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a b s t r a c t

We study an approximate factor model in the presence of both cross sectional dependence and
heteroskedasticity. For efficient estimations it is essential to estimate a large error covariance matrix.
We estimate the common factors and factor loadings based on maximizing a Gaussian quasi-likelihood,
through penalizing a large covariance sparse matrix. The weighted ℓ1 penalization is employed. While
the principal components (PC) based methods estimate the covariance matrices and individual factors
and loadings separately, they require consistent estimation of residual terms. In contrast, the penalized
maximum likelihood method (PML) estimates the factor loading parameters and the error covariance
matrix jointly. In the numerical studies, we compare PML with the regular PC method, the generalized
PC method (Choi 2012) combined with the thresholded covariance matrix estimator (Fan et al. 2013), as
well as several related methods, on their estimation and forecast performances. Our numerical studies
show that the proposed method performs well in the presence of cross-sectional dependence and
heteroskedasticity.

© 2015 Published by Elsevier B.V.
1. Introduction

In many applications of economics, finance, and other scientific
fields, researchers often face a large panel dataset in which there
are multiple observations for each individual; here individuals
can be families, firms, countries, etc. One useful method for
summarizing information in a large dataset is the factor model:

yit = αi + λ′

0ift + uit , i ≤ N, t ≤ T , (1.1)

where αi is an individual effect, λ0i is an r × 1 vector of factor
loadings and ft is an r × 1 vector of common factors; uit denotes
the idiosyncratic component of the model. Note that yit is the
only observable random variable in this model. If we write yt =

(y1t , . . . , yNt)′, Λ0 = (λ01, . . . , λ0N)′, α = (α1, . . . , αN)′ and
ut = (u1t , . . . , uNt)

′, then model (1.1) can be equivalently written
as

yt = α + Λ0ft + ut .
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An efficient estimation of the factor loadings and factors
should take into account both cross-sectional dependence and
heteroskedasticity. This paper uses the penalized maximum
(quasi) likelihood estimation under large N, T . The maximum
likelihood estimator depends on estimating a high-dimensional
covariance matrix Σu0 = cov(ut), which is a difficult problem
when it is non-diagonal and N/T → ∞. Recently, Bai and Li
(2012a) studied the maximum likelihood estimation when Σu0 is
a diagonal matrix. As was shown by Chamberlain and Rothschild
(1983), it is desirable to allow dependence among the error terms
{uit}i≤N,t≤T not only serially but also cross-sectionally. This gives
rise to the approximate factor model. With approximate factor
models, Doz et al. (2012) considered the consistency of MLE
for ft , restricting a diagonal error covariance matrix. Bai and Li
(2012b) estimated an approximate factor model for both factors
and factor loadings with MLE, also restricting a diagonal error
covariance matrix, and derived the limiting distributions of the
estimators. These are shrinkage estimators that shrink the off
diagonal elements of Σu0 to zero.

In addition to the diagonal elements, this paper also estimates
the off-diagonal elements of Σu0, which has O(N2) number of pa-
rameters. The key assumption we make is that the model is con-
ditionally sparse, in the sense that Σu0 is a sparse matrix with
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bounded eigenvalues. This assumption requires many off-diagonal
elements of Σu0 to be zero or nearly so, but still allows the iden-
tities of the sparse positions to be unknown. The conditional
sparsity, though slightly stronger than the assumptions in Cham-
berlain and Rothschild (1983), is meaningful in practice. For exam-
ple,when the idiosyncratic components represent firms’ individual
shocks, they are either uncorrelated or weakly correlated among
the firms across different industries, because the industry specific
components are not necessarily pervasive for the whole economy
(Connor and Korajczyk, 1993). Under the sparsity assumption, Fan
et al. (2013) proposed a thresholding method to consistently esti-
mate Σu0 when N > T . Their method is based on the traditional
principal components method, and does not improve the estima-
tion of factors and loadings. This paper proposes a maximum like-
lihood (ML)-based method that simultaneously estimate the error
covariance matrix and loadings, taking into account both cross-
sectional correlations and heteroskedasticity.

Let ȳ =
1
T

T
t=1 yt , and Sy =

1
T

T
t=1(yt − ȳ)(yt − ȳ)′ be the

sample covariance matrix based on the observed data. The quasi-
likelihood function is

L(Λ, Σu, Sf )

=
1
N

log |ΛSf Λ′
+ Σu| +

1
N
tr(Sy(ΛSf Λ′

+ Σu)
−1), (1.2)

where Sf =
1
T

T
t=1(ft− f̄ )(ft− f̄ )′, with f̄ =

1
T

T
t=1 ft . In addition,

a weighted ℓ1-penalty is attached to penalize the estimation of
off-diagonal entries. So we are solving the following optimization
problem:

min
Λ,Σu,Sf


L(Λ, Σu, Sf ) +


i≠j

µN,Twij|Σu,ij|


where the weight wij is the entry-dependent weight; µN,T is
a tuning parameter. We provide data-dependent choices for
{wij}i,j≤N and µN,T , as well as the corresponding theories.

There has been a large literature on estimating model (1.1).
Stock and Watson (1998; 2002) and Bai (2003) considered the
principal components analysis (PC), which essentially treats uit
to have the same variance across i, and is inefficient. Choi
(2012) proposed a generalized PC; also see Breitung and Tenhofen
(2011). Additional literature on factor models includes, for
example, Tsai and Tsay (2010), Bai and Ng (2002), Wang (2009),
Dias et al. (2013), Han (2012), among others. Most of these
studies are based on the PC method, which is inefficient under
cross-sectional heteroskedasticity with unknown dependence
structures. Moreover, this paper studies high-dimensional static
factor models although the factors and errors can be serially
correlated. For generalized dynamic factor models, the readers
are referred to Forni et al. (2000; 2005), Forni and Lippi (2001),
Hallin and Liška (2007), among others. Our estimation method is
maximum likelihood (ML) based, in which no spectral analysis is
involved. The ML-based estimation allows for over-identification
restrictions to be imposed on the loadings (in a similar way as
Bai and Wang (2015)) and allows for forecasting in the spirit of
Giannone et al. (2008).

The theoretical results of our paper are only about the
consistency of the estimators, although some convergence rate
of the covariance estimator is presented in Lemma B.2 in the
Appendix, which is not minimax optimal. We admit that due to
the technical difficulty, it is challenging to derive the optimal (or
near optimal) rate of convergence, and further research on the
optimal rate is needed in the future. This paper aims to propose a
novelML-basedmethod for estimating approximate factormodels,
and illustrates its appealing features to use in practice. We shall
elaborate the advantages of ML-based methods in Section 2.2. In
addition, we assume the number of factors r to be known. Both
N and T diverge to infinity and r is fixed. In practice, r can be
estimated from the data, and there has been a large literature
addressing its consistent estimation, for example, Bai and Ng
(2002), Kapetanios (2010), Onatski (2010), Alessi et al. (2010),
Hallin and Liška (2007), and Lam and Yao (2012), among others.

The recent work by Fan et al. (2013) focuses on the covariance
estimation using the regular PC. In contrast, we focus on efficiently
estimating the factors, loadings, and the covariance matrices
simultaneously using penalized MLE. Hence we focus on different
estimation problems. The maximum likelihood method has been
one of the fundamental tools for statistical estimation and
inference.

Our approach is also closely related to the large covariance
estimation literature, which has been rapidly growing in recent
years. Our penalization procedure is similar to the method in Lam
and Fan (2009), Bien and Tibshirani (2011), etc. However, as we
described above, our approach is still quite different from theirs
in the sense that the penalized ML method considered in this
paper estimates the loadings and error covariance matrix jointly.
A major difficulty is that the likelihood function being considered
contains a few fast-diverging eigenvalues thanks to Λ0Λ

′

0. One
of our main objectives is to show that maximizing the Gaussian
likelihood function involving fast-diverging eigenvalues can still
achieve consistency. Other works on large covariance estimation
include, for example, Cai and Zhou (2012), Bickel and Levina
(2008), Fan et al. (2008), Jung and Marron (2009), Witten et al.
(2009), Deng and Tsui (2013), Yuan (2010), Ledoit andWolf (2012),
El Karoui (2008), Pati et al. (2012), Rohde and Tsybakov (2011),
Zhou et al. (2011) and Ravikumar et al. (2011), etc.

The paper is organized as follows. Section 2 defines the si-
multaneous estimation using penalized MLE, and discusses the
advantages of ML-based methods. Section 3 presents theoretical
analysis. Section 4 discusses computational issues and implemen-
tations. Section 5 numerically compares the proposed methods
with competing ones in the literature on both estimation and time
series forecasts, using simulated and real data. Finally, Section 6
concludes with further discussions. All proofs are given in the Ap-
pendix.

Notation
Let λmax(A) and λmin(A) denote the maximum and minimum

eigenvalues of a matrix A respectively. Also let ∥A∥1, ∥A∥ and ∥A∥F
denote the ℓ1, spectral and Frobenius norms of A, respectively.
They are defined as ∥A∥1 = maxi


j |Aij|, ∥A∥ =

√
λmax(A′A),

∥A∥F =
√
tr(A′A). Note that when A is a vector, both ∥A∥ and ∥A∥F

are equal to the Euclidean norm. For two sequences aT and bT , we
write aT ≪ bT , and equivalently bT ≫ aT , if aT = o(bT ) as T → ∞.
Also, aT ≍ bT if aT = o(bT ) and bT = o(aT ).

2. Simultaneous estimation based on maximum likelihood

The approximate factor model (1.1) implies the following
covariance decomposition:

Σy0 = Λ0 cov(ft) Λ′

0 + Σu0, (2.1)

assuming ft to be uncorrelated with ut , where Σy0 and Σu0 denote
theN×N covariancematrices of yt and ut ; cov(ft) denotes the r×r
covariance of ft , all assumed to be time-invariant. The approximate
factor model typically requires the idiosyncratic covariance Σu0
have bounded eigenvalues and Λ′

0Λ0 have eigenvalues diverging
at rateO(N). One of the key concepts of approximate factormodels
is that it allows Σu0 to be non-diagonal.
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2.1. ℓ1-penalized maximum likelihood

We jointly estimate (Λ0, Σu0), taking into account the cross-
sectional dependence and heteroskedasticity simultaneously.
Because of the existence of α, the model yt = Λ0ft + α + ut is
observationally equivalent to yt = Λ0f ∗

t +α∗
+ut , where f ∗

t = ft−f̄
andα∗

= α+Λ0 f̄ . Thereforewithout loss of generality, we assume
f̄ = 0. In addition, we focus on a usual restriction for MLE of factor
analysis (see e.g., Lawley and Maxwell, 1971) as follows:

Sf = Ir , and Λ′Σ−1
u Λ is diagonal, (2.2)

and the diagonal entries of Λ′Σ−1
u Λ are distinct and are arranged

in a decreasing order. Motivated by the Gaussian likelihood
function, the normalized negative (quasi) log-likelihood is given
by

L(Λ, Σu) =
1
N

log
det ΛΛ′

+ Σu
+ 1

N
tr

Sy(ΛΛ′

+ Σu)
−1 .
(2.3)

We estimate the parameters via the penalized (quasi) MLE:

(Λ, Σu) = arg min
(Λ,Σu)∈Θλ×Γ

L1(Λ, Σu)

≡ arg min
(Λ,Σu)∈Θλ×Γ

L(Λ, Σu) + PT (Σu) (2.4)

where Θλ is a parameter space for the loading matrix, and Γ is
the parameter space for Σu, to be defined later. Hence minimizing
(2.4) estimates the loadings and the error covariancematrix jointly.
Here PT (Σu) is a penalty function operated on the off-diagonal
elements of Σu to penalize the inclusion of many off-diagonal
elements of Σu,ij in small magnitudes, which therefore produces
a sparse estimator Σu. We employ the weighted ℓ1-penalty

PT (Σu) =
1
N


i≠j

µN,Twij|Σu,ij|.

Here µN,T is a tuning parameter that converges to zero at a not-
too-fast rate; wij is an entry-dependent weight parameter, which
can be either deterministic or stochastic. We suggest three specific
choices for wij, commonly used in the high-dimensional statistical
literature:

Lasso The choice wij = 1 for all i ≠ j gives the well-known
Lasso penalty N−1µN,T


i≠j |Σu,ij| studied by Tibshirani

(1996). The Lasso penalty puts an equal weight to each
element of the idiosyncratic covariance matrix.

Adaptive-Lasso Let Σ∗

u,ij be a preliminary consistent estimator
Σu0,ij. Let wij = |Σ∗

u,ij|
−1, then

µN,T

N


i≠j

wij|Σu,ij| =
µN,T

N


i≠j

|Σ∗

u,ij|
−1

|Σu,ij|

corresponds to the adaptive-lasso penalty proposed by
Zou (2006). Note that the adaptive-lasso puts an entry-
adaptive weight on each off-diagonal element of Σu,
whose reciprocal is proportional to the preliminary
estimate. If the true element Σu0,ij is nearly zero, the
weight |Σ∗

u,ij|
−1 should be quite large, and results in a

heavy penalty on that entry. The preliminary estimatorΣ∗

u,ij can be taken, for example, as the PC estimatorΣPC
u,ij = T−1T

t=1uPC
it uPC

jt , where uPC
it is the residual

from the PC estimator. It was shown by Bai (2003) that
under mild conditions, ΣPC

u,ij − Σu0,ij = Op(N−1/2
+

(logN)1/2T−1/2) uniformly in (i, j).
SCAD Fan and Li (2001) proposed to use, for some c > 2
(e.g., c = 3.7)

wij =


I(|ρu,ij|≤µN,T ) +

(c − |ρu,ij|/µN,T )+

c − 1
I(|ρu,ij|>µN,T )


× (Σ∗

u,ii
Σ∗

u,jj)
−1/2. (2.5)

The notation z+ stands for the positive part of z; z+ is
z if z > 0, zero otherwise. Note that ρij = Σ∗

u,ij/

(Σ∗

u,ii
Σ∗

u,jj)
1/2, and Σ∗

u,ij is still a preliminary consistent
estimator, which can be taken as the PC estimator. So
essentially this penalty function penalizes the residual
correlation matrix, to accommodate the variations of the
covariance scales.

After obtaining Λ and Σ−1
u , we estimate ft via the generalized

least squares (GLS):ft = (Λ′Σ−1
u
Λ)−1Λ′Σ−1

u (yt − ȳ).

Note that (2.3) is the exact log-likelihood function when (1) ut
is normal and (2) data are serially independent. We relax both as-
sumptions and particularly allow the data to be serially dependent
across t . Hence (2.3) is a quasi-likelihood function. Also, restriction
(2.2) guarantees a unique solution to the maximization of the log-
likelihood function up to a column sign change for Λ. Therefore
we assume the estimator Λ and Λ0 have the same column signs,
as part of the identification conditions. Results without assuming
that the signs are not correctly estimated can be found in Stock and
Watson (2002).

2.2. Comparison with related methods

Suppose Σ−1
u0 were known, then the first order condition of Λ

(see Lemma A.5) implies:Λ′Σ−1
u0 Sy = (Λ′Σ−1

u0
Λ + Ir)Λ′.

Under the identification condition that Λ′Σ−1
u0
Λ is diagonal

with distinct diagonal entries, the columns of Σ
−1/2
u0

Λ are
the eigenvectors of Σ

−1/2
u0 SyΣ

−1/2
u0 corresponding to the first r

eigenvalues. Then up to a transformation, Σ−1/2
u0

Λ is equivalent to
the ‘‘generalized principal components’’ method studied by Choi
(2012), who assumed Σ−1

u0 were known and estimated Λ and
{ft}t≤T by solving

(Λ̃, {f̃t}) = arg min
Λ,{ft }t≤T

1
T

T
t=1

(yt − ȳ − Λft)′Σ−1
u0 (yt − ȳ − Λft).

(2.6)

Indeed, the solution Λ̃ to problem (2.6) is such that the columns of
Σ

−1/2
u0 Λ̃(Λ̃′Σ−1

u0 Λ̃)−1/2 are also the eigenvectors of Σ−1/2
u0 SyΣ

−1/2
u0

corresponding to the first r eigenvalues. This motivates a question
whether there is any conceptual difference between an ML-based
estimator and the generalized PC.

The answer is that ML-based and PC-based methods provide
different procedures of estimating Σu0. To better understand the
issue, consider a simpler case where it is known that Σu0 is a
diagonalmatrixwith heteroskedastic diagonal entriesσ 2

ii . Then the
ML-based method solves

min
cov(ft ),Λ,{σ 2

ii }
log | det(Λcov(ft)Λ′

+ Σu)|

+ tr(Sy(Λcov(ft)Λ′
+ Σu)

−1), (2.7)
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subject to normalization constraints on cov(ft) and Λ. The
generalized PC, on the other hand, becomes:

min
Λ,{ft }t≤T

1
T

T
t=1

(yt − ȳ − Λft)′Σ−1
u0 (yt − ȳ − Λft).

The ML method estimates all parameters (including Σu0) simulta-
neously, while PC requires a separate estimation of σ 2

ii = Eu2
it in a

first step. To estimate Eu2
it , PC-based method also requires consis-

tently estimating Λ and {ft}t≤T and then the residuals {uit}i≤N,t≤T .
Indeed Choi (2012) proposed a two-step estimator, which esti-
mates Σ−1

u0 in the first step, then (2.6) is solved with Σ−1
u0 replaced

by its consistent estimator. Such a procedure is problematic when
N is relatively small. In the casewhenN is fixed, ft cannot be consis-
tently estimated. As the estimated residualsuit depend on the esti-
mated factors,uit is not consistent for the true error uit . This means
that σ 2

ii based onuit is not consistent for σ 2
ii = Eu2

it . This issue is
related to the ‘‘incidental parameters bias’’ of Neyman and Scott
(1948). In this case, the PC-basedmethod treats F = (f1, . . . , fT ) as
high-dimensional parameters, and with a relatively small N , these
parameters cannot be estimated well.

In contrast, the likelihood function (2.7) depends on the factors
only through a low-dimensional matrix cov(ft); the ML-based
method estimates Σu0 directly, avoiding estimating the residuals
or factors. Even if N is fixed, the MLEs of Λ0 and Σu0 are still
consistent as T → ∞, because this setting falls in the framework of
classical inference; see, for example, Lawley and Maxwell (1971).
Our numerical studies demonstrate thatN does not need to be very
small to reveal the advantages of ML-based methods.

Similarly, when T is small but N is large, the ML method can
work with the T × T data matrix (switching the role of N and
T ), and produce consistent estimation of the factors and the time
series covariance matrix. In contrast, the PC-based method is not
consistent when one of the dimensions is small.

Even for non-diagonal Σu0, generalized-PC relies on residuals
to estimate the off-diagonal elements. Indeed, Fan et al. (2013)
consistently estimate Σ−1

u0 as N, T → ∞, based on the PCmethod.
In contrast, the proposed penalized MLE directly treats them as
parameters, and does not rely on residuals to estimate them.

The penalized MLE can be generalized in several aspects, while
the PC-based method will not be suitable under these settings.
(i) Confirmatory factor analysis: the ML method can incorporate
additional restrictions. For example,when some components ofΛ0
are known, the ML method will not estimate these components,
the maximization is taken with respect to the unknown elements.
More general restrictions such as cross-equation restrictions are
discussed by Bai and Wang (2015). (ii) Bayesian estimation:
the likelihood function is an important component of Bayesian
analysis, it is mendable by incorporating prior information. In fact,
the penalization itself can be interpreted as a Bayesian estimation
under appropriate priors. (iii) Dynamic factor models: the ML
method can be extended to dynamic factor models such that yt =

Λ0ft + Λ1ft−1 + ut , where the second set of factors ft−1 is the lag
of ft . The PC method would treat the model as having 2r static
factors, while the ML can estimate the model with r factors; the
likelihood function is evaluated by the state space method via the
Kalman smoother. TheMLmethod can allow ft itself to be dynamic,
for example, Doz et al. (2012). In view of these advantages, it is
of interest to study the ML-based method with a possibly non-
diagonal error covariance matrix.

Although the penalized likelihood method has been used
frequently in the recent literature of large covariance estimation
(e.g., Lam and Fan, 2009), the problem being addressed here
is technically different and challenging. This is because, besides
penalizing Σu, the likelihood function is also highly nonlinear in
Λ, and ΛΛ′ has r fast-diverging eigenvalues (at rate O(N)). In
contrast, the literature has only focused on estimating covariances
with bounded eigenvalues. Investigating the impact of these ‘‘very
spiked’’ eigenvalues on the joint estimation of (Λ, Σu) is one of the
goals of this paper. In addition, the penalized ML method can also
be viewed as an alternative approach to that of Fan et al. (2013) to
estimating the error covariancematrix in factor analysis, because it
does not rely on the principal components method, and enjoys the
advantages of themaximum likelihoodmethod as discussed above.
The matrix Λ̂Λ̂′

+ Σ̂u is a high dimensional covariance estimator.

3. Theoretical properties

3.1. Sparsity assumptions

First, we define the sparsity condition on Σu0. The sparsity is
characterized through an unknown partition of the off-diagonal
elements. Let JL and JU denote two disjoint sets of the indices for
small and large elements of Σu0 in absolute value, and

{(i, j) : i ≤ N, j ≤ N} = JL ∪ JU .

Because the diagonal elements represent the individual variances
of the idiosyncratic components, we assume (i, i) ∈ JU for all i ≤ N .
The sparsity assumes that most of the indices (i, j) belong to JL
when i ≠ j. The following assumption quantifies the partition
{(i, j) : i ≤ N, j ≤ N} = JL ∪ JU . The partition need not be unique,
and our analysis suffices as long as such a partition exists. One does
not need to know which elements belong to JL or which elements
belong to JU . Define the number of off-diagonal large entries:

DN =


i≠j,(i,j)∈JU

1. (3.1)

Assumption 3.1. There exists a partition {(i, j) : i ≤ N, j ≤ N} =

JL ∪ JU where JU and JL are disjoint, which satisfies:

(i) (i, i) ∈ JU for all i ≤ N , and DN = o(min{N
√
T/ logN,N2/

logN}),

(ii)


(i,j)∈JL
|Σu0,ij| = o(N).

As there are O(N2) off-diagonal entries in total, Condition
(i) requires that most off-diagonal entries of Σu0 be inside JL.
Condition (ii) quantifies the absolute sum of all the ‘‘small’’ entries.
In particular, we do allow DN ≫ N and


(i,j)∈JL

|Σu0,ij| to diverge,
whichmeans thatΣu0 neednot be too sparse. It is likely that JU only
contains the diagonal elements. It then essentially corresponds to
the strict factor model where Σu0 is almost a diagonal matrix and
error terms are only weakly cross-sectionally correlated, which
is a special case of Assumption 3.1. Another special case arises
when Σu0 is strictly sparse, in the sense that its elements in small
magnitudes (JL) are exactly zero. For the banded matrix as an
example, there is a finite integer k such that

Σu0,ij ≠ 0 if |i − j| ≤ k; Σu0,ij = 0 if |i − j| > k.

Then JL = {(i, j) : |i − j| > k} and JU = {(i, j) : |i − j| ≤ k}.
In this case DN = O(N), and


(i,j)∈JL

|Σu0,ij| = 0. Hence all the
conditions in the above assumption are satisfied. This assumption
is also satisfied by block-diagonal matrices with finite block sizes.

To compare with the sparsity assumptions of Fan et al. (2013),
consider an exact sparse casewhere (i, j) ∈ JL if and only ifΣu0,ij =

0, so many off-diagonal elements are exactly zero. Then our As-
sumption 3.1 simplifies to:

DN =


i≠j

1{Σu0,ij ≠ 0} = o(min{N

T/ logN,N2/ logN}), (3.2)
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while the sparsity condition in Fan et al. (2013) based on thresh-
olding estimation in this case becomes:

mN = max
i≤N

N
j=1

1{Σu0,ij ≠ 0} = o(min{

T/ logN,

√
N}). (3.3)

We see that as the covariance estimation approaches are different,
the required sparsity conditions are of different types. Our condi-
tion controls the overall number of nonzero off-diagonal elements,
whereas the condition of the thresholding estimator bounds the
maximum number of nonzeros in the rows mN . Admitted that
while Fan et al. (2013) achieves the convergence under the matrix
spectral norm,we achieve aweaker consistency (as in Theorem3.1,
the norm ∥.∥2

F/N is weaker than the spectral norm), as a result, we
require a weaker sparsity condition than theirs. Indeed, note that
DN ≤ NmN , so (3.3) implies (3.2). On the other hand, our weaker
condition on the sparsity is more relevant, for instance, when Σu0
has only finitelymany very non-sparse rows (or columns), then our
condition is still satisfied but (3.3) is not. This case arises in prac-
tice when there are only a small portion of firms or units whose
individual shocks (uit ) are correlated with many other firms.

Our assumption allows all elements ofΣu0 to be nonzero,which
is verified in the following example.

Example 3.1. Consider a cross-sectional AR(1) model with the
covariance matrix: for some σ 2

u > 0 and ρ ∈ (0, 1),

Σu0 =
σ 2
u

1 − ρ2


1 ρ · · · ρN−1

ρ 1
. . .

...
...

. . .
. . . ρ

ρN−1
· · · ρ 1

 .

Let c ∈ (0, 1) be a small number. Let JU consist of the diagonal
and Nc number of rows below and above the diagonal (banded
elements), then there are at most 2NNc

= O(N1+c) number of ‘‘big
elements’’. The sum of small elements (all the rest of elements) is
(ignoring the constant)

2
Nc
j=1

jρN−j
≤ 2ρN−Nc

Nc
j=1

j ≤ CρN−Nc
N2c

→ 0

for some C > 0, as N goes to infinity. So Σij∈JL |Σu0,ij| = o(N).
On the other hand, as long as T is large, N1+c is smaller than
N

√
T/ logN , so the number of ‘‘big elements’’ is not so large.

Hence Assumption 3.1 is satisfied. In practice, the cross-sectional
variables are arbitrarily ordered. The above argument is valid as
long as there exists an permutation of the cross-sections variable
such that AR(1) holds. The same argument applies to a much more
general dependent structure than AR(1). �

3.2. Assumptions on the data generating process

The following assumption provides the regularity conditions on
the data generating process.We allow the serial dependence across
t by introducing the strong mixing condition. Let F 0

−∞
and F ∞

T
denote the σ -algebras generated by {(ft , ut) : −∞ ≤ t ≤ 0} and
{(ft , ut) : T ≤ t ≤ ∞} respectively. In addition, define the mixing
coefficient

α(T ) = sup
A∈F 0

−∞
,B∈F ∞

T

|P(A)P(B) − P(AB)|. (3.4)

Assumption 3.2. (i) {ut , ft}t≥1 is strictly stationary. In addition,
Euit = Euit fjt = 0 for all i ≤ p, j ≤ r and t ≤ T .
(ii) There exist constants c1, c2 > 0 such that c2 < λmin(Σu0) ≤

λmax(Σu0) < c1, and maxj≤N ∥λ0j∥ < c1.
(iii) There exist r1, r2 > 0 and b1, b2 > 0, such that for any s > 0,
i ≤ p and j ≤ r ,

P(|uit | > s) ≤ exp(−(s/b1)r1), P(|fjt | > s) ≤ exp(−(s/b2)r2).

(iv) Strong mixing: There exist r3 > 0 and C > 0 satisfying: for all
T ∈ Z+,

α(T ) ≤ exp(−CT r3).

We allow factors and errors to be serially weakly dependent,
satisfying the strong mixing condition. The error covariance is
assumed to have bounded eigenvalues, which is common in
the factor model literature. Unlike the common factors, the
information of idiosyncratic component uit does not grow with
the increase of the dimension. For instance, if firms’ individual
idiosyncratic shocks are correlated within the same industry, but
uncorrelated across industries, Σu is a block-diagonal matrix with
bounded eigenvalues. Condition (iii) also requires exponential-
tail bounds, which is a technical condition for high-dimensional
weakly dependent data: it allows us to apply large deviation
theories to achieve uniform convergences.

The following assumption is standard in the approximate factor
models, see e.g., Stock andWatson (1998; 2002). It implies that the
first r eigenvalues ofΛ0Λ

′

0 are growing rapidly atO(N). Intuitively,
it requires the factors be pervasive in the sense that they impact
a non-vanishing proportion of time series {y1t}t≤T , . . . , {yNt}t≤T .
We focus on the case where factors are strong. While our results
are possibly extendable to allow for ‘‘weaker factors’’ (e.g., Onatski,
2012; Natalia et al., 2012), it might be technically challenging.

Assumption 3.3. There is a δ > 0 such that for all large N ,

δ−1 < λmin(N−1Λ′

0Λ0) ≤ λmax(N−1Λ′

0Λ0) < δ.

Therefore all the eigenvalues of N−1Λ′

0Λ0 are bounded away from
both zero and infinity as N → ∞.

The following assumption is imposed on the penalty weights.
Define the weights ratios

ηT =

max
i≠j,(i,j)∈JU

wij

min
(i,j)∈JL

wij
, βT =

max
(i,j)∈JL

wij

min
(i,j)∈JL

wij
.

We assume upper bounds on ηT and βT respectively (condition
(i) in Assumption 3.4). Intuitively, the upper bound on ηT requires
the penalty weights on the estimated ‘‘large’’ entries of Σu should
not be large relative to those on the estimated ‘‘small’’ entries.
This eliminates biases from penalizing elements in JU . On the other
hand, the required upper bound on βT helps control the penalty on
‘‘small’’ entries in a universal scale.

Assumption 3.4. The tuning parameter µN,T and the weights
{wij}i≤N,j≤N satisfy:
(i)

ηT = oP


min


T

logN
N
DN

,


T

logN

1/4


N
DN

,
N

√
DN logN


,

βT


(i,j)∈JL

|Σu0,ij| = oP(N),

(ii) µN,T max(i,j)∈JL wij


(i,j)∈JL
|Σu0,ij| = o(min{N,N2/DN ,N2/

(DNη2
T )}),

µN,T maxi≠j,(i,j)∈JU wij = o(min{N/DN ,
√
N/DN ,N/(DNηT )}),

µN,T min(i,j)∈JL wij ≫
√
logN/T + (logN)/N.



6 J. Bai, Y. Liao / Journal of Econometrics 191 (2016) 1–18
The above assumption is not as complicated as it looks, and is
satisfied by many examples. For instance, the Lasso penalty sets
wij = 1 for all i, j ≤ N . Hence ηT = βT = 1. Then condition
(i) of Assumption 3.4 follows from Assumption 3.1, which is also
satisfied if DN = O(N). Condition (ii) is also straightforward to
verify. This immediately implies the following lemma.

Lemma 3.1 (Lasso). Choose wij = 1 for all i, j ≤ N, i ≠ j. Suppose
in addition DN = O(N) and logN = o(T ). Then Assumption 3.4 is
satisfied if the tuning parameter µN,T = o(1) is such that

logN
T

+
logN
N

= o(µN,T ).

This assumption is also satisfied by SCAD and adaptive lasso.
We will also verify this assumption for these two penalties in
Section 3.4.

3.3. Consistency of the joint estimation

We assume the parameter space for Σu0 to be, for some known
sufficiently largeM > 0,

Γ = {Σu : ∥Σu∥1 < M, ∥Σ−1
u ∥1 < M}.

Then Σu0 ∈ Γ implies that all the eigenvalues of Σu0 are bounded
away from both zero and infinity. There are many examples where
both the covariance and its inverse have bounded row sums.
For example, for each t , when {uit}

N
i=1 follows a cross sectional

autoregressive process AR(p) for some fixed p, then the maximum
row sum of Σu0 is bounded. The inverse of Σu0 is a banded
matrix, whose maximum row sum is also bounded. In view of
Assumption 3.3, we define the parameter space:

Θλ = {Λ : δ−1 < λmin(N−1Λ′Λ) ≤ λmax(N−1Λ′Λ) < δ,

Λ′Σ−1
u Λ is diagonal}. (3.5)

Remark 3.1. The parameter space provides restrictions on the
lower and upper bounds of the loadings and the error covariance
matrix. These parameter restrictions are needed to prove consis-
tency. On the other hand, when computing the PML in practice, we
do not find it necessary to impose these bounds in the calculations.
As to be shown in Theorem 4.1 later, starting from a consistent ini-
tial value that belongs to the parameter space, the updated solution
in each iterative step is also consistent.

Our main theorem is stated as follows. The consistency ofΣu is in terms of the weighted Frobenius norm 1
N ∥.∥2

F , which
is a commonly used assessment for the convergence of sparse
covariance estimators (e.g., Rothman et al., 2008; Lam and Fan,
2009). Moreover, it is natural to define the consistency in terms
of the averaged estimation errors 1

N ∥Λ − Λ0∥
2
F =

1
N

N
i=1 ∥λi −

λ0i∥
2. In addition, the theorem presents consistency for the

general case where the weights wij of the ℓ1-penalizations satisfy
Assumption 3.4. By Lemma 3.1, it immediately follows that
the LASSO-penalty is included. In addition, we shall show in
next subsection that both adaptive LASSO and SCAD also satisfy
Assumption 3.4, hence the theorem below also applies to them.

Theorem 3.1. Suppose logN = o(T ). Under Assumptions 3.1 and
3.4, the penalized ML estimator satisfies: as T and N → ∞,

1
N

∥Σu − Σu0∥
2
F →

P 0,
1
N

∥Λ − Λ0∥
2
F →

P 0.

For each t ≤ T ,

∥ft − ft∥ →
P 0.
Remark 3.2. In the high-dimensional penalized likelihood litera-
ture, to establish the consistency one usually constructs a neigh-
borhood of the true parameters (Λ0, Σu0) ∈ U (e.g., Rothman
et al., 2008; Lam and Fan, 2009), and show that L1(Λ0, Σu0) <
inf(Λ,Σu)∈∂U L1(Λ, Σu) with probability approaching one, where
∂U denotes the boundary of the neighborhood and L1(Λ, Σu) is
the objective function. This strategy however, does not work here
due to the technical difficulty in dealing with the term (ΛΛ′

+Σu)
in the likelihood function. This is because its largest r eigenvalues
are unbounded and grow at rate O(N) uniformly in the parameter
space. In the proof of Theorem3.1,weuse a new strategy to analyze
the penalized likelihood function involving diverging eigenvalues.

3.4. Two examples

We present two alternative choices for the weights: one is
adaptive lasso, proposed by Zou (2006), and the other is SCAD by
Fan and Li (2001). Bothweights depend on a preliminary consistent
estimate of each element of Σu0. A simple consistent estimate for
each element can be obtained by the principal component (Stock
and Watson, 2002).

To simplify the presentation, we will assume that DN = O(N),
which controls the number of off-diagonal large entries of Σu0.
Moreover, we assume the small and large entries of Σu0 are well-
separated:

max{|Σu0,ij| : (i, j) ∈ JL} ≪ ωT ≪ min{|Σu0,ij| : Σu0,ij ∈ JU },

where throughout the paper, we write

ωT =


logN
T

+
1

√
N

.

Let the initial estimate Σ∗

u,ij = Rij, where Rij is the PC estimator
of Σu0,ij. The adaptive lasso chooses the weights to be,

(Adaptive Lasso) : wij = (|Σ∗

u,ij| + δT )
−1, (3.6)

where δT = o(1) is a pre-determined nonnegative sequence. The
additive δT was not included in the original definition of adaptive
lasso in Zou (2006), but is used here to prevent wij getting too
large if |Σ∗

u,ij| is very close to zero. This small adjustment makes
the estimator less sensitive to the initial PC estimate. The adaptive
lasso has been used extensively in the high dimensional literature,
see for example, Huang et al. (2008), van de Geer et al. (2011) and
Caner and Fan (2011), etc.

Another important example is SCAD, which is folded concave as
defined in (2.5).

The following assumption is needed to ensure the good
behavior of wij for both adaptive lasso and SCAD.

Assumption 3.5. Assume that E∥
1

√
N

N
i=1 λiuit∥

2
= O(1) and

E( 1
√
N

N
i=1(uituis − Euituis))

2
= O(1).

We have the following theorem.

Theorem 3.2. Suppose either the Adaptive Lasso or SCAD is used for
the weighted-ℓ1 penalized objective function. Also, suppose logN =

o(T ), DN = O(N),


(i,j)∈JL
|Σu0,ij| = o(N) and Assumptions 3.1–3.3

and 3.5 hold. In addition, assume the tuning parameters are such that:
(i) for Adaptive Lasso,

ωT




(i,j)∈JL

|Σu0,ij|

N

 ≪ δT ≪ ωT , (3.7)

ω2
T ≪ µN,T ≪ ωT . (3.8)
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(ii) for SCAD:
logN
T

1/4

+


logN
N

1/2

≪ µN,T ≪ min
i≠j,(i,j)∈JU

|Σu0,ij|. (3.9)

Then Assumption 3.4 is satisfied, and

1
N

∥Σu − Σu0∥
2
F →

P 0,
1
N

∥Λ − Λ0∥
2
F →

P 0.

∥ft − ft∥ →
P 0.

Like Lemma 3.1, an attractive feature of this theorem is that, if
both the upper bound of


(i,j)∈JL

|Σu0,ij| and the lower bound of
mini≠j,(i,j)∈JU |Σu0,ij| are known, [e.g., in the strictly sparse model,

(i,j)∈JL
|Σu0,ij| = 0, and assume mini≠j,(i,j)∈JU |Σu0,ij| is bounded

away from zero as in MA(1)] then Conditions (3.7)–(3.9) do not
depend on any other unknown feature of Σu0.

4. Implementations

4.1. Majorize–minimize EM algorithm

In this section we discuss the computational issues. Note that
even with a known Λ, numerically minimizing the loss function
with respect to Σu is difficult, because log

det ΛΛ′
+ Σu

 is
concave in Σu, while tr


Sy(ΛΛ′

+ Σu)
−1

is convex. Therefore,

the optimization is a concave + convex problem, and are often
solved approximately. One of the commonly used approaches is
majorize–minimize, which approximates the concave component
by a ‘‘majorizing’’ linear function of Σu, using the tangent plane.
Then the objective function is approximated by a convex function.

Updating Σu
Suppose (Λk, Σu,k) is the covariancematrix in the kth iteration.

We now update Σu by approximately minimizing L(Λk, Σu) +
1
N


i≠j µN,Twij|Σu,ij|. The tangent plane of log

det ΛkΛ′

k + Σu


at Σu = Σu,k is

log
det ΛkΛ′

k + Σu,k
+ tr((ΛkΛ′

k + Σu,k)
−1(Σu − Σu,k)).

Then instead of minimizing the original problem, we minimize

tr((ΛkΛ′

k + Σu,k)
−1(Σu − Σu,k)) + tr


Sy(ΛkΛ′

k + Σu)
−1

+


i≠j

µN,Twij|Σu,ij| (4.1)

with respect to Σu, which is now convex.
For the convex problem (4.1), many algorithms in the recent

literature on covariance estimations solve the problem column-
by-column, e.g., Friedman et al. (2008) and Rothman (2012).
However, we find that column-by-column iterating is slow
when the dimension of Σu is relatively large. Alternatively, we
employ the projected gradient algorithm recently proposed by Bien
and Tibshirani (2011), which further approximates tr((ΛkΛ′

k +Σu,k)
−1(Σu − Σu,k)) + tr


Sy(ΛkΛ′

k + Σu)
−1

by

L̃(Σu) =
1
2t

∥Σu − Σu,k + t[(ΛkΛ′

k + Σu,k)
−1

− (ΛkΛ′

k + Σu,k)
−1Sy(ΛkΛ′

k + Σu,k)
−1

]∥
2
F

where t is the depth of projection (see Bien and Tibshirani, 2011).
Solving

Σu,k+1 = argmin
Σu

1
N
L̃(Σu) +

1
N


i≠j

µN,Twij|Σu,ij|
yields an analytical solution: for B = Σu,k − t[(ΛkΛ′

k + Σu,k)
−1

−

(ΛkΛ′

k + Σu,k)
−1Sy(ΛkΛ′

k + Σu,k)
−1

],

(Σu,k+1)i,j =


sign(Bij)(|Bij| − µN,Twijt)+ if i ≠ j
Bij if i = j.

Here (x)+ = max{0, x}. Thus we gain a much faster iterating
algorithm than the column-by-column procedure. We note that
the trade-off between computational efficiency and the use of
approximations often exists in statistical computings of high-
dimensional problems. While we cannot expect solving such an
approximated problem yields a global minimum of our nonconvex
problem, existing research on marjorize–minimize algorithms
(e.g. An and Tao, 2005) shows that limiting points of such an
algorithm are critical points of the original penalized ML problem.

Updating Λ

Given the current (Λk, Σu,k), Λ is updated using the EM
algorithm (e.g., Bai and Li, 2012a,b). The EM algorithm updates the
estimator according to: for Σy,k = ΛkΛ′

k + Σu,k,Λk+1 = SyΣ−1
y,k
ΛkM−1,

M = Λ′

k
Σ−1

y,k SyΣ−1
y,k
Λk + Ir − Λ′

k
Σ−1

y,k
Λk.

The algorithm is summarized as follows. Step 2 is the E-step
and step 3 is the majorize–minimize step. Note that the
majorize–minimizemethod in Bien and Tibshirani (2011) uses two
loops to update the covariance estimator until convergence. In
contrast, step 3 in the following algorithm only updates Σu by one
step, which speeds up the convergence.

1. Set k = 0. Initialize Λ0 and Σu,0.

2. At step k + 1, Λk+1 = AM−1, where M = Λ′

k
Σ−1

y,k SyΣ−1
y,k
Λk +

Ir − Λ′

k
Σ−1

y,k
Λk,

A = SyΣ−1
y,k
Λk, Σy,k = ΛkΛ′

k + Σu,k.

3. Still at step k + 1, for some small value t > 0 (fixed as 0.1 in all
our numerical studies), let

B = Σu,k − t(Σ−1
y,k − Σ−1

y,k SyΣ−1
y,k ),Σu,k+1 = ((Σu,k+1)i,j)N×N ,

where (Σu,k+1)i,j denotes the (i, j)th element of Σu,k+1, given
by

(Σu,k+1)i,j =


sign(Bij)(|Bij| − µN,Twijt)+ if i ≠ j
Bij if i = j.

4. Repeat 2–3 until convergence.

Although the algorithm does not impose the restrictions as
those of the parameter space, it can be shown that as long as
a consistent initial value is used, and belongs to the parameter
space, the updated solution in each iterative step is also consistent.
We formally state this result in the following theorem. For a
matrix A = (aij), let ∥A∥∞ = maxij |aij|. Recall that mN =

maxi≤N
N

j=1 1{Σu0,ij ≠ 0}. For the asymptotic analysis of the

algorithm, we shall assume µN,TmN → 0 and


logN
T = o(µN,T ).

For technical simplicity, in the following theorem, we focus on the
SCAD weights.

Theorem 4.1. Suppose at step k, (Λk, Σu,k) satisfy:

(i) ∥Λk − Λ0∥∞ = oP(µN,T ),

(ii) ∥Σu,k − Σu0∥∞ = oP(µN,T ),

(iii) ∥Σ−1
u,k∥1 < M, ∥Σu,k∥1 < M.
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Then at step k + 1,

∥Λk+1 − Λ0∥∞ = oP(µN,T ), ∥Σu,k+1 − Σu0∥∞ = oP(µN,T ),

∥Σu,k+1 − Σu0∥1 = oP(µN,TmN),

and ∥Σ−1
u,k+1∥1 ≤ ∥Σ−1

u0 ∥1+oP(µN,TmN), ∥Σu,k+1∥1 ≤ ∥Σu0∥1+

oP(µN,TmN),

λmin


Λ′

0Λ0

N


− oP(µN,T ) < λmin

Λ′

k+1
Λk+1

N



≤ λmax

Λ′

k+1
Λk+1

N


< λmax


Λ′

0Λ0

N


+ oP(µN,T ).

Note that when N, T → ∞, many existing loading estimators
satisfy condition (i): e.g., PC and generalized PC (∥Λ − Λ0∥∞ =

OP(


logN
T +

1
√
N
) for PC-based estimators, see Fan et al. (2013), Choi

(2012)). Also, the thresholded covariance estimator of Fan et al.

(2013) satisfies conditions (ii)(iii) (for any µN,T ≫


logN
T +

1
√
N
).

Therefore, they can be used as the initial estimators at step k = 0.
Moreover, given the nonlinear objective function, it is beneficial to
adopt various starting values frompre-estimators to find the global
optimizer.

It is important to show that the algorithm being employed
indeed converges to the defined estimator. This involves showing
that: (i) the algorithm converges; (ii) the limiting point of the
algorithm is also a stationary point of the penalized-ML problem,
and (iii) the stationary point that the algorithm converges to also
satisfies the restrictions in (3.5). In fact, (iii) is partially achieved
by Theorem 4.1. The remaining task is to show the convergence
point also satisfies the restriction. In addition, Lemma D.2 in the
Appendix shows that (ii) is also achieved. Finally, we acknowledge
that proving (i) is theoretically important and yet challenging. We
shall leave it for the future research.

4.2. Choosing the tuning parameter by cross-validations

We suggest choosing µN,T based on K -fold cross validations,
which is also a common practice in the literature on estimating
large covariances using penalized methods (e.g., Bien and Tibshi-
rani, 2011 and Xue et al., 2012). For a given index set of valida-
tion data A ⊂ {1, . . . , T }, let Sy,A = |A|

−1
0


t∈A yty′
t , which is

the sample covariance calculated using the validation data. Here
|A|0 denotes the cardinality ofA. LetΛ(Ac, µ), Σu(A

c, µ) denote
the estimated loading and covariance matrices using the training
data in Ac , based on a tuning parameter µN,T = µ. Partitioning
{1, . . . , T } into K subsets A1, . . . , AK , we would like to choose a
value µN,T = µ that minimizes

1
K

K
k=1

L(Λ(Ac
k, µ), Σu(A

c
k, µ), Sy,Ak)

where

L(Λ, Σu, Sy) =
1
N

log
det ΛΛ′

+ Σu


+
1
N
tr

Sy(ΛΛ′

+ Σu)
−1 .

5. Numerical illustrations

5.1. Simulation result

We present a numerical experiment to illustrate the perfor-
mance of the proposed method. The data was generated as follow-
ing: {eit}i≤N,t≤T are both serially and cross-sectionally independent
as N (0, 1). Let

u1t = e1t , u2t = e2t + a1e1t , u3t = e3t + a2e2t + b1e1t ,
ui+1,t = ei+1,t + aieit + bi−1ei−1,t + ci−2ei−2,t ,

where {ai, bi, ci}Ni=1 are independently from 0.7N (0, 1). Let the
two factors {f1t , f2t} be i.i.d. N (0, 1), and {λi,1, λi,2}i≤N be uniform
on [0, 1]. Then Σu0 is a banded matrix.

We apply the SCAD penalty for our joint estimation, with
various choices of the tuning parameter µN,T . The estimator
is compared with three other competing methods: (1) the
PC-estimator, (2) the estimator of (unpenalized) heteroskedastic
ML, denoted by HML, and (3) the feasible efficient PC (denoted
by EPC). The EPC uses the generalized PC method combined with
PC-based covariance matrix estimator of Fan et al. (2013), which
was formally studied recently by Bai and Liao (2013). Note that
HML estimates Σu to be diagonal, which solves:

min
Σu,ij=0 for i≠j

min
Λ

1
N

log |ΛΛ′
+ Σu| +

1
N
tr(Sy(ΛΛ′

+ Σu)
−1). (5.1)

In our simulation setup, Σu0 is non-diagonal, so HML does not
take the idiosyncratic cross-sectional dependence into account.
Moreover, the EPC combines the generalized PC method of Choi
(2012) with the thresholded estimator of Σu. Specifically, it
estimates the factors by the principal components of the T × T
matrix Y ′Σ−1

u Y , where the covariance estimator Σ−1
u is recently

developed by Fan et al. (2013). In our simulation, we tried four
thresholding parameters for estimating Σ−1

u using Fan et al.
(2013)’s approach: C = 0.05, 0.1, 0.5, 0.7, and find that C = 0.5
and 0.7 yield better performance, which are reported here.

For each estimator, the smallest canonical correlation (the
higher the better) between the estimator and the parameter is
used as a measurement to assess the accuracy of each estimator.
We employed two pre-estimators as starting values, PC and HML,
to compute the proposed PML. Both starting values yield the
same numerical result. Table 1 lists the results based on one
thousand replications.WhenN is relatively small, it is clear that the
ML-based methods (proposed PML and HML) perform better than
the PC-based methods (PC and efficient PC). Taking into account
cross-sectional dependence, the PML further outperforms HML;
the latter treatsΣu0 to be diagonal, without penalizations.WhenN
is relatively large, it is hard to see whether PML or EPC dominates
the other; both methods estimate Σu0 consistently. This further
demonstrates that theML-basedmethod is desirable especially for
relatively small N , and is also very competitive for large N . We
point out that HML coincides with Doz et al. (2011) for static factor
models.

5.2. Forecast based on simulated data

This section numerically illustrates the improvement of time
series forecast based on efficient estimations of the factor model.
As in Stock andWatson (2002), we aim at forecasting a time series
model with a single factor:

xt+1 = βft + ϵt , ft = ρft−1 + vt ,

where the unknown factors can be learned from a factor model:
yt = Λft + ut .

We set β = 2, and ρ = 0.5. The data generating process for Λ

and ut are the same as those in Section 5.1. We conduct one-step-
ahead out-of-sample forecast m times using a moving window
of a fixed size T . Here T is also the sample size for estimations,
and in our numerical study T = 50, 100 are used. We simulate
m + T observations in total. For each t = 0, . . . ,m − 1, we
use the data {(yt+1, xt+1), . . . , (yt+T , xt+T )} to conduct one-step-
ahead forecast of xt+T+1. Specifically, we estimate the factors using
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Table 1
Canonical correlations: the larger the better. Simulation of Section 5.1.

PML EPC HML PC
T N µN,T = 0.08 µN,T = 0.2 µN,T =CV C = 0.7 C = 0.5

Loadings 50 50 0.395 0.398 0.394 0.309 0.298 0.369 0.277
100 0.605 0.600 0.596 0.483 0.455 0.552 0.424
150 0.656 0.655 0.654 0.638 0.600 0.609 0.468

100 50 0.424 0.447 0.461 0.292 0.283 0.368 0.263
100 0.756 0.748 0.743 0.664 0.625 0.664 0.554
150 0.845 0.847 0.846 0.834 0.821 0.822 0.781

Factors 50 50 0.394 0.400 0.395 0.319 0.307 0.354 0.276
100 0.708 0.705 0.698 0.559 0.609 0.629 0.464
150 0.838 0.838 0.836 0.788 0.731 0.763 0.573

100 50 0.489 0.503 0.513 0.379 0.373 0.439 0.358
100 0.823 0.816 0.798 0.715 0.666 0.674 0.547
150 0.938 0.944 0.938 0.927 0.905 0.887 0.817

Averaged results based on one thousand replications are presented. PML represents the proposedmethod.µN,T = 0.08, 0.2 represent the tuning used for PML andµN,T = CV
is the tuning chosen by 5-fold cross-validation ; C = 0.7 and C = 0.5 are the thresholds used to estimate Σu (Fan et al., 2013).
Table 2
Methods.

Name Short description

PML Proposed penalized ML
PC Principal components
HML ML with diagonal Σu0 , solving (5.1)
DOZ Kalman smoother, proposed in Doz et al. (2011)
EPC Weighted principal components with Fan et al. (2013)’s estimated

Σ−1
u0 as the weight matrix

{yt+1, . . . , yt+T }, and obtain {ft+1, . . . ,ft+T }. The coefficient β in
the forecasting regression is then estimated by the OLS in the
regression of {xt+2, . . . , xt+T } onto {ft+1, . . . ,ft+T−1}, denoted byβt+T . We then forecast xt+T+1 by xt+T+1|t+T = βt+Tft+T . The
forecasting error is then (xt+T+1 −xt+T+1|t+T )

2. Such a procedure
continues for t = 0, . . . ,m − 1.

Five methods are compared: PML, PC, HML, DOZ, and EPC.
In particular, the DOZ method, proposed by Doz et al. (2011),
applies the Kalman smoother for estimating the state space ft . The
Kalman smoother takes into account the dynamics in ft . In terms of
estimating the state variable ft , it can be shown that HML and DOZ
estimators are asymptotically equivalent under large N , despite
that the latter takes into account the dynamics in ft .

For each method M, we calculate the mean squared out-of-
sample forecasting error:

MSE(M) =
1
m

m−1
t=0

(xt+T+1 −xt+T+1|t+T )
2,

and report the relative MSE to the PC method:
MSE(M)

MSE(PC)
, M = PML, EPC, HML, DOZ.

The results are reported in Table 3 for m = 50. Because the cross-
sectional correlations are taken into account, PML and EPC perform
significantly better than PC. This demonstrates that more efficient
estimations of the factors/loadings also result in better forecasts
in this model. The improvement of PML is more significant for a
relatively small N . We note that PML is also competitive when the
tuning parameter is chosen by the 5-fold cross-validation (µN,T =

CV). When N = 150, it is hard to see whether PML or EPC
dominates the other. This result is in contrast with Luciani (2014),
who uses a different method to incorporate the cross-sectional
correlations in the errors uit . More specifically, Luciani (2014) uses
PC or unpenalized ML to estimate the factors and the residualsuit .
The forecasts are constructed using both ft and all residualsuit as
predictors, but with LASSO penalty on the regression coefficients
for the residuals.
5.3. Diffusion index forecast based on real data

This section compares the impact of how factors are estimated
on real-data forecasts. We present the forecast results of the
industrial production based on real-time macroeconomic time
series of the United States. The dataset consists of 131 series of
monthly data spanning the period from 1959 to 2007 (with a
total of T = 528 sampling periods), and was previously studied
by Ludvigson and Ng (2011). Using the information criterion,
Ludvigson andNg (2011) finds eight factors.We adopt the diffusion
index framework as in Stock and Watson (2002) to model the
multi-step ahead variable:

xht+h = αh + βhft + γ1hxt + · · · + γlhxt−l + ϵh
t+h, yt = Λft + ut ,

where xht+h =
1
h

h
i=1 xt+i is the h-step-ahead variable to be

forecast, defined in Stock and Watson (2002), and is specified to
be the industrial production.

Similar to Section 5.2, forecasts of xht+h are constructed based
on a moving window with a fixed length (T = 422 = 0.8T ). For
each fixed window, the sample data of yt are first used to estimate
a time series of factors, using one of the five methods in Table 2.
We then forecast xhT+h byxhT+h|T =αh +βhfT +γ1hxT + · · · +γlhxT−l,

where the coefficients are estimated by regressing xht+h onto a
constant,ft and xt (and l lags). For the proposed PML, the tuning
parameters are selected using the 5-fold cross-validations.

As noted in Boivin and Ng (2005), how the factors are estimated
can affect the mean-squared forecast error. The out-of-sample
relative forecast MSE for each method (relative to the PC) is
reported in Table 4. We report results for h = 1, 12, 24, r = 7, 8
factors, and l = 1, 3 lags. It is observed that in 1-period-ahead
out-of-sample forecast, the differences across methods are not
so strong as to immediately favor a particular method, which is
consistent with the findings in Boivin and Ng (2005) and Luciani
(2014). In particular, Doz et al. (2011)’s method is based on a
Kalman filter, which models the dynamic factors using a VAR(1)
model. Boivin andNg (2005) also noted that dynamic factormodels
do not forecast better, and our finding is consistent with theirs.
We also observe that in 12 and 24 period-ahead forecasts, using
eight factors is significantly better than using 7 factors for the PML
method. On the other hand, forecasts of long horizons may be less
reliable due to the potential loss of the stationarity.
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Table 3
MSE(M)/MSE(PC).

T N PML EPC HML DOZ
µN,T = 0.08 µN,T = 0.2 µN,T =CV C = 0.7 C = 0.1

50 50 0.657 0.647 0.642 0.865 0.873 0.655 0.669
100 0.801 0.732 0.771 0.852 0.833 0.852 0.856
150 0.914 0.879 0.901 0.943 0.940 1.008 0.992

100 50 0.616 0.642 0.609 0.756 0.751 0.799 0.837
100 0.666 0.686 0.616 0.761 0.768 0.794 0.814
150 0.817 0.863 0.887 0.853 0.917 0.925 0.911
Table 4
Relative MSE for out-of-sample forecast: The benchmark method is PC.

PML EPC HML DOZ

1-period-ahead forecast
One lag 7 factors 0.959 0.989 1.068 1.068

8 factors 0.957 1.013 1.070 1.035
Three lags 7 factors 0.947 0.992 1.066 1.060

8 factors 0.944 1.012 1.068 1.027

12-period-ahead forecast
One lag 7 factors 0.999 0.979 1.129 1.049

8 factors 0.642 1.009 1.052 1.029
Three lags 7 factors 1.036 0.948 1.154 1.051

8 factors 0.631 0.993 1.053 1.050

24-period-ahead forecast
One lag 7 factors 0.813 0.853 0.881 0.951

8 factors 0.640 0.948 0.875 1.002
Three lags 7 factors 0.822 0.946 0.893 0.953

8 factors 0.625 0.942 0.875 1.021

The tuning parameter µN,T for PML is chosen by 5-fold cross-validations.

6. Conclusion

We study the estimation of a high dimensional approximate
factor models in the presence of cross sectional dependence and
heteroskedasticity. The classical PC method does not efficiently
estimate the factor loadings or common factors because it
essentially treats the idiosyncratic error to be homoskedastic and
cross sectionally uncorrelated. For the efficient estimation it is
essential to estimate a large error covariance matrix.

We assume the model to be conditionally sparse in the sense
that after the common factors are taken out, the idiosyncratic
components have a sparse covariance matrix. This enables us
to combine the merits of both sparsity and high dimensional
factor analysis. The method is based on the penalized maximum-
likelihood, both involves regularizing a large covariance sparse
matrix. Our method allows data-dependent adaptive penalties,
such as adaptive Lasso and SCAD. We establish the consistency of
these estimators.

Because the first order condition of the likelihood function
is highly nonlinear in (Λ, Σ), and there are r fast-diverging
eigenvalues (at order O(N)) in the involved covariance matrix
Λ0Λ

′

0 + Σ0 due to the pervasiveness condition, it is challenging to
obtain the optimal rate of convergence and limiting distributions
of the proposed estimators directly. We shall leave it as a future
research direction. Finally, it is important to show that the
algorithm being employed converges to the defined estimator. We
shall leave it for the future research.
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Appendix A. Technical lemmas

Define

Q1(Σu) =
1
N

log |Σu| +
1
N
tr(SuΣ−1

u ) +
µN,T

N


i≠j

wij|Σu,ij|

−
1
N

log |Σu0| −
1
N
tr(SuΣ−1

u0 ) −
µN,T

N


i≠j

wij|Σu0,ij|, (A.1)

Q2(Λ, Σu) =
1
N
tr(Λ′

0Σ
−1
u Λ0

−Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0), (A.2)

Q3(Λ, Σu) =
1
N

log |ΛΛ′
+ Σu| +

1
N
tr(Sy(ΛΛ′

+ Σu)
−1)

−
1
N
tr(SuΣ−1

u ) −
1
N

log |Σu| − Q2(Λ, Σu). (A.3)

Define the set,

Ξδ = {(Λ, Σu) : δ−1 < λmin(N−1Λ′Λ) ≤ λmax(N−1Λ′Λ) < δ,

δ−1 < λmin(Σu) ≤ λmax(Σu) < δ}.

We first present a lemma that will be needed throughout the
proof.

Lemma A.1. (i) maxi,j≤r |
1
T

T
t=1 fit fjt − Efit fjt | = OP(

√
1/T ).

(ii) maxi,j≤N |
1
T

T
t=1 uitujt − Euitujt | = OP(

√
(logN)/T ).

(iii) maxi≤r,j≤N |
1
T

T
t=1 fitujt | = OP(

√
(logN)/T ).

Proof. See Lemmas A.3 and B.1 in Fan et al. (2011). �

Lemma A.2. Under Assumptions 3.2 and 3.3, for any δ > 0,

sup
(Λ,Σu)∈Ξδ

|Q3(Λ, Σu)| = O


logN
N

+


logN
T


.

Therefore we can write, with the O(·) uniformly over Ξδ ,

1
N

log |ΛΛ′
+ Σu| +

1
N
tr(Sy(ΛΛ′

+ Σu)
−1)

=
1
N
tr(SuΣ−1

u ) +
1
N

log |Σu| + Q2(Λ, Σu)

+O


logN
N

+


logN
T


. (A.4)

Proof. First of all, note that |ΛΛ′
+ Σu| = |Σu| × |Ir + Λ′Σ−1

u Λ|,
and sup(Λ,Σu)∈Ξδ

1
N log |Ir + Λ′Σ−1

u Λ| = O
 logN

N


, hence we have

1
N

log |ΛΛ′
+ Σu| =

1
N

log |Σu| + O

logN
N


, (A.5)

whereO(·) is uniform inΞδ . Eq. (A.5) will be used later in the proof.
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We now consider the term N−1tr(Sy(ΛΛ′
+ Σu)

−1). With the
identification condition 1

T

T
t=1 ft f

′
t = Ir , f̄ = 0, and Su =

1
T

T
t=1 utu′

t ,

Sy =
1
T

T
t=1

(yt − ȳ)(yt − ȳ)′ = Λ0Λ
′

0 + Su

+ Λ0
1
T

T
t=1

ftu′

t +


Λ0

1
T

T
t=1

ftu′

t

′

− ūū′.

By the matrix inversion formula (ΛΛ′
+ Σu)

−1
= Σ−1

u −

Σ−1
u Λ(Ir + Λ′Σ−1

u Λ)−1Λ′Σ−1
u ,

1
N
tr(Sy(ΛΛ′

+ Σu)
−1)

=
1
N
tr(Λ′

0Σ
−1
u Λ0) +

1
N
tr(SuΣ−1

u )

− A1 + A2 + A3 − A4 − A5, (A.6)

where A1 = N−1tr(Λ0Λ
′

0Σ
−1
u Λ(Ir + Λ′Σ−1

u Λ)−1Λ′Σ−1
u ), A2 =

1
N tr(

1
T

T
t=1 Λ0ftu′

t(ΛΛ′
+ Σu)

−1), A3 =
1
N tr(

1
T

T
t=1 ut f ′

t Λ
′

0(ΛΛ′

+ Σu)
−1), and A4 =

1
N tr(SuΣ

−1
u Λ(Ir + Λ′Σ−1

u Λ)−1Λ′Σ−1
u ). Term

A5 = N−1tr(ūū′(ΛΛ′
+ Σu)

−1) = OP((logN)/T ) uniformly in the
parameter space, and hence can be ignored. Let us look at terms
A1, A2, A3 and A4 subsequently.

Note that λmax(Σu) and Nλ−1
min(Λ

′Λ) are both bounded from
above uniformly in Ξδ , we have,

sup
(Λ,Σu)∈Ξδ

λmax[(Λ
′Σ−1

u Λ)−1
]

≤ sup
(Λ,Σu)∈Ξδ

λmax(Σu)

λmin(Λ′Λ)
= O(N−1), (A.7)

sup
(Λ,Σu)∈Ξδ

λmax[(Ir + Λ′Σ−1
u Λ)−1

]

≤ sup
(Λ,Σu)∈Ξδ

λmax[(Λ
′Σ−1

u Λ)−1
] = O(N−1). (A.8)

In addition, ∥Λ∥F = O(N1/2N1/2), λmax(Σ
−1
u ) = O(1) uniformly in

Ξδ , and ∥Λ0∥F = O(N1/2). Applying the matrix inversion formula
yields

A1 =
1
N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0)

−
1
N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1(Ir + Λ′Σ−1
u Λ)−1Λ′Σ−1

u Λ0)

=
1
N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0) + O


1
N


, (A.9)

where O(·) is uniform over (Λ, Σu) ∈ Ξδ . In the second equality
above we applied (A.7) and (A.8) and the following inequality:
1
N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1(Ir + Λ′Σ−1
u Λ)−1Λ′Σ−1

u Λ0)

≤
1
N

∥Λ′

0Σ
−1
u Λ∥

2
Fλmax[(Λ

′Σ−1
u Λ)−1

]λmax[(Ir + Λ′Σ−1
u Λ)−1

]

= O(N−1).

By Lemma A.1(iii), and λmax((ΛΛ′
+Σu)

−1) ≤ λmax(Σ
−1
u ) = O(1)

uniformly in Ξδ ,

sup
(Λ,Σu)∈Ξδ

|A2| ≤
1
N

∥Λ′

0(ΛΛ′
+ Σu)

−1
∥F

 1T
T

t=1

ftu′

t


F

= OP


logN
T


. (A.10)
Similarly, sup(Λ,Σu)∈Ξδ
|A3| = OP(


logN
T ). Again by the matrix

inversion formula,

A4 =
1
N
tr(SuΣ−1

u Λ(Λ′Σ−1
u Λ)−1Λ′Σ−1

u )

−
1
N
tr(SuΣ−1

u Λ(Λ′Σ−1
u Λ)−1(I + Λ′Σ−1

u Λ)−1Λ′Σ−1
u ).

The second term on the right hand side is of smaller order
(uniformly) than the first term, because it has an additional term
(I+Λ′Σ−1

u Λ)−1, whosemaximumeigenvalue isO(N−1) uniformly
by (A.8). The first term of A4 is bounded by (uniformly in Ξδ):
c
N

∥SuΣ−1
u Λ∥FO(N−1)∥Λ′Σ−1

u ∥F

≤ O(N−1)λmax(Su) = O


logN
T

+
1
N


,

where we have, λmax(Su) ≤ λmax(Σu) + ∥Su − Σu∥F = OP(1 +

N
√
logN/T ). Hence sup(Λ,Σu)∈Ξδ

|A4| = O(T−1/2(logN)1/2+N−1).
Results (A.5) and (A.6) then yield

1
N

log |ΛΛ′
+ Σu| +

1
N
tr(Sy(ΛΛ′

+ Σu)
−1)

=
1
N
tr(Λ′

0Σ
−1
u Λ0) +

1
N
tr(SuΣ−1

u ) +
1
N

log |Σu|

−
1
N
tr(Λ′

0Σ
−1
u Λ(Λ′Σ−1

u Λ)−1Λ′Σ−1
u Λ0)

+O


logN
N

+


logN
T



=
1
N
tr(SuΣ−1

u ) +
1
N

log |Σu| + Q2(Λ, Σu)

+O


logN
N

+


logN
T


.

�

Let

Lc(Λ, Σu) = L1(Λ, Σu) − N−1 log |Σu0| − N−1tr(SuΣ−1
u0 )

−N−1µN,T


i≠j

wij|Σu0,ij|.

Then the minimizer of Lc is the same as that of L1. This implies
Lc(Λ, Σu) ≤ Lc(Λ0, Σu0). Recall the definitions of Q1(Σu),
Q2(Λ, Σu) and Q3(Λ, Σu) in the Appendix. Then

Lc(Λ, Σu) = Q1(Σu) + Q2(Λ, Σu) + Q3(Λ, Σu).

Lemma A.3. There is a nonnegative nonstochastic sequence 0 ≤

dT = O(N−1 logN + T−1/2(logN)1/2) such that Q1(Σu) +

Q2(Λ, Σu) ≤ dT with probability one.

Proof. We have Q2(Λ, Σu) ≥ 0. In addition, Q2(Λ0, Σu0) =

Q1(Σu0) = 0. Hence

Q1(Σu) + Q2(Λ, Σu) = Lc(Λ, Σu) − Q3(Λ, Σu)

≤ Lc(Λ0, Σu0) − Q3(Λ, Σu)

= Q3(Λ0, Σu0) − Q3(Λ, Σu).

By the definition of Θλ × Γ , there is δ > 0 such that Θλ ×

Γ ⊂ Ξδ . The result then holds for dT = 2 sup |Q3(Λ, Σu)| by
Lemma A.2. �

Throughout the proofs, we note that the consistency of Λ
depends crucially on the consistency of the following quantity:

J = (Λ − Λ0)
′Σ−1

u
Λ(Λ′Σ−1

u
Λ)−1.
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Lemma A.4. (i) Λ′

0Σ
−1
u0 Λ0 − (Ir − J)Λ′Σ−1

u
Λ(Ir − J)′ = oP(N)

(ii) First order condition: Λ′(ΛΛ′
+ Σu)

−1(Sy − ΛΛ′
− Σu) = 0.

Proof. Since Lc(Λ, Σu) ≤ Lc(Λ0, Σu0), and Q1(Σu0) = Q2(Λ0,

Σu0) = 0, also Lemma A.2 proves that Q3 = (N−1 logN +

T−1/2(logN)1/2) uniformly over Ξδ , there is a nonnegative
sequence dT = OP(N−1 logN+T−1/2(logN)1/2) such thatQ1(Σu)+

Q2(Λ, Σu) ≤ dT . Hence Q1(Σ) + Q2(Λ, Σu) ≤ dT = oP(1), given
that logN = o(T ).

On the other hand, Lemma B.2 implies there is a stochastic se-
quence eT = oP(1) so that Q1(Σu) ≥ eT (The proofs of Lem-
mas B.1 and B.2 do not depend on Lemma A.4.) This then implies
0 ≤ Q2(Σu,Λ) = oP(1). On the other hand,

Q2(Σu,Λ) =
1
N
tr

Λ′

0
Σ−1

u Λ0

−Λ′

0
Σ−1

u
Λ(Λ′Σ−1

u
Λ)−1Λ′Σ−1

u Λ0


.

The matrix in the bracket is semi-positive definite. Hence

1
N

Λ′

0
Σ−1

u Λ0 − (Ir − J)
1
N
Λ′Σ−1

u
Λ(Ir − J)′ = oP(1). (A.11)

Finally, the desired result follows from Lemma B.4.
The first order condition in part (ii) is a straightforward

calculation. �

Lemma A.5. (i) Λ′Σ−1
u (Sy − ΛΛ′

− Σu) = 0.

(ii) (J − Ir)′(J − Ir) − Ir = OP(N−1
+

√
logN/T ).

Proof. (i) Using the matrix inverse formula, we have Λ′(ΛΛ′
+Σu)

−1
= (Ir + Λ′Σ−1

u
Λ)−1Λ′Σ−1

u . Thus part (i) follows from the
first order condition in Lemma A.4.

(ii) Let H = (Λ′Σ−1
u
Λ)−1. Part (i) can be equivalently written

as J + J ′ − J ′J + K = 0 where

K = J ′
1
T

T
t=1

ftu′

t
Σ−1

u
ΛH + HΛ′Σ−1

u
1
T

T
t=1

ut f ′

t J

−
1
T

T
t=1

ftu′

t
Σ−1

u
ΛH − HΛ′Σ−1

u
1
T

T
t=1

ut f ′

t

−HΛ′Σ−1
u (Su − Σu)Σ−1

u
ΛH.

Note that for (Λ, Σu) ∈ Ξδ , H = OP(N−1), J = OP(1) for each
element, ∥Σ−1

u ∥ = OP(1), ∥Λ∥F = OP(N1/2), hence 1T
T

t=1

ftu′

t
Σ−1

u
ΛH


F

≤ OP(N−1/2)

 1T
T

t=1

ftu′

t


F

= OP


logN
T


.

Moreover, ∥Su∥2
= OP(T−1N2 logN + 1), which implies HΛ′Σ−1

u
SuΣ−1

u
ΛH = OP(N−1

+T−1/2(logN)1/2). Also,HΛ′Σ−1
u
ΣuΣ−1

u
ΛH

= H = OP(N−1). Therefore the last term in K is OP(N−1
+

√
logN/T ). Thus K = OP(N−1

+ T−1/2(logN)1/2). It then implies
(ii). �

Lemma A.6. Given that logN = o(T ), we have J = oP(1).

Proof. By our assumption, bothΛ′Σ−1
u
Λ and Λ′

0Σ
−1
u0 Λ are diago-

nal. Moreover, the eigenvalues of N−1Λ′Σ−1
u
Λ and N−1Λ′

0Σ
−1
u0 Λ

are bounded away from zero. Therefore by Lemma A.4(i) and
Lemma A.5(ii), there are two diagonal matrices M1 and M2 whose
eigenvalues are all bounded away from zero, such that

(Ir − J)M1(Ir − J)′ = M2 + oP(1),

(J − Ir)′(J − Ir) = Ir + oP(1)
(A.12)

Applying Lemma A.1 of Bai and Li (2012a,b), we have J = oP(1)
and M1 = M2 + oP(1). We also assumed Λ and Λ0 have the same
column signs, as a part of identification condition. �

Appendix B. Proof of Theorem 3.1

Note that the theoretical results of our paper are only about
the consistency of the estimated Λ and Σu, although some
convergence rate of the covariance estimator is presented in
Lemma B.2. The presented rate is not minimax optimal, and
we would like to understand Lemma B.2 as a guarantee of the
consistency.

Throughout, let (recall that DN =


i≠j,(i,j)∈JU
1).

1 = Σ−1
u − Σ−1

u0 , KT =


(i,j)∈JL

|Σu0,ij|.

Lemma B.1. For all large enough T and N,

NQ1(Σu) ≥
1
2
µN,T min

(i,j)∈JL
wij


(i,j)∈JL

|Σu,ij − Σu0,ij| + c∥1∥
2
F

−2µN,T max
(i,j)∈JL

wijKT

−


OP


logN
T


N + DN + µN,T max

i≠j,(i,j)∈JU
wij


DN


∥1∥F .

Proof. LetΩ0 = Σ−1
u0 , Ω = Σ−1

u . For anyΣu, letΩ = Σ−1
u . Define

a function f (t) = − log |Ω0 + t1| + tr(Su(Ω0 + t1)), t ≥ 0. Then
− log |Ω| + tr(SuΩ) = f (1); − log |Ω0| + tr(SuΩ0) = f (0); and

NQ1(Σu) = f (1) − f (0) + µN,T


i≠j

wij|Σu,ij|

− µN,T


i≠j

wij|Σu0,ij| (B.1)

By the integral remainder Taylor expansion, f (1)− f (0) = f ′(0)+ 1
0 (1 − t)f ′′(t)dt . We now calculate f ′(0) and f ′′(t). We have,

f ′(t) = tr(Su1) − tr((Ω0 + t1)−11), which implies,

f ′(0) = tr((Su − Σu0)(Ω − Ω0))

= tr(Ω0(Su − Σu0)Ω(Σu0 − Σu))

=


ij

(Ω0(Su − Σu0)Ω)ij(Σu0 − Σu)ij.

Note that both ∥Ω0∥1 and ∥Ω∥1 are bounded from above for
Σu0, Σu ∈ Γ . By Lemma A.1(ii), maxij |(Ω0(Su − Σu0)Ω)ij| ≤

maxij |(Su − Σu0)ij|∥Ω0∥1∥Ω∥1 = OP(
√
logN/T ). Therefore,

|f ′(0)| = OP(
√
logN/T )


ij |Σu0,ij − Σu,ij|. In addition,

f ′′(t) = tr((Ω0 + t1)−11(Ω0 + t1)−11)

= vec(1)′(Ω0 + t1)−1
⊗ (Ω0 + t1)−1vec(1),

where vec denotes the vectorization operator and ⊗ denotes
the Kronecker product. Since both (Λ, Σu) and (Λ0, Σu0) are
inside Θλ × Γ , sup0≤t≤1 λmax(tΣ−1

u + (1 − t)Σ−1
u0 ) is bounded

from above, which then implies inf0≤t≤1 λmin[(Ω0 + t1)−1
] =

inf0≤t≤1 λ−1
max(tΣ−1

u + (1− t)Σ−1
u0 ) is bounded below by a positive
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constant c . Hence inf0≤t≤1 f ′′(t) ≥ c∥1∥
2
F . From (B.1) and f (1) −

f (0) ≥ −|f ′(0)| + c∥1∥
2
F , we have

NQ1(Σu) ≥ µN,T


i≠j

wij|Σu,ij| − µN,T


i≠j

wij|Σu0,ij|

+ c∥1∥
2
F − OP


logN
T


ij

|Σu0,ij − Σu,ij|

= µN,T


(i,j)∈JL

wij|Σu,ij| + µN,T


i≠j,(i,j)∈JU

wij|Σu,ij|

− µN,T


i≠j

wij|Σu0,ij| + c∥1∥
2
F − OP


logN
T



×


Σu0,ij∈JU

|Σu0,ij − Σu,ij| − OP


logN
T


×


(i,j)∈JL

|Σu0,ij − Σu,ij|.

Since |Σu,ij| ≥ |Σu,ij − Σu0,ij| − |Σu0,ij|, and


i≠j wij|Σu0,ij| =
i≠j,(i,j)∈JU

wij|Σu0,ij| +


(i,j)∈JL
wij|Σu0,ij|. It follows that

NQ1(Σu) ≥ µN,T


(i,j)∈JL

wij|Σu,ij − Σu0,ij|

−OP


logN
T

 
(i,j)∈JL

|Σu0,ij − Σu,ij| + c∥1∥
2
F

− µN,T


(i,j)∈JL

wij|Σu0,ij| − OP


logN
T

 
Σu0,ij∈JU

|Σu0,ij − Σu,ij|

− µN,T


i≠j,(i,j)∈JU

wij[|Σu0,ij| − |Σu,ij|] − µN,T


(i,j)∈JL

wij|Σu0,ij|

≥


µN,T min

(i,j)∈JL
wij − OP


logN
T

 
(i,j)∈JL

|Σu,ij − Σu0,ij|

+ c∥1∥
2
F − 2µN,T


(i,j)∈JL

wij|Σu0,ij| − OP


logN
T


×


Σu0,ij∈JU

|Σu0,ij − Σu,ij| − µN,T max
i≠j,(i,j)∈JU

wij

×


i≠j,(i,j)∈JU

|Σu0,ij − Σu,ij|

≥
1
2
µN,T min

(i,j)∈JL
wij


(i,j)∈JL

|Σu,ij − Σu0,ij| + c∥1∥
2
F

− 2µN,T max
(i,j)∈JL

wijKT − OP


logN
T


N + DN∥1∥F

− µN,T max
i≠j,(i,j)∈JU

wij∥1∥F


DN ,

which implies the desired result. �

The following lemma presents a non-optimal rate of conver-
gence, which is for the consistency only.

Lemma B.2.

1
N

∥Σu0 − Σu∥
2
F

= OP


1
N


µN,T max

(i,j)∈JL
wijKT + logN + µ2

N,T max
i≠j,(i,j)∈JU

w2
ijDN


+OP


DN logN

NT
+


logN
T


.

Proof. Lemma B.1 implies

NQ1(Σu) ≥ c∥1∥
2
F − 2µN,T max

(i,j)∈JL
wijKT

−


OP


logN
T


N + DN + µN,T max

i≠j,(i,j)∈JU
wij


DN


∥1∥F .

Lemma A.3 gives NQ1(Σu) ≤ OP(logN + N
√
logN/T ). Hence we

have

∥1∥
2
F = OP

 (N + DN) logN
T

+ µN,T max
i≠j,(i,j)∈JU

wij


DN

2


+OP


µN,T max

(i,j)∈JL
wijKT + logN + N


logN/T


= OP


(N + DN) logN

T
+ µ2

N,T max
i≠j,(i,j)∈JU

w2
ijDN

+ µN,T max
(i,j)∈JL

wijKT + logN + N

logN/T



= OP


DN logN

T
+ µ2

N,T max
i≠j,(i,j)∈JU

w2
ijDN

+ µN,T max
(i,j)∈JL

wijKT + logN + N

logN/T


.

Note that Σu0 − Σu = Σu1Σu0. Hence the desired result follows
from ∥Σu∥ < M almost surely and ∥Σu0∥ < M .

In addition, it also implies

Q1(Σu) ≥ c
1
N

∥1∥
2
F −

2µN,T

N
max

JL
wijKT

−


1
N
OP


logN
T


N + DN +

µN,T

N
max

i≠j,(i,j)∈JU
wij


DN


∥

× 1∥F .

Combining with NQ1(Σu) ≤ OP(logN + N
√
logN/T ), we have

1
N

∥1∥
2
F

= OP


1
N


µN,T max

(i,j)∈JL
wijKT + logN + µ2

N,T max
i≠j,(i,j)∈JU

w2
ijDN


+OP


DN logN

NT
+


logN
T



which is oP(1). The second term 2µN,T
N maxJL wijKT = o(1), and

the third term on the right hand side is also straightforward to be
verified as oP(1).

Finally, recall that 1 = Σ−1
u − Σ−1

u0 ,

1
N

∥Σu0 − Σu∥
2
F =

1
N

∥Σu0(Σ
−1
u0 − Σ−1

u )Σu∥
2
F

≤ ∥Σu0∥∥Σu∥
1
N

∥1∥
2
F .

Hence 1
N ∥Σu0 − Σu∥

2
F has the same convergence rate as that of

1
N ∥1∥

2
F due to ∥Σu0∥ < M and ∥Σu∥ < M . �
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Lemma B.3. N−1
(i,j)∈JL

|Σu,ij − Σu0,ij| = oP(1).

Proof. Lemma B.1 implies

1
2
µN,T min

(i,j)∈JL
wij


(i,j)∈JL

|Σu,ij − Σu0,ij|

≤ NQ1(Σu) + 2µN,T max
(i,j)∈JL

wijKT

+


OP


logN
T


N + DN + µN,T max

i≠j,(i,j)∈JU
wij


DN


× ∥1∥F . (B.2)

We have NQ1(Σu) ≤ OP(logN + N
√
logN/T ). By Lemma B.2,

∥1∥F = OP


DN logN

T
+ µN,T max

i≠j,(i,j)∈JU
wij


DN



+OP


µN,T max

(i,j)∈JL
wijKT +


logN +

√
N

logN
T

1/4


which implies the desired result under Assumption 3.4. �

Lemma B.4. N−1Λ′

0(
Σ−1

u − Σ−1
u0 )Λ0 = oP(1).

Proof. Let 11 = Σu − Σu0, Ξ = Λ′

0Σ
−1
u0 = (ξ1, . . . , ξN), andV =Σ−1

u Λ0. Since the ℓ1 norms of Σ−1
u and Σ−1

u0 are bounded away
from infinity, we have, supi≤N ∥Vi∥ = OP(1) and supi≤N ∥ξi∥ =

O(1). Then

1
N

Λ′

0(Σ
−1
u0 − Σ−1

u )Λ0

=
1
N

Ξ11V =
1
N


(i,j)∈JL

ξiV ′

j 11,ij +
1
N


Σu0,ij∈JU

ξiV ′

j 11,ij

≤ OP


1
N

 
(i,j)∈JL

|11,ij| + OP


1
N

 
Σu0,ij∈JU

|11,ij|.

The first term on the right hand side is oP(1) by Lemma B.3,
and the second is bounded by N−1

∥Σu − Σu0∥F
√
N + DN (using

Cauchy–Schwarz inequality). By Lemma B.2,

N + DN

N2
∥Σu0 − Σu∥

2
F = OP


N + DN

N2


µN,T max

(i,j)∈JL
wijKT

+ logN + µ2
N,T max

i≠j,(i,j)∈JU
w2

ijDN



+
N + DN

N2
OP


DN logN

T
+ N


logN
T


which is also oP(1) and Assumption 3.4. Hence the result
follows. �

Proof of Theorem 3.1. N−1
∥Σu − Σu0∥

2
F = oP(1) follows from

Lemma B.2 and Assumption 3.4. On the other hand, Eq. (A.11) also
implies

1
N

(Λ − Λ0)
′Σ−1

u (Λ − Λ0) − J
1
N
H−1J ′ = oP(1).

where H−1
= Λ′Σ−1

u
Λ = OP(N). By Lemma A.6, N−1JH−1J ′ =

oP(1). Hence N−1(Λ − Λ0)
′Σ−1

u (Λ − Λ0) = oP(1), which implies
the consistency N−1

∥Λ − Λ0∥
2

= oP(1) because the eigenvalues
of Σ−1

u are bounded away from zero. �
To prove the consistency offt , we note thatft − ft = −J ′ft + (Λ′Σ−1
u
Λ)−1Λ′Σ−1

u (ut − ū).

Since J = oP(1) by Lemma A.6, and ū is of smaller order than ut for
each fixed t . Henceft − ft = OP(N−1)Λ′Σ−1

u ut + oP(1). Moreover,
since ∥Σ−1

u ∥ and ∥Σu∥ are both OP(1) and ∥Λ∥F = OP(N1/2) by
the restriction of the parameter space Θλ × Γ , we have

N−1
∥(Λ′Σ−1

u − Λ0Σ
−1
u0 )ut∥F

≤ N−1
∥(Λ′

− Λ′)Σ−1
u ut∥F + N−1

∥Λ(Σ−1
u − Σ−1

u )ut∥F .

The first term is bounded by N−1
∥Λ − Λ∥F∥ut∥OP(1) =

OP(N−1/2+1/2)N−1/2
∥Λ − Λ∥F = oP(1). On the other hand, let ξ̂i

be the i th column of Λ′Σ−1
u , and ejt be the jth entry of Σ−1

u ut . We
have maxi ∥ξ̂i∥ = OP(1) and maxj |ejt | = OP(logN).

N−1Λ′(Σ−1
u − Σ−1

u )ut = N−1

ij

ξ̂iejt(Σij − Σ̂ij)

≤ OP(logN)N−1

JL

|Σij − Σ̂ij| + OP(logN)N−1

JU

|Σij − Σ̂ij|

≤ OP(logN)N−1

JL

|Σij − Σ̂ij|

+OP(logN)N−1
∥Σu − Σu∥F


N + DN .

It follows from (B.2) that the first term is oP(1). In addition,
it follows from Lemma B.2 that the second term is also oP(1).
Therefore,ft − ft = OP(N−1)Λ′

0Σ
−1
u0 ut + oP(1)

= OP(N−1)

N
i=1

ξiuit + oP(1) = OP(N−1/2) + oP(1)

= oP(1).

Appendix C. Proof of Theorem 3.2

Let Σ∗

u,ij be the PCA estimator of Σu0,ij. Write

Re = max
i≤N,j≤N

|Σ∗

u,ij − Σu0,ij| = OP(ωT )

where ωT =


logN
T +

1
√
N
.

We now verify Assumption 3.4 for the adaptive lasso.

Lemma C.1. For adaptive lasso,
(i) mini≠j,(i,j)∈JU |Σu0,ij|maxi≠j,(i,j)∈JU wij = OP(1).
(ii) δT max(i,j)∈JL wij = OP(1).

Proof. By the assumption that min(i,j)∈JU |Σu0,ij| ≫ ωT , we have
result (i). For any (i, j) ∈ JL, the following inequality holds: δ−1

T ≤

w−1
ij ≤ |Σu0,ij|+ |Σu0,ij −Σ∗

u,ij|+δT ,which then implies result (ii),
due to the assumptions that δT = o(ωT ), and |Σu0,ij| = O(ωT ) for
(i, j) ∈ JL. �

Proof of Assumption 3.4 for adaptive lasso
Note that

ηT =

max
i≠j,(i,j)∈JU

(δT + |Σ∗

ij |)
−1

min
(i,j)∈JL

(δT + |Σ∗

ij |)
−1

≤

δT + max
(i,j)∈JL

|Σ0,ij| + Re

min
i≠j,(i,j)∈JU

|Σ0,ij| − Re
= oP(1),

βT =

max
(i,j)∈JL

wij

min
(i,j)∈JL

wij
=

max
(i,j)∈JL

(δT + |Σ∗

ij |)

min
(i,j)∈JL

(δT + |Σ∗

ij |)
≤

δT + Re + max
(i,j)∈JL

|Σ0,ij|

δT
.
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By the assumption that DN = O(N),

ζ = min


T

logN
N
DN

,


T

logN

1/4


N
DN

,
N

√
DN logN



≫ min


T

logN

1/4

,


N

logN


.

Hence ηT = OP(ζ ). Moreover,

βT
1
N


(i,j)∈JL

|Σu0,ij| ≤
1
N


(i,j)∈JL

|Σu0,ij|(1 + δ−1
T (Re + max

(i,j)∈JL
|Σ0,ij|)).

This together with the lower bound assumption on δT yields
Assumption 3.4(i).

For part (ii), note that ηT = oP(1) implies that with probability
approaching one,

min

N,

N2

DN
,
N2

DN
η−2
T


= N,

min


N
DN

,


N
DN

,
N
DN

η−1
T


=


N
DN

.

By Lemma C.1(ii), (recall that KT =


(i,j)∈JL
|Σu0,ij|) and the lower

bound δT ≫ ωTKT/N , µN,T max(i,j)∈JL wijKT = OP(µN,T δ
−1
T KT ) =

oP(ωT δ
−1
T KT ) = oP(N).

By the assumptions thatDN = O(N) andmini≠j,(i,j)∈JU |Σu0,ij| ≫

ωT , we have

µN,T max
i≠j,(i,j)∈JU

wij = µN,TOP( min
i≠j,(i,j)∈JU

|Σu0,ij|)
−1

= OP(µN,Tω
−1
T ) = oP(N−(1−a)) = oP(


N/DN),

due to the upper bound on µN,T = o(ωT ). Finally, with probability
approaching one,

µN,T min
(i,j)∈JL

wij ≥
µN,T

2ωT + Re
≥

µN,T

3ωT
≫

logN/T + (logN)/N.

Proof of Assumption 3.4 for SCAD
Since µN,T/mini≠j,(i,j)∈JU |Rij| = oP(1) and max(i,j)∈JL |Rij| =

OP(µN,T ), it is easy to verify that with probability approaching one,
maxi≠j,(i,j)∈JU wij = 0, min(i,j)∈JL wij = max(i,j)∈JL wij = 1. Hence
ηT = 0 and βT = 1. This immediately implies the desired result.

Appendix D. Proof of Theorem 4.1

Recall that Λk+1 = AM−1, where M = Λ′

k
Σ−1

y,k SyΣ−1
y,k
Λk + Ir −Λ′

k
Σ−1

y,k
Λk,

A = SyΣ−1
y,k
Λk, Σy,k = ΛkΛ′

k + Σu,k.

Lemma D.1. (i) ∥Sy − Σy,k∥∞ = oP(µN,T ),

(ii) λ−1
min(

Λ′

k
Λk) = OP(N−1),

(iii) ∥(Ir + Λ′

k
Σ−1

u,k
Λk)

−1
∥ = OP(N−1),

(iv) Σ−1
y,k
Λk = Σ−1

u,k
Λk(Ir + Λ′

k
Σ−1

u,k
Λk)

−1. Hence ∥Σ−1
y,k
Λk∥∞ ≤

∥Σ−1
u,k
Λk∥∞OP(N−1).

(v) ∥M−1
− Ir∥∞ = oP(µN,T ),

(vi) ∥Σ−1
y,k ∥1 = OP(1).
Proof. (i) On one hand, note that for the sample covariance Sy,
and Σy = Λ0Λ

′

0 + Σu0, under our conditions, ∥Sy − Σy,0∥∞ =

OP(


logN
T ) (e.g., Fan et al., 2008). On the other hand,

∥Σy,k − Σy,0∥∞ ≤ ∥ΛkΛ′

k − Λ0Λ
′

0∥∞ + ∥Σu,k − Σu,0∥∞

= oP(µN,T ).

Hence the result follows from the triangular inequality and that
logN
T = o(µN,T ).
(ii) Note that 1

N
Λ′

k
Λk −

1
N

Λ′

0Λ0

 = OP(∥Λk − Λ0∥∞) = oP(µN,T ).

Since λmin(
Λ′

0Λ0
N ) > δ−1,

λ−1
min(

Λ′

k
Λk) ≤

1
N


λmin


Λ′

0Λ0

N


−

 1
N
Λ′

k
Λk −

1
N

Λ′

0Λ0

−1

=
1
N

(δ + oP(µN,T )).

(iii) It follows from ∥Σu,k∥1 < M that λmin(Σ−1
u,k ) = λ−1

max(
Σu,k) >

M−1. Hence

∥(Ir + Λ′

k
Σ−1

u,k
Λk)

−1
∥ = λ−1

min(Ir + Λ′

k
Σ−1

u,k
Λk)

≤ λ−1
min(

Λ′

k
Σ−1

u,k
Λk)

≤ λ−1
min(

Σ−1
u,k )λ

−1
min(

Λ′

k
Λk) = OP(N−1).

(iv) The desired equality follows directly from the matrix
inversion formula:Σ−1

y,k = Σ−1
u,k − Σ−1

u,k
Λk(Ir + Λ′

k
Σ−1

u,k
Λk)

−1Λ′

k
Σ−1

u,k . (D.1)

(v) We first bound ∥M − Ir∥∞. Note thatM − Ir = Λ′

k
Σ−1

y,k (Sy −Σy,k)Σ−1
y,k
Λk. So Lemma D.1 implies

∥M − Ir∥∞ ≤ N2
∥Sy − Σy,k∥∞∥Σ−1

y,k
Λk∥

2
∞

≤ ∥Sy − Σy,k∥∞∥Σ−1
u,k
Λk∥

2
∞

≤ ∥Sy − Σy,k∥∞∥Σ−1
u,k∥

2
1∥
Λk∥

2
∞

= oP(µN,T ).

Hence λmin(M) ≥ 1 − oP(µN,T ), yielding ∥M−1
∥∞ ≤ ∥M−1

∥ =

λ−1
min(M) = OP(1). So

∥M−1
− Ir∥∞ ≤ r∥M − Ir∥∞∥M−1

∥∞ = oP(µN,T ).

(vi) Note that

∥Λk(Ir + Λ′

k
Σ−1

u,k
Λk)

−1Λ′

k∥1

≤ ∥Λk∥
2
∞

∥(Ir + Λ′

k
Σ−1

u,k
Λk)

−1
∥∞Nr2

= OP(1).

Hence by (D.1) and that ∥Σ−1
u,k∥1 = OP(1),

∥Σ−1
y,k ∥1 ≤ ∥Σ−1

u,k∥1 + ∥Σ−1
u,k∥1

× ∥Λk(Ir + Λ′

k
Σ−1

u,k
Λk)

−1Λ′

k∥1∥Σ−1
u,k∥1

= OP(1). � (D.2)

D.1. Proving ∥Λk+1 − Λ0∥∞ = oP(µN,T )

Recall that A = SyΣ−1
y,k
Λk and Λk+1 = AM−1.

Step 1: proving ∥Λk+1 − A∥∞ = oP(µN,T )
We first show ∥A∥∞ = OP(1). By Lemma D.1,

∥A∥∞ ≤ ∥Sy∥∞∥Σ−1
y,k
Λk∥∞N ≤ ∥Sy∥∞∥Σ−1

u,k
Λk∥∞OP(1) = OP(1).
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Hence still by Lemma D.1, we have

∥Λk+1 − A∥∞ = ∥A(M−1
− Ir)∥∞

≤ ∥A∥∞∥M−1
− Ir∥∞r = oP(µN,T ).

Step 2: proving ∥Λk − A∥∞ = oP(µN,T )

By Lemma D.1(i)(iv),

∥Λk − A∥∞ = ∥Λk − A∥∞ = ∥(Sy − Σy,k)Σ−1
y,k
Λk∥∞

≤ ∥Sy − Σy,k∥∞∥Σ−1
y,k
Λk∥∞N = oP(µN,T ).

The desired result then follows from the triangular inequality
and that ∥Λk − Λ0∥∞ = oP(µN,T ).

D.2. Proving ∥Σu,k+1 − Σu0∥∞ = oP(µN,T ), ∥Σu,k+1 − Σu0∥1 =

oP(µN,TmN)

To simplify the technicality, we consider the case

max
i,j∈JL

|Σu0,ij| = 0, min
i,j∈JU

|Σu0,ij| ≫ µN,T .

Recall that Σu,k+1 is obtained by applying soft-thresholding on
B = Σu,k − tG, where G := Σ−1

y,k − Σ−1
y,k SyΣ−1

y,k . We also prove
only for the scad weight, since it is asymptotically unbiased (in
the sense to be described below). The proof for the adaptive lasso
will be quite similar except that t has to be chosen as a decreasing
sequence tN,T .

Step 1: proving ∥G∥∞ = oP(µN,T )

By Lemma D.1(vi), ∥Σ−1
y,k ∥1 = OP(1). Hence

∥G∥∞ = ∥Σ−1
y,k (Sy − Σy,k)Σ−1

y,k ∥∞

≤ ∥Σ−1
y,k ∥

2
1∥Sy − Σy,k∥∞ = oP(µN,T ).

Step 2: proving ∥B − Σu0∥∞ = oP(µN,T )

Note that ∥B−Σu0∥∞ ≤ ∥Σu,k −Σu0∥∞ + t∥G∥∞ = oP(µN,T ).
Step 3: proving ∥Σu,k+1 − Σu0∥∞ = oP(µN,T )

Consider three cases:
Case 1: i = j: (Σu,k+1)ij = Bij

In this case, |(Σu,k+1)ij − Σu0,ij| ≤ ∥B − Σu0∥∞ = oP(µN,T ).
Case 2: i ≠ j: (i, j) ∈ JL.
In this case, Σ0,ij = 0, and max(i,j)∈JL |Bij| = oP(µN,T ). For scad,

note that with probability approaching one, wij = 1 ∀(i, j) ∈ JL,
hence |Bij| < µN,Twijt for all (i, j) ∈ JL with probability approach-
ing one. This implies,

P((Σu,k+1)ij = 0, ∀(i, j) ∈ JL) → 1,

P(|(Σu,k+1)ij − Σu0,ij| = 0, ∀(i, j) ∈ JL) → 1. (D.3)

Case 3: i ≠ j: (i, j) ∈ JU
Note that with probability approaching one, the scad weights

satisfy: maxi≠j,(i,j)∈JU wij = 0. Hence P(|Bij| > ωijtµN,T , ∀(i, j) ∈

JU) → 1, and

P((Σu,k+1)ij = Bij, ∀(i, j) ∈ JU , i ≠ j) → 1.

We see that the soft thresholding with scad weights is asymptoti-
cally unbiased.

This implies, with probability approaching one, maxi≠j,(i,j)∈JU |

(Σu,k+1)ij − Σu0,ij| = maxi≠j,(i,j)∈JU |Bij − Σu0,ij|, yielding

max
i≠j,(i,j)∈JU

|(Σu,k+1)ij − Σu0,ij| = oP(µN,T ).

Summarizing steps 1–3, we conclude

∥Σu,k+1 − Σu0∥∞ = oP(µN,T ) = oP(µN,T ).
Step 4: proving ∥Σu,k+1 − Σu0∥1 = oP(µN,TmN).
We have:

∥Σu,k+1 − Σu0∥1 ≤ max
i≤p


j:(i,j)∈JL

|(Σu,k+1)ij − Σu0,ij|

+ max
i≤p


j:(i,j)∈JU

|(Σu,k+1)ij − Σu0,ij|.

By (D.3), the first term on the right hand side equals zero with
probability approaching one. The second term on the right hand
side is bounded by (recall thatmN = maxi≤N

N
j=1 1{Σu0,ij ≠ 0})

∥Σu,k+1 − Σu0∥∞mN = oP(µN,TmN).

Thus ∥Σu,k+1 − Σu0∥1 = oP(µN,TmN).

D.3. Bounding ∥Σ−1
u,k+1∥1, ∥Σu,k+1∥1 and eigenvalues of N−1Λ′

k+1Λk+1

First of all,

∥Σu,k+1∥1 ≤ ∥Σu,k+1 − Σu0∥1 + ∥Σu0∥1

= ∥Σu0∥1 + oP(µN,TmN).

Secondly,

∥Σ−1
u,k+1 − Σ−1

u0 ∥1 = ∥Σ−1
u,k+1(

Σu,k+1 − Σu0)Σ
−1
u0 ∥1

≤ ∥Σu,k+1 − Σu0∥1∥Σ−1
u0 ∥

2
1 + ∥Σu,k+1 − Σu0∥1

× ∥Σ−1
u,k+1 − Σ−1

u0 ∥1∥Σ−1
u0 ∥1,

which implies (1− oP(µN,TmN))∥Σ−1
u,k+1 − Σ−1

u0 ∥1 = oP(µN,TmN).
Hence

∥Σ−1
u,k+1∥1 ≤ ∥Σ−1

u,k+1 − Σ−1
u0 ∥1 + ∥Σ−1

u0 ∥1

= ∥Σ−1
u0 ∥1 + oP(µN,TmN).

Finally, from ∥N−1Λ′

k+1
Λk+1 −N−1Λ′

0Λ0∥ = OP(∥Λk −Λ0∥∞) =

oP(µN,T ), we conclude that

λmax(N−1Λ′

k+1
Λk+1) ≤ λmax(N−1Λ′

0Λ0) + oP(µN,T ),

and

λmin(N−1Λ′

k+1
Λk+1) ≥ λmin(N−1Λ′

0Λ0) − oP(µN,T ).

The following lemma shows that the proposed algorithm, if
converges, will converge to a stationary point of the penalized ML
problem.

Lemma D.2. Suppose {Λk, Σu,k} converges to (Λ̄, Σ̄u) as k → ∞.
Then

(Sy − Σ̄y)Σ̄
−1
u Λ̄ = 0, Σ̄y = Λ̄Λ̄′

+ Σ̄u

(Σ̄−1
y − Σ̄−1

y SyΣ̄−1
y )ij + µN,Twijρ̄ij = 0,

ρ̄ij = sign((Σ̄u)ij) if (Σ̄u)ij ≠ 0.

That means, (Λ̄, Σ̄u) satisfies the Karush–Kuhn–Tucker (KKT)
conditions of the penalized ML problem.

Proof. By the iteration, we have Λ̄ = SyΣ̄−1
y Λ̄M−1, M =

Λ̄′Σ̄−1
y SyΣ̄−1

y Λ̄ + I − Λ̄′Σ̄−1
y Λ̄, which is equivalent to

SyΣ̄−1
y Λ̄ = Λ̄(Λ̄′Σ̄−1

y SyΣ̄−1
y Λ̄ + I − Λ̄′Σ̄−1

y Λ̄).

The left hand side is (Sy−Σ̄y)Σ̄
−1
y Λ̄+Λ̄. The right hand side equals

Λ̄(Λ̄′Σ̄−1
y (Sy − Σ̄y)Σ̄

−1
y Λ̄ + I)

= Λ̄Λ̄′Σ̄−1
y (Sy − Σ̄y)Σ̄

−1
y Λ̄ + Λ̄

= (Σ̄y − Σ̄u)Σ̄
−1
y (Sy − Σ̄y)Σ̄

−1
y Λ̄ + Λ̄

= (Sy − Σ̄y)Σ̄
−1
y Λ̄ − Σ̄uΣ̄

−1
y (Sy − Σ̄y)Σ̄

−1
y Λ̄ + Λ̄.
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Hence Σ̄uΣ̄
−1
y (Sy − Σ̄y)Σ̄

−1
y Λ̄ = 0, which is equivalent to (Sy −

Σ̄y)Σ̄
−1
y Λ̄ = 0. Note that Σ̄−1

y Λ̄ = Σ̄−1
u Λ̄(I + Λ̄′Σ̄−1

u Λ̄)−1. Hence
(Sy − Σ̄y)Σ̄

−1
u Λ̄ = 0.

On the other hand, Σu,k+1 solves the problem

min
Σu

1
2t

∥Σu − Σu,k + t[Σ−1
y,k − Σ−1

y,k SyΣ−1
y,k ]∥

2
F

+


i≠j

µN,Twij|Σu,ij|,

whose KKT condition is, for B = Σu,k − t[Σ−1
y,k − Σ−1

y,k SyΣ−1
y,k ],

1
t
(Σu,k+1 − B)ij + µN,Twijρij = 0,

ρij = sign((Σu,k+1)ij) if (Σu,k+1)ij ≠ 0.

Let k → ∞, we have, for B̄ = Σ̄u − t[Σ̄−1
y − Σ̄−1

y SyΣ̄−1
y ], and

some ρij such that ρij = sign((Σ̄u)ij) if (Σ̄u)ij ≠ 0, 1
t (Σ̄u − B)ij +

µN,Twijρij = 0. It simplifies to

(Σ̄−1
y − Σ̄−1

y SyΣ̄−1
y )ij + µN,Twijρ̄ij = 0,

ρ̄ij = sign((Σ̄u)ij) if (Σ̄u)ij ≠ 0,

which is also the KKT condition for the penalized ML

min
1
N

log
det ΛΛ′

+ Σu
+ 1

N
tr

Sy(ΛΛ′

+ Σu)
−1

+


i≠j

µN,Twij|Σu,ij|.

Therefore, (Λ̄, Σ̄u), if exists, is a stationary point of the
algorithm. �

References

Alessi, L., Barigozzi, M., Capassoc, M., 2010. Improved penalization for determining
the number of factors in approximate factor models. Statist. Probab. Lett. 80,
1806–1813.

An, L., Tao, P., 2005. The dc difference of convex functions programming and dca
revisited with dc models of real world nonconvex optimization problems. Ann.
Oper. Res. 133, 23–46.

Bai, J., 2003. Inferential theory for factor models of large dimensions. Econometrica
71, 135–171.

Bai, J., Li, K., 2012a. Statistical analysis of factor models of high dimension. Ann.
Statist. 40, 436–465.

Bai, J., Li, K., 2012b. Maximum Likelihood Estimation and Inference for Approximate
Factor Models of High Dimension. MPRA Paper No. 42099. Forthcoming in
Review of Economics and Statistics.

Bai, J., Liao, Y., 2013. Statistical Inferences Using Large Estimated Covariances for
Panel Data and Factor Models. Available at SSRN 2353396.

Bai, J., Ng, S., 2002. Determining the number of factors in approximate factor
models. Econometrica 70, 191–221.

Bai, J., Wang, P., 2015. Identification and Bayesian estimation of dynamic factor
models. J. Bus. & Econom. Statist. 33 (2), 221–240.

Bickel, P., Levina, E., 2008. Covariance regularization by thresholding. Ann. Statist.
36, 2577–2604.

Bien, J., Tibshirani, R., 2011. Sparse estimation of a covariance matrix. Biometrika
98, 807–820.

Boivin, J., Ng, S., 2005. Understanding and comparing factor based macroeconomic
forecasts. Int. J. Cent. Bank. 1 (3), 117–152.

Breitung, J., Tenhofen, J., 2011. GLS estimation of dynamic factor models. J. Amer.
Statist. Assoc. 106, 1150–1166.

Cai, T., Zhou, H., 2012. Optimal rates of convergence for sparse covariance matrix
estimation. Ann. Statist. 40, 2359–2763.

Caner, M., Fan, M., 2011. A Near Minimax Risk Bound: Adaptive Lasso With
Heteroskedastic Data in Instrumental Variable Selection. Manuscript. North
Carolina State University.

Chamberlain, G., Rothschild, M., 1983. Arbitrage, factor structure and
mean–variance analysis in large asset markets. Econometrica 51, 1305–1324.

Choi, I., 2012. Efficient estimation of factor models. Econometric Theory 28,
274–308.

Connor, G., Korajczyk, R., 1993. A test for the number of factors in an approximate
factor model. J. Finance 48, 1263–1291.
Deng, X., Tsui, K., 2013. Penalized covariance matrix estimation using a matrix-
logarithm transformation. Journal of Computational andGraphical Statistics 22,
494–512.

Dias, F., Pinherio, M., Rua, A., 2013. Determining the number of global and country-
specific factors in the euro area. Stud. Nonlinear Dyn. Econom. 17, 573–618.

Doz, C., Giannone, D., Reichlin, L., 2012. A quasi-maximum likelihood approach for
large, approximate dynamic factor models. Rev. Econ. Stat. 94, 1014–1024.

Doz, C., Giannone, D., Reichlin, L., 2011. A two-step estimator for large approximate
dynamic factor models based on Kalman filtering. J. Econometrics 164,
188–205.

El Karoui, N., 2008. Spectrum estimation for large dimensional covariance matrices
using randommatrix theory. Ann. Statist. 36, 2757–2790.

Fan, J., Fan, Y., Lv, J., 2008. High dimensional covariance matrix estimation using a
factor model. J. Econometrics 147, 186–197.

Fan, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood and its
oracle properties. J. Amer. Statist. Assoc. 96, 1348–1360.

Fan, J., Liao, Y., Mincheva, M., 2011. High dimensional covariancematrix estimation
in approximate factor models. Ann. Statist. 39, 3320–3356.

Fan, J., Liao, Y., Mincheva, M., 2013. Large covariance estimation by thresholding
principal orthogonal complements with discussion. J. R. Stat. Soc., Ser. B Stat.
Methodol. 75, 603–680.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2000. The generalized dynamic factor
model: identification and estimation. Rev. Econ. Statist. 82, 540–554.

Forni, M., Hallin, M., Lippi, M., Reichlin, L., 2005. The generalized dynamic factor
model: one-sidedestimation and forecasting. J. Amer. Statist. Assoc. 100,
830–840.

Forni, M., Lippi, M., 2001. The generalized dynamic factor model: representation
theory. Econometric Theory 17, 1113–1141.

Friedman, J., Hastie, T., Tibshirani, R., 2008. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics 9, 432–441.

Giannone, D., Reichlin, L., Small, D., 2008. Nowcasting: The real-time informational
content of macroeconomic data. J. Monetary Econ. 55, 665–676.

Hallin,M., Liška, R., 2007. Determining the number of factors in the general dynamic
factor model. J. Amer. Statist. Assoc. 102, 603–617.

Han, X., 2012. Determining the Number of Factors with Potentially Strong Cross-
sectional Correlation in Idiosyncratic Shocks. Manuscript. North Carolina State
University.

Huang, J., Ma, S., Zhang, C., 2008. Adaptive lasso for sparse high-dimensional
regression models. Statist. Sinica 18, 1603–1618.

Jung, S., Marron, J.S., 2009. PC consistency in high dimension, low sample size
context. Ann. Statist. 37, 4104–4130.

Kapetanios, G., 2010. A testing procedure for determining the number of factors
in approximate factor models with large datasets. J. Bus. Econom. Statist. 28,
397–409.

Lam, C., Fan, J., 2009. Sparsistency and rates of convergence in large covariance
matrix estimation. Ann. Statist. 37, 4254–4278.

Lam, C., Yao, Q., 2012. Factor modelling for high-dimensional time series: inference
for the number of factors. Ann. Statist. 40, 694–726.

Lawley, D., Maxwell, A., 1971. Factor Analysis as a Statistical Method, second ed.
Butterworths, London.

Ledoit, O., Wolf, M., 2012. Nonlinear shrinkage estimation of large-dimensional
covariance matrices. Ann. Statist 40, 1024–1060.

Luciani, M., 2014. Forecasting with approximate dynamic factor models: The role
of non-pervasive shocks. Int. J. Forecasting 30 (1), 20–29.

Ludvigson, S., Ng, S., 2011. A factor analysis of bond risk premia. In: Ulah, A.,
Giles, D. (Eds.), Handbook of Empirical Economics and Finance. Chapman and
Hall, pp. 313–372.

Natalia, B., Kapetanios, G., Pesaran, H., 2012. Exponent of Cross-sectional
Dependence: Estimation and Inference. Manuscript.

Neyman, J., Scott, E., 1948. Consistent estimation from partially consistent
observations. Econometrica 16, 1–32.

Onatski, A., 2010. Determining the number of factors from empirical distribution of
eigenvalues. Rev. Econ. Stat. 92, 1004–1016.

Onatski, A., 2012. Asymptotics of the principal components estimator of large factor
models with weakly influential factors. J. Econometrics 168, 244–258.

Pati, D., Bhattacharya, A., Pillai, N., Dunson, D., 2012. Posterior contraction in Sparse
Bayesian Factor Models for Massive Covariance Matrices. Manuscript, Duke
University.

Ravikumar, P., M, Wainwright, G, Raskutti, Yu, B., 2011. High-dimensional covari-
ance estimation byminimizing ℓ1-penalized log-determinant divergence. Elec-
tron. J. Stat. 5, 935–980.

Rohde, A., Tsybakov, A., 2011. Estimation of high-dimensional low-rank matrices.
Ann. Statist 39, 887–930.

Rothman, A., 2012. Positive definite estimators of large covariance matrices.
Biometrika 99, 733–740.

Rothman, A., Bickel, P., Levina, E., Zhu, J., 2008. Sparse permutation invariant
covariance estimation. Electron. J. Stat. 2, 494–515.

Stock, J., Watson, M., 1998. Diffusion Indexes, NBER Working Paper 6702.
Stock, J., Watson, M., 2002. Forecasting using principal components from a large

number of predictors. J. Amer. Statist. Assoc. 97, 1167–1179.
Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc.,

Ser. B Stat. Methodol. 58, 267–288.
Tsai, H., Tsay, R., 2010. Constrained factor model. J. Amer. Statist. Assoc. 105,

1593–1605.

http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref1
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref2
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref3
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref4
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref7
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref8
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref9
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref10
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref11
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref12
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref13
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref15
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref16
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref17
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref18
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref19
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref20
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref21
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref22
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref23
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref24
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref25
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref26
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref27
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref28
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref29
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref30
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref31
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref32
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref34
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref35
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref36
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref37
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref38
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref39
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref40
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref41
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref42
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref44
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref45
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref46
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref48
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref49
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref50
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref51
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref53
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref54
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref55


18 J. Bai, Y. Liao / Journal of Econometrics 191 (2016) 1–18
van deGeer, S., Bühlmann, P., Zhou, S., 2011. The adaptive and the thresholded lasso
for potentially misspecified models and a lower bound for the lasso. Electron.
J. Stat. 5, 688–749.

Wang, P., 2009. Large Dimensional Factor Models with a Multi-level Factor
Structure: Identification, Estimation and Inference. Manuscript. Hong Kong
University of Science and Technology.

Witten, D.M., Tibshirani, R., Hastie, T., 2009. A penalized matrix decomposition,
with applications to sparse principal components and canonical correlation
analysis. Biostatistics 10, 515–534.
Xue, L., Ma, S., Zou, H., 2012. Positive-definite ℓ1-penalized estimation of large
covariance matrices. J. Amer. Statist. Assoc. 107, 1480–1491.

Yuan, M., 2010. High dimensional inverse covariance matrix estimation via linear
programming. J. Mach. Learn. Res. 2010, 2261–2286.

Zhou, S., Rütimann, P., Xu, M., Bühlmann, P., 2011. High-dimensional covariance
estimation based on Gaussian graphical models. J. Mach. Learn. Res. 12,
2975–3026.

Zou, H., 2006. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc.
101, 1418–1429.

http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref56
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref58
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref59
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref60
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref61
http://refhub.elsevier.com/S0304-4076(15)00253-5/sbref62

	Efficient estimation of approximate factor models via penalized maximum likelihood
	Introduction
	Simultaneous estimation based on maximum likelihood
	 ell1 -penalized maximum likelihood
	Comparison with related methods

	Theoretical properties
	Sparsity assumptions
	Assumptions on the data generating process
	Consistency of the joint estimation
	Two examples

	Implementations
	Majorize--minimize EM algorithm
	Choosing the tuning parameter by cross-validations

	Numerical illustrations
	Simulation result
	Forecast based on simulated data
	Diffusion index forecast based on real data

	Conclusion
	Acknowledgments
	Technical lemmas
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 4.1
	Proving  ||widehat Λk+ 1- Λ0||infty = oP (μN, T) 
	Proving  ||widehat Σu, k+ 1- Σu0||infty = oP (μN, T),  ||widehat Σu, k+ 1- Σu0||1 = oP (μN, TmN) 
	Bounding  ||widehat Σu, k+ 1- 1||1, ||widehat Σu, k+ 1||1  and eigenvalues of  N- 1 widehat Λk+ 1'widehat Λk+ 1 

	References


