n

n∑
i=1

(
∂βSψ(zi, β0)

1 + λ(β0)Tψ(zi, β0)
− ∂βSψ(zi, β0)

)
V̂ −1

1

n

n∑
i=1

∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
‖|

≤ C‖λ(β0)‖max
i≤n
‖ψ(zi, β0)‖‖ 1

n

n∑
i=1

∂βSψ(zi, β0)|V̂ −1 1

n

n∑
i=1

∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
‖

= op(s
−1/2√s) = op(1) (by Lemma C.5, B.1 and Assumption 3.2(1)).
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Likewise,

‖A2‖ = ‖ 1

n

n∑
i=1

∂βSψ(zi, β0)V̂ −1
1

n

n∑
i=1

(
∂βSψ(zi, β0)T

1 + λ(β0)Tψ(zi, β0)
− ∂βSψ(zi, β0)T

)
‖ = op(1)

Q.E.D.

Lemma C.14. Under Assumptions 4.1(i)(iii), ‖T2‖ = op(1)

Proof. By Lemma C.3, and Cauchy-Schwarz’s inequality,

‖T2‖ ≤ C‖λ(β0)‖2‖ 1

n

n∑
i=1

∂βSψ(zi, β0)∂βSψ(zi, β0)T ‖

= Op(s log s/n)‖ 1

n

n∑
i=1

(XiSX
T
iS)2‖m(yi,X

T
iSβ0S)‖2‖ wherem(t1, t2) = ∂t2g(t1, t2)

≤ Op(s log s/n)
1

n

n∑
i=1

‖(XiSX
T
iS)2‖ · ‖m(yi,X

T
iSβ0S)‖2

≤ Op(s log s/n)

√√√√ 1

n

n∑
i=1

‖XiSX
T
iS‖4

1

n

n∑
i=1

‖m(yi,X
T
iSβ0S)‖4

= Op(s log s/n
√
E‖xSxTS‖4) = Op(s

3/n) = op(1). (C.6)

Lemma C.15. ‖T3‖ = op(1)

Proof. By Lemma C.4, C.8, ‖T3‖ = Op(
√
s)op(s

−1/2) = op(1).

Lemma C.16. Under Assumptions 4.1(ii)(iv), 4.2(i)(ii), ‖T4‖ = op(1)

Proof.
∑ks
j=1∇2

βψj(zi, β0)λj(β0) = XiSX
T
iSλ(β0)T [∂t2m(yi,X

T
i β0)⊗XiS ]. Hence by (C.1), and Lemma C.3,

‖T4‖ ≤ C‖ 1

n

n∑
i=1

XiSX
T
iSλ(β0)T [∂t2m(yi,X

T
i β0)⊗XiS ]‖

≤ Cλmax(XT
SXS)/nmax

i≤n
‖∂t2m(yi,X

T
i β0)⊗XiS‖Op(

√
s log s/n)

= Op(
√
s log s/n) max

i≤n
‖∂t2m(yi,X

T
i β0)⊗XiS‖.

Note that ‖∂t2m(yi,X
T
i β0) ⊗ XiS‖2 = ‖∂t2m(yi,X

T
i β0)‖2‖XiS‖2, and by Cauchy-Schwarz inequality,

E‖∂t2m(y,xTβ0)‖4‖xS‖4 ≤
√
E‖∂t2m(y,xTβ0)‖8E‖xS‖8. By Assumption 4.1, E‖∂t2m(y,xTβ0)‖8 <

∞, and
√
E‖xS‖8 = O(s2). Therefore, E‖∂t2m(y,xTβ0) ⊗ xS/

√
s‖4 < ∞, which implies

maxi≤n ‖∂t2m(yi,X
T
i β0) ⊗ XiS‖ = o(s1/2n1/4) with probability one. Hence ‖T4‖ = op(sn

−1/4) = op(1),

as s4 = O(n).

Proof of Theorem 4.1

It remains to verify (2.2) in Theorem 2.2. For any γ = (γTS , γ
T
N )T in a neighborhood N of β̂ = (β̂TS , 0)T ,

T(γ) = (γTS , 0)T . For θ ∈ Rp, define

F (θ) = max
λ

1

n

n∑
i=1

log{1 + λT [g(yi,X
T
i θ)⊗XγS

i ]}
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=
1

n

n∑
i=1

log{1 + λ(θ)T [g(yi,X
T
i θ)⊗XγS

i ]}. (C.7)

Then LEL(Tγ) = F (Tγ). By Lemma C.17 below, F (Tγ) − F (γ) ≤
∑p
j=1 Pn(|γj |) −

∑p
j=1 Pn(|(Tγ)j |). In

addition, as g(yi,X
T
i θ)⊗XγS

i is a subvector of g(yi,X
T
i θ)⊗Xγ

i , it follows that

F (γ) = max
λ

1

n

n∑
i=1

log{1 + λT [g(yi,X
T
i γ)⊗XγS

i ]}

= max
λ̃=(λT ,0)T

1

n

n∑
i=1

log{1 + λ̃T [g(yi,X
T
i γ)⊗Xγ

i ]}

≤ max
λ̃∈R|γ|0k

1

n

n∑
i=1

log{1 + λ̃T [g(yi,X
T
i γ)⊗Xγ

i ]} = LEL(γ).

Therefore, LEL(Tγ)− LEL(γ) ≤ F (Tγ)− F (γ) ≤
∑p
j=1 Pn(|γj |)−

∑p
j=1 Pn(|(Tγ)j |). Q.E.D.

Lemma C.17. There exists a neighborhood N of β̂ = (β̂TS , 0)T , such that for all γ ∈ N , F (Tγ) − F (γ) ≤∑p
j=1 Pn(|γj |)−

∑p
j=1 Pn(|(Tγ)j |)

Proof. Let λ(θ) = arg maxλ
1
n

∑n
i=1 log{1 + λT [g(yi,X

T
i θ)⊗XγS

i ]}. The implicit function theorem applying

on the first order condition of λ implies that λ(θ) is continuous on Rp. We then have, by Taylor’s expansion,

F (Tγ) − F (γ) =
∑
l/∈AS ,γNj 6=0 γNlal(h), where, by Lemma C.9, al(h) =

∑3
i=1 ∆il(h), and h lies on the

segment joining Tγ and γ. Here ∆il are given by:

∆1l(h) =

(
1

n

n∑
i=1

∂βlf(zi, h)

)(
1

n

n∑
i=1

f(zi, h)f(zi, h)T

)−1(
1

n

n∑
i=1

f(zi, h)

)

∆2l(h) =
1

n

n∑
i=1

∂βlf(zi, h)

1 + λ(h)T f(zi, h)

(
1

n

n∑
i=1

f(zi, h)f(zi, h)T

)−1
1

n

n∑
i=1

f(zi, h)[λ(β)T f(zi, h)]2

1 + λ(h)T f(zi, h)

∆3l(h) =
1

n

n∑
i=1

−∂βlf(zi, h)λ(h)T f(zi, h)

1 + λ(h)T f(zi, h)

(
1

n

n∑
i=1

f(zi, h)f(zi, h)T

)−1
1

n

n∑
i=1

f(zi, h),

where f(zi, h) = g(yi,X
T
i h)⊗XγS

i , and ∂βlf(zi, h) = (m1(yi,X
T
i h), ...,mk(yi, X

T
i h))XilX

γS
i . By Assumption

4.2(i), 4.1(i)(iii), and Lemma B.1, and the fact that 1
n

∑
i f(zi, β0) = Op(

√
s log s/n), ‖∆1l(β0)‖ = Op(s/

√
n).

Note that the first order condition of λ implies
∑n
i=1

f(zi,h)
1+λ(h)T f(zi,h)

= 0, hence 1
n

∑n
i=1

[λ(β)T f(zi,h)]
2

1+λ(h)T f(zi,h)
=

1
n

∑n
i=1 λ(h)T f(zi, h). In addition, using a similar proof of Lemma C.3, ‖λ(β0)‖maxi≤n ‖f(zi, β0)‖ =

op(1/
√
s). Hence ‖∆2l(β0)‖ = op(

√
s log s/n). Finally, ‖∆3l(β0)‖ = op(

√
s log s/n). Therefore, ‖al(β0)‖ =

Op(s/
√
n).

By the continuity of P ′n, al(.), the facts that Op(s/
√
n) ≺ lim inft→0+ P

′
n(t), and that ‖β̂ − β0‖ = op(1),

similar to the proof of sparsity in Theorem 3.1 Condition (ii), for small enough N , we have |al(h)| <
P ′n(b|γNl|) for any b ∈ (0, 1). Q.E.D.

C.3 Proof of Theorem 4.2

Lemma C.18. Let Γn = AnV̂
−1An, and Ωn =

√
nΓ
−1/2
n , then for any unit vector α ∈ Rs,

αTΩn∂L̃EL(β0S)→d N(0, 1).
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Proof. By Lemma C.10, ∂L̃EL(β0S) = AnV̂
−1Bn + op(1), where Bn = 1

n

∑n
i=1 g(yi,X

T
iSβ0S) ⊗XiS . Then

V ar(
√
nBn) = V ar(g(yi,X

T
iSβ0S)⊗XiS) ≡ V0. Let H =

√
nEAnV

−1
0 Bn, then V ar(H) = EAnV

−1
0 EATn ≡

G. By CLT, αTG−1/2H → N(0, 1). Note that V̂ →p V0 and An →p EAn, and thus Γn = AnV̂
−1ATn →p G

pointwisely. Hence by Slutsky’s theorem, αTΩn∂L̃EL(β0S)→d N(0, 1).

Proof of Theorem 4.2 By Lemma B.3 and Assumption 4.3, Condition (ii) in Lemma B.2 holds for

Ωn =
√
n(AnV̂

−1An)−1/2. Then the asymptotic normality follows immediately from Lemma C.18 and

Lemma B.2. Q.E.D.

D Proofs for Section 5

Note that the results of Theorems 2.1 and 2.2 still hold under the generalized sparsity condition and

the presence of local perturbation, since the objective function Ln(.) defined in these two theorems are not

model-specific. As before, we proceed by verifying the conditions therein.

D.1 Consistency

For any β = Rp, we can write Tβ = (βTS , 0)T . Define

L̃GMM (βS) =

[
1

n

n∑
i=1

g(yi,X
T
iSβS)XiS

]T
W (β0)

[
1

n

n∑
i=1

g(yi,X
T
iSβS)XiS

]
.

Condition (i): The same arguments in the proof of Theorem 3.1 implies

‖∂L̃GMM (β0S)‖ ≤ Op(1)‖ 1

n

n∑
i=1

g(yi,X
T
iSβ0S)XiS‖

≤ Op(1)‖ 1

n

n∑
i=1

g(yi,X
T
iSβ0S)XiS − g(yi,X

T
i β0)XiS‖

+Op(1)‖ 1

n

n∑
i=1

g(yi,X
T
i β0)XiS − Eg(y,xTβ0)xS‖+Op(1)‖Eg(y,xTβ0)xS‖

= Op(1)(A+B + C).

Using the Bernstein inequality with Assumption 3.2, it can be shown that B = Op(
√
s log s/n). In addition,

given that Ex2l < ∞ for l ∈ AS , (5.1) implies ‖Eg(y,xTβ0)xS‖ = n−α
√
s. In addition, by the mean value

theorem, for some r,

A = Op(

√
s log s

n
) + ‖E[g(y,xTSβ0S)− g(y,xTβ0)]xS‖ = Op(

√
s log s

n
) + ‖Em(y, r)xSx

T
Nβ0N‖

≤ Op(

√
s log s

n
) +
√
s‖Em(y, r)xSx

T
N‖∞‖β0N‖1 = Op(

√
s log s

n
+
√
s‖β0N‖1),

where we used the fact that if H = (hij) is an s×p matrix, then ‖Hβ‖ ≤
√
s‖H‖∞‖β‖1 =

√
smaxij |hij |‖β‖1.

The last equality is due to supt1,t2 |m(t1, t2)| < K for some K > 0, and

‖Em(y, r)xSx
T
N‖∞ = max

i∈AS ,j∈AN
|Em(y, r)xixj | ≤ K max

i∈AS ,j∈AN
E|xixj | <∞.
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It then follows that

‖∂L̃GMM (β0S)‖ = Op(
√

(s log s)/n+ n−α
√
s+ ‖β0N‖1

√
s).

Condition (ii) The decomposition of ∂2L̃GMM (β0S) = Σ(β0S) +M(β0S) is as before, where Σ(β0S) =

2An(β0S)W (β0S)An(β0S)T , and M(β0S) = 2B(β0S)H(β0S),

H(β0S)s2×s = Is ⊗

[
W (β0S)

1

n

n∑
i=1

g(yi,X
T
iSβ0S)XiS

]
,

B(β0S) =
1

n

n∑
i=1

(xil1q(yi,X
T
iSβ0S)XiSX

T
iS , ..., xilsq(yi, ,X

T
iSβ0S)XiSX

T
iS).

In the presence of local perturbation and generalized sparsity condition, we have

‖H(β0S)‖ ≤ Op(
√
s)‖ 1

n

n∑
i=1

(g(yi,X
T
iSβ0S)− g(yi,X

T
Sβ0))XiS‖

+Op(
√
s)‖ 1

n

n∑
i=1

g(yi,X
T
Sβ0)XiS − Eg(y,xTβ0)xS‖+Op(

√
s)‖Eg(y,xTβ0)xS‖

= Op(s
2(‖β0N‖21 +

log s

n
+ n−2α)).

Hence ‖M(β0S)‖ = op(1) as long as s3(‖β0N‖21 + log s
n + n−2α) = o(1). By Theorem 2.1, we have

‖β̂S − β0S‖ = Op(
√

(s log s)/n+ n−α
√
s+ ‖β0N‖1

√
s+
√
sP ′n(dn)).

D.2 Sparsity Recovery

For some neighborhood N of (β̂TS , 0)T , and ∀γ ∈ N , write γ = (γTS , γ
T
N )T , Tγ = (γTS , 0)T . For all θ ∈ Rp,

define

F (θ) =

[
1

n

n∑
i=1

g(yi, X
T
i θ)Xi(γS)

]T
W (γS)

[
1

n

n∑
i=1

g(yi, X
T
i θ)Xi(γS)

]
Hence LGMM (T(γ)) = F (Tγ). The same argument of the proof of Theorem 3.1 implies LGMM (Tγ) −
LGMM (γ) ≤ F (Tγ)− F (γ).

Note that Tγ−γ = (0,−γTN )T . By the mean value theorem, there exists λ ∈ (0, 1), for h = (γTS ,−λγTN )T ,

F (Tγ)− F (γ) = −
∑

l/∈AS ,γl 6=0

γNl

[
1

n

n∑
i=1

∂

∂βl
g(yi,X

T
i h)Xi(γS)

]T
W (γS)

[
1

n

n∑
i=1

g(yi,X
T
i h)Xi(γS)

]
≡

∑
l/∈AS ,γl 6=0

γNlal(h).

There exists λ2 ∈ (0, 1),
∑p
j=1(Pn(|γj |)−Pn(|(Tγ)j)|) =

∑
l/∈AS ,γl 6=0 |γl|P ′n(λ2|γl|). Hence it suffices to show

that for each l /∈ AS , and γl 6= 0,

|γlal(h)| ≤ |γl|P ′n(λ2|γl|). (D.1)

Note that |al(β0S , 0)| = Op(
√
s)‖n−1

∑n
i=1 g(yi,X

T
iSβ0S)Xi(γS)‖ = Op(

√
s(
√
s log s/n+ ‖βN‖1 +n−α)).

By assumption, |al(β0S , 0)| = op(lim inft→0+ P
′
n(t)). By the continuity of al, |al(β̂T , 0)| < lim inft→0+ P

′
n(t)
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with probability approaching 1. Note that h ∈ N . For small enough N , again by continuity, |al(h)| <
1
2 lim inft→0+ P

′
n(t) w.p.a.1. Hence |al(h)| < P ′n(λ2|γl|), which yields (D.1). Q.E.D.

E Proofs for Section 6

E.1 Proof of Theorem 6.1

We can verify the conditions in Theorems 2.1,2.2 and Lemma B.2.

Conditions in Theorem 2.1

Define LIV (βS) = ( 1
n

∑n
i=1 g(yi,X

T
iSβS)⊗ViS)TW ( 1

n

∑n
i=1 g(yi,X

T
iSβS)⊗ViS). For Condition (i), we

have ∂LIV (β0S) = 2Ãn(β0S)W [ 1n
∑n
i=1 g(yi,X

T
iSβ0S)⊗ViS ], where

Ãn =
1

n

n∑
i=1

(m1(yi,X
T
iSβ0S)XiSV

T
iS , ...,mk(yi,X

T
iSβ0S)XiSV

T
iS).

Since mi(.) is bounded, we have λmax(ÃnÃ
T
n ) = Op(λmax((ExSv

T
S )(ExSv

T
S )T )) = Op(1). Hence

‖∂LIV (β0S)‖ = Op(

√
s log s

n
).

For Condition (ii), straightforward calculation yields ∂2LIV (β0S) = 2ÃnWÃTn +2
∑
j≤k B̃jH̃j , where (XiS =

(xil1 , ..., xils))

H̃j = Is ⊗ [W
1

n

n∑
i=1

gj(yi,X
T
iSβ0S)ViS ],

B̃j =
1

n

n∑
i=1

(xil1qj(yi,x
T
i β0)XiSV

T
iS , ..., xilsqj(yi,x

T
i β0)XiSV

T
iS).

Assumption 6.2 and Lemma B.1 imply that ‖B̃jH̃j‖ = Op(λ
√
s2 log s/n) = op(1), where

λ = max
l∈AS ,j≤k

λmax((Exilqj(yi,x
Tβ0)xSv

T )(Exilqj(yi,x
Tβ0)xSv

T )T ).

Hence all the eigenvalues of the Hessian matrix are bounded away from zero.

Conditions in Theorem 2.2 This condition can be checked using a similar argument as in the proof

of Theorem 3.1. Hence we omit the details but simply check: for any l /∈ AS ,

|∂LIV (β0)

∂βl
| = | 1

n

n∑
i=1

xil(m(yi,X
T
i β0)⊗ViS)TW (

1

n

n∑
i=1

g(yi,X
T
i β0)⊗ViS)|

= Op(s

√
log s

n
).

Hence Condition (2.2) is satisfied as P ′n(0+) � s
√

log s/n by Assumption 6.3.

Asymptotic Normality

Condition (i) of Lemma B.2 can be verified by the same arguments as those in Lemma B.4. For Condition

(ii), note that λmin(Γ̃n) is bounded away from zero by Assumption 6.2, hence by Lemma B.3, it suffices to
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verify that, there exists c > 0, for N = {β ∈ Rs : ‖β − β0S‖ ≤ c
√
s log s/n},

√
n(max
β∈N

η(β)

√
s log s

n
+
√
sP ′n(dn)) = o(1).

This holds given Assumption 6.3. Q.E.D.

E.2 Proof of Theorem 6.2

Again, we prove this theorem by checking the conditions in Theorem 2.1 and 2.2. For each l, let Ll(θlS) =
1
n

∑n
i=1(∂lρ(Zi, β̂S)−VT

lS,iθlS)2. In addition, let ûi = ∂lρ(Zi, β̂S)−VT
lS,iθ0l,S , ui = ∂lρ(Zi, β0S)−VT

lS,iθ0l,S ,

and ei = ∂lρ(Zi, β0S)−Dl(wi). By definition, E(ei|Wi) = 0, and ui = VT
lN,iθ0l,N + al(Wi) + ei. Then we

have

‖∂θlSLl(θ0l,S)‖ = ‖ 2

n

n∑
i=1

ûiVlS,i‖

≤ ‖ 2

n

n∑
i=1

(ui − ûi)VlS,i‖+ ‖ 2

n

n∑
i=1

eiVlS,i‖+ ‖ 2

n

n∑
i=1

(VT
lN,iθ0l,N + al(Wi))VlS,i‖

= A+B + C.

By the Lipschitz continuity of ∂lρ(z, .), and Theorem 6.1, A = Op(‖β0S − β̂S‖) = Op(
√
s log s/n). It follows

from E(ei|Wi) = 0 that B = Op(
√
s1 log s1/n). In addition,

‖ 2

n

n∑
i=1

VT
lN,iθ0l,NVlS,i‖ ≤ Op(

√
s1)

∑
j /∈Tl

|θ0l,j | = Op(
√
s1n
−α1).

Finally, by Cauchy Schwarz inequality, ‖ 2n
∑n
i=1 al(Wi)VlS,i‖ = Op(

√
s1cn). Thus,

‖∂θlSLl(θ0l,S)‖ = Op(

√
s log s

n
+

√
s1 log s1

n
+
√
s1n
−α1 +

√
s1cn).

The positive definiteness of the Hessian matrix is easy to verify since ∂2θlsLl(θ0l,S) = 2
n

∑n
i=1 VlS,iV

T
lS,i.

For the condition in Theorem 2.2, let L′l(θl) = 1
n

∑n
i=1(∂lρ(Zi, β̂S)−VT

i θl)
2. Note that L′l is differentiable,

and ∀j /∈ Tl, | 1n
∑
i eivij | = Op(

√
log p/n).

|∂L
′
l(θ0l)

∂θlj
| = | 2

n

n∑
i=1

(∂lρ(Zi, β̂S)−VT
i θ0l)vij | = Op(cn +

√
s log s/n+

√
log p/n) = op(P

′
n(0)).

Finally,

1

n

n∑
i=1

|D̂l(Wi)−Dl(Wi)|2 ≤ 2

n

n∑
i=1

|θ̂Tl Vi − θT0lVi|2 +
2

n

n∑
i=1

al(Wi)
2

≤ ‖θ̂lS − θ0l,S‖2
4

n

n∑
i=1

‖VlS,i‖2 +
4

n

n∑
i=1

(θTl0,NVlN,i)
2 +

2

n

n∑
i=1

al(Wi)
2

= Op(
s1s log s1

n
+ s21(

log s1
n

+ n−2α1 + c2n + P ′n(hn)2)).

Q.E.D.
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