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Introduction

I Observe many control variables
I Two popular (formal) dimension blueuction techniques:

Variable/model selection - e.g. lasso
Factor models
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Variable Selection Review

(α parameter of interest):

yi = αdi + x ′i β + εi

di = x ′i γ + ui

1. Allow MANY control variables

2. Impose SPARSITY on β, γ
I Literature: Belloni, Chernozhukov and Hansen (12 REStud. ), etc.
I weak dependence among x
I just a few x have impact on y , d
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Large Factor Model Review

(α parameter of interest):

yi = αdi + f ′i β + εi

di = f ′i γ + vi

xi = Λfi + Ui

1. Most of x have impact on y , d .

2. dimension of fi is small
I Literature: Factor augmented regressions, diffusion index forecast (e.g.

Bai and Ng (03), Stock and Watson (02))
I Generally results in strong dependence among x
I Regression directly on x will generally NOT produce sparse coefficients
I Do not worry about the “remaining information” in Ui
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What we aim to do

nests large factor models and variable selection.

yi = αdi + f ′i β + U ′i θ
y + εi

di = f ′i γ + U ′i θ
d + vi

xi = Λfi + Ui

1. Ui represent variation in observables not captured by factors

2. estimation method: lasso on Ui .

3. Justifications of key assumptions for lasso:

I Weak dependence among regressors:
Most variations in x are driven by factors.

I Sparsity of θ:

only a few x have “useful remaining information” after factors are
controlled.
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Some “why not” questions we had...

1. control for (fi , xi ) instead of (fi ,Ui ):

yi = αdi + f ′i β + x ′i θ
y + εi

di = f ′i γ + x ′i θ
d + vi

xi = Λfi + Ui

I within xi : strongly correlated.
I between xi and fi : strongly correlated.
2. Use lots of factors

yi = αdi + f ′i β + εi

di = f ′i γ + vi

xi = Λfi + Ui

I Allow dim(fi ) to increase fast with p = dim(xi )

I Assume (β, γ) sparse, then “lasso” them.

I No sufficient amount “cross-sectional” information for factors
I Estimating factors is either inconsistent or with slow rate, impacting

inference on α
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Some “why not” questions we had...

3. Sparse PCA

xi,l = λ′l fi + Ui , l = 1, ..., p, i = 1, ..., n

I Most of (λ1, ..., λp) are zero.
I Most of x do not depend on factors. Become a sparse model:

yi = αdi + x ′i β + εi

di = x ′i γ + ui
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What we do

yi = αdi + f ′i β + U ′i θ
y + εi

di = f ′i γ + U ′i θ
d + vi

xi = Λfi + Ui , i = 1, ..., n

I Do not directly observe (f ,U) ; (θy , θd ) are sparse
I dim(fi ), dim(α) are small.

1. Estimate (f ,U) from the third equation

2. Lasso on

yi − Ê(yi |fi ) = Û ′i θ
new + εnew

i , εnew
i = αvi + εi

di − Ê(di |fi ) = Û ′i θ
d + vi

3. OLS on
ε̂new

i = αv̂i + εi

Hansen and Liao Factor-Lasso



Extensions: I, II

I: endogenous treatment

yi = αdi + f ′i β + U ′i θ
y + εi

di = πzi + f ′i γ + U ′i θ
d + vi

zi = f ′i ψ + U ′i θ
z + ui

xi = Λfi + Ui , i = 1, ..., n

II: diffusion index forecast

yt+h = αyt + f ′t β + U ′t θ + εt+h

xt = Λft + Ut , t = 1, ...,T .

Include Ut to capture idiosyncratic information in xt .
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Extensions: III Panel data

What we focused on in this paper:

yit = αdit + (λy
t )′fi + U ′itθ

y + µy
i + δy

t + εit

dit = (λd
t )′fi + U ′itθ

d + µd
i + δd

t + ηit

Xit = Λt fi + µX
i + δX

t + Uit , i ≤ n, t ≤ T , dim(Xit ) = p

I µi and δt are unrestricted individual and time effects
I p →∞, n→∞,
I T is either fixed or growing but satisfy T = o(n), because:

need accurate estimation of Uit , relying on estimating Λt

I n = o(p2) because need accurate estimation of fi .

Hansen and Liao Factor-Lasso



Asymptotic Normality

Define

σηε = Var

 1√
nT

∑
i,t

(ηit − η̄i )(εit − ε̄i )

 σ̂ηε =
1

nT

∑
i

(∑
t

η̂it ε̂it

)2

σ2
η = E

 1
nT

∑
i,t

(ηit − η̄i )
2

 σ̂2
η =

1
nT

∑
i,t

η̂2
it

σ2
ησ
−1/2
ηε

√
nT (α̂− α)

d−→ N(0, 1)

σ̂2
ησ̂
−1/2
ηε

√
nT (α̂− α)

d−→ N(0, 1)

Additional comments:
I Not clear that you could get these results even if λy

t = 0 were known due
to strong dependence in X resulting from presence of factors

I First taking care of factor structure in X seems potentially important
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Extensions of Inference I: K-Step Bootstrap

Alternative to inference from plug-in asymptotic distribution is bootstrap
inference

Full bootstrap lasso:

I Generate bootstrap data (Xi ,
∗ ,Y ∗i )

I

β̂∗ = arg min
1
n

n∑
i=1

(Y ∗i − X∗Ti β)2 + λ‖β‖1

I Repeat B times.

Full bootstrap lasso is potentially burdensome.
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K-Step Bootstrap

Consider a K-Step bootstrap in Andrews (2002):

I Start lasso at full sample solution (β̂lasso)

I For each bootstrap data, initialize at β̂∗0 = β̂lasso

I Employ iterative algorithms: Obtain

β̂lasso = β̂∗0 ⇒ β̂∗1 ⇒ ...⇒ β̂∗k

I Similar to Andrews 02, each step is in closed form - fast even in large
problems

I Different from Andrews 02, each step is still an l1-penalized problem
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Coordinate descent (Fu 1998)

I Update one component at a time, fixing the remaining components:

min
βj

1
n

∑
i

(Y ∗i − X∗
′

i,−j β̂
∗
`,−j︸ ︷︷ ︸

others, known

−Xijβj )
2 + λ|ψjβj | = min

βj
L`(βj ) + λ|ψjβj |

β̂∗`+1,j = arg min
βj

L`(βj ) + λ|ψjβj |

for j = 1, ..., p.

I Each β̂∗`+1,j is closed form = soft-thresholding.

arg min
β∈R

1
2

(z − β)2 + λ|β|

= sgn(z) max(|z| − λ, 0)
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Faster methods

I “Composite Gradient descent” (Nesterov 07, Agarwal et al. 12 Ann.
Statist.)
update the entire vector at once

originally: β̂∗l+1 = arg min
β

(β − β̂∗l )′V (β − β̂∗l ) + b′(β − β̂∗l ) + λ‖ψβ‖1

Replace V by h
2× identity

⇒ the entire vector is in closed form= soft thresholding

I choose h:
if dimension is small, use h = 2λmax(V ) to “majorize” V
If dimension is large, 2λmax(V ) is unbounded (Johnstone 01)
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General Conditions for Iterative Algorithms

Q(β) =
1
n
‖Y ∗ − X∗β‖2

2 + λ‖Ψβ‖1

Suppose β̂∗k satisfies:

1. minimization error is smaller than statistical error.

Q(β̂k ) ≤ min
β

Q(β) + oP∗(|β̂ − β0|)

2. sparsity:
|β̂k |0 = OP∗(|J|0).

Can be directly verified using the KKT condition

We verified both conditions for the Coordinate descent ( Fu 98)
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Bootstrap Confidence Interval

Let q∗τ/2 be the τ/2th upper quantile of {
√

nT |α̂b − α̂| : b = 1, ...,B}

k-step bootstrap does not affect first-order asymptotics. (proved for linear
model)

I P
(
α ∈ α̂± q∗τ/2/

√
nT
)
→ 1− τ.

I extendable to nonlinear models with orthogonality conditions
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Technical remarks

I We spent most of the time proving:
The effect of estimating (f ,U) is first-order negligible under weakest
possible conditions on (n,T , p)

I Require weighted errors of the form:

max
d≤p
|1
n

∑
i

(̂fi − fi )wid |, max
d≤p
| 1
nT

∑
it

(̂fi − fi )zit,d |

I Easy to bound using Cauchy-Schwarz and 1
n

∑
i ‖̂fi − fi‖2

But very crude, leading to stronger than necessary conditions

I Need to use the expansion of f̂i − fi (̂fi = PCA estimator)
I If f̂i has no closed form (e.g., MLE), need its Bahadur expansion
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Extensions of Inference: II, III

II: factor augmented regression:

yt = αdt + f ′t β + U ′t θ
y + εt

dt = f ′t γ + Utθ
d + vt

xt = Λft + Ut , t = 1, ...,T

I α ⊥ E(yt |ft ,Ut ),E(dt |ft ,Ut ), Lasso does NOT affect first-order
asymptotics (Robinson 88, Andrews 94, Chernozhukov et al 16)

I Apply HAC (Newey-West)

III: Out-of- sample forecast interval

yt+h = αyt + f ′t β + U ′t θ︸ ︷︷ ︸
yt+h|t

+εt+h

xt = Λft + Ut , t = 1, ...,T .

yT+h|T 6⊥ U ′t θ, Lasso estimation of U ′t θ DOES affect confidence interval for
yT+h|T
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Panel Linear Model Simulations

Linear Panel Model Simulation:

I n = 100, T = 10, p = 100 (number of covariates), r = 3 (number of factors)

I For X: Factors (on average) contribute 50% of variation; U contributing
remaining 50%

I For Y and D: F and U contribute 70% of variation .

Individual contributions of F vary. (given on horizontal axes on figures)

I θy
j = cy 1/j2, θd

j = cd 1/j2
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Panel Linear Model Simulations: (Truncated) Size of 5% Test
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Panel Linear Model Simulations: Bootstrap Size of 5% Test

score bootstrap: Kline and Santos (2012):

σ̂−2
η

1√
nT

∑
it

η̂it ε̂itw∗it , Ew∗it = 0, Ew∗2it = 1.
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Institutions and Growth (AJR 2001)

Equation of interest:
log(GDP per capitai ) = α(Protection from Expropriationi ) + U′i β + λ

′fi + εi

(Protection from Expropriationi ) = π(Early Settler Mortalityi ) + U′i β̃ + λ̃
′fi + εi

I “Protection from Expropriation” is a measure of the strength of individual
property rights that is used as a proxy for the strength of institutions

I Acemoglu et al. (2001, AER) instrument: Early settler mortality

I Controls: Need to control for other factors that are highly persistent and
related to development of institutions and GDP

I Leading candidate: Geography (geographic determinism)
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Potential Control Variables

Potential geographic controls:

1. Africa, Asia, North America, South America (dummies)

2. longitude, renewable water, land boundary, land area, coastline,
territorial sea, arable land, average temperature, average high temp,
average low temp, average precipitation, highest point, lowest point,
low-lying area

3. latitude, latitude2, latitude3, (latitude-.08)+, (latitude-.16)+,
(latitude-.24)+, ((latitude-.08)+)2, ((latitude-.16)+)2, ((latitude-.24)+)2,
((latitude-.08)+)3, ((latitude-.16)+)3, ((latitude-.24)+)3

4. dist, dist2, dist3, (dist-.25)+, (dist-.375)+, (dist-.5)+, ((dist-.25)+)2,
((dist-.375)+)2, ((dist-.5)+)2, ((dist-.25)+)3, ((dist-.375)+)3, ((dist-.5)+)3

(dist = distance from London)
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Results:

Latitude All Lasso Factor Factor-Lasso
First Stage -0.55 -0.04 -0.33 -0.34 -0.21
s.e. (0.17) (0.41) (0.19) (0.18) (0.20)

Second Stage 0.93 3.07 0.71 1.26 1.40
s.e. (0.21) (32.82) (0.40) (0.53) (1.17)

I First Stage - Coefficient on Settler Mortality

I Second Stage - Coefficient on Protection from Expropriation

I When only “Latitude” is controlled, the instrument is strong

I But the instrument looks pretty weak with more controls. Thus the result is different from

Acemoglu et al. (2001)’s.
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Summary of empirical findings

I draw substantively different conclusions about the strength of
identification than Acemoglu et al. (2001),
due to the ability to control more.

I Overall, usefully complement the sensitivity analyses performed in
empirical studies and also have the potential to strengthen the
plausibility of any conclusions drawn.
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