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Applications of large covariance matrix estimation

Needs of Large Covariance Matrix

Portfolio Management in Finance (Markowitz 52)

Classification (e.g. Fisher discriminant, Shao et al. 11)

Network and graphical models

High frequency data
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Applications of large covariance matrix estimation

Examples of high dimensional covariance
matrices
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Applications of large covariance matrix estimation

Finance

Jagannathan and Ma (2003):
p assets with returns at time t (% change values):

yt = (y1t , y2t , ...., ypt )
′.

Portfolio (proportions of total amount of money to invest):

w = (w1, ...,wp)′,

p∑
i=1

wi = 1.

Return at time t + 1: w′yt+1.
Risk var(w′yt+1) = w′Σw, where Σ = var(yt ).
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Applications of large covariance matrix estimation

Optimal Portfolio

Markowitz (1952):
Expect to earn µ at time t + 1,

min
w

w′Σw s.t. w′1 = 1 w′Eyt+1 = µ.

Solution: w∗ = c1Σ−1Eyt+1 + c2Σ−11.

Typical data set of US stock market may contain p = 4883 stocks,
T = 60 months.
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Applications of large covariance matrix estimation

Classification

Disease classification using bioinformatic data (Shao et al. 11)
Two types of human acute leukemias

acute myeloid leukemia (AML)
acute lymphoblastic leukemia (ALL)

Distinguishing ALL from AML is crucial for successful treatment
Classification based solely on p = 1,714 genes
A training data set

47 ALL ∼ Np(µ1,Σ)
25 AML ∼ Np(µ2,Σ)

Fisher discr. (µ1 − µ2)Σ−1(x− µ̄) ≥ 0
p is much larger than n.
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Applications of large covariance matrix estimation

Graphical Modeling

Graphic model (Meinshausen and Bühlmann 06, Zhou et al. 11)

Vertices: components of
y = (y1, ..., yp)′ ∼ Np(0,Σ).
Edges: the conditional dependence

No edge between i and j ⇐⇒ yj ⊥ yj |other components

Precision matrix: Σ−1 = (ωij)p×p

ωij = 0 iff yi and yj are cond. indep.
A simple network graph corr. to a
sparse precision matrix.
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Applications of large covariance matrix estimation

Climate Data

157January temperatures are recorded (1850-2006) by p = 2,592
stations over the world.
Study the climate correlations among geographical regions in
North America and Eurasia. (Bickel and Levina 08)
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Applications of large covariance matrix estimation

Statistical Inference

1 High dim. generalized least-squares

2 High dim. seemingly unrelated regression

3 Testing CAPM (mean-variance efficiency of market)

10 / 44



Applications of large covariance matrix estimation

Challenge of Dimensionality

Estimating high-dim. covariance matrices is challenging.
Suppose we have 2,000 stocks to be managed. There are 2m free
parameters.

Yet, 1-year daily returns yield only about T = 250. Hard to
accurately estimated it.

Risk: w′Σ̂w, Allocation: ĉ1Σ̂−11 + ĉ2Σ̂−1ȳ.
Accumulation of millions of errors can have a huge effect.

Sample covariance matrix is degenerate.
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Applications of large covariance matrix estimation

Approaches to Dimension Reduction

Target: Σy = var(y).
Strict Factor Model (Fan et al. 08)

yt = Bft + ut , t ≤ T .

ft =common factors B =factor loadings
ut =idiosyncratic component
Fama-French-3-factor-model (Fama and French 92)
yt represents the stock returns.
K = 3 known factors.

Sparsity based model (Bickel and Levina 08a,b)
thresholding penalized likelihood
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Applications of large covariance matrix estimation

Strict Factor Model

yit = b′i ft + uit . Implied covariance:

Σy = Bcov(ft )B′ + Σu.

Assume Σu is diagonal.

After common factors are taken out, industry-specific factors are
still correlated within the industry. (Connor and Korajczyk 93)

Σu is diagonal only if K is large.

We allow for non-diagonal Σu: approximate factor model
(Chamberlain and Rothchild 83, Bai and Ng 02).
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Applications of large covariance matrix estimation

Sparsity Based Model

Covariance matrix, precision matrix.

Sparsity in Σy rarely occurs in many applications.

Returns depend on equity market risks

Housing prices depend on economic health

Gene expressions depend on cytokines
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Applications of large covariance matrix estimation

Contributions of This Talk

Model-based method

Σy = Bcov(ft )B′ + Σu.

Σu is sparse
mT = max

i≤p

∑
j≤p

I(σu,ij 6= 0)

generalizable to lq-norm.
Investigate the estimation effect using contaminated data.
In many cases the factors are unobservable.
Examine impact of dependence data.
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Applications of large covariance matrix estimation

Sparse-based Matrix Estimation

Thresholding Bickel and Levina 08a, Rothman, Levina and Zhu 09,
Cai and Zhou 11, etc

Adaptive thresholding Cai and Liu 11.

Banding Pourahmadi and Wu 03, Bickel and Levina 08b.

Penalization Lam and Fan 09, Bien and Tibshirani 11.

Bayesian Bhattacharya and Dunson 11.

Sparse PCA Zou, Hastie and Tibshirani 04, Jung and Marron 09,
Johnstone and Lu 09.
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Thresholding using Contaminated Data

Covariance Estimation with Contaminated Data

Suppose
u ∼ (0p,Σu), Σu sparse.

u1, ...,uT are iid copies of u.

Instead of {ut}Tt=1 , we only observe contaminated {ût}Tt=1.

Examples of contaminated data:
regression residuals
measurement of error

Goal: estimate Σu.
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Thresholding using Contaminated Data

1 Obtain sample covariance (σ̂ij) based on {ût}Tt=1.
2 Apply (adaptive) thresholding (Cai and Liu 11):

Σ̂Tu = (σ̂Tij ), σ̂Tij = σ̂ij I(|σ̂ij |/θ̂ij ≥ ωT ) θ̂ij = SD{ûit ûjt}Tt=1

Theorem 1

Under Assumption A, with ωT = ( log p
T )1/2 + aT ,

‖Σ̂Tu − Σu‖ = Op(ωT mT ) = ‖(Σ̂Tu )−1 − Σ−1
u ‖,

where maxi≤p
1
T
∑T

t=1(ûit − uit )
2 = Op(a2

T ).

�
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Thresholding using Contaminated Data

Assumption A:
Σu is well conditioned.
P(|uit | > s) ≤ exp(−(s/b)r ).

maxi,t |ûit − uit | = op(1).
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Observable Factors

Observable Factors
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Observable Factors

Observable Factors

yt = Bft + ut , t = 1, ...,T .

1 Run OLS to obtain loadings B̂ and residuals {ût}Tt=1.
2 Obtain sample covariance Σ̂u based on {ût}Tt=1.
3 Apply (adaptive) thresholding to get Σ̂Tu .
4 Compute Σ̂y = B̂ĉov(ft )B̂

′
+ Σ̂Tu .
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Observable Factors

Theorem 2
Under Assumptions A, B(below),

‖Σ̂Tu − Σu‖ = Op (mTωT ) = ‖(Σ̂Tu )−1 − Σ−1
u ‖,

where ωT = K
(√

log p
T

)
is the threshold.

Minimax rate in Cai and Zhou (2010) for finite K .

Assumption B:
{ft} is stationary and ergodic.
{ut} and {ft} are independent.
Exponential α-mixing: α(t) ≤ exp(−Ctγ)

Exponential tail: ∀s > 0, P(|fit | > s) ≤ exp(−(s/b)r ).
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Observable Factors

Accuracy of Residuals aT

Errors in estimating residuals:

max
i≤p

1
T

T∑
t=1

(ûit − uit )
2 ≤ 1

T

T∑
t=1

‖ft‖2 max
i
‖b̂i − bi‖2.

Need to bound maxij | 1T
∑T

t=1 fitujt | for dependent seq.

Bernstein ineq. (Merlevède et al. 09)

P(| 1
T

T∑
t=1

fitujt | > s) ≤ T exp
(
− (Ts)r3

C1

)
+ exp

(
− T 2s2

C2(1 + TC3)

)
+ small.

Hence, maxi≤p
1
T

∑T
t=1 |uit − ûit |2 = Op

(
K 2 log p

T

)
.
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Observable Factors

Estimation of Σy

Some insights on the phenomenon: toy example.

We know bi = (1,0, ...,0)′, Σu = Ip.

Σ̂y = Bĉov(ft )B′ + Ip.

The estimated errors are accumulated

‖Σ̂y − Σy‖ = Op(
p√
T

).
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Observable Factors

Consider a different norm (entropy loss):

1
p

tr[(Σ̂y Σ−1
y − Ip)2] =

1
p
‖Σ−1/2

y (Σ̂y − Σy )Σ
−1/2
y ‖2F

Theorem 3

If λmin( 1
p
∑p

i=1 bib′i) > C, and λmin(cov(ft )) > C, then

1
p

tr(Σ̂y Σ−1
y − Ip)2 = Op

(
pK 2

T 2 +
m2

T K 2 log p
T

)
,

‖(Σ̂y )−1 − Σ−1
y ‖2 = Op

(
m2

T K 2 log p
T

)
,

‖Σ̂y − Σy‖2∞ = Op

(
K 2 log p + K 4 log T

T

)
.

Recall 1
p tr(Σ̂y ,samΣ−1

y − Ip)2 = Op( p
T ) (Fan et al. 08).
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Unobservable factors

Unobservable Factors
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Unobservable factors

Unobservable Factors

In many applications, {ft}Tt=1 are unobservable. (Forni et al. 00)
PC decomposition:

Σ̂y ,sam =
K∑

i=1

λ̂i ξ̂i ξ̂
′
i +

p∑
i=K +1

λ̂i ξ̂i ξ̂
′
i

Thresholding
∑p

i=K +1 λ̂i ξ̂i ξ̂
′
i ⇒ Σ̂Tu .

Estimator:

Σ̂y ≡
K∑

i=1

λ̂i ξ̂i ξ̂
′
i + Σ̂Tu .
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Unobservable factors

Least squares point of view

yt = Bft + uit .

Need to estimate B and {ft}Tt=1.
Minimize (Bai, 03):

(b̂i , f̂t ) = arg min
bi ,ft

1
Tp

T∑
t=1

p∑
i=1

(yit − b′i ft )
2.

s.t.
1
p

p∑
i=1

b̂i b̂
′
i = IK ,

1
T

T∑
t=1

f̂t f̂
′
t diagonal.

Solution B̂: K largest eigenvectors of Σ̂y ,sam.
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Unobservable factors

B̂ĉov(̂ft )B̂
′

=
∑K

i=1 λ̂i ξ̂i ξ̂
′
i .

b̂
′
i f̂t consistently estimates b′i ft as p →∞, T →∞.

Residual: ûit = yit − b̂
′
i f̂t .

max
i

1
T

T∑
t=1

(uit − ûit )
2 = Op(

K 2 log p
T

+
K 6

p
).

Rate

Decomposition:

Σ̂y ,sam = B̂ĉov(̂ft )B̂
′

+ Σ̂u,sam

=
K∑

i=1

λ̂i ξ̂i ξ̂
′
i +

p∑
i=K +1

λ̂i ξ̂i ξ̂
′
i .
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Unobservable factors

Factor model v.s. PCA

Factor model and PCA are asymptotically equivalent for high
dimensional data.

Suppose cov(ft ) = IK , B′B is diagonal. Chamberlain and
Rothchild (1983) showed that the loadings can be obtained from
eigenvalues.

Result:
‖ξj − ‖b̃j‖−1b̃j‖ = Op(

1
p
λmax(Σu)).
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Unobservable factors

Theorem 4
Under Assumptions A, B and C, Assumption C

‖Σ̂Tu − Σu‖ = Op

mT K

√
log p

T
+

mT K 3
√

p︸ ︷︷ ︸
impact of unknown factors

 ,

‖(Σ̂Tu )−1 − Σ−1
u ‖ = the same order.

The impact of estimating unobservable factors vanishes when
p >> T .
p can be “ultra-high”.
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Unobservable factors

Estimation of Σy

Define
‖Σ̂y − Σy‖2Σ =

1
p

tr(Σ̂y Σ−1
y − Ip)2.

Theorem 5
When {ft} are unobservable,

‖(Σ̂y )−1 − Σ−1
y ‖ = Op

(
mT K

√
log p

T
+

mT K 3
√

p

)
,

‖Σ̂y − Σy‖Σ = Op

(√
pK
T

+
mT K

√
log p + K 2
√

T
+

mT K 3
√

p

)
,

‖Σ̂y − Σy‖2∞ = Op

(
K 3
√

log K + K
√

log p√
T

+
K 3
√

p

)
.
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Unobservable factors

Remarks

Many other regularization methods can also be employed.

Generalized threshold (Antoniadis and Fan 01, Rothman et al. 09)
⇒ Generalized adaptive thresholding (Cai and Liu 11)

Penalized likelihood ( Bien and Tibshirani 11, Luo 11)

Encompasses many estimators as special cases

Applied to correlation matrix of u
λ = 0⇒sample cov. λ = 1⇒ strict factor model.

K = 0⇒ sparse matrix (Bickel and Levina 08, Cai and Liu 11)
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Simulation Studies

Numerical results
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Simulation Studies

Simulation Designs

Model Design Fama-French 3-factor model with parameters calibrated
from the market. Nsim = 200.

Calibration Using 30 industrial portfolios from 1/1/09 to 12/31/10
(T = 300), fit the Fama-French model.

Summarize 30 factor loadings by (µB,ΣB) and
residuals by (µs, σs).

Fit VAR(1) model to ft and obtain model parameters.
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Simulation Studies

Detailed Simulation

Generation of Factors: {ft}Tt=1 ∼VAR(1).

Simulation of returns: yt = Bft + ut :

factor loadings: bi ∼ N3(µB,ΣB).

noise level: σi ∼ Γ(α, β) with mean µs and SD σs.

noise vector ut ∼ Np(0,Σu), where

Σu = DΣ0D′

where Σ0 is a sparse correlation matrix.
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Simulation Studies

Simulation Results: tr1/2(Σ̂yΣ−1
y − Ip)2
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Simulation Studies

Simulation Results: ‖(Σ̂y)−1 − Σ−1
y ‖
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Simulation Studies

Simulation Results: ‖Σ̂y − Σy‖
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Simulation Studies

Empirical Example

p = 50 stocks from CRSP database. 5 industries, 10 companies
each

1 consumer goods & apparel clothing
2 financial-credit services
3 health care
4 services-restaurants
5 utilities-water

T = 252 daily returns, Jan 2010-Dec 2010
eigenvalues of sample covariance:

λ1 = 0.010, λ2 = 0.004, λ3 = 0.004, λi≥4 < 0.002

threshold has been chosen by leave-one-out CV.
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Simulation Studies

Thresholded error correlation matrix
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Conclusions

Conclusions
Conditional Sparsity widens scope of applicability

direct sparsity rarely occurs in Econ and Fin, and biology.

strict factor model is also very restrictive.

Method:

easy to compute: keep first K PCs, threshold remaining

avoid numerical minimization w/ pd. constraints.

Results:

convergence rates for weighted l2 loss, spectral norm, l∞
when estimating Σu, Σ−1: log p � T a

PCA and factor model are asym. equiv. for high dim. data

Impacts:

impact of unob. factor vanishes for high dim.

cov. estimation using contaminated data

weakly dependent processes with mixing conditions
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Conclusions

Assumption C

Assumption 1
1 {ut}Tt=1 is stationary and ergodic
2 E [p−1/2(u′sut − Eu′sut )]4 < M,
3 E‖(pK )−1/2∑p

i=1 biuit‖4 < M.
4 p−1B′B is well conditioned for all large p.

jumpback
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Conclusions
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