
Large Panel Test of Factor Pricing Models

Jianqing Fan ∗†, Yuan Liao‡ and Jiawei Yao∗

∗Department of Operations Research and Financial Engineering, Princeton University

† Bendheim Center for Finance, Princeton University

‡ Department of Mathematics, University of Maryland

Abstract

We consider testing the mean-variance efficiency in the context of a high-

dimensional multi-factor model, with the number of assets much larger than the time-

series dimension. Most of the existing tests are based on a quadratic form of estimated

alphas. Under high dimensionality, however, they all suffer from low powers because

the accumulation of a large amount of estimation errors overrides the signals of the

true nonzero alphas. To resolve this issue, we propose a new test that deals with high-

dimensional hypothesis testing problems, called “power enhancement”. A screening

statistic is introduced to screen off most of the estimation errors and consistently se-

lect stocks with significant alphas. We develop a feasible standardized Wald statistic

using a consistent estimator of the high-dimensional weight matrix based on threshold-

ing. In addition, by attaching the screening statistic to the traditional quadratic-form

tests, our proposed test significantly enhances the power of the Wald-type tests under

most of the alternatives, while keeping a correct asymptotic size. Finally, the proposed

methods are applied to the securities in the S&P 500 index as an empirical appli-

cation. The empirical study shows that market inefficiency is primarily caused by a

small portion of mispriced stocks, instead of aggregated alphas. Moreover, most of the

significant alphas are due to extra returns (underpriced).
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1 Introduction

One of the fundamental assumptions of the Arbitrage Pricing Theory (APT) developed

by Ross (1976) is that asset returns follow a factor model structure. Assume the excessive

return of an asset over the risk-free rate satisfies

yit = αi + b′ift + uit, i = 1, ..., N, t = 1, ..., T, (1.1)

where ft = (f1t, ..., fKt)
′ are the excessive returns of K factors, bi = (bi1, ..., biK)′ are unknown

factor loadings, and uit represents the idiosyncratic error. The key implication from the asset

pricing theory is that all the elements of the intercept vector α = (α1, ..., αN)′ should be

zero, known as “mean-variance efficiency”. Testing

H0 : α = 0

in the multi-factor model (1.1) is of crucial importance in many practical applications, in-

cluding portfolio selection and fund evaluation. It also includes the test of the Capital Asset

Pricing Model (CAPM) as a special case.

Factor models have wide impacts on both economics and finance. In classical factor

analysis, the cross-sectional dimension N is assumed fixed and the idiosyncratic components

are cross-sectionally uncorrelated (that is, the idiosyncratic covariance matrix is diagonal).

These assumptions are no longer suitable for modern financial applications when data are

often widely available for a large number of assets over a short time span. In addition, a

large panel often introduces correlations among idiosyncratic errors, making a strict factor

model in the traditional sense very restrictive. In this paper, we consider the problem of

testing the mean-variance efficiency when N is relatively large compared to the time-series

dimension T . It is also desirable to allow for an approximate factor structure in the sense

of Chamberlain and Rothschild (1983), which admits cross-sectional correlations among the

idiosyncratic components.

Most of the existing tests are based on the quadratic statistic W = α̂′Vα̂, where α̂

is the OLS estimator for α, and V is some positive definite matrix whose eigenvalues are

stochastically bounded. The Wald statistic, for instance, takes the form Tτα̂′Σ̂−1
u α̂, where

Σ̂−1
u is the estimated inverse of the error covariance, and τ is a positive scalar that depends on

the factors only. Another prominent example is the test given by Gibbons, Ross and Shaken

(1989, GRS test), who showed that the exact distribution of an adjusted Wald test is F -

distribution under normal assumptions. These tests are conducted when N does not grow

with T , and therefore rule out the possibility of a large panel. When N diverges, Pesaran
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and Yamagata (2012, PY test) obtained the asymptotic null distribution of the standardized

quadratic form: (W − EW )/
√

var(W ). Noting that the sample residual covariance is no

longer invertible whenN > T , they chose V = diag(Σ̂u)
−1, and showed that the standardized

W is asymptotically normal. In addition to these work, Beaulieu et al. (2007, BDK test)

developed a likelihood ratio test, and MacKinlay and Richardson (1991) studied a GMM

test; both are based on the quadratic form as well.

In practice, the number of assets under consideration can be of thousands. But to prevent

possible structural changes on the factor loadings and risks, a relatively short time series is

mostly appropriate, which contains only hundreds of daily observations, or tens of monthly

data. Such a high-dimension-low-sample-size context causes the tests based on the quadratic

statistic to have a very low power and inconsistent against many common alternatives. To

see this, we note that the rejection region for the quadratic statistic at significant level q

takes the form

α̂′Vα̂ > cq

for some critical value cq, regardless of the choice of V or whether standardization is applied.

When the dimension of α is large, a large critical value has to be used in order to correctly

control the size. For example, in the ideal case when {ut}Tt=1 are i.i.d. normally distributed

and V = cov(α̂)−1, the critical value is proportional to χ2
N,q/T , which is of order N/T ,

and diverges when T = o(N). Consequently, such a quadratic test is only consistent when

‖α‖2 is large enough under the alternative, and will have a low detection power whenever

‖α‖2 is either bounded or growing at a slow rate. This is especially the case when it is only

a few significant alphas that arouse market inefficiency. Therefore, one of the fundamental

difficulties of the high-dimensional test arises from the quadratic form α̂′Vα̂: it accumulates

a huge amount of estimation errors, and loses power against many alternatives under which

‖α‖ does not grow so rapidly. Our empirical study on the consitituents of the S&P 500

index confirms this issue.

In this paper, we introduce a new concept for high-dimensional testing problems called

“power enhancement” (PEM), and develop a PEM test as

J = J0 + J1.

Here J0 ≥ 0 is a “sure-screening” statistic that serves as a power enhancement part, and

J1 can be any quadratic form based test that has a correct asymptotic size (e.g., GRS, PY,

BDK). The sure-screening statistic is defined to be

J0 = α̂′
Ŝ
VŜα̂Ŝ
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where α̂Ŝ = (α̂j : |α̂j| > δT ) is a subvector of α̂ screened out by a threshold δT , and VŜ is

a corresponding submatrix of certain weight V. The threshold δT is chosen such that under

the null hypothesis,

P (J0 = 0|H0)→ 1,

and that J0 diverges when maxj≤N |αj| > O( logN
T

). Hence the asymptotic null distribution

of the PEM test is completely determined by that of J1, while the sure-screening part sig-

nificantly enhances the power of J1 under many mild alternatives in which ‖α‖2 may not

be large. This includes the “sparse alternative” as an example, where most of the αj’s are

either zero or nearly so, with only a small (compared to N/T ) portion of αj’s standing out.

Since J ≥ J1, the rejection region of J strictly contains that of J1.

We also develop an operational Wald statistic even when N > T and Σu = cov(ut) is

not a diagonal matrix. The statistic is based on a consistent sparse estimator Σ̂−1
u for the

inverse error covariance. We show that as N, T →∞ and N is possibly much larger than T ,

for some scalar τ > 0,

J̃sq =
Tτα̂′Σ̂−1

u α̂−N√
2N

→d N (0, 1)

under the null hypothesis. This test takes into account the cross-sectional dependence among

the idiosyncratic errors. Technically, in order to show that the effect of replacing Σ−1
u with

the sparse estimator Σ̂−1
u is negligible, we need to establish, under H0,

T τα̂′(Σ̂−1
u −Σ−1

u )α̂√
2N

= op(1). (1.2)

Note that a simple inequality |α̂′(Σ̂−1
u −Σ−1

u )α̂| ≤ ‖α̂‖2‖Σ̂−1
u −Σ−1

u ‖ would not work when

N > T because the estimation errors in ‖α̂‖2 accumulate in high dimensions. Instead, we

have developed a new technical strategy to prove (1.2), which would be also potentially

useful in high-dimensional inference using GMM methods when one needs to estimate the

optimal weight matrix. We further take J1 = J̃sq, and combine it with our sure-screening

statistic J0 to propose a power enhancement test, which is much more powerful than using

J̃sq itself, while maintaining the same asymptotic null distribution.

As a by-product, the sure-screening step also identifies the individual significant alphas

which we show to be useful to detect market inefficiency in a real application. In contrast,

most of the existing tests do not possess this feature.

The proposed methods are applied to the securities in the S&P 500 index as an empirical

application. The empirical study shows that indeed, market inefficiency is primarily caused

by a small portion of mispriced stocks instead of aggregated alphas. In addition, most of
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the significant alphas are due to extra returns (that is, due to a large minαj>0 αj instead of

a large ‖α‖2). This is captured by the proposed PEM test.

The remaining of the paper is organized as follows. Section 2 sets up the preliminaries

and discuss the limitations of traditional tests. Section 3 proposes the power enhancement

method, derives the asymptotic behaviours of the sure-screening statistic and analyzes its

performances under different alternatives. Section 4 combines the PEM with the standard-

ized quadratic form. An improved quadratic test based on thresholding is considered in

Section 5. Simulation results are presented in Section 6, along with an empirical application

to the securities in the S&P 500 index in Section 7. Section 8 concludes. All the proofs are

given in the appendix.

Throughout the paper, for a square matrix A, let λmin(A) and λmax(A) represent its

minimum and maximum eigenvalues. Let ‖A‖ and ‖A‖1 denote its operator norm and l1

norm respectively, defined by ‖A‖ = λ
1/2
max(A) and maxi

∑
j |Aij|. For two deterministic

sequences aT and bT , we write aT � bT (or equivalently bT � aT ) if aT = o(bT ). Also,

aT � bT if there are constants C1, C2 > 0 so that C1bT ≤ aT ≤ C2bT for all large T . Finally,

for a finite set S, we denote |S|0 as the number of elements in S.

2 Factor models and traditional tests

Consider the following linear factor pricing model in a matrix form

yt = α + Bft + ut, t = 1, ..., T, (2.1)

where yt = (y1t, ..., yNt)
′ is an N × 1 vector of observed asset returns at time t, B =

(b1, ...,bN)′ with bi being a K×1 vector of loadings, ft = (f1t, ..., fKt)
′ is a vector of common

factors, ut = (u1t, ..., uNt) denotes the idiosyncratic component, and α = (α1, ..., αN)′. We

set up the model to have an approximate factor structure as in Chamberlain and Rothschild

(1983) where the idiosyncratic components are cross-sectionally correlated over i. Here both

yt and the common factors ft are observable.

Our goal is to test the hypothesis that those alphas are jointly zero across the panel:

H0 : α = 0. (2.2)

We are particularly interested in a high-dimensional situation where N can be much

larger than T . In practice, the number of assets under consideration can reach as many as

thousands, but the observation period might be much smaller, because a long observation

window is likely to introduce structural breaks in factor loadings. In addition, endogeneity
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problems arise when using a testing strategy based on portfolios instead of individual secu-

rities. As a result, a reliable test of the above factor model often entails a large panel of high

dimensions relative to T .

Moreover, a large panel naturally imposes a sparsity assumption on the error covariance

matrix Σu = cov(ut), that is, many of the off-diagonal elements are either zeros or close to

zero. Since the common factors have substantially mitigated the co-movement across the

whole panel, a particular asset’s idiosyncratic volatility is usually correlated with no more

than a few number of other assets. For example, some shocks only exert influences on a

particular industry, but are not pervasive for the whole economy [Connor and Korajczyk

(1993)]. Such a sparse assumption will be used to reliably estimate the error covariance

later.

2.1 Wald-type tests

If we further denote yi = (yi1, ..., yiT )′; 1 as an N × 1 vector consisting of ones, F =

(f1, ..., fT )′ and ui = (ui1, ..., uiT ), then model (2.1) can be written as

yi = αi1 + Fbi + ui. (2.3)

The model is a seemingly unrelated regression model with common factors. We therefore

can run the regression stock by stock according to (2.3). Define K×1 vectors f̄ = 1
T

∑T
t=1 ft,

w = ( 1
T

∑T
t=1 ftf

′
t)
−1f̄ , and a scalar τ = 1 − f̄ ′w. Then the ordinary least squares (OLS)

estimator yields

α̂ = (α̂1, ..., α̂N)′, α̂i =
1

τT

T∑
t=1

yit(1− f ′tw). (2.4)

Further calculations yield

α̂i = αi +
1

τT

T∑
t=1

uit(1− f ′tw). (2.5)

Assuming no serial correlation among ut, the conditional covariance of α̂ is Σu/(Tτ),

given the factors. If Σu is known, a classical way to build the test statistic would be

W = Tτα̂′Σ−1
u α̂. (2.6)

When N is fixed, Σ−1
u can be estimated and replaced by the inverse of the sample residual

covariance matrix, and the resulting test statistic is then in line with the well-known test by

Gibbons, Ross and Shaken (1989, GRS test). With the normality assumption, GRS obtained

the exact finite sample distribution of this test statistic. Asymptotically, the test statistic
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becomes the Wald statistic which follows a χ2-distribution under the null hypothesis.

When N grows, the traditional asymptotics for the null distribution of W does not apply.

Instead, Pesaran and Yamagata (2012, PY test) developed an alternative asymptotics for

the Wald statistic, based on the standardized version of W . More specifically, under some

regularity conditions, they showed

J1 =
Tτα̂′Σ−1

u α̂−N√
2N

→d N (0, 1). (2.7)

as N → ∞. Hence at the significant level q ∈ (0, 1), P (J1 > zq|H0) → q. Regardless of the

type of asymptotics, we shall refer to the test based on W (with Σ−1
u possibly replaced with

an estimator Σ̂−1
u ) as Wald-type statistic, or quadratic test because W is a quadratic form

of α̂.

2.2 Two main challenges

In a data-rich environment, the panel size N can be much larger than the number of

observations T . Such a high dimensionality brings new challenges to the test statistics based

on W , and the alternative asymptotics introduced by Pesaran and Yamagata (2012) only

partially solves the problem. Specifically, there are two main challenges.

The first challenge arises from estimating Σ−1
u . It is well known that the sample residual

covariance matrix becomes singular when N > T . Even if N < T , replacing Σ−1
u in W with

the inverse sample covariance can still bring a huge amount of estimation errors when N2 is

close to T . This can distort the null distribution of the test statistic.

Another challenge comes from the concern of the power. Even when Σ−1
u is known so

that W is directly feasible, a test statistic based on W has very low powers against various

alternative hypotheses when N is large, still due to the accumulation of estimation errors.

This can be illustrated in the following example.

Example 2.1. Suppose T = O(N), and we want to test H0 against finitely many nonzero

α’s:

Ha : αi = ci, i ≤ r, αi = 0, r < i ≤ N,

where r is fixed, and all the |ci|’s are bounded away from zero. Assume Σu = IN to be

known, and α̂ is the OLS estimator with uniform accuracy: maxi≤N |α̂i − αi| = Op(
√

1
T

).

Under H0, α̂ is a pure estimation noise, and

W = Tτα̂′Σ−1
u α̂|H0 = Op(T )

N∑
i=1

α̂2
i = Op(N).
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Under Ha, each of the first r components in α̂ is stochastically close to ci, whereas the

estimation noises constitute the remaining N − r components. Hence

W |Ha = Op(T
r∑
i=1

c2
i + (N − r)) = Op(N).

Apparently, the Wald-type test has the same order under both H0 and Ha, making it hard

to distinguish H0 from Ha. Let us now derive the critical value. Suppose {ut}Tt=1 are i.i.d.

normal with a known covariance IN . Then conditional on {ft}Tt=1,
√
T (α̂−α) ∼ N (0,Σu/τ).

Therefore, W rejects H0 if W > cq = χ2
N,q/(Tτ). In addition, as N →∞,

W −N√
2N

→d N (0, 1).

Hence an alternative critical value is c̃q = (
√

2Nzq +N)/(Tτ). Either way, the critical value

cq � O(N/T ) � c̃q. But in this example, ‖α‖2 = o(N/T ) under the alternative. So a test

based on W hardly has power against Ha. �

In the previous example, there are only a small portion of nonzero alphas in the alter-

native, whose signals are dominated by the aggregated high-dimensional estimation errors:

T
∑

i>r α̂
2
i . Note that when (2.7) holds, we can reject H0 as long as J1 > zq at the signifi-

cant level 1− q ∈ (0, 1), where zq is the critical value for the standard normal distribution.

However, it can be shown that when T = o(
√
N), and there are only r = o(

√
N
T

) nonzero

alphas in the alternative, this test is not consistent. We formally present this result in the

following theorem. For simplicity, we assume both ‖Σu‖1 and ‖Σ−1
u ‖1 to be bounded.

Theorem 2.1. Suppose T = o(
√
N). Consider J1 that satisfies (2.7). In addition, suppose

Assumption 3.2 below holds, and both ‖Σu‖1 and ‖Σ−1
u ‖1 are bounded away from infinity.

When T = O(
√
N), consider the following alternative:

Ha : there are at most r = o(

√
N

T
) nonzero αj’s, which are also bounded away from infinity.

Then under Ha, P (J1 > zq|Ha) ≤ 2q + o(1) for any q ∈ (0, 0.5). Therefore the test based on

J1 is inconsistent.

A more sensible approach is to focus on those alternatives that may have only a few

nonzero alphas compared to N , which are also of interest in practice. In what follows, we

develop a new testing procedure that significantly improves the power of the Wald-type test

against such alternatives.
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3 Power Enhancement

Traditional tests of factor pricing models are especially directed against alternatives re-

garding portfolios, rather than individual assets. The power of the GRS test relies on the

squared Sharpe ratio for the tangency portfolio, regardless of how individual assets behave

under the alternatives. It turns out that even if some individual asset are either significantly

overpriced or underpriced, their trivial contribution to the whole portfolio is not enough for

making inferences.

We aim to build a test statistic that not only takes care of alternatives involving portfolios,

but also deals with sparse alternatives where only a few assets have nonzero alphas. By doing

so, we keep track of features of both portfolios and individual assets. For such purposes, we

propose a class of test statistics that consist of two parts:

J = J0 + J1, (3.1)

where J0 ≥ 0 is a proposed sure-screening statistic, designed to detect both sparse alterna-

tives and significant individual alphas, and J1 is based on some existing Wald-type statistic

that mainly controls the size of the test. We reconcile the two parts so that the asymptotic

size of the test is that of J1 under the null, and the asymptotic power of the test is mainly

driven by J0. Because J ≥ J1 always holds, the power of J1 is enhanced as a result.

3.1 Sure-screening statistic

For a given factor pricing model with a large panel, we divide market inefficiency into

two forms according to different configurations of alphas.

1. Average case: The average of alphas deviates from zero.

2. Sparse case: A few alphas are significantly away from zero, while all the others are

close to zero.

Note that the above two cases are not mutually exclusive. A few alphas with large

absolute values would drive the average up to some extent, implying market inefficiency in

an average sense. In turn, a large enough average indicates at least a few alphas are as large.

The separation, however, gives us an insight on how to select stocks by telling us whether

we should focus on a small portion of them or all of them. And if it is a small portion, it

compels our interest to identify those stocks that lead to the market inefficiency. As we shall

see, our proposed test J0 + J1 automatically identifies significantly mispriced stocks.
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To prevent the accumulation of estimation errors in a large panel, we propose a sure-

screening statistic. For some predetermined threshold value δT > 0, define a screening set

Ŝ =

{
j :
|α̂j|
σ̂j

> δT , j = 1, ..., N

}
, (3.2)

where α̂j is the OLS estimator and σ̂j = 1
T

∑T
t=1 û

2
jt/
√
τ is the sample estimator of the

variance of
√
T α̂j. Denote by

α̂Ŝ = (α̂j : j ∈ Ŝ) =


α̂1I1∈Ŝ

...

α̂NIN∈Ŝ

 (3.3)

the screened-out alpha estimators, which can be interpreted as rejecting the efficiency of the

corresponding assets individually. Let Σ̂u be a nonsingular estimator of Σu, to be defined

later. Let Σ̂Ŝ denote the submatrix of Σ̂u formed by the rows and columns in {j : j ∈ Ŝ},
so that Σ̂Ŝ/(Tτ) is the estimated conditional covariance matrix of α̂Ŝ given the common

factors.

With the notations above, we define our sure-screening statistic as

J0 = Tτα̂′
Ŝ
Σ̂−1

Ŝ
α̂Ŝ. (3.4)

The choice of δT must suppress most of the noises, resulting in an empty set of Ŝ under the

null hypothesis. On the other hand, δT cannot be too large to filter out important signals

of alphas under the alternative. For this purpose, noting that the maximum noise level is

Op(
√

logN/T ), we let

δT = (log log T )

√
logN

T
. (3.5)

With this choice of δT , if we define, for σj = Σu,jj/
√
τ ,

S =

{
j :
|αj|
σj

> 2δT , j = 1, ..., N

}
, (3.6)

then under mild regularity conditions, P (S = Ŝ)→ 1, and α̂Ŝ mimics αS = (αj : j ∈ S).

Therefore, under H0, Ŝ gets rid of most of the estimation noises, and it follows that

P (J0 = 0|H0) → 1. Under most of the alternatives, Ŝ preserves the important individual

alphas by mimicking the oracle set S. When ‖αS‖2 � T−1, J0 is stochastically unbounded.

Hence the null and alternative hypotheses are well distinguished by the asymptotic behaviors
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of J0.

The sure-screening statistic depends on a nonsingular covariance matrix Σ̂−1

Ŝ
that mimics

Σ−1
S . Derived from an estimate of Σ−1

u , Σ̂−1

Ŝ
is used for standardization in order for J0 to

attain a proper scale. The covariance ΣS can be very large when the true S is large, and

is rather difficult to estimate. To obtain an operational Σ̂−1

Ŝ
, we assume Σu to be a sparse

covariance and estimate it by thresholding. Let ûjt be the residual from the OLS estimator.

For sij = 1
T

∑T
t=1 ûitûjt, let

(Σ̂u)ij =

sij, if i = j,

th(sij), if i 6= j,
(3.7)

where th(·) is a thresholding function, with threshold value hij = C(siisjj
logN
T

)1/2 for some

constant C > 0. When the hard-thresholding function is used, this is the estimator proposed

by Fan et al. (2011). Many other thresholdings also apply, e.g., soft thresholding and SCAD

(Fan and Li 2001). In general, th(·) should satisfy:

(i) th(z) = 0 if |z| < hij;

(ii) |th(z)− z| ≤ hij.

(iii) There are constants a > 0 and b > 1 such that |th(z)− z| ≤ ah2
ij if |z| > bhij.

We can also replace Σ̂Ŝ with D̂Ŝ = diag{sjj : j ∈ Ŝ}. This is particularly useful when

Σu is not sparse. The sure-screening statistic is then defined as

J0 = Tτα̂ŜD̂−1

Ŝ
α̂Ŝ = Tτ

∑
j∈Ŝ

α̂2
js
−1
jj .

3.2 Power enhancement test

The screening statistic J0 is powerful in detecting significant alphas. However, under the

null hypothesis, J0 = 0 with probability approaching one. Hence J0 by itself cannot be used

directly. We combine it with other standard test statistics in order to control the size of the

test.

Suppose J1 is some test statistic for H0 : α = 0, and assume that there is Ω ⊂ RN such

that J1 has power against α ∈ Ω, in the sense that the test based on J1 is consistent against

the alternative hypothesis Ha : α ∈ Ω. Our test statistic is formally defined as:

J = J0 + J1.

Because the sure-screening statistic J0 is zero under the null with probability approaching

one, the null distribution of J is asymptotically determined by that of J1. Let cq be the qth
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quantile of J1 under the null, that is, P (J2 ≤ cq|H0) ≥ 1−q. Our proposed J-test then reject

H0 if J > cq under the significant level 1− q. Hence adding J1 provides us a non-degenerate

null distribution, which is needed to control the size of the test.

On the other hand, as demonstrated by Example 2.1, traditional tests often suffer from

low powers due to the accumulation of estimation errors under the high dimensionality.

Including the term J0 enhances the power of J1 because J ≥ J1 always holds. In fact, we

will show below that the new test based on J has power against

Ω ∪ {α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
σj}.

As a result, adding J0 significantly enhances the power of J1. We shall thus address our test

based on J to be power enhancement test (PEM test).

To formally see the fact of power enhancement, we impose the following assumptions.

First of all, we assume Σu to be a sparse matrix so that one can apply the thresholding

method to consistently estimate it. The notion of generalized sparsity in Bickel and Levina

(2008) is used: for some q ∈ [0, 1), define

mN = max
i≤N

N∑
j=1

|(Σu)ij|q. (3.8)

Under the following sparsity assumption, the thresholded covariance estimator Σ̂u is positive

definite, and consistently estimates Σu under the operator norm.

Assumption 3.1. There is q ∈ [0, 1), so that, for logN = o(T ),

mN = o

(
(

T

logN
)(1−q)/2

)
.

A special case of Assumption 3.1 occurs when mT is bounded from above, in the case

of block-diagonal matrix with finite block sizes. Sparsity is one of the commonly used

assumptions on high-dimensional covariance matrix estimations. There have been extensive

studies recently in the statistical literature on estimating a large sparse covariance matrix.

We refer to El Karoui (2008), Bickel and Levina (2008), Lam and Fan (2009), Cai and Liu

(2011), and the references therein.

Let F0
−∞ and F∞T denote the σ-algebras generated by {(ft,ut) : −∞ ≤ t ≤ 0} and

{(ft,ut) : T ≤ t ≤ ∞} respectively. In addition, define the mixing coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞T
|P (A)P (B)− P (AB)|. (3.9)
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Assumption 3.2. (i) {ft,ut}t≥1 is strictly stationary, and Eut = 0 and Eutft = 0. In

addition, for s 6= t, Eutu
′
s = 0, and Ef ′t(Eftf

′
t)
−1Eft < 1.

(ii) There exit constants c1, c2 > 0 such that maxi≤N ‖bi‖ < c2,

c1 < λmin(Σu) ≤ λmax(Σu) < c2, and c1 < λmin(cov(ft)) ≤ λmax(cov(ft)) < c2.

(iii) Exponential tail: There exist r1, r2 > 0, and b1, b2 > 0, such that for any s > 0,

maxi≤N P (|uit| > s) ≤ exp(−(s/b1)r1), maxi≤K P (|fit| > s) ≤ exp(−(s/b2)r2).

(iv) Strong mixing: There exists r3 > 0 and C > 0 satisfying: for all T ∈ Z+,

α(T ) ≤ exp(−CT r3).

These conditions are standard in the time series literature. In Condition (i), we require

the idiosyncratic error ut be serially uncorrelated across t. Under this condition, the con-

ditional covariance of α̂ is Σu/(Tτ). Estimating Σu when N > T is already challenging.

When the serial correlation is present, the autocovariance of ut would also be involved in

the covariance of the OLS estimator for alphas, and needs be estimated. We rule out these

autocovariance terms to simplify the technicalities, and our method can be extended to the

case of serial correlation, with further sparsity conditions. On the other hand, we allow the

factors to be weakly dependent via the strong mixing condition. Also, it is always true that

Ef ′t(Eftf
′
t)
−1Eft ≤ 1. We rule out the equality to guarantee that the asymptotic variance of√

T α̂j does not degenerate for each j.

The following theorem quantifies the asymptotic behavior of the sure-screening statistic

J0, and provides sufficient conditions for the set consistency in selecting significant alphas.

Recall that Ŝ and S are defined in (3.2) and (3.6) respectively. Define

∆ = {j : αj � δT , j = 1, ..., N}.

Theorem 3.1. Suppose logN = o(T ), Assumption 3.2 hold. As T,N →∞,

(i)

P (S ⊂ Ŝ)→ 1, P (Ŝ \ S ⊂ ∆)→ 1.

(ii) Under the null hypothesis, P (Ŝ = ∅)→ 1. Hence

P (J0 = 0|H0)→ 1,

We are particularly interested in a type of alternative hypothesis that satisfy the following

grey area condition.
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Assumption 3.3 (Grey area). The alternative hypothesis Ha satisfies:

∆ = ∅.

The grey area represents a class of alternatives that have no nonzero αj’s on the boundary

of the screening set S. This condition is very weak because the chance of falling exactly at the

boundary is very low. Intuitively speaking, when an αj is on the boundary of the threshold,

it is hard to decide whether to eliminate it from the screening step or not. According to

Theorem 3.1, the difference between the set estimator Ŝ and the oracle set S is contained

in the grey area ∆ with probability approaching one. So the grey area condition suffices to

achieve the screening consistency: P (S = Ŝ)→ 1.

Corollary 3.1. Suppose Assumption 3.3 holds. Under the assumptions of Theorem 3.1,

P (Ŝ = S)→ 1.

Note that S ranks the importance of individual alphas under the alternative, representing

the true set of significant alphas we wish to identify. Hence the sure-screening consistency

as in Corollary 3.1 enables us to identify these significant alphas.

We now formally present the asymptotic behavior of the PEM test. A test is said to have

power against a set A ⊂ RN if ∀α ∈ A, the probability of rejection converges to 1.

Theorem 3.2. Suppose logN = o(T ), and Assumptions 3.1-3.2 hold. In addition, suppose

there is a test J1 whose rejection region takes the form J1 > C, and a non-degenerate

distribution F , so that under the null hypothesis J1 →d F, and J1 has power against Ω ⊂ RN .

Then the PEM test J = J0 + J1 satisfies:

(i) Under H0,

J →d F,

(ii) under Ha such that α satisfies:

α ∈ Ω ∪ {α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
σj} ≡ Ω̄,

the PEM test has power against any subset of Ω̄.

Let Fq denote the qth quantile of F . Part (i) of Theorem 3.2 shows that J1 and J reject

the null if J > Fq and J1 > Fq respectively. It follows immediately from J ≥ J1 that

P (J > Fq) ≥ P (J1 > Fq), which means J at least has power against Ω. In addition, J0

indeed plays the role of power enhancement, in the sense that (i) it does not affect the null
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distribution, and (ii) it significantly enhances the power of the test by broadening the range

of α for which the test is consistent. Note that the introduced restriction for the alternative:

{α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
σj}

requires that S be nonempty. This is a very weak restriction for the alternative. For instance

as long as there is an alpha standing out under Ha, the nonemptyness of S is satisfied. Under

the null, J1 dominates J0, and gives a correct size, while under the alternative, J0 dominates

J1, and is stochastically unbounded. In addition, the sure-screening statistic automatically

identifies all the significant alphas that are in Ŝ.

4 PEM for the Standardized quadratic test

In principle, any existing consistent test can serve as J1. In this section, we consider

a standardized quadratic test (Wald-type) recently developed by Pesaran and Yamagata

(2012). Theorem 2.1 shows that this test by itself suffers from low powers under the high

dimensionality. We will see that PEM significantly enhances its power.

4.1 Standardized quadratic statistic

The Wald-type statistic Tτα̂′Σ−1
u α̂ depends on a high-dimensional inverse covariance

Σ−1
u . As described in Section 2.2, if Σu is not diagonal, estimating Σ−1

u is a challenging

problem when N > T . Alternatively, one can use only the diagonal entries of Σ−1
u , and

consider the following quadratic form, which takes into account the error cross-sectional

heteroskedasticity only: for sii = 1
T

∑T
t=1 û

2
it,

W = Tτα̂′D̂−1α̂, D̂ = diag{s11, ..., sNN}.

Note that W is a sum of individual squared t-statistics, the number of which grows in our

large panel settings. A standardized version is given by:

W − E(W )√
var(W )

. (4.1)

One needs to calculate and estimate both E(W ) and var(W ) under the null. As D̂ ignores

the off diagonal entries of Σu, when Σu is indeed non-diagonal, W is no longer χ2 even under

the normal assumption. Hence the calculation is not a trivial task. Pesaran and Yamagata
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(2012) showed that a feasible version of (4.1) is

Jsq =
W −N√

2N(1 + ξT )

where

ξT =
1

N

∑
i 6=j

ρ̂2
ijIρ̂2ij>aT , aT =

1

T
Φ−1(1− c/N)

for some c ∈ (0, 0.5). Here ρ̂ij denotes the sample correlation between uit and ujt based

on the residuals, and Φ−1(·) denotes the inverse standard normal cumulative distribution

function. Applying a linear-quadratic form central limit theorem (Kelejian and Prucha

2001) yields that Jsq is standard normal as N, T → ∞. We call Jsq to be the standardized

quadratic statistic. Pesaran and Yamagata (2012) also proposed a slightly different (but

asymptotically equivalent) statistic that corrects the finite sample bias.

4.2 Combining sure-screening with standardized quadratic test

We now formally investigate the power of Jsq combined with the sure-screening statistic

J0, namely, the PEM test:

J = J0 + Jsq.

The size of the test statistic is controlled by Jsq, as J0 is zero with probability approaching

one under the null hypothesis. To appreciate the power enhancement to Jsq, note that

J ≥ Jsq, so the rejection region of J0 contains that of Jsq. In fact, the rejection region is

significantly enlarged, as J0 diverges under various interesting alternatives, including the

sparse alternative case in the sense that there are only a few αi 6= 0. The PEM test J

combines the rejection region of both two statistics, achieving a much enhanced power,

without sacrificing the good size of Jsq.

Formally, we have the following results concerning the size and the power of the PEM

test.

Theorem 4.1. Suppose logN = o(T ) and Assumptions 3.1-3.2 hold. Also,
∑

i 6=j(Σu)
2
ij =

O(N). As N, T →∞ and N/T 3 → 0, we have:

(i) under the null hypothesis H0 : α = 0,

J →d N (0, 1),
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(ii) under the alternative Ha such that

α ∈ {α ∈ RN : ‖α‖2 � (N logN)/T} ∪ {α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
(Σu)jj} ≡ B̄,

the PEM test has power against any subset of B̄.

We see that adding J0 in the PEM test does not lose anything under the null asymp-

totically, and it significantly enhances the power of Jsq under many important alternatives.

The set {α ∈ RN : ‖α‖2 � (N logN)/T} itself is the region of α in the alternative that

Jsq has power against. This is a very restrictive region when N > T . For instance, it rules

out the type of alternative in which there are finitely many nonzero alphas. In contrast, set

B̄ is much more enlarged, and contains many interesting alternatives. We investigate a few

examples below that fall within this category. In these examples, we denote Ha ⊂ A to mean

that the alternative set for α belongs to a given set A.

Example 4.1 (Minimum alpha). Consider an alternative such that the minimum nonzero

alpha is not too small:

Ha ⊂ A ≡ {min
j
{|αj| 6= 0} � δT}.

In this case, the oracle set S is not empty, and meanwhile there exists no nonzero alphas

that are at or below the level δT . This set is a subset of B̄ in Theorem 4.1, and hence

the PEM test J asymptotically has power against this alternative. Note that we allow

min{|αj|, j = 1, ..., N} to vanish in the limit. A special case is the sparse alternative:

Ha : min
j≤r
{|αj|} � δT , αj = 0, when j > r

where r is fixed. In this case, there are only finitely many significant alphas. The PEM still

has power against it (the power approaches one). However, Jsq itself has very low power

because
∑

i α
2
i = O(1) under the alternative. In fact, as long as r grows slowly compared to

N , the power of any test based on α̂′Vα̂ with V being positive definite does not converge

to one. �

Example 4.2 (Empty grey area). Consider an alternative

Ha ⊂ {j : |αj| � δT} = ∅, and {j : |αj| � δT} 6= ∅.

Under this alternative, the grey area ∆ is empty and there exists at least one significant alpha.

We allow the existence of very small but nonzero alphas, that is, {|αj| 6= 0, |αj| = o(δT )} 6= ∅,
regardless of the number of them. The PEM test is still consistent by Theorem 4.1. In

17



contrast, if the number of significant alphas is not large enough, Jsq itself still cannot detect

Ha. �

An important feature of the above alternatives is that we do not require ‖α‖2 under the

alternative to be very large for the test consistency. In contrast, we only require a few alphas

stand out. In addition, besides the enhanced power, the PEM test is able to identify all the

significant alphas via Ŝ if the grey area condition holds (S = Ŝ with probability approaching

one). Without screening, traditional tests such as GRS test and Jsq alone cannot detect

these alternatives, especially when the panel is very large.

When there are no estimated alphas above the level δT under the alternative, Ŝ can be

empty, leading to J0 = 0. However, due to the component Jsq in J , we may still achieve the

consistency. This is illustrated in the following example.

Example 4.3. Consider the following alternative:

Ha ⊂ max
j≤N
|αj| = O(δT ), and ‖α‖2 ≥ N(

logN

T
)1−c,

for c ∈ (0, 1). Under such alternatives, a typical alpha lies in the interval
√

logN
T

[1, log log T ],

and the number of nonzero alphas is not small. In this case, the probability that the sure-

screening set Ŝ is empty might be positive. We therefore expect P (J0 = 0) > 0. However,

since there are so many small but nonzero alphas, these aggregated alphas lead to a not-

too-small
∑N

j=1 α
2
j . As a result, Jsq stands out and gains power, making J still has power

converging to one. Indeed, our simulated results demonstrate that the PEM test has a good

power in this case (see Section 6). �

Finally, when both the maximum magnitude of alphas and ‖α‖2 are small, the PEM test

statistic has a low power. But the market can be considered approximately efficient in this

situation.

5 An improved quadratic test based on thresholding

So far we have been using a diagonal weight matrix D̂−1 for the standardized quadratic

test to combine with J0, because the true Σ−1
u is unknown and non-diagonal. On the other

hand, this loses powers against certain local alternatives, because as long as Σu is not

diagonal, using a diagonal weight matrix ignores the cross-sectional correlations among the

error components. A better PEM should be:

J0 +
Tτα̂′Σ−1

u α̂−N√
2N

. (5.1)
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When Σ−1
u is known, Pesaran and Yamagata (2012) showed that the above statistic without

J0 is asymptotically N (0, 1) under the null. Hence, Jsq can be improved by replacing D̂−1

with a consistent estimator for Σ−1
u . In this section, we show that this indeed can be done

by applying the thresholded covariance estimator under the sparsity condition of Σu. We

require N logN = o(T 2), but still allow N to be much larger than T.

5.1 A technical challenge

When Σu is a sparse matrix, Fan et al. (2011) obtained a thresholded estimator Σ̂u as

described in Section 3.1, which satisfies:

‖Σ−1
u − Σ̂−1

u ‖ = Op(mN

√
logN

T
). (5.2)

Here mN = maxi≤N
∑N

j=1 |(Σu)ij| is assumed to be either growing slowly with N or even

bounded. For instance, mN is bounded if Σu is a block-diagonal matrix with bounded block

sizes, which is the case when the idiosyncratic noises are uncorrelated across industries.

Note that the above convergence achieves the minimax optimal rate for sparse covariance

estimation, as shown by Cai and Zhou (2012). However, it comes with a technical challenge

when N > T , which we now explain.

When replacing Σ−1
u in (5.1) with Σ̂−1

u , one needs to show that the effect of such a

replacement is asymptotically negligible, namely, under H0,

T α̂′(Σ−1
u − Σ̂−1

u )α̂√
N

= op(1). (5.3)

Note that when α = 0, ‖α̂‖2 = Op(N(logN)/T ) (or Op(N/T ) with a more careful analysis).

A simple application of (5.2) yields

|T α̂′(Σ−1
u − Σ̂−1

u )α̂|√
N

≤ T‖α̂‖2‖Σ̂−1
u − Σ̂−1

u ‖√
N

= Op(mN logN

√
N logN

T
).

We see that even if mN is bounded, it still requires N logN = o(T ).

However, the above derivation uses a very crude bound |α̂′(Σ−1
u −Σ̂−1

u )α̂| ≤ ‖α̂‖2‖Σ−1
u −

Σ̂−1
u ‖, which accumulates the estimation errors in ‖α̂ − α‖2 under a large N . In fact,

α̂′(Σ−1
u − Σ̂−1

u )α̂ is a weighted estimation error of Σ−1
u − Σ̂−1

u , where the weights α̂ help to

reduce the curse of dimensionality, and should result in an improved rate of convergence.

The formalization of this argument requires further regularity conditions, which we shall

present in the following subsection.
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5.2 Assumptions

In order to show that the effect of replacing Σ−1
u with its consistent estimator is asymp-

totically negligible, especially when N > T , further assumptions are needed, but they are

still quite reasonable.

First of all, we need to refine the sparsity condition on Σu, which is similar to that of

Lam and Fan (2009). Let SL and SU denote two disjoint sets and respectively include the

indices of small and large entries of Σu, and

{(i, j) : i ≤ N, j ≤ N} = SL ∪ SU . (5.4)

We assume that most of the indices (i, j) belong to SL when i 6= j. For the banded matrix

as an example, (Σu)ij 6= 0 if |i− j| ≤ k; (Σu)ij = 0 if |i− j| > k for some fixed k ≥ 1. Then

SL = {(i, j) : |i− j| > k} and SU = {(i, j) : |i− j| ≤ k}.
Formally, we assume:

Assumption 5.1. There is a partition {(i, j) : i ≤ N, j ≤ N} = SL ∪ SU such that∑
i 6=j,(i,j)∈SU

1 = O(N) and
∑

(i,j)∈SL
|(Σu)ij| = O(1). In addition,

max
(i,j)∈SL

|(Σu)ij| �
√

logN

T
� min

(i,j)∈SU

|(Σu)ij|.

We require the elements in SL and SU be well-separable. For example, if Σu is a block

covariance matrix with finite block sizes, this assumption is naturally satisfied as long as the

signal is not too-weak (that is,
√

logN
T

= o(min(i,j)∈SU
|(Σu)ij|)). The partition {(i, j) : i ≤

N, j ≤ N} = SL ∪ SU may not be unique. Most importantly, we do not need to know either

SL or SU ; hence the block size, the banding length, or the locations of the zero entries can

be completely unknown. Our analysis suffices as long as such a partition exists.

To introduce our next assumption, define ξt = Σ−1
u ut = (ξ1t, ..., ξNt)

′, which is an N -

dimensional vector with mean zero and covariance Σ−1
u , whose entries are stochastically

bounded. Since Eutf
′
t = 0 and Eut = 0, we have 1√

T

∑T
t=1 ξit = Op(1) and 1√

T

∑T
t=1 ξitft =

Op(1) for each i ≤ N . We assume the following:

Assumption 5.2. Let w̄ = (Eftf
′
t)
−1Eft, then

(i)

1

T
E| 1√

NT

N∑
i=1

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

ξis(1− f ′sw))2|2 = o(1)

20



(ii)

1

T
E| 1√

NT

∑
i 6=j,(i,j)∈SU

T∑
t=1

(uitujt−Euitujt)[
1√
T

T∑
s=1

ξis(1− f ′sw)][
1√
T

T∑
k=1

ξjk(1− f ′kw)]|2 = o(1)

Note that in the literature of high-dimensional panels and factor analysis (e.g., Stock

and Watson 2002, Bai 2003, 2009), it is usually assumed that the cross-sectional and serial

double sum is bounded: E| 1√
NT

∑N
i=1

∑T
t=1(u2

it−Eu2
it)|2 = O(1), which is usually guaranteed

by the central limit theorem across both i and t. Here, Condition (i) of Assumption 5.2

is with respect to the weighted double sums, where the weight ( 1√
T

∑T
s=1 ξis(1 − f ′sw̄))2

is stochastically bounded because both 1√
T

∑T
t=1 ξit and 1√

T

∑T
t=1 ξitft are asymptotically

normal. Condition (ii) is new in the literature because it is related to the sparsity condition.

It is however very similar to (i) in that the index set of the cross-sectional sum is changed

from {(i, j) : i = j} to {(i, j) : i 6= j, (i, j) ∈ SU}, where SU is defined as the set of “big entry”

indices. Recall that Assumption 5.1 assumes
∑

i 6=j,(i,j)∈SU
1 = O(N). So this condition is

still reasonable for sparse enough covariances.

Primitive conditions for Assumption 5.2 will be provided in Section 5.4.

5.3 PEM test with improved standardized quadratic form

With the help of Assumptions 5.1 and 5.2, we show in the appendix (Proposition A.1)

that (5.3) indeed holds. As a result, the effect of replacing Σ−1
u with its consistent thresholded

estimator is asymptotically negligible even if N > T . Now define a new PEM test with an

improved standardized quadratic form:

J̃ = J0 + J̃sq

where, with Σ̂−1
u defined in (3.7) as in Fan et al. (2011),

J̃sq =
Tτα̂′Σ̂−1

u α̂−N√
2N

.

We have the following theorem.

Theorem 5.1. Suppose m4
N(logN)4N = o(T 2), and Assumptions 3.1, 3.2, 5.1, 5.2 hold.

Then

(i) under the null hypothesis H0 : α = 0,

J̃ →d N (0, 1), J̃sq →d N (0, 1),
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(ii) under the alternative Ha such that

α ∈ {α ∈ RN : ‖α‖2 � (N logN)/T} ∪ {α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
(Σu)jj} ≡ B̄,

the PEM test J̃ has power against any subset of B̄.

Note that when mN is bounded, we then only require N(logN)4 = o(T 2). Therefore N

is allowed to be much larger than T .

5.4 Sufficient conditions for Assumption 5.2

As a simple example, Assumption 5.2 is satisfied if uit is i.i.d. across both i and t.

Example 5.1. As an example, Assumption 5.2 can be simply verified if uit is i.i.d.

across both i and t and N = o(T 2), but still, N can be larger than T . Write X =
1√
NT

∑N
i=1

∑T
t=1(u2

it − Eu2
it)(

1√
T

∑T
s=1 ξis(1 − f ′sw))2. Let eis = ξis(1 − f ′sw). When uit is

i.i.d. across both i and t,

var(X) = var[
1√
T

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis)
2] ≤ E[

1√
T

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis)
2]2.

It is bounded by {E[ 1√
T

∑T
t=1(u2

it−Eu2
it)]

4}1/2{E[ 1√
T

∑T
s=1 eis]

8}1/2, by the Cauchy-Schwarz

inequality, which is O(1) by the central limit theorem. On the other hand,

EX =
√
NE[

1√
T

T∑
t=1

(u2
it − Eu2

it)(
1√
T

T∑
s=1

eis)
2] =
√
Ncov(

1√
T

T∑
t=1

(u2
it − Eu2

it), (
1√
T

T∑
s=1

eis)
2)

=

√
N

T
√
T

(
T∑
t=1

cov(u2
it, e

2
it) + 2

T∑
t=1

∑
s 6=t

cov(u2
it − Eu2

it, eiseit) +
T∑
t=1

∑
s,k 6=t

cov(u2
it, eiseik)).

The second term on the right is zero because when s 6= t, cov(u2
it − Eu2

it, eiseit) = E[(u2
it −

Eu2
it)eiseit] = E[(u2

it − Eu2
it)eit]E(eis) = 0. The third term is also zero because ut is serially

independent. Thus EX =
√
N√
T

cov(u2
it, e

2
it). Together, we have 1

T
EX2 = 1

T
var(X)+ 1

T
(EX)2 =

o(1) + o( N
T 2 ) = o(1) as long as N = o(T 2). Condition (ii) is naturally satisfied because

{(i, j) : i 6= j} = ∅ so the sums are zero. �

When cross-sectional heteroskedasticity and correlations are present, Assumption 5.2 can

still be verified when Σu is sparse enough. For simplicity, we assume Σu to be strictly sparse,

in the sense that all its small entries are zero: (Σu)ij = 0 for (i, j) ∈ SL. In addition, it is

assumed that both Σu and Σ−1
u have bounded row sums. These are stated in the assumption

as follows.
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Assumption 5.3. (i) (Σu)ij = 0 for all (i, j) ∈ SL, where SL is defined in Assumption 5.1.

(ii) There is a constant C > 0 such that ‖Σu‖1 + ‖Σ−1
u ‖1 < C.

Let

mN = max
i≤N

N∑
j=1

I(Σu)ij 6=0, DN =
∑
i,j≤N

Ii 6=j,(Σu)ij 6=0 =
∑

i 6=j,(i,j)∈SU

1.

Here mN represents the maximum number of nonzeros in each row, corresponding to q = 0 in

(3.8), and DN represents the number of nonzero off-diagonal entries. We consider two kinds

of sparse matrices, and verify Assumption 5.2 in both cases. In the first case, Σu is required

to have no more than O(
√
N) off-diagonal nonzero entries, but allows a growing mN ; in the

second case, mN should be bounded, but Σu can have O(N) off-diagonal nonzero entries.

The latter allows block-diagonal matrices with finite size of blocks. This is particularly useful

when firms’ individual shocks are correlated only within industries but not across industries.

Formally, we assume:

Assumption 5.4. One of the following cases holds:

(i) DN = O(
√
N);

(ii) DN = O(N), and mN = O(1).

The following lemma shows that Assumption 5.2 can be verified under the required

sparsity assumptions when N > T . For simplicity, we focus on the Gaussian errors and

serially independent time series.

Lemma 5.1. Suppose ut ∼ N (0,Σu), where Σu satisfies Assumptions 5.3 and 5.4. In

addition, the sequence {ut, ft}t≤T is independent across t, and satisfy Assumption 3.2 (i)-

(iii); ut and ft are also independent. Then as N, T →∞, N logN = o(T 2), Assumption 5.2

is satisfied.

6 Monte Carlo Experiments

We examine the power enhancement via several numerical examples. Excess returns are

assumed to follow the three-factor model by Fama and French (1992):

yit = αi + b′ift + uit.

6.1 Simulation

We simulate {bi}Ni=1, {ft}Tt=1 and {ut}Tt=1 independently from N3(µB,ΣB), N3(µf ,Σf ),

and NN(0,Σu) respectively. The same parameters as in the simulations of Fan et al. (2013)
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are used, which are calibrated using the data on daily returns of S&P 500’s top 100 con-

stituents, for the period from July 1st, 2008 to June 29th 2012. These parameters are listed

in the following table.

µB ΣB µf Σf

0.9833 0.0921 -0.0178 0.0436 0.0260 3.2351 0.1783 0.7783
-0.1233 -0.0178 0.0862 -0.0211 0.0211 0.1783 0.5069 0.0102
0.0839 0.0436 -0.0211 0.7624 -0.0043 0.7783 0.0102 0.6586

Table 1: Means and covariances used to generate bi and ft

Two types of Σu are considered.

Diagonal Σ
(1)
u is a diagonal matrix with diagonal entries (Σu)ii = 1 + ‖vi‖2, where vi

are generated independently from N3(0, 0.01I3). In this case no cross-sectional correlations

are present.

Block-diagonal Σ
(2)
u = diag{A1, ...,AN/5} is a block-diagonal covariance, where each

diagonal block Aj is a 5×5 positive definite matrix, generated from a cross-sectional MA(3)

process as follows: for each j, generate {ai, bi, ci}i≤5 independently from N (0, 0.01). Let

{ei}i≤5 be i.i.d. N (0, 1), v1 = e1, v2 = e2 + a1e1, v3 = e3 + a2e2 + b1e1, and for i = 3, 4,

vi+1 = ei+1 + aiei + bi−1ei−1 + ci−2ei−2.

Set Aj be the covariance matrix of (vi : i ≤ 5), which only depends on {ai, bi, ci}i≤5. In the

numerical study, we would not assume we know the block-diagonal structure though, and

apply soft-thresholdings to estimate Σ
(2)
u .

We study two types of alternatives (we set N > T ):

sparse alternative H1
a : αi =

0.3, i ≤ N
T

0, i > N
T

weak alpha H2
a : αi =


√

logN
T
, i ≤ N0.4

0, i > N0.4
.

Under H1
a , many components of α are zero but the nonzero alphas are not weak. Under H2

a ,

the nonzero alphas are all very weak. In our simulation setup,
√

logN/T varies from 0.05

to 0.10. We therefore expect that under H1
a , P (Ŝ = ∅) is close to zero because most of the

first N/T estimated alphas should survive from the screening step. In contrast, P (Ŝ = ∅)
should be much larger under H2

a because the nonzero alphas are too week.
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Table 2: Size and Power comparison when Σu = Σ
(1)
u is diagonal

H0 H1
a H2

a

T N Jsq PEM P (Ŝ = ∅) Jsq PEM P (Ŝ = ∅) Jsq PEM P (Ŝ = ∅)

300 500 0.076 0.090 0.986 0.536 0.950 0.082 0.730 0.790 0.642
800 0.096 0.116 0.984 0.714 0.982 0.026 0.782 0.822 0.634
1000 0.088 0.100 0.982 0.648 0.976 0.032 0.810 0.852 0.630
1200 0.098 0.110 0.980 0.770 0.992 0.012 0.808 0.860 0.602

500 500 0.070 0.070 0.994 0.436 0.980 0.024 0.788 0.808 0.796
800 0.076 0.078 0.996 0.718 1 0 0.788 0.810 0.796
1000 0.068 0.076 0.994 0.670 0.996 0.004 0.796 0.828 0.754
1200 0.056 0.058 0.998 0.624 1 0 0.786 0.812 0.788

The frequencies of rejection and Ŝ = ∅ out of 500 replications are calculated. Here Jsq is the
standardized quadratic test using diagonal weight matrix as in Pesaran and Yamagata (2012);

PEM represents the power enhancement test J0 + Jsq.

6.2 Results

When Σu = Σ
(1)
u , we assume the diagonal structure to be known, and compare the

performances of the standardized quadratic test Jsq (considered by Pesaran and Yamagata

2012) with the power enhanced test J0 + Jsq. When Σu = Σ
(2)
u , we do not assume we

know the block-diagonal structure. In this case, four tests are carried out and compared:

(1) the standardized quadratic test with diagonal weight Jsq based on α̂′D̂−1α̂, (2) the

improved standardized quadratic test J̃sq with thresholded covariance weight matrix, based

on α̂′Σ̂−1
u α̂, (3) the power enhanced test J0 + Jsq, and (4) the power enhanced test J0 + J̃sq.

For the thresholded covariance matrix, we use the soft-thresholding function and fix the

threshold at 1.5
√

logN/T .

For each test, we calculate the frequency of rejection under H0, H
1
a and H2

a based on

500 replications, with the 0.05 significance level. We also calculate the frequency of Ŝ being

empty, which approximates P (Ŝ = ∅). Results are summarized in Tables 2-4.

When Σu is diagonal, we see that under the null the PEM test has slightly larger rejection

probabilities, and P (Ŝ = ∅) is close to one, which demonstrates that the screening statistic

J0 indeed manages to screen out most of the estimation errors under the null. On the other

hand, under H1
a , the PEM test significantly improves the power of the standardized quadratic

test. In this case, P (Ŝ = ∅) is nearly zero because the estimated nonzero alphas still stay

after screening. Under H2
a , however, the nonzero alphas are very week, which leads to a

large probability that Ŝ is an empty set. As a result, the PEM test only slightly improves

the power of the quadratic test.
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Table 3: Size comparison when Σu = Σ
(2)
u is block-diagonal

H0

T N Jsq J̃sq PEM1 PEM2 P (Ŝ = ∅)

300 500 0.074 0.102 0.090 0.116 0.982
800 0.078 0.102 0.088 0.112 0.984
1000 0.102 0.136 0.108 0.142 0.992
1200 0.088 0.136 0.104 0.152 0.980

500 500 0.068 0.074 0.070 0.076 0.996
800 0.096 0.104 0.104 0.112 0.992
1000 0.064 0.080 0.066 0.082 0.996
1200 0.104 0.118 0.104 0.118 1.000

The frequencies of rejection and Ŝ = ∅ out of 500 replications are calculated. Here Jsq is the

standardized quadratic test using diagonal weight matrix; J̃sq uses the thresholded Σ̂−1
u as the

weight matrix; PEM1 represents the test J0 + Jsq; PEM2 represents the test J0 + J̃sq. J̃sq does
not assume the block-diagonal structure to be known, and uses soft-thresholding.

Table 4: Power comparison when Σu = Σ
(2)
u is block-diagonal

H1
a H2

a

T N Jsq J̃sq PEM1 PEM2 P (Ŝ = ∅) Jsq J̃sq PEM1 PEM2 P (Ŝ = ∅)

300 500 0.568 0.602 0.966 0.966 0.050 0.768 0.816 0.808 0.846 0.624
800 0.710 0.756 0.992 0.994 0.012 0.780 0.832 0.836 0.874 0.570
1000 0.690 0.734 0.990 0.992 0.018 0.830 0.858 0.874 0.896 0.592
1200 0.762 0.806 0.994 0.994 0.016 0.836 0.874 0.872 0.900 0.612

500 500 0.438 0.468 0.986 0.986 0.016 0.762 0.790 0.796 0.812 0.784
800 0.750 0.768 0.998 0.998 0.002 0.748 0.770 0.778 0.794 0.758
1000 0.670 0.706 1 1 0 0.786 0.816 0.814 0.840 0.760
1200 0.628 0.652 1 1 0 0.784 0.812 0.820 0.844 0.752

The frequencies of rejection and Ŝ = ∅ out of 500 replications are calculated.

26



For the nondiagonal covariance, similar patterns are observed. We additionally find inter-

esting behaviors of J̃sq when a thresholded covariance matrix is used. Under the alternatives,

J̃sq has larger powers than Jsq does because it takes into account the cross-sectional corre-

lations, and the power is further significantly improved by the PEM tests. In addition,

ignoring the cross-sectional correlation structure, Jsq yields more stable test statistics than

the thresholded test J̃sq, so the sizes of Jsq can be more accurately determined under the

null.

7 Real data analysis

We apply the test statistics Jsq, J̃sq and PEM (= J0+J̃sq) to the securities in the S&P 500

index. Composed of large cap U.S. stocks, the S&P 500 index has diverse constituency and

is therefore a good market representation. We collect monthly returns on all the S&P 500

constituents from the CRSP database for the period January 1980 to December 2012, during

which a total of 1170 stocks have entered the index for our study. Testing of market efficiency

is performed on a rolling window basis: for each month from December 1984 to December

2012, we evaluate our test statistics using the preceding 60 months’ returns (T = 60). The

panel at each testing month consists of those stocks without missing data in the past five

years, which yields a cross-sectional dimension much larger than the time-series dimension

(N > T ). In this manner we not only capture the up-to-date information in the market, but

also mitigate the impact of possible structural breaks in the factor loadings.

We employ the Fama-French three-factor (FF-3) model to conduct our test. For testing

months τ = 12/1984, ..., 12/2012, we estimate the FF-3 regressions

rτit − rτft = ατi + bτMKT (MKT τt − rτft) + bτSMBSMBτ
t + bτHMLHMLτ + uτit,

for i = 1, ..., Nτ and t = τ − 59, ..., τ , where Nτ is the panel size for testing window [τ −
59, τ ], rτit represents the monthly return of security i, rτft is the corresponding risk-free rate,

MKT, SMB and HML constitute the FF-3 model’s market, size and value factors. Our

null hypothesis ατi = 0 for all i implies that the market is mean-variance efficient.

Table 5 summarizes descriptive statistics for different components and estimates in the

model. On average, 618 stocks enter the panel of the regression during each five-year esti-

mation window, of which 7.3 stocks are selected by Ŝ. The selected stocks have much larger

alphas than other stocks do, as we could expect. As far as the signs of those alpha estimates

are concerned, 61.84% of all the alpha estimates during the entire study period are positive.

In contrast, 81.05% of the selected alphas are positive. It is therefore more likely for stocks
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Table 5: Variable descriptive statistics for the FF-3 model
Variables Mean Std dev. Median Min Max

Nτ 617.70 26.31 621 574 665

|Ŝ|0 7.30 6.73 5 0 30

α̂
τ

i (%) 0.3729 0.1990 0.3338 -0.1735 0.9763

α̂
τ

i∈Ŝ(%) 1.1272 0.7881 1.2351 -2.6182 3.3757
p-value of Jsq 0.2789 0.3385 0.0992 0 0.9969

p-value of J̃sq 0.2350 0.3339 0.0291 0 0.9984
p-value of PEM 0.1846 0.3101 0.0031 0 0.9960

with large positive alphas to enter Ŝ, and less so for those with large negative alphas. This

indicates that market inefficiency is primarily caused by stocks with extra returns, instead

of an average (or aggregated) sense (that is, more likely due to a large minαj>0 αj other

than a large ‖α‖). In addition, we notice that the p-values of J̃sq test are generally smaller

than those of Jsq, because J̃sq has fully exploited the cross-sectional correlations. Due to an

enhanced power, PEM exhibits even lower p-values than the previous two.

Figure 1: Evolutions of p-values and selected stocks (%)
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Similar to Pesaran and Yamagata (2012), we plot the running p-values of Jsq, J̃sq and

the PEM test from December 1984 to December 2012. We also add the evolution of the

percentage of selected stocks (|Ŝ|0/N) to the plot, as shown in Figure 1. There is a strikingly
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Figure 2: Histograms of p-values for Jsq, J̃sq and PEM

p−values for Jsq

p−value

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

p−values for J
~

sq

p−value

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p−values for PEM

p−value

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

negative correlation between stock selection percentage and the p-value of these tests. This

shows that the degree of market efficiency is influenced not only by the aggregation of

alphas, but also by those extreme ones. We also observe that the p-value line of the PEM

test lies beneath those of J̃sq and Jsq test as a result of enhanced power, and it captures

some important market disruptions ignored by the latter two. The null hypothesis of market

efficiency is rejected at 5% level during major financial crisis, including Black Wednesday

in 1992, Asian financial crisis in 1997, the recent subprime crisis in 2008 and the European

sovereign debt crisis in 2010. For 44%, 55% and 65% of the study period, Jsq, J̃sq and the

PEM test conclude that the market is inefficient respectively. The histograms of the p-values

of the three test statistics are displayed in Figure 2.

We now take a closer look at the screening set Ŝ, which consists of stocks with large

positive or negative alphas. By definition, the selected stocks have statistically significant

alphas for the given window of estimation, suggesting that their returns are not commen-

surate with their risks. In practice, such stocks could often contribute to the construction

of a market-neutral high-alpha portfolio. During the entire study period, we record 223

different stocks that have entered Ŝ at least once. We extract those who have persistent

performance—in particular, those who stay in the screening set for at least 24 consecutive

months. As a result, 7 companies stand out. Table 6 lists these companies, their major

periods when getting selected and the associated alphas. Figure 3 specifies the selection

periods. Interestingly, these companies span different industries and they all have positive

alphas when picked by Ŝ.
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Table 6: Companies with longest selection period
Company Name Major period of selection Average alpha (%) Std. dev. (%)

COCA COLA CO 09/1989—08/1992 1.3714 0.0921
U S T INC 02/1986—10/1988 1.9997 0.2154

MCDONALDS CORP 03/2003—12/2012 1.5502 0.2013
WAL MART STORES INC 08/1985—12/1988 1.4927 0.1425

HOME DEPOT INC 05/1986—02/1990 3.4931 0.5243
KIMCO REALTY CORP 09/1999—06/2002 1.6195 0.1833

PRAXAIR INC 07/2001—11/2004 1.3430 0.2764
Major period of selection refers to the time interval when those companies stay in the screening set
for at least 24 months. Average alpha and Std. dev. are computed during the period of selection.

8 Concluding remarks

The literature on testing mean-variance efficiency is only able to detect market inefficiency

in an average sense as measured by the quadratic form α′α. However, when we deal with

large panels, it is more appealing if we could identify individual departures from the factor

pricing model, and deal with the case when there are small portions of significant alphas.

We propose a new concept for high dimensional statistical tests, namely, the power

enhancement (PEM). The PEM test combines a sure-screening statistic and a Wald-type

statistic. Under the null, the sure-screening part equals zero with probability approaching

one, and under alternatives where there are significant alphas, it is stochastically unbounded.

Hence while maintaining a good size asymptotically, the PEM test significantly enhances the

power of Wald-type statistics. As a by-product, the screening-set Ŝ also enables us to identify

those significant alphas.

We also improve the standardized quadratic test by taking into account the off-diagonal

structure of the error covariance matrix. Assuming this matrix to be sparse, we estimate

it using the thresholding technique, and develop new techniques to prove that the effect of

estimating the inverse covariance matrix is asymptotically negligible. Therefore, the aggre-

gation of estimation errors is successfully avoided. This technique is potentially useful in

other high-dimensional econometric applications, where an optimal weight matrix needs to

be estimated, such as GMM and GLS.

Our empirical study shows that indeed, market inefficiency is primarily caused by a small

portion of significantly mispriced stocks, instead of aggregated alphas. In addition, most of

the selected stocks are with extra returns. The PEM test serves as an appropriate test of

factor pricing models.

30



Figure 3: Selected companies and their periods of selection

A Proofs

We first present a lemma that will be needed throughout the proofs. Suppose σij = (Σu)ij

and σ̂ij = 1
T

∑T
t=1 ûitûjt.

Lemma A.1. (i) maxi,j≤N | 1T
∑T

t=1 uitujt − Euitujt| = Op(
√

(logN)/T ).

(ii) maxi≤K,j≤N | 1T
∑T

t=1 fitujt| = Op(
√

(logN)/T ).

(iii) maxi,j≤N |σ̂ij − σij| = Op(
√

logN/T )

(iv) maxj≤N | 1T
∑T

t=1 ujt| = Op(
√

(logN)/T ).

(v) maxj≤N |α̂j − αj| = Op(
√

logN/T ).

Proof. Parts (i)-(iii) follow from Lemmas A.3 and B.1 in Fan, Liao and Mincheva (2011).

Part (iv) follows from the same proof of that of Lemma A.3 of Fan et al. (2011). For part

(v), first note that α̂j − αj = 1
τT

∑T
t=1 ujt(1 − f ′tw). Here τ →p 1 − Ef ′t(Eftf

′
t)
−1Eft > 0,

hence τ is bounded away from zero with probability arbitrarily close to one. Part (v) then

follows from (ii) and (iv).

Lemma A.2. ‖Σ̂−1
u −Σ−1

u ‖ = op(1).
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Proof. See Theorem 3.1 of Fan et al. (2011). Note that Fan et al. (2011) showed this

result for the hard-thresholding. In fact, it holds for more general thresholdings, implied by

Theorem A.1 of Fan et al. (2013).

A.1 Proof of Theorem 2.1

Without loss of generality, under the alternative, let α′ = (α′1,α
′
2) = (0′,α′2), where

dim(α1) = N − r and dim(α2) = r. Correponding to (α′1,α
′
2), we partition Σu and Σ−1

u

into:

Σu =

(
Σ1 β′

β Σ2

)
, Σ−1

u =

(
Σ−1

1 + A G′

G C

)
.

By the matrix inversion formula, we know that A = Σ−1
1 β′(Σ2−βΣ−1

1 β′)−1βΣ−1
1 . In addi-

tion, we partition the estimator into α̂′ = (α̂′1, α̂
′
2) where dim(α̂1) = N−r and dim(α̂2) = r.

Note that α̂′Σ−1
u α̂ = α̂′1Σ

−1
1 α̂1 + α̂′1Aα̂1 + 2α̂′2Gα̂1 + α̂′2Cα̂2.

We first look at α̂′1Aα̂1. Write ξ = Σ−1
1 α̂1. It follows from ‖Σ−1

1 ‖1 <∞ that

maxi≤N−r |ξi| = Op(maxi≤N−r |α̂1i|) = Op(maxi≤N−r |α̂1i − α1i|) = Op(
√

logN
T

). Also,

maxi≤r
∑N−r

j=1 |βij| ≤ ‖Σu‖1 = O(1), and λmax((Σ2 − βΣ−1
1 β′)−1) = O(1). Hence

|α̂′1Aα̂1| = O(1)‖βξ‖2 ≤ O(1) max
j
|ξj|2

r∑
i=1

(
N−r∑
j=1

|βij|)2 = Op(
r logN

T
).

For G = (gij), note that maxi≤r
∑N−r

j=1 |gij| ≤ ‖Σ−1
u ‖1 = O(1). Hence

|α̂′2Gα̂1| ≤ max
j≤N−r

|α̂1j|max
j≤r
|α̂2j|

r∑
i=1

N−r∑
j=1

|gij| ≤ Op(r

√
logN

T
)

where we used the fact that maxj≤r |α̂2j| ≤ maxj |α2j| + maxj |α̂j − αj| = Op(1). Also,

|α̂′2Cα̂2| ≤ ‖α̂2‖2‖C‖ = Op(r). It then yields α̂′Σ−1
u α̂ ≤ α̂′1Σ

−1
1 α̂1 + Op(r) under Ha. It

also follows from (2.7) that

Z ≡ Tτα̂′1Σ
−1
1 α̂1 − (N − r)√
2(N − r)

→d N (0, 1).

Hence under Ha, since Tr = o(
√
N), for any ε ∈ (0, zq), we have

P (J1 > zq) ≤ P (
Tτα̂′1Σ

−1
1 α̂1 −N√
2N

+Op(
Tr√
N

) > zq)
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≤ P (Z(1 + o(1)) +Op(
Tr√
N

) > zq)

≤ P (Z + op(1) > zq) ≤ 1− Φ(zq − ε) + o(1).

Choose ε such that Φ(zq − ε) ≥ 1− 2q. Then P (J1 > zq) ≤ 2q + o(1).

A.2 Proof of Theorem 3.1 and Corollary 3.1

(i) For any j ∈ S, by the definition of S,
|αj |√
σjj

> 2δT . Define events

A1 =

{
max
j≤N
|σ̂−1
jj − σ−1

jj | ≤ C2

}
, A2 =

{
max
j≤N
|α̂j − αj| ≤ C3δT

}
for some C2, C3 > 0. Lemma A.1 then implies that P (A1 ∩ A2)→ 1. Under A1 ∩ A2,

|α̂j|√
σ̂jj

≥ (|αj| −max
j
|α̂j − αj|)(σ−1

jj −max
j
|σ̂−1
jj − σ−1

jj |)1/2

≥ (|αj| − C3δT )(σ−1
jj − C2)1/2 ≥ δT ,

where the last inequality holds for sufficiently small C2, C3, e.g., C3 < minj
√
σjj(2 −

√
3)

and C2 = 2
3

minj(σ
−1
jj ). This implies that j ∈ Ŝ. Now P (S ⊂ Ŝ) → 1 follows from the fact

that P (A1 ∩ A3) ≥ 1 − o(1). It can be readily seen that if j ∈ Ŝ, by similar arguments, we

have
|αj |√
σjj

> 1
2
δT with probability tending to one. Consequently, Ŝ \ S ⊂ ∆ with probability

approaching one.

(ii) Suppose minj≤N σjj > C1 for some C1 > 0. For some constants C2 > 0 and C3 <

(C2 + C−1
1 )1/2 in the event A1 ∩ A2, under the event A1 ∩ A2 and H0, we have

max
j≤N

|α̂j|√
σ̂jj

≤ max |α̂j| · (max σ̂−1
jj )1/2 ≤ C3δT · (max |σ̂−1

jj − σ−1
jj |+ maxσ−1

jj )1/2

≤ C3(C2 + C−1
1 )1/2δT ≤ δT ,

where we note that under H0, αj = 0. Hence P (maxj≤N
|α̂j |√
σ̂jj
≤ δT ) → 1, which implies

P (Ŝ = ∅)→ 1. This immediately implies P (J0 = 0)→ 1.

Corollary 3.1 is implied by part (i).

A.3 Proof of Theorem 3.2

Part (i) follows immediately from that P (J0 = 0|H0)→ 1.

(ii) Let Fq be the qth quantile of F , then under the level (1 − q), then both J and J1
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reject H0 if J0 ≥ Fq. Below we write P (·|α) to denote the probability measure if the true

alpha is α. For any α ∈ Ā, if α ∈ A under the alternative, because J1 has power against A

and J ≥ J1, so

P (J ≥ Fq|α) ≥ P (J1 ≥ Fq|α)→ 1,

which implies that J also has power against A. We now consider the case when

α ∈ {α ∈ RN : max
j≤N
|αj| > 2δT min

j≤N
σj}.

First of all, since α ∈ {α ∈ RN : maxj≤N |αj| > 2δT minj≤N σj}, S 6= ∅. It follows from

P (S ⊂ Ŝ) → 1 that P (Ŝ 6= ∅) → 1. Lemma A.2 then implies λmin(Σ̂−1

Ŝ
) is bounded away

from zero with probability approaching one. Under the event S ⊂ Ŝ, we have ‖α̂Ŝ‖ ≥ ‖α̂S‖.
Hence there is a constant C > 0 so that with probability approaching one,

J0 ≥ CT‖α̂Ŝ‖
2 ≥ CT‖α̂S‖2 ≥ CT (‖αS‖ − ‖α̂S −αS‖)2.

On one hand, ‖αS‖2 ≥ minj∈S α
2
j |S|0 ≥ |S|0δ2

T4 minj σ
2
j . On the other hand,

‖α̂S −αS‖2 = Op(
logN

T
|S|0).

Since logN/T = o(δ2
T ), with probability approaching one, J0 ≥ minj σ

2
jCTδ

2
T , which is

C ′(log log T )(logN) for some constant C ′ > 0. Note that Jsq is standardized such that Fq =

O(1). For example, if a quadratic statistic α̂′Vα̂ is used, then Jsq = T (α̂′Vα̂−N)/
√

2N is

asymptotically normal, and Fq = zq. Hence P (J > Fq)→ 1 as J ≥ J0, which is stochastically

unbounded.

A.4 Proof of Theorem 4.1

It follows from Pesaran and Yamagata (2012 Section 4.4) that Jsq → N (0, 1). According

to Theorem 3.2, it suffices to show that Jsq has power against {‖α‖2 � N logN/T}. In fact,

‖α̂ − α‖ = Op(
√
N(logN)/T ). When ‖α‖2 � N logN/T , ‖α̂‖2 ≥ (‖α‖ − ‖α̂ − α‖)2 ≥

N logN
4T

with probability approaching one. So P (W ≥ CN logN)→ 1 for some C > 0, which

implies P (Jsq > C ′
√
N logN)→ 1 for some C ′ > 0. Thus the test is consistent since J ≥ Jsq.

A.5 Proof of Theorem 5.1

The proof of part (ii) is the same as that of Theorem 3.2. Moreover, it follows from

Pesaran and Yamagata (2012, Theorem 1) that (Tτα̂′Σ−1
u α̂−N)/

√
2N →d N (0, 1). So the
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theorem is proved by Proposition A.1 below.

Proposition A.1. Under the assumptions of Theorem 5.1, and under H0,

T α̂′(Σ−1
u − Σ̂−1

u )α̂√
N

= op(1)

Proof. The left hand side is equal to

T α̂′Σ−1
u (Σ̂u −Σu)Σ

−1
u α̂′√

N
+
T α̂′(Σ̂−1

u −Σ−1
u )(Σ̂u −Σu)Σ

−1
u α̂′√

N
≡ a+ b.

It was shown by Fan et al. (2011) that ‖Σ̂u − Σu‖ = Op(mN

√
logN
T

) = ‖Σ̂−1
u − Σ−1

u ‖. In

addition, ‖α̂‖2 = Op(N logN/T ). Hence b = Op(
m2

N

√
N(logN)2

T
) = op(1). It suffices to show

a = op(1). For simplicity, we consider the same setup as in Fan et al. (2011) in the sense

that SL = {(i, j) : (Σu)ij = 0}, and min(i,j)∈SU
|(Σu)ij| �

√
logN
T

, which corresponds to the

strictly sparse case. In addition, we consider the hard-thresholding covariance estimator.

The proof for the generalized sparsity case as in Rothman et al. (2009) is very similar.

Let sij = 1
T

∑T
t=1 ûitûjt and σij = (Σu)ij. Under hard-thresholding,

σ̂ij = (Σ̂u)ij =


sii, if i = j,

sij, if i 6= j, |sij| > C(siisjj
logN
T

)1/2

0, if i 6= j, |sij| ≤ C(siisjj
logN
T

)1/2

(A.1)

Write (α̂′Σ−1
u )i to denote the ith element of α̂′Σ−1

u . We have,

a =
T√
N

N∑
i=1

(α̂′Σ−1
u )2

i (σ̂ii − σii) +
T√
N

∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )i(α̂

′Σ−1
u )j(σ̂ij − σij)

+
T√
N

∑
(i,j)∈SL

(α̂′Σ−1
u )i(α̂

′Σ−1
u )jσ̂ij = a1 + a2 + a3.

Let us investigate ai, i = 1, 2, 3 separately.

First, we look at a3. Note that

P (a3 > T−1) ≤ P ( max
(i,j)∈SL

|σ̂ij| 6= 0) ≤ P ( max
(i,j)∈SL

|sij| > C(siisjj
logN

T
)1/2).

Because sii is uniformly (across i) bounded away from zero with probability approaching

one, and max(i,j)∈SL
|sij| = Op(

√
logN
T

). Hence for any ε > 0, when C in the threshold (A.1)
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is large enough, P (a3 > T−1) < ε, this implies a3 = op(1).

The proofs for a1, a2 = op(1) are given by the following lemmas.

Lemma A.3. Under H0, a1 = op(1).

Proof. We have a1 = T√
N

∑N
i=1(α̂′Σ−1

u )2
i

1
T

∑T
t=1(û2

it − Eu2
it), which is

T√
N

N∑
i=1

(α̂′Σ−1
u )2

i

1

T

T∑
t=1

(û2
it − u2

it) +
T√
N

N∑
i=1

(α̂′Σ−1
u )2

i

1

T

T∑
t=1

(u2
it − Eu2

it) = a11 + a12.

For a12, note that (α̂′Σ−1
u )i = 1

T

∑T
s=1(1− f ′sw)(u′sΣ

−1
u )i = 1

T

∑T
s=1(1− f ′sw)ξis. Hence

a12 =
T√
N

N∑
i=1

(
1

T

T∑
s=1

(1− f ′sw)ξis)
2 1

T

T∑
t=1

(u2
it − Eu2

it)

By Assumption 5.2 (i), Ea2
12 = o(1). On the other hand,

a11 =
T√
N

N∑
i=1

(α̂′Σ−1
u )2

i

1

T

T∑
t=1

(ûit−uit)2 +
2T√
N

N∑
i=1

(α̂′Σ−1
u )2

i

1

T

T∑
t=1

uit(ûit−uit) = a111 +a112.

Note that maxi≤N
1
T

∑T
t=1(ûit−uit)2 = Op(

√
logN
T

) by Lemma 3.1 of Fan et al. (2011). Hence

a111 ≤ Op(

√
logN

T
)
T√
N

N∑
i=1

(α̂′Σ−1
u )2

i = Op(

√
logN

N
)‖α̂′Σ−1

u ‖2 = op(1),

since ‖α̂‖2 = Op(
N logN

T
), ‖Σ−1

u ‖ = O(1) and N(logN)3 = o(T 2). To bound a112, note that

ûit − uit = α̂i − αi + (b̂i − bi)
′ft, max

i
‖α̂i − αi‖ = Op(

√
logN

T
) = max

i
‖b̂i − bi‖.

Also, maxi | 1T
∑T

t=1 uit| = Op(
√

logN
T

) = maxi ‖ 1
T

∑T
t=1 uitft‖. Hence

a112 =
2T√
N

N∑
i=1

(α̂′Σ−1
u )2

i

1

T

T∑
t=1

uit(α̂i − αi) +
2T√
N

N∑
i=1

(α̂′Σ−1
u )2

i (b̂i − bi)
′ 1

T

T∑
t=1

ftuit

≤ Op(
logN√
N

)‖α̂′Σ−1
u ‖2 = Op(

√
N logN

T
) = op(1).

In summary, a1 = a12 + a111 + a112 = op(1).

Lemma A.4. Under H0, a2 = op(1).
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Proof. We have a2 = T√
N

∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )i(α̂

′Σ−1
u )j

1
T

∑T
t=1(ûitûjt − Euitujt), which is

T√
N

∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )i(α̂

′Σ−1
u )j

(
1

T

T∑
t=1

(ûitûjt − uitujt) +
1

T

T∑
t=1

(uitujt − Euitujt)

)
= a21+a22.

a22 =
T√
N

∑
i 6=j,(i,j)∈SU

1

T

T∑
s=1

(1− f ′sw)ξis
1

T

T∑
k=1

(1− f ′kw)ξjk
1

T

T∑
t=1

(uitujt − Euitujt).

By Assumption 5.2 (ii), Ea2
22 = o(1). On the other hand, a21 = a211 + a212, where

a211 =
T√
N

∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )i(α̂

′Σ−1
u )j

1

T

T∑
t=1

(ûit − uit)(ûjt − ujt),

a212 =
2T√
N

∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )i(α̂

′Σ−1
u )j

1

T

T∑
t=1

uit(ûjt − ujt).

By the Cauchy-Schwarz inequality, maxij | 1T
∑T

t=1(ûit − uit)(ûjt − ujt)| = Op(
logN
T

). Hence

|a211| ≤ Op(
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(α̂′Σ−1
u )i||(α̂′Σ−1

u )j|

≤ Op(
logN√
N

)

 ∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )2

i

1/2 ∑
i 6=j,(i,j)∈SU

(α̂′Σ−1
u )2

j

1/2

= Op(
logN√
N

)
N∑
i=1

(α̂′Σ−1
u )2

i

∑
j:σij 6=0

1 ≤ Op(
logN√
N

)‖α̂′Σ−1
u ‖2mN = Op(

mN

√
N(logN)2

T
)

which is op(1). Similar to the proof of Lemma A.3, maxij | 1T
∑T

t=1 uit(ûjt− ujt)| = Op(
logN
T

).

|a212| ≤ Op(
logN√
N

)
∑

i 6=j,(i,j)∈SU

|(α̂′Σ−1
u )i||(α̂′Σ−1

u )j| = Op(
mN

√
N(logN)2

T
) = op(1).

In summary, a2 = a22 + a211 + a212 = op(1).

A.6 Proof of Lemma 5.1

Recall that ξt = Σ−1
u ut. The key observation is the following lemma.

Lemma A.5. ξit and ujt are independent if i 6= j.

Proof. Because ut is Gaussian, it suffices to show that cov(ξit, ujt) = 0 when i 6= j. Consider
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the vector (u′t, ξ
′
t)
′ = A(u′t,u

′
t)
′, where

A =

(
IN 0

0 Σ−1
u

)
.

Then cov(u′t, ξ
′
t) = Acov(u′t,u

′
t)A, which is(

IN 0

0 Σ−1
u

)(
Σu Σu

Σu Σu

)(
IN 0

0 Σ−1
u

)
=

(
Σu IN

IN Σ−1
u

)
.

This completes the proof.

A.6.1 Proof of Lemma 5.1, first statement

The proof for the first statement (Condition (i) of Assumption 5.2) is the same regardless

of the type of Σu in Assumption 5.4.

Let X = 1√
NT

∑N
i=1

∑T
t=1(u2

it − Eu2
it)(

1√
T

∑T
s=1 ξis(1 − f ′sw))2. For notational simplicity,

let

eit = u2
it − Eu2

it, ζis = ξis(1− f ′sw).

Then X = 1√
NT

∑N
i=1

∑T
t=1 eit(

1√
T

∑T
s=1 ζis)

2. In addition, Eξis = 0. We show respectively
1
T

(EX)2 = o(1) and 1
T

var(X) = o(1).

Note that ut is Gaussian and independent across t and also independent of ft, hence eit

is independent of ζjs if t 6= s, for any i, j ≤ N , which implies cov(eit, ζisζik) = 0 as long as

s, k 6= t.

Expectation

For the expectation,

EX =
1√
NT

N∑
i=1

T∑
t=1

cov(eit, (
1√
T

T∑
s=1

ζis)
2) =

1

T
√
NT

N∑
i=1

T∑
t=1

T∑
s=1

T∑
k=1

cov(eit, ζisζik)

=
1

T
√
NT

N∑
i=1

T∑
t=1

(cov(eit, ζ
2
it) + 2

∑
k 6=t

cov(eit, ζitζik))

=
1

T
√
NT

N∑
i=1

T∑
t=1

cov(eit, ζ
2
it) = O(

√
N

T
),

where the second last equality follows since Eeit = Eζit = 0 and when k 6= t cov(eit, ζitζik) =

Eeitζitζik = EeitζitEζik = 0. It then follows that 1
T

(EX)2 = O( N
T 2 ) = o(1), given N = o(T 2).

Variance
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Consider the variance. We have,

var(X) =
1

N

N∑
i=1

var(
1√
T

T∑
t=1

eit(
1√
T

T∑
s=1

ζis)
2)

+
1

NT 3

∑
i 6=j

∑
t,s,k,l,v,p≤T

cov(eitζisζik, ejlζjvζjp) = B1 +B2.

B1 can be bounded by the Cauchy-Schwarz inequality. Note that Eeit = Eζjs = 0,

B1 ≤
1

N

N∑
i=1

E(
1√
T

T∑
t=1

eit(
1√
T

T∑
s=1

ζis)
2)2 ≤ 1

N

N∑
i=1

[E(
1√
T

T∑
t=1

eit)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/2.

Hence B1 = O(1).

We now show 1
T
B2 = o(1). Once this is done, it implies 1

T
var(X) = o(1). The proof of

the lemma’s first statement is then completed because 1
T
EX2 = 1

T
(EX)2 + 1

T
var(X) = o(1).

Note that Eeit = Eζis = 0, and when t 6= s, eit ⊥ ζjs, eit ⊥ ejs, ζit ⊥ ζjs (independent)

for any i, j ≤ N . Therefore, it is straightforward to verify that if the set {t, s, k, l, v, p}
contains more than three distinct elements, then cov(eitζisζik, ejlζjvζjp) = 0. Hence if we

denote Ξ as the set of (t, s, k, l, v, p) such that {t, s, k, l, v, p} contains no more than three

distinct elements, then its cardinality satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and∑
t,s,k,l,v,p≤T

cov(eitζisζik, ejlζjvζjp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(eitζisζik, ejlζjvζjp).

Hence B2 = 1
NT 3

∑
i 6=j
∑

(t,s,k,l,v,p)∈Ξ cov(eitζisζik, ejlζjvζjp). Let us partition Ξ into Ξ1 ∪
Ξ2 where each element (t, s, k, l, v, p) in Ξ1 contains exactly three distinct indices,

while each element in Ξ2 contains less than three distinct indices. We know that
1

NT 3

∑
i 6=j
∑

(t,s,k,l,v,p)∈Ξ2
cov(eitζisζik, ejlζjvζjp) = O( 1

NT 3N
2T 2) = O(N

T
), which implies

1

T
B2 =

1

NT 4

∑
i 6=j

∑
(t,s,k,l,v,p)∈Ξ1

cov(eitζisζik, ejlζjvζjp) +Op(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1B2h. Each of these five terms

is defined and analyzed separately as below.

B21 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EeitejtEζ
2
isEζ

2
jl ≤ O(

1

NT
)
∑
i 6=j

|Eeitejt|.

Note that if (Σu)ij = 0, uit and ujt are independent, and hence Eeitejt = 0. This implies
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∑
i 6=j |Eeitejt| ≤ O(1)

∑
i 6=j,(i,j)∈SU

1 = O(N). Hence B21 = o(1).

B22 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EeitζitEζisejsEζ
2
jl.

By Lemma A.5, ujs and ξis are independent for i 6= j. Also, ujs and fs are independent,

which implies ejs and ζis are independent. So Eejsζis = 0. It follows that B22 = 0.

B23 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EeitζitEζisζjsEejlζjl = O(
1

NT
)
∑
i 6=j

|Eζisζjs|

= O(
1

NT
)
∑
i 6=j

|EξisξjsE(1− f ′sw)2| = O(
1

NT
)
∑
i 6=j

|Eξisξjs|.

By the definition ξs = Σ−1
u us, cov(ξs) = Σ−1

u . Hence Eξisξjs = (Σ−1
u )ij, which implies

B23 ≤ O( N
NT

)‖Σ−1
u ‖ = o(1).

B24 =
1

NT 4

∑
i 6=j

T∑
t=1

∑
s 6=t

∑
l 6=s,t

EeitejtEζisζjsEζilζjl = O(
1

T
),

which is analyzed in the same way as B21.

Finally, B25 = 1
NT 4

∑
i 6=j
∑T

t=1

∑
s6=t
∑

l 6=s,tEeitζjtEζisejsEζilζjl = 0, because Eζisejs = 0

when i 6= j, following from Lemma A.5. Therefore, 1
T
B2 = o(1) +O( N

T 2 ) = o(1).

A.6.2 Proof of Lemma 5.1, second statement

For notational simplicity, let eijt = uitujt − Euitujt. Because of the serial independence

and the Gaussianity, cov(eijt, ζlsζnk) = 0 when s, k 6= t, for any i, j, l, n ≤ N . In addition,

define a set

H = {(i, j) ∈ SL : i 6= j}.

Then by the sparsity assumption,
∑

(i,j)∈H 1 = DN = O(N). Now let

Z =
1√
NT

∑
(i,j)∈H

T∑
t=1

(uitujt − Euitujt)[
1√
T

T∑
s=1

ξis(1− f ′sw)][
1√
T

T∑
k=1

ξjk(1− f ′kw)]

=
1√
NT

∑
(i,j)∈H

T∑
t=1

eijt[
1√
T

T∑
s=1

ζis][
1√
T

T∑
k=1

ζjk] =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

eijtζisζjk.

We respectively show 1
T

(EZ)2 = o(1) = 1
T

var(Z).
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Expectation

The proof for the expectation is the same regardless of the type of Σu in Assumption

5.4, and is very similar to that of the first statement of Lemma 5.1. In fact,

EZ =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

cov(eijt, ζisζjk) =
1

T
√
NT

∑
(i,j)∈H

T∑
t=1

cov(eijt, ζ
2
it).

Because
∑

(i,j)∈H 1 = O(N), EZ = O(
√

N
T

). Thus 1
T

(EZ)2 = o(1).

Variance

For the variance, we have

var(Z) =
1

T 3N

∑
(i,j)∈H

var(
T∑
t=1

T∑
s=1

T∑
k=1

eijtζisζjk)

+
1

T 3N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

∑
t,s,k,l,v,p≤T

cov(eijtζisζjk, emnlζmvζnp)

= A1 + A2.

By the Cauchy-Schwarz inequality and the serial independence of eijt,

A1 ≤
1

N

∑
(i,j)∈H

E[
1√
T

T∑
t=1

eijt
1√
T

T∑
s=1

ζis
1√
T

T∑
k=1

ζjk]
2

≤ 1

N

∑
(i,j)∈H

[E(
1√
T

T∑
t=1

eijt)
4]1/2[E(

1√
T

T∑
s=1

ζis)
8]1/4[E(

1√
T

T∑
k=1

ζjk)
8]1/4.

So A1 = O(1).

Note that Eeijt = Eζis = 0, and when t 6= s, eijt ⊥ ζms, eijt ⊥ emns, ζit ⊥ ζjs (inde-

pendent) for any i, j,m, n ≤ N . Therefore, it is straightforward to verify that if the set

{t, s, k, l, v, p} contains more than three distinct elements, then cov(eijtζisζjk, emnlζmvζnp) =

0. Hence for the same set Ξ defined as before, it satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and∑
t,s,k,l,v,p≤T

cov(eijtζisζjk, emnlζmvζnp) =
∑

(t,s,k,l,v,p)∈Ξ

cov(eijtζisζjk, emnlζmvζnp).

We proceed by studying the two cases of Assumption 5.4 separately, and show that in

both cases 1
T
A2 = o(1). Once this is done, because we have just shown A1 = O(1), then

1
T

var(Z) = o(1). The proof is then completed because 1
T
EZ2 = 1

T
(EZ)2 + 1

T
var(Z) = o(1).

When DN = O(
√
N)

Because |Γ|0 ≤ CT 3 and |H|0 = DN = O(
√
N), and |cov(eijtζisζjk, emnlζmvζnp)| is
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bounded uniformly in i, j,m, n ≤ N , we have

1

T
A2 =

1

T 4N

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p∈Ξ

cov(eijtζisζjk, emnlζmvζnp) = O(
1

T
).

When Dn = O(N), and mN = O(1)

Similar to the proof of the first statement, for the same set Ξ that contains exactly three

distinct indices in each of its element, (recall |H|0 = O(N))

1

T
A2 =

1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

∑
t,s,k,l,v,p∈Ξ1

cov(eijtζisζjk, emnlζmvζnp) +O(
N

T 2
).

The first term on the right hand side can be written as
∑5

h=1 A2h. Each of these five terms

is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when Σu has bounded number of nonzero entries in each

row (mN = O(1)). Let |S|0 denote the number of elements in a set S if S is countable. For

any i ≤ N , let A(i) = {j ≤ N : cov(uit, ujt) 6= 0} = {j ≤ N : (i, j) ∈ SU}.

Lemma A.6. Suppose mN = O(1). For any i, j ≤ N , let B(i, j) be a set of k ∈ {1, ..., N}
such that:

(i) k /∈ A(i) ∪ A(j)

(ii) there is p ∈ A(k) such that cov(uitujt, uktupt) 6= 0. Then maxi,j≤N |B(i, j)|0 = O(1).

Proof. First we note that if B(i, j) = ∅, then |B(i, j)|0 = 0. If it is not empty, for any

k ∈ B(i, j), by the Gaussianity, ukt is independent of (uit, ujt). Hence if p ∈ A(k) is such that

cov(uitujt, uktupt) 6= 0, we must have p ∈ A(i)∪A(j). In other words, there is p ∈ A(i)∪A(j)

such that cov(ukt, upt) 6= 0, which implies k ∈ A(p). Hence,

k ∈
⋃

p∈A(i)∪A(j)

A(p) ≡M(i, j),

and thus B(i, j) ⊂ M(i, j). Because mN = O(1), maxi≤N |A(i)|0 = O(1), which implies

maxi,j |M(i, j)|0 = O(1), yielding the result.

Now we define and bound each of A2h.

A21 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EeijtemntEζisζjsEζmlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j)

|Eeijtemnt|
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≤ O(
1

NT
)
∑

(i,j)∈H

(
∑

m∈A(i)∪A(j)

∑
n∈A(m)

+
∑

m/∈A(i)∪A(j)

∑
n∈A(m)

)|cov(uitujt, umtunt)|.

The first term is O( 1
T

) because |H|0 = O(N) and |A(i)|0 is bounded uniformly in i ≤ N. For

the second term, if m /∈ A(i)∪A(j), n ∈ A(m) and cov(uitujt, umtunt) 6= 0, then m ∈ B(i, j).

Hence the second term is bounded by O( 1
NT

)
∑

(i,j)∈H
∑

m∈B(i,j)

∑
n∈A(m) |cov(uitujt, umtunt)|,

which is also O( 1
T

) by Lemma A.6. Hence A21 = o(1).

Similarly, applying Lemma A.6 as for A21, we can show

A22 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EeijtemntEζisζmsEζjlζnl = o(1).

The term A23 is defined as

A23 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EeijtζitEζjsemnsEζmlζnl

≤ O(
1

NT
)

N∑
j=1

∑
i∈A(j)

1
∑

(m,n)∈H,(m,n)6=(i,j)

|Eζjsemns|

≤ O(
2

NT
)

N∑
j=1

∑
n∈A(j)

|Eζjsejns|+O(
1

NT
)

N∑
j=1

∑
m,n 6=j

|Eζjsemns| = a+ b.

Term a = O( 1
T

). For b, note that Lemma A.5 implies that when m,n 6= j, umsuns and ξjs

are independent because of the Gaussianity. Also because us and fs are independent, hence

ζjs and emms are independent, which implies that b = 0. Hence A23 = o(1).

The same argument also implies

A24 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s6=t

∑
l 6=t,s

EeijtζmtEζisemnsEζilζnl = o(1)

Finally,

A25 =
1

NT 4

∑
(i,j)∈H,

∑
(m,n)∈H,(m,n)6=(i,j),

T∑
t=1

∑
s 6=t

∑
l 6=t,s

EeijtζitEζisζmsEemnlζnl

≤ O(
1

NT
)
∑

(i,j)∈H,

∑
(m,n)∈H,(m,n) 6=(i,j)

|EeijtζitEζisζmsEemnlζnl|

≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|Eζisζms| ≤ O(
1

NT
)

N∑
i=1

N∑
m=1

|(Σ−1
u )im|E(1− f ′sw)2
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≤ O(
N

NT
)‖Σ−1

u ‖1 = o(1).

In summary, 1
T
A2 = o(1) +O( N

T 2 ) = o(1). This completes the proof.
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