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Abstract. We study a panel data model with general heterogeneous effects
where slopes are allowed to vary across both individuals and over time. The
key dimension reduction assumption we employ is that the heterogeneous slopes
can be expressed as having a factor structure so that the high-dimensional slope
matrix is low-rank and can thus be estimated using low-rank regularized re-
gression. We provide a multi-step estimation procedure for the heterogeneous
effects. The procedure makes use of sample-splitting and partialing-out to ac-
commodate inference following the use of penalized low-rank estimation. We
formally verify that the resulting estimator is asymptotically normal allowing
simple construction of inferential statements for the individual-time-specific ef-
fects and for cross-sectional averages of these effects. We illustrate the proposed
method in simulation experiments.
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1. Introduction

This paper studies inference within the following panel data model:

yit = x′itθit + α′igt + uit, i = 1, ..., N, t = 1, ..., T, (1.1)

where yit is the scalar outcome of interest, xit is a d-dimensional vector of observed

covariates with heterogeneous slopes θit, αi and gt are unobserved fixed effects,

and uit is an unobserved error term. The model permits general heterogeneity in

the sense that fixed effects appear in the model interactively and the slope θit is

allowed to vary across both i and t. The main goal of this paper is to provide

an asymptotically valid procedure for performing statistical inference for averages

of the θit taken across subgroups in the population at specific time periods. The

subgroups may consist of single individuals, in which case inference is for a specific

θit; the entire cross-section; or any pre-specified subset of the cross-sectional units.
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The main dimension reduction assumption employed in this paper is that θit

can be expressed as

θit = λ′ift.

That is, we assume the slopes θit can be represented by a factor structure where

λi is a matrix of loadings and ft is a vector of factors. We allow ft and gt to

have overlapping components and allow λi and ft to be constant across i ≤ N

and t ≤ T respectively. Thus, the model accommodates homogeneous slopes as

a special case. We note that θit is not subject to rotational indeterminacy and is

well-identified and cleanly estimable.

It will be useful to represent the model in matrix form. Let Θr and Xr be the

N × T matrices with rth component θit,r and xit,r respectively. Let M,Y, and

U be the N × T matrices of α′igt, yit, and uit. Finally, let � denote the matrix

element-wise product. Using this notation, the matrix form of (1.1) is

Y =
d∑
r=1

Xr �Θr +M + U.

Under the maintained factor structure, the slope and fixed effect matrices, Θr and

M , have rank at most equal to their associated numbers of factors. This structure

motivates estimating the model parameters via low-rank estimation:

min
{Θ1,...,Θd,M}

‖Y −
d∑
r=1

Xr �Θr −M‖2
F + P0(Θ1, ...,Θd,M)

where P0(Θ1, ...,Θd,M) =
d∑
r=1

νr‖Θr‖n + ν0‖M‖n

(1.2)

for some tuning parameters ν0, ν1, ..., νd > 0 and ‖.‖F and ‖.‖n respectively denot-

ing the matrix Frobenius norm and the nuclear norm. In particular, let ψ1(Θ) ≥
... ≥ ψmin{N,T}(Θ) be the sorted singular values of an N × T matrix Θ, then

‖Θ‖n :=

min{N,T}∑
i=1

ψi(Θ).

The low-rank estimators defined in (1.2) will be consistent with suitable choice

of the tuning parameters. However, the use of regularization, which may result in

large shrinkage bias in finite samples, complicates inference. This paper contributes

to the literature on penalized low-rank estimation by providing an approach to
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obtaining valid inferential statements after applying singular value thresholding

(SVT) type regularization. We use the solution of (1.2) as initial estimates and

obtain their singular vectors as the preliminary estimates of λi and αi. We then

estimate the factors and loading iteratively via least squares. This procedure is

integrated with partialing-out and sample-splitting to further alleviate the effect

of regularized estimation.

The main contribution of our paper is in providing a method and accompanying

theory for obtaining valid inference about heterogeneous effects within the factor-

slope structure. By incorporating general covariates and allowing slopes to vary

both with i and t, our model is different from those in the low-rank estimation

and interactive fixed effects literature. The factor-slope structure captures a rich

spectrum of heterogeneous effects and enables hypothesis tests that are impor-

tant for economists and policy makers to understand effects of policies over the

sample period. Leveraging the factor-slope structure also allows us to transform

many fundamental high-dimensional inferential problems into more tractable low-

dimensional problems. For example, under mild conditions, the problem of testing

the hypothesis of no effect at time t, H0 : θit = 0 for all i at a given t, is equivalent

to testing ft = 0 almost surely. We illustrate the use of our results for testing

hypotheses of immediate interest after presenting the main results in Section 3.

Nuclear norm penalization is now a standard technique for estimating low-rank

models; see, e.g., Negahban and Wainwright (2011); Recht et al. (2010); Sun and

Zhang (2012); Candès and Tao (2010); Koltchinskii et al. (2011). In recent work,

Bai and Ng (2019) considered iterative ridge regressions with rank constraints

in the setting of pure factor models. Athey et al. (2018) consider the use of

matrix completion methods to impute missing potential outcomes for estimating

causal effects with a binary treatment variable in a setting with general treatment

effect heterogeneity, and provide rates of convergence for the estimated low-rank

matrix. We contribute to this literature by considering non-binary covariates with

factor slopes and providing distributional results for individual-time specific slope

coefficients and their cross-sectional averages.

Our paper is also related to the extensive panel data literature with interactive

fixed effects, e.g., Bai (2009), Moon and Weidner (2015), Su et al. (2015), and

Ahn et al. (2013). In particular, Moon and Weidner (2018) use nuclear-norm reg-

ularization for estimating interactive fixed effects in a model with homogeneous
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slopes. Studying slope heterogeneity has also been an important topic for panel

data. For example, Chamberlain and Hirano (1999) and Pesaran (2006) consider

models with coefficients that are not time-varying but are heterogeneous across

individuals. Bonhomme and Manresa (2015) and Su et al. (2016) study settings

where coefficients are assumed to be homogeneous within latent groups and esti-

mation proceeds by simultaneously estimating group-specific effects and the group

membership of each observation. There are also other approaches that allow for

heterogeneity in both i and t in the literature. For example, Feng et al. (2017) as-

sume that slopes are functions of observed time varying categorical variables, and

Su and Wang (2017) considers a model in which slope coefficients vary smoothly

over time so are locally time invariant. One could also adopt hierarchical Bayesian

inference for the heterogeneous coefficients by assuming they are drawn from hi-

erarchical priors, e.g., Hsiao et al. (1999).

Relative to these approaches, we use a different dimension reduction strategy,

which allows general variation in coefficients across individuals and over time with-

out relying on additional structure over the factors or factor loadings. Within this

structure, we are able to provide inference for a variety of effects of interest. Finally,

we impose a strong factor assumption so that the ranks - number of factors - can

be consistently estimated from estimated singular values of the low rank matrices.

Thus, our paper is also connected with the literature on estimating the number of

factors, e.g., Bai and Ng (2002), Onatski (2010), and Ahn and Horenstein (2013).

The rest of the paper is organized as follows. Section 2 introduces the post-SVT

algorithms that define our estimators. Section 3 provides asymptotic theory. Sec-

tion 4 presents simulation results. Proofs are given in a supplementary appendix.

2. The Model

We consider the model

yit = θitxit + α′igt + uit, i = 1, ..., N, t = 1, ..., T, with

θit = λ′ift.
(2.1)

We observe (yit, xit), and the goal is to make inference about θit or averages of the

θit taken across groups formed from cross-sectional units. Here α′igt are interactive

fixed effects as in Bai (2009). For ease of presentation, we focus on the case where
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xit is univariate, that is, dim(xit) = 1. The extension to the multivariate case is

straightforward and is provided in Appendix A in the supplementary material.

We assume that {λi, αi} are deterministic sequences, while {ft, gt} are random.

We allow arbitrary dependence and similarity among {ft : t ≤ T} and impose

nearly no restrictions on the sequence for λi and ft. Allowing arbitrary dependence

and imposing weak structure is important for accommodating leading special cases

such as homogeneous models where θit = θ for all (i, t) which can be obtained by

setting λi = λ and ft = f for all (i, t).

Throughout, we assume the ranks dim(λi) = K1 and dim(αi) = K2 are fixed. We

note that this differs from much of the matrix completion literature which explicitly

considers model sequences which allow ranks to increase. We leave the extension

to the increasing rank case to future work. We also initially assume that both

K1 and K2 are known. In Section 3.5, we discuss consistent rank estimation and

note that the use of consistently estimated ranks does not impact the asymptotic

distribution of the heterogeneous slope estimator under our assumptions.

2.1. Nuclear Norm Penalized Estimation. Let (Y,X, U) be N × T matrices

of (yit, xit, uit). Then (2.1) may be expressed in matrix form as

Y = M +X �Θ + U

where Θ and M are matrices of (θit, α
′
igt). Motivated by their low-rank structures,

we start with the following penalized nuclear-norm optimization problem:

(Θ̃, M̃) = arg min
Θ,M

F (Θ,M),

F (Θ,M) := ‖Y −M −X �Θ‖2
F + ν0‖M‖n + ν1‖Θ‖n

(2.2)

for some tuning parameters ν0, ν1 > 0.

For a fixed matrix Y , let UYDY V
′
Y = Y be its singular value decomposition.

Define the singular value thresholding (SVT) operator

Sλ(Y ) = UYDλV
′
Y ,

where Dλ is defined by replacing the diagonal entry Dii of D by max{Dii − λ, 0}.
That is, Sλ(Y ) applies soft-thresholding on the singular values of Y .
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The solution of (2.2) can be obtained by iteratively using SVT estimation. Given

Θ, solving for M in (2.2) leads to the solution

Sν0/2(ZΘ) = arg min
M
‖ZΘ −M‖2

F + ν0‖M‖n

for ZΘ = Y −X �Θ. Similarly, given M , let ZM = Y −M . We solve for Θ via

ΘM := arg min
Θ
‖ZM −X �Θ‖2

F + ν1‖Θ‖n,

which satisfies the following KKT condition (Ma et al., 2011): For any τ > 0,

ΘM = Sτν1/2(ΘM − τX � (X �ΘM − ZM)).

As such, we employ the following algorithm to iteratively solve for M̃ and Θ̃ as

the global solution to (2.2).

Algorithm 2.1. Compute the nuclear-norm penalized regression as follows:

Step 1: Fix the “step size” τ ∈ (0, 1/maxit x
2
it). Initialize Θ0,M0 and set k = 0.

Step 2: Let

Θk+1 = Sτν1/2(Θk − τX � (X �Θk − Y +Mk)),

Mk+1 = Sν0/2(Y −X �Θk+1).

Set k to k + 1.

Step 3: Repeat step 2 until convergence.

The following proposition verifies that the evaluated objective function F (Θk+1,Mk+1)

is monotonically decreasing and converges to the global minimum at the rate

O(k−1). In practice, we set τ = (1− ε)/maxit x
2
it for ε = 0.01.

Proposition 2.1. Let (Θ̃, M̃) be a global minimum for F (Θ,M). Then for any

τ ∈ (0, 1/maxit x
2
it), and any initial Θ0,M0, we have

F (Θk+1,Mk+1) ≤ F (Θk+1,Mk) ≤ F (Θk,Mk),

for each k ≥ 0. In addition, for all k ≥ 1,

F (Θk+1,Mk+1)− F (Θ̃, M̃) ≤ 1

kτ
‖Θ1 − Θ̃‖2

F . (2.3)

2.2. Intuition for Main Algorithm. Nuclear-norm penalized estimators are

generally inappropriate for inference because they may suffer from substantial

shrinkage bias. We consider a debiased estimator for inference. In this section, we
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provide a heuristic argument that highlights the chief complications that arise in

obtaining reliable asymptotic approximations in our setting. We provide intuition

for how we use partialing-out, sample-splitting, and iterative OLS estimation to

deal with these complications. Part of the argument deals with the rotation of

the factors and to the best of our knowledge has not appeared previously in the

post-regularization inference literature.

To understand the key issues, we work in a simplified setting where dim(ft) =

dim(gt) = 1. Suppose we have preliminary estimates λ̃i and α̃i obtained by ex-

tracting the first singular vector from Θ̃ and M̃ obtained from (2.2). One might

then attempt to estimate ft as the coefficient on λ̃ixit from the regression of yit

on λ̃ixit and α̃i. Letting f̌t denote this coefficient, f̌t would have the following

expansion: For some Q̂ and rotation matrices H1 and H2,

√
N(f̌t −H−1

1 ft) = Q̂
1√
N

N∑
i=1

λixituit + Q̂
1√
N

N∑
i=1

λixit(α̃i −H2αi)gt

+ Q̂
1√
N

N∑
i=1

λix
2
it(λ̃i −H1λi)ft + oP (1).

(2.4)

The usual asymptotic behavior will be driven by the term Q̂ 1√
N

∑N
i=1 λixituit,

and we would like that the remaining terms are asymptotically negligible. Un-

fortunately, ∆̃α = 1√
N

∑N
i=1 λixit(α̃i −H2αi) and ∆̃λ = 1√

N

∑N
i=1 λix

2
it(λ̃i −H1λi),

which respectively capture the effect of estimation error in α̃ and λ̃, will generally

not vanish asymptotically. Focusing on the term ∆̃α, note that regularization bias

will mean that α̃i − H2αi is biased in general, resulting in the object inside the

sum generally not being mean zero. Further, while consistent, α̃i will generally

not converge fast enough to ensure that ∆̃α = oP (1). Thus, in general, ∆̃α will

result in a failure of asymptotic normality.

2.2.1. Partialing-Out and Sample Splitting. We deal with terms like ∆̃α by leverag-

ing additional structure on the observed variable xit and making use of partialing-

out and sample splitting. Write

xit = µit + eit, (2.5)

where µit is the mean process of xit which is assumed to capture both time series

dependence and strong sources of cross-sectional correlation. Specifically, we will
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maintain the assumption that eit is a zero-mean process that is serially independent

and cross-sectionally weakly dependent throughout our formal analysis. Using this

decomposition of xit, we can produce a “partialed-out” version of the model:

ẏit = α′igt + eitλ
′
ift + uit, where ẏit = yit − µitθit. (2.6)

The transformed model now contains partialed-out regressors eit. Using these,

we can estimate ft by regressing the estimated ẏit onto (α̃i, λ̃ieit) which would lead

to an expansion of estimated ft as

√
N(f̂t −H−1

1 ft) = Q̂
1√
N

N∑
i=1

λieituit + ∆αgt + ∆λft + oP (1),

where ∆α := Q̂
1√
N

N∑
i=1

λieit(α̃i −H2αi)
′,

∆λ := Q̂
1√
N

N∑
i=1

λi(Ee
2
it)(λ̃i −H1λi)

′.

(2.7)

It is immediate that ∆α = oP (1) if eit is mean zero, independent of λi(α̃i −
H2αi), and sufficient moments exist. The plausibility of these conditions relies on

partialing-out the strongly dependent components in xit and is tightly tied to the

so-called Neyman’s orthogonality that has been shown to be important in obtaining

valid inference after high-dimensional estimation in a variety of contexts; see, e.g.,

Chernozhukov et al. (2018).

Operationalizing partialing-out in (2.6) requires a sufficiently high-quality esti-

mate of eit, which requires restricting the process µit. In our formal development,

we assume µit = l′iwt. Hence, xit follows a factor model, where (li, wt) respec-

tively represent loadings and factors, and may thus be strongly intertemporally

and cross-sectionally correlated. We allow wt to overlap with (ft, gt) and take

dim(wt) to be fixed in our analysis. Other structures of µit could also be imposed

with all results going through as long as µit is sufficiently well-estimable.

To complete the argument that ∆α = oP (1), we also use sample-splitting. For

a fixed t, let I ⊂ {1, ..., T}\t be a set of time indexes, and let

DI = {(yis, xis) : i ≤ N, s ∈ I}.

Rather than using the full sample to obtain initial estimates of λ̃i and α̃i, we run

the nuclear-norm optimization using only data DI . Assuming that eit is serially
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independent and t /∈ I, λ̃i and α̃i are independent of eit which allows us to easily

verify that ∆α and similar terms vanish asymptotically.

2.2.2. A Final OLS Step: The effect of λ̃i −H1λi. We now consider the term ∆λ

in (2.7) which arises due to estimation error in λ̃i. The term ∆λ results in issues

that are analogous to the usual rotational indeterminacy issues in factor models

but do not appear in the existing post-regularization inference literature.

Importantly, ∆λ is not oP (1) since Ee2
it 6= 0. Returning to (2.7) and using that

∆α = oP (1), we have

√
N(f̂t −H−1

1 ft) = Q̂
1√
N

N∑
i=1

λieituit + ∆λft + oP (1).

Thus, the use of the regularized estimator λ̃i results in a non-vanishing asymptotic

bias. Importantly, this bias manifests as an additional time-invariant rotation of

the factors ft. We can thus define Hf := H−1
1 + ∆λN

−1/2 and establish that

√
N(f̂t −Hfft) = Q̂

1√
N

N∑
i=1

λieituit + oP (1).

Therefore, the effect of first-step estimation error λ̃i −H ′1λi is “absorbed” by the

adjusted rotation matrix. Once f̂t recovers the span of ft, our formal algorithm

will make use of a final least squares iteration to produce an estimator λ̂i that

suitably recovers the appropriately rotated λi. Recovering these two compatibly

rotated versions of ft and λi is then sufficient for the inferential theory for θ̂it.

2.3. Formal Estimation Algorithm. We now state the full estimation algo-

rithm for θit for some fixed t. The algorithm is stated in the leading case where

xit = l′iwt + eit with Eeit = 0. We then partial out the common component by

subtracting the estimated µit from xit and working with model (2.6).

Algorithm 2.2. Estimate θit as follows.

Step 1. Estimate the structure xit = µit + eit. Use the principal components

(PC) estimator to obtain (µ̂it, êit) for all i = 1, ..., N, t = 1, .., T.

Step 2: Sample splitting. Randomly split the sample into {1, ..., T}/{t} = I∪Ic,
so that |I|0 = [(T−1)/2]. Denote the N×|I|0 matrices of (yis, xis) for observations
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s ∈ I by YI , XI . Run nuclear-norm penalized regression:

(M̃I , Θ̃I) := arg min
M,Θ
‖YI −M −XI �Θ‖2

F + ν0‖M‖n + ν1‖Θ‖n. (2.8)

Let Λ̃I = (λ̃1, ..., λ̃N)′ be the N × K1 matrix whose columns are defined as√
N times the first K1 eigenvectors of Θ̃IΘ̃

′
I . Let ÃI = (α̃1, ..., α̃N)′ be the N ×K2

matrix whose columns are defined as
√
N times the first K2 eigenvectors of M̃IM̃

′
I .

Step 3. Estimate components for “partialing-out.” Using ÃI and Λ̃I , obtain

(f̃s, g̃s) := arg min
fs,gs

N∑
i=1

(yis − α̃′igs − xisλ̃′ifs)2, s ∈ Ic ∪ {t}.

Update estimates of loadings as

(λ̇i, α̇i) = arg min
λi,αi

∑
s∈Ic∪{t}

(yis − α′ig̃s − xisλ′if̃s)2, i = 1, ..., N.

Step 4. Estimate (ft, λi) for use in inference about θit. Define ŷis = yis− µ̂isλ̇′if̃s
and êis = xis − µ̂is. Let

(f̂I,s, ĝI,s) := arg min
fs,gs

N∑
i=1

(ŷis − α̃′igs − êisλ̃′ifs)2, s ∈ Ic ∪ {t}

(λ̂I,i, α̂I,i) := arg min
λi,αi

∑
s∈Ic∪{t}

(ŷis − α′iĝI,s − êisλ′if̂I,s)2, i = 1, ..., N.

Step 5. Exchange I and Ic. Repeat steps 2-4 with I and Ic exchanged to obtain

(λ̂Ic,i, f̂Ic,s : s ∈ I ∪ {t}, i ≤ N).

Step 6. Estimate θit. Obtain the estimator of θit:

θ̂it :=
1

2
[λ̂′I,if̂I,t + λ̂′Ic,if̂Ic,t].

Remark 2.1. We split the sample to {1, ..., T} = I∪Ic∪{t} which ensures that eit

is independent of the data in both I and Ic for the given t of interest. Alternatively,

we may split over individuals, which would allow for serial dependence in the eit

as long as they may be taken to be cross-sectionally independent.

Remark 2.2. Step 3 is needed to obtain a sufficiently high-quality estimate for

ẏit = yit − µitλ
′
ift to allow application of the partialed-out equation (2.6). The

estimators in Step 3 are still unsuitable for inference due to the use of the raw xit,
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which is generally not zero-mean or serially independent. Appropriately centering

and eliminating sources of serial dependence in xit gives rise to Step 4.

2.4. Choosing the tuning parameters. We adopt a simple plug-in approach to

choosing the tuning parameters ν1 and ν0. The “scores” of the penalized regression

are given by 2U and 2X � U . We then wish to choose tuning parameters (ν0, ν1)

such that we achieve score domination in the sense that

2‖U‖ < (1− c)ν0, 2‖X � U‖ < (1− c)ν1 (2.9)

for some c > 0 with high probability where ‖.‖ denotes the matrix operator norm.

As in the literature surrounding `1-penalized estimation of the high-dimensional

linear model, achieving score domination will result in desirable rates of conver-

gence and will produce consistent estimators of the ranks of the matrix param-

eters. To operationalize these choices, we assume that the columns of U and

X � U , respectively {ut} and {xt � ut}, are sub-Gaussian vectors. Then, the

eigenvalue-concentration inequality for sub-Gaussian random vectors (Theorem

5.39 of Vershynin (2010)) implies

ν0 � ν1 � max{
√
N,
√
T}.

In the Gaussian case, further progress can be made. Suppose uit is independent

in both (i, t) and uit ∼ N (0, σ2
ui). Let Z be an N × T matrix whose elements

are independently generated from N (0, σ2
ui). Then ‖X � U‖ =d ‖X � Z‖ and

‖U‖ =d ‖Z‖ where =d means “is identically distributed to”. Let Q(W ;m) denote

the mth quantile of random variable W . For δNT = o(1), take

ν0 = 2(1 + c1)Q(‖Z‖; 1− δNT ), ν1 = 2(1 + c1)Q(‖X � Z‖; 1− δNT )

which respectively denote 2(1 + c1) multiplied by the 1− δNT quantile of ‖Z‖ and

‖X �Z‖. Then (2.9) holds with probability 1− δNT . In practice, we compute the

quantiles by simulation replacing σ2
ui with an initial consistent estimator. In our

simulation and empirical examples, we set c1 = 0.1 and δNT = 0.05.

3. Asymptotic Results

3.1. Parameters of interest relevant to policy studies. Our main inferential

theory establishes the rate of convergence and asymptotic normality for a group
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average effect. Fix a cross-sectional subgroup

G ⊆ {1, 2, ..., N}.

We are interested in inference for the group average effect at a fixed t ≤ T :

θ̄G,t :=
1

|G|0

∑
i∈G

θit,

where |G|0 denotes the group size. The group size can be either fixed or grow with

N . This structure admits two interesting cases as extremes: (i) G = {i} for any

fixed i, which allows inference for a fixed individual; and (ii) G = {1, 2, ..., N},
which allows inference for the cross-sectional average effect θ̄t := 1

N

∑N
i=1 θit.

The group average effect provides answers to various questions related to policy

studies, e.g., the effect of the minimum wage in a state of interest or on average

in the country at different points in time. Inference about θ̄G,t is also relevant to

answering many questions which are important for understanding effects of policies

over the sample period. For example, one may be interested in the following

hypotheses related to policy effects during the sample period:

• Tests of group homogeneity. Given a finite number of groups of interest

G1, ...,GJ , one may wish to test the hypothesis of homogeneous average

group effects:

H1
0 : θ̄G1,t = ... = θ̄GJ ,t.

For instance, we may be interested in asking whether the average effect of

the minimum wage in states in two different regions of the country, perhaps

historically poorer and historically wealthier states, are the same.

• Test of joint significance in a given time period. One might be

interested in testing that all effects in a given time period are zero:

H2
0 : θit = 0 for all i.

We show how valid tests of these hypotheses result as simple extensions of our

main results in Section 3.4. In the supplementary appendix, we also show how our

results can be extended to testing homogeneity of effects over two time periods.

3.2. Assumptions. We first introduce a key assumption about the nuclear-norm

SVT procedure. We require some “invertibility” condition for the operator:

(∆1,∆2) :→ ∆1 + ∆2 �X,
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when (∆1,∆2) is confined to a restricted low-rank set (e.g., Negahban and Wain-

wright (2011)). To describe this set, we first introduce some notation.

Let U1D1V
′

1 = Θ and U2D2V
′

2 = M respectively be the singular value decompo-

sitions of the low-rank matrices Θ and M . Further decompose,

Uj = (Uj,r, Uj,c), Vj = (Vj,r, Vj,c), for j = 1, 2.

Here (Uj,r, Vj,r) are the singular vectors corresponding to nonzero singular values,

while (Uj,c, Vj,c) are singular vectors corresponding to the zero singular values. In

addition, for any N × T matrix ∆, let

Pj(∆) = Uj,cU
′
j,c∆Vj,cV

′
j,c, and Mj(∆) = ∆− Pj(∆).

Here Uj,cU
′
j,c and Vj,cV

′
j,c respectively are the projection matrices onto the columns

of Uj,c and Vj,c. Therefore, M1(·) and M2(·) can be considered as the projection

matrices onto the “low-rank spaces” of Θ and M respectively, and P1(·) and P2(·)
are projections onto their orthogonal spaces.

Define the restricted low-rank set as, for some c1, c2 > 0,

C(c1, c2) =

{
(∆1,∆2) : ‖P1(∆1)‖n + ‖P2(∆2)‖n ≤ c1‖M1(∆1)‖n + c1‖M2(∆2)‖n,

‖∆1‖2
F + ‖∆2‖2

F ≥ c2

√
NT

}
.

Assumption 3.1 (Restricted strong convexity). For any c1 > 0, there are con-

stants c2, κ, η > 0, uniformly for (∆1,∆2) ∈ C(c1, c2), such that

‖∆1 + ∆2 �X‖2
F ≥ κ‖∆1‖2

F + κ‖∆2‖2
F − (N + T )η (3.1)

with probability approaching one. The same condition holds when (M,Θ) are re-

placed with ΘI = (λ′ift : i ≤ N, t ∈ I), MI = (α′igt : i ≤ N, t ∈ I), and with

(ΘIc ,MIc), which are defined similarly.

Remark 3.1. Restricted strong convexity has been well studied in the low-rank

estimation literature in the case with a single matrix parameter, e.g., Klopp (2014)

and Negahban and Wainwright (2012). Assumption 3.1 extends the concept to the

multivariate case with general regressors. We verify this assumption in the supple-

mentary material under primitive conditions. The key primitive condition requires

that there is sufficient variability among the regressors xit, which is analogous to
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the usual rank condition employed in regression. Specifically, for the decomposi-

tion xit = µit + eit for µit and eit defined as in (2.5), a sufficient condition is that

all eigenvalues of Σit are bounded away from zero almost surely, where

Σit =

(
1 Eµxit

Eµxit Eµx
2
it

)
=

(
1 µit

µit µ2
it + Eµe

2
it

)
and Eµ(·) denotes the conditional expectation given {µit : i ≤ N, t ≤ T}. Satis-

faction of this condition allows separately identifying θit and the interactive fixed

effects in M . This condition is straightforward to verify. Note that the minimum

eigenvalue of Σit equals

ψmin(Σit) :=
2Eµe

2
it

γit +
√
γ2
it − 4Eµe2

it

≥ Eµe
2
it

γit

where γit = 1 + µ2
it + Eµe

2
it. Thus, ψmin(Σit) is bounded away from zero uniformly

for all (i, t) as long as Eµe
2
it is bounded away from zero and µ2

it is bounded away

from infinity.

The following assumption places mild restrictions on the latent factors. The

assumed conditions hold for serially independent sequences and also allow for per-

fectly dependent sequences where (ft, gt) = (f, g) for some time-invariant (f, g) by

setting dim(ft) = dim(gt) = 1.

Assumption 3.2. As T →∞, the sub-samples (I, Ic) satisfy:

1

|I|0

∑
t∈I

ftf
′
t =

1

T

T∑
t=1

ftf
′
t +OP (T−1/2) =

1

|Ic|0

∑
t∈Ic

ftf
′
t ,

1

|I|0

∑
t∈I

gtg
′
t =

1

T

T∑
t=1

gtg
′
t +OP (T−1/2) =

1

|Ic|0

∑
t∈Ic

gtg
′
t.

In addition, there is a c > 0 such that all the eigenvalues of 1
T

∑T
t=1 ftf

′
t and

1
T

∑T
t=1 gtg

′
t are bounded from below by c almost surely.

The next assumption requires that the factors be strong. In addition, we re-

quire distinct eigenvalues in order to identify their corresponding eigenvectors,

and therefore, (λi, αi). These conditions are strong, though standard in the factor

modeling literature. It may be interesting, but is beyond the scope of the present

work, to consider estimation and inference in the presence of weak factors.
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Assumption 3.3 (Valid factor structures with strong factors). There are con-

stants c1 > ... > cK1 > c > 0, and c′1 > ... > c′K2
> c > 0, so that up to a term

oP (1),

(i) c′j equals the jth largest eigenvalue of ( 1
T

∑
t gtg

′
t)

1/2 1
N

∑N
i=1 αiα

′
i(

1
T

∑
t gtg

′
t)

1/2

for all j = 1, ..., K1, and

(ii) cj equals the jth largest eigenvalue of ( 1
T

∑
t ftf

′
t)

1/2 1
N

∑N
i=1 λiλ

′
i(

1
T

∑
t ftf

′
t)

1/2

for all j = 1, ..., K2.

Proposition D.1 in the supplementary appendix shows that under the aforemen-

tioned conditions, the nuclear-norm regularized matrix estimators are consistent

under the Frobenius norm and provides the rate of convergence. It extends known

results from the low-rank estimation literature to the multi-dimensional case.

To obtain the asymptotic distribution of our estimator, we make a number of

additional assumptions. Throughout, let (F,G,W,E, U) be the T ×K matrices of

(ft, gt, wt, eit, uit), where K differs for different quantities.

Assumption 3.4 (Dependence). (i) {eit, uit} are independent across t; {eit} are

also conditionally independent across t given {F,G,W,U}; {uit} are also condi-

tionally independent across t given {F,G,W,E}.
(ii) E(eit|uit, wt, gt, ft) = 0, E(uit|eit, wt, gt, ft) = 0. Also, Ee2

it does not vary

across t.

(iii) The N × T matrix X � U has the following decomposition:

X � U = ΩNTΣ
1/2
T , where

(1) ΩNT := (ω1, ..., ωT ) is an N × T matrix whose columns {ωt}t≤T are inde-

pendent sub-gaussian random vectors with Eωt = 0. More specifically, there

is C > 0 such that

max
t≤T

sup
‖x‖=1

E exp(sω′tx) ≤ exp(s2C), ∀s ∈ R.

(2) ΣT is a T × T deterministic matrix whose eigenvalues are bounded from

both below and above by constants.

(iv) Weak conditional cross-sectional dependence: let W = (F,G,W ). Let ωit =

uiteit, and let ci be a bounded nonrandom sequence. Almost surely,

max
t≤T

1

N3

∑
i,j,k,l≤N

|Cov(eitejt, ektelt|W , U)| < C, max
t≤T
‖E(utu

′
t|W , E)‖ < C
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max
t≤T

E(| 1√
N

N∑
i=1

ciωit|4|W) < C, max
t≤T

E(| 1√
N

N∑
i=1

cieit|4|W , U) < C

max
t≤T

E(| 1√
N

N∑
i=1

ciuit|4|W , E) < C, max
t≤T

max
i≤N

1

N

∑
k,j≤N

|E(ekteitejt|W , U)| < C

max
t≤T

max
i≤N

N∑
j=1

|Cov(emit , erjt|W , U)| < C, m, r ∈ {1, 2}

max
t≤T

max
i≤N

1

N

∑
k,j≤N

|Cov(ωitωjt, ωitωkt|W)| < C, max
t≤T

max
i≤N

N∑
j=1

|Cov(ωit, ωjt)|W)| < C.

Assumption 3.5 (Cross-sectional CLT). As N →∞,

V
−1/2
λ2

1√
N

N∑
i=1

λieituit →d N (0, I), where Vλ2 = Var

(
1√
N

N∑
i=1

λieituit

∣∣∣∣F
)
.

Before stating our final assumption, it is useful to define a number of objects.

bNT,1 = max
t≤T
‖ 1

NT

N∑
i=1

T∑
s=1

ws(eiseit − Eeiseit)‖

bNT,2 = (max
t≤T

1

T

T∑
s=1

(
1

N

N∑
i=1

eiseit − Eeiseit)
2)1/2

bNT,3 = max
t≤T
‖ 1

N

N∑
i=1

lieit‖, bNT,4 = max
i≤N
‖ 1

T

T∑
s=1

eisws‖

bNT,5 = max
i≤N
‖ 1

NT

N∑
j=1

T∑
s=1

lj(ejseis − Eejseis)‖

In addition, we introduce Hessian matrices that are involved when iteratively

estimating λi and ft.

Dft =
1

N
Λ′(diag(Xt)Mαdiag(Xt)Λ, Dλi =

1

T
F ′(diag(X i)Mgdiag(X i))F,

D̄ft =
1

N
Λ′E((diag(et)Mαdiag(et))Λ +

1

N
Λ′(diag(Lwt)Mαdiag(Lwt)Λ,

D̄λi =
1

T
F ′E(diag(Ei)Mgdiag(Ei))F +

1

T
F ′(diag(Wli)Mgdiag(Wli))F.

The above matrices involve the following notation. Let Xt, et denote the N × 1

vector of xit and eit, and let Xi and Ei denote the T × 1 vectors of xit and eit

for a given i. Let L denote the N × dim(wt) matrix of li, and let W denote the
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T×dim(wt) matrix of wt. Let Mg = I−G(G′G)−1G′ be a T×T projection matrix,

and let Mα be an N ×N matrix defined similarly. Finally, let diag(et) denote the

diagonal matrix whose entries are elements of et; all other diag(.) matrices are

defined similarly.

Let CNT := min{
√
N,
√
T}.

Assumption 3.6 (Moment bounds). (i) maxi(‖λi‖+ ‖αi‖+ ‖li‖) < C.

(ii) maxt≤T ‖ 1
N

∑
i eitαiλ

′
i‖F = oP (1) and δNT maxit |eit| = oP (1), where

δNT := (C−1
NT + bNT,4 + bNT,5) max

t≤T
‖wt‖+ bNT,1 + bNT,3 + C−1

NT bNT,2 + C
−1/2
NT .

(iii) Let ψj(H) denote the jth largest singular value of matrix H. Suppose there

is c > 0, so that almost surely, for all t ≤ T and i ≤ N , minj≤K2 ψj(Dλi) > c,

minj≤K2 ψj(Dft) > c, minj≤K2 ψj(D̄λi) > c and minj≤K2 ψj(D̄ft) > c. In addition,

c < min
j
ψj(

1

N

∑
i

lil
′
i) ≤ max

j
ψj(

1

N

∑
i

lil
′
i) < C,

c < min
j
ψj(

1

T

∑
t

wtw
′
t) ≤ max

j
ψj(

1

T

∑
t

wtw
′
t) < C.

(iv) maxit E(e8
it|U, F ) < C, and E‖wt‖4 + E‖gt‖4 + E‖ft‖4 < C, and

E‖gt‖4‖ft‖4 + Eu4
it‖ft‖4 + Ee4

jt‖ft‖8 + Ee4
jt‖ft‖4‖gt‖4 + E‖wt‖4‖gt‖4 < C.

Assumption 3.6 (ii) imposes tail conditions on (eit, wt). If (eit, wt) are sub-

Gaussian and eit is independent across i, it is straightforward to obtain bounds

for bNT,1, ..., bNT,5 under which one can verify that condition (ii) holds as long as

log2 T = o(N) and (log2 T )(log2N) = o(T ).

3.3. Main Results. Assume that G is a known cross-sectional subset of interest.

Theorem 3.1. Suppose Assumptions 3.1- 3.6 hold. Fix any t ≤ T and G ⊆
{1, ..., N}. Suppose N, T →∞ and either (i) |G|0 = o(N) or (ii) N = o(T 2) holds.

In addition, assume f ′tVfft and λ̄′GVλλ̄G are both bounded away from zero. Then

Σ
−1/2
G

(
1

|G|0

∑
i∈G

θ̂it − θ̄G,t

)
→d N (0, 1)

where

ΣG :=
1

T |G|0
f ′tVf,Gft +

1

N
λ̄′GVλλ̄G



18 VICTOR CHERNOZHUKOV, CHRISTIAN HANSEN, YUAN LIAO, AND YINCHU ZHU

with

Vf,G =
1

T

T∑
s=1

Var

(
1√
|G|0

∑
i∈G

Ωifseisuis

∣∣∣∣F
)
, Ωi = (

1

T

T∑
s=1

fsf
′
sEe

2
is)
−1,

Vλ = V −1
λ1 Vλ2V

−1
λ1 , Vλ1 =

1

N

N∑
i=1

λiλ
′
iEe

2
it, λ̄G =

1

|G|0

∑
i∈G

λi.

Remark 3.2. As an implication of Theorem 3.1, which can be achieved under

weaker conditions, the group average effect estimator has rate of convergence

1

|G|0

∑
i∈G

θ̂it − θ̄G,t = OP

(
1√
T |G|0

+
1√
N

)
.

It is useful to compare this to the rate that would be obtained, for a fixed group

of interest G, using a model that imposes homogeneous effects at the group level:

yit = θG,txit + α′igt + uit, i ∈ G. (3.2)

The resulting “group-homogeneous effect estimator” θ̃G,t would satisfy

θ̃G,t − θG,t = OP

(
|G|−1/2

0

)
.

In effect, the homogeneous effect estimator uses only cross-sectional information

within G. By leveraging the factor coefficients, we estimate a heterogeneous aver-

age effect θ̄G,t = 1
|G|0

∑
i∈G θit making use of all cross-sectional information which

will result in a faster rate of convergence than θ̃G,t when |G|0 is small and will

remain consistent even if the group size is finite. We also note that the homo-

geneous effects estimator will generally be inconsistent for group average effects

when effects are actually heterogeneous. Note that we estimate the average effect

for a given known group. See, e.g., Bonhomme and Manresa (2015) and Su et al.

(2016) for results on estimating group effects with estimated group memberships.

Theorem 3.1 immediately leads to two special cases.

Corollary 3.1. Suppose Assumptions 3.1-3.6 hold. Fix t ≤ T .

(i) Individual effect: Fix any i ≤ N , then

Σ
−1/2
i

(
θ̂it − θit

)
→d N (0, 1)

where Σi := 1
T
f ′tVf,ift + 1

N
λ′iVλλi with Vf,i = 1

T

∑T
s=1 Var

(
Ωifseisuis

∣∣∣∣F).
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(ii) Cross-sectional average effect: Suppose N = o(T 2) and lim infN σ
2
λ > 0, then

√
Nσ−1

λ

(
1

N

N∑
i=1

θ̂it − θ̄t

)
→d N (0, 1)

where θ̄t = 1
N

∑N
i=1 θit, λ̄ = 1

N

∑N
i=1 λi and σ2

λ := λ̄′Vλλ̄.

We now discuss estimating the asymptotic variance. To preserve the rotation

invariance property of the asymptotic variance, we estimate relevant quantities

separately within subsamples and produce the final asymptotic variance estimator

by averaging the results. Specifically, assuming products eituit are cross-sectionally

independent for simplicity, let

v̂λ =
1

2
(λ̂′I,GV̂

−1
λ1,I V̂λ2,I V̂

−1
λ1,I λ̂I,G + λ̂′Ic,GV̂

−1
λ1,IcV̂λ2,IcV̂

−1
λ1,Icλ̂Ic,G),

v̂f,G =
1

2
(f̂ ′I,tV̂I,f f̂I,t + f̂ ′Ic,tV̂Ic,f f̂Ic,t),

V̂S,f =
1

|G|0|S|0

∑
s/∈S

∑
i∈G

Ω̂S,if̂S,sf̂
′
S,sΩ̂S,iê

2
isû

2
is,

V̂λ1,S =
1

N

∑
j

λ̂S,jλ̂
′
S,j ê

2
jt, V̂λ2,S =

1

N

∑
j

λ̂S,jλ̂
′
S,j ê

2
jtû

2
jt,

λ̂S,G =
1

|G|0

∑
i∈G

λ̂S,i, and Ω̂S,i = (
1

|S|0

∑
s∈S

f̂S,sf̂
′
S,s)
−1(

1

T

T∑
s=1

ê2
is)
−1.

Corollary 3.2. In addition to the assumptions of Theorem 3.1, assume eituit are

cross-sectionally independent conditionally on F . Then for any fixed t ≤ T and G,(
1

N
v̂λ +

1

T |G|0
v̂f,G

)−1/2
(

1

|G|0

∑
i∈G

θ̂it − θ̄G,t

)
→d N (0, 1).

3.4. Policy relevant tests. We now show how we can use our results to test the

policy relevant hypotheses described in Section 3.1. As part of this discussion, we

illustrate leveraging the structure of coefficients in the factor-slope model, θ̄G,t =

λ̄′Gft, to provide tractable tests.

Consider testing the null hypothesis of homogeneity of group average effects in

a given time period t:

H1
0 : θ̄G1,t = ... = θ̄GJ ,t.
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Let S := (θ̂G1,t − θ̂G2,t, θ̂G2,t − θ̂G3,t, ..., θ̂GJ−1,t − θ̂GJ ,t)′. We define the test statistic

TS ′(ΞD̂Ξ′)−1S for Ξ =


1 −1 0 · · ·
0 1 −1 0 · · ·
...

0 · · · 1 −1


where D̂ = diag{ 1

|Gj |0 v̂f,Gj : j ≤ J} is the diagonal matrix of the estimated asymp-

totic variances of θ̂Gj ,t. It may be interesting to note that this test is essentially a

test of group homogeneity of loadings in the sense that θ̄Gj ,t− θ̄Gk,t = (λ̄Gj − λ̄Gk)′ft

for any two groups Gj,Gk. Therefore, H1
0 is the same as the null hypothesis of

homogeneity of group average loadings except when the inner product between

λ̄Gj − λ̄Gk and ft happens to be zero.

Next, consider the test of joint significance at a given time t:

H2
0 : θit = 0 for all i.

The factor slope structure brings us at least two benefits to implement this test.

First, although this hypothesis is high-dimensional, the problem can be trans-

formed to testing a much simpler low-dimensional hypothesis, H2′
0 : ft = 0. Under

H2
0 , the factor structure yields Λft = 0 where Λ is the N × dim(ft) matrix of

λi. Suppose (Λ′Λ)−1 exists, then H2
0 is equivalent to ft = 0 almost surely, which

follows from left multiplication by (Λ′Λ)−1Λ′. A secondary benefit of focusing on

ft is that failing to reject ft = 0 will also imply θit = 0 for any out-of-sample

cross-sectional unit i influenced by the same factors.

Focusing on H2′
0 , a simple test can be constructed from

f̂t :=
1

2
(f̂I,t + f̂Ic,t)

and associated estimated asymptotic variance V̂λ := 1
2
V̂ −1
λ1,I V̂λ2,I V̂

−1
λ1,I+

1
2
V̂ −1
λ1,IcV̂λ2,IcV̂

−1
λ1,Ic .

The following theorem presents the asymptotic null distribution of the two tests.

Let χ2(a) denote the centered chi-square distribution with degrees of freedom a.

Theorem 3.2. Suppose the assumptions of Corollary 3.2 hold.

(i) For H1
0 , suppose λ̄G1 = ... = λ̄GJ under H1

0 . Assume maxj≤J |Gj|0 = o(T ),

T maxj≤J |Gj|0 = o(N2), maxj |Gj|0/minj |Gj|0 = O(1) and J is fixed. Under H1
0 ,

TS ′(ΞD̂Ξ′)−1S →d χ2(J − 1).
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(ii) For H2
0 , suppose ft = 0 almost surely under H2

0 . Then under H2
0 ,

Nf̂ ′tV̂
−1
λ f̂t →d χ2(dim(ft)).

3.5. Consistent rank estimation. This section considers consistent estimation

of the ranks K1 and K2. Several methods based on information criteria or eigen-

gaps are available for estimating the number of factors; see, e.g., Bai and Ng (2002),

Onatski (2010), and Ahn and Horenstein (2013). While these methods could be

adapted to the current context, here we provide a simple method that is a natural

byproduct of the nuclear norm penalized estimator (2.2).

Recall that (M̃, Θ̃) are the low-rank estimators obtained from solving (2.2) using

the full data i = 1, ..., N and t = 1, ..., T . We can estimate K1, K2 as

K̂1 =
∑
i

1{ψi(Θ̃) ≥ (ν0‖Θ̃‖)1/2}, K̂2 =
∑
i

1{ψi(M̃) ≥ (ν1‖M̃‖)1/2},

where ψi(W ) denotes the ith largest singular-value of a matrix W . Proposition D.1

in the supplement shows that K̂1 and K̂2 are consistent estimators of the rank of

Θ and M . All formal results in the previous sections are unaffected by using K̂1

and K̂2 obtained in an initial step before applying Algorithm 2.2.

4. Monte Carlo Simulations

In this section, we provide some simulation results for inference about a spe-

cific θit. We provide additional simulation results regarding the hypothesis tests

discussed in Section 3.4 and in a dynamic model in the supplementary appendix.

We generate outcomes as

yit = α′igt + xit,1θit + xit,2βit + uit

where θit = λ′i,1ft,1 and βit = λ′i,2ft,2. The observed regressors are generated as

xit,r = l′i,rwt,r + µx + eit,r, r = 1, 2,

where (eit,r, uit) are generated independently from the standard normal distribution

across (i, t, r). We set µx = 2, so xit,r follows a factor model with an intercept. We

then estimate the structure of xit,r for partialing-out via the principal components

estimator applied to the matrix (sij,r)N×N :

sij,r =
1

T

T∑
t=

(xit,r − x̄i,r)(xjt,r − x̄j,r), x̄i,r =
1

T

∑
t

xit,r.
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We set each number of factors to one and generate all factors and loadings indepen-

dently as draws from N (2, 1) random variables. The loadings (αi, λi,1, λi,2, li,r) are

treated as fixed in the simulations while the factors (gt, ft,1, ft,2, wt,r) are treated as

random and sampled across replications. Results are based on 1000 replications.

We compare four inferential methods:

(I) (“Partial-out”) The proposed estimator that partials out µit from xit and

uses sample-splitting. Feasible standard errors given in Corollary 3.2 are used.

(II) (“Par-infeasible”) The proposed estimator that partials out µit from xit and

uses sample-splitting. Infeasible simulation standard errors are used for inference.

(III) (“No Par-out”) The estimator that uses sample splitting but does not make

use of partialing-out. That is, we run Steps 2 and 3 of Algorithm 2.2 using data

for s ∈ I, and obtain (f̃I,s, λ̇I,i) for s ∈ Ic ∪ {t} and all i. We then exchange I

and Ic to obtain (f̃Ic,t, λ̇I,i). The estimator is then defined as 1
2
(λ̇′I,if̃I,t + λ̇′Ic,if̃Ic,t).

Infeasible simulation standard errors are used for inference.

(IV) (“Regularized”) The estimator that uses nuclear-norm regularization only.

That is, θit is directly estimated as the (i, t)th element of Θ̃ in (2.2). Infeasible

simulation standard errors are used for inference.

We report results only for θit with i = t = 1; results for other values of (i, t) and

for βit are similar. Table 4 reports the fraction of simulation draws where the true

value for θit was contained in the 95% confidence interval:

[θ̂it − 1.96se(θ̂it), θ̂it − 1.96se(θ̂it)].

where se(θ̂it) is the respective standard error for (I)-(IV) defined above.

Figure 4 plots the (scaled) histogram of the standardized estimates, superim-

posed with the standard normal density. The top panels of Figure 4 are for the pro-

posed estimation method; the middle panels are for estimation without partialing-

out the mean structure of xit, and the bottom panels are for the nuclear-norm

regularized estimators without any debiasing. It appears that asymptotic theory

provides a good approximation to the finite sample distributions for the proposed

post-SVT method. In contrast, the estimated θit produced without partialing-out

and produced by applying nuclear norm regularization without further debiasing

noticeably deviate from the standard normal distribution.
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Table 4.1. Coverage Probability in Static Simulation Design

N T Partial-out Par-infeasible No par-out Regularized
100 100 0.943 0.953 0.794 0.778
200 200 0.952 0.944 0.835 0.911
500 100 0.945 0.946 0.804 0.883
Note: This table reports the simulated coverage probability of 95%
confidence intervals. The “Partial-out” estimator uses feasible stan-
dard errors. All other methods use infeasible simulation standard
errors. Results are based on 1000 simulation replications.

Figure 4.1. Histograms of standardized estimates ((θ̂11−θ11)/se(θ̂11)). The
standard normal density function is superimposed on each histogram.
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