Power Enhancement Principle in High Dimensional Cross-Sectional Tests

Yuan Liao

University of Maryland

with Jianqing Fan and Jiawei Yao

September 24, 2014

イロト 不得下 イヨト イヨト

Test

$$H_0: \theta = 0, \quad \dim(\theta) = N \gg T$$

• sparse alternatives: θ is a sparse vector.

<ロト < 回 > < 回 > < 回 > < 回 > .

э

Sac

$$y_{it} = \theta_i + \mathbf{b}'_i \mathbf{f}_t + u_{it}, \quad i = 1, ..., N, \quad t = 1, ..., T,$$

Mean-variance efficiency:

$$H_0: \theta_1 = \ldots = \theta_N = 0$$

Numerical evidence:

- Estimate Fama-French-three-factor regression, based on rolling windows from previous *T* = 60 months, Monthly returns of S&P 500 from Jan. 1980 to Dec. 2012.
- On average, N = 618, and 7.3 stocks are "significant"
- Market ineff. is mainly due to a few stocks with extra returns.

$$y_{it} = \alpha + \mathbf{x}'_{it}\beta + u_{it}, \quad i = 1, ..., n, \quad t = 1, ..., T,$$

Cross-sectional independence:

$$H_0: \operatorname{cov}(u_{it}, u_{jt}) = 0, \quad i \neq j$$

 $\boldsymbol{\theta}$: vector of cross-sectional correlations.

Sparse alternatives:

Often, the cross-sectional correlations are weak, yielding sparse covariance matrices

$$\Sigma_u = (\operatorname{cov}(u_{it}, u_{jt}))$$

イロト イポト イヨト イヨト

$$\frac{a_{\mathcal{T}}\widehat{\theta}' \mathbf{V} \widehat{\theta} - N}{\sqrt{2N}} \rightarrow^{d} \mathcal{N}(0,1)$$

Two main challenges

- Estimating **V** is challenging when N > T.
- More fundamentally, has low power when ||θ|| is not large (sparse alternatives).

ヘロト 人間 トイヨト 人居 トー

$$a_T \widehat{ heta}' \mathbf{V} \widehat{ heta} \sim \chi^2_{N} (\| heta \|_2^2)$$

Theorem

When $T = o(\sqrt{N})$, the Wald test has low power if

$$\Theta_a \subset \{\theta \in \Theta : \sum_{j=1}^N \mathbb{1}\{\theta_j \neq 0\} = o(\sqrt{N}/T)\}.$$

The asymptotic power = size.

イロト イポト イヨト イヨト

$$J=J_0+J_1, \quad J_0\geq 0$$

- *J*₁ is a test with correct size, but small power under sparse alternative.
- $P(J_0 = 0 | H_0) \to 1$.
- J_0 is stochastically unbounded under sparse alternative.

Hence power is enhanced without sacrificing size.

ヘロト 不得 トイヨト 不良トー

Construction of J₀

Screening set

$$\begin{split} \widehat{S} &= \{j : |\widehat{\theta}_j| / \widehat{\operatorname{var}}^{1/2} (\widehat{\theta}_j) > \delta_{N,T}, j = 1, ..., N \} \\ J_0 &= \sqrt{N} \sum_{j \in \widehat{S}} \widehat{\theta}_j^2 \widehat{\operatorname{var}}^{-1} (\widehat{\theta}_j), \end{split}$$

• $\delta_{N,T}$ dominates the uniform estimation error:

$$P(\max_{j\leq N}|\widehat{\theta}_j - \theta_j|/\widehat{\operatorname{var}}^{1/2}(\widehat{\theta}_j) < \delta_{N,T}/2|H_0 \cup H_a) \to 1.$$
 (1)

• Under H_0 , $\max_j |\widehat{\theta}_j| < \widehat{\operatorname{var}}^{1/2}(\widehat{\theta}_j) \delta_{N,T}/2$

$$P(J_0=0|H_0)\to 1.$$

イロト イポト イヨト イヨト

<u>Theorem</u> Suppose $J_1 \rightarrow^d F$ under H_0 and has power against $H_a : \theta \in \Omega$, then $\blacksquare J_0 + J_1 \rightarrow^d F$ under H_0 $\blacksquare J_0 + J_1$ has power against

$$H_a: \Omega \cup \{ \theta \in \mathbb{R}^N : \max_{j \le N} |\theta_j| > C\delta_T \}$$

The power enhancement achieved uniformly over θ

If
$$J_1 =$$
sd. Wald, $\Omega = \{ \|\theta\|^2 \ge C\delta_T^2 N/T \}$.

イロト イポト イヨト イヨト

Selection of significant components

$$\widehat{S}$$
 mimics $S = \left\{ j : rac{|m{ heta}_j|}{\sigma_j} > 2\delta_T, j = 1, ..., N
ight\},$ $P(\widehat{S} = S) o 1.$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

3

DQC

$$y_{it} = \theta_i + \mathbf{b}'_i \mathbf{f}_t + u_{it}, \quad i = 1, ..., N, \quad t = 1, ..., T,$$

$$H_0: \theta_1 = \ldots = \theta_N = 0$$

• Construction of J_1 : Pesaran and Yamagata 12:

$$\frac{\sqrt{T}a_{f}\widehat{\theta}'\mathbf{V}\widehat{\theta}-N}{\sqrt{2N}}|H_{0}\rightarrow^{d}\mathcal{N}(0,1)$$

イロト イポト イヨト イヨト

э

 $\mathbf{V} = \Sigma_u^{-1}$ under homoskedasticity.

Sparse estimation of Σ_u (Fan et al. 2011):

• Covariance matrix is conditionally sparse (given factors).

$$\mathbf{S}_{u} = \left(\frac{1}{T}\sum_{t=1}^{T}\hat{u}_{it}\hat{u}_{jt}\right)$$

$$\widehat{\Sigma}_{u} = (S_{u,ij} I(S_{u,ij} > C \sqrt{\frac{\log N}{T}}))$$

• Finite sample positive definite.

$$J_{1} = \frac{\sqrt{T}a_{f}\widehat{\theta}'\widehat{\Sigma}_{u}^{-1}\widehat{\theta} - N}{\sqrt{2N}c}|H_{0} \rightarrow^{d} \mathscr{N}(0,1)$$

イロト 不得下 イヨト イヨト

A technical challenge

We need

$$\frac{T\widehat{\theta}'(\widehat{\Sigma}_{u}^{-1}-\Sigma_{u}^{-1})\widehat{\theta}}{\sqrt{N}}=o_{p}(1)$$

Bound:

$$\frac{T}{\sqrt{2N}} \|\widehat{\theta}\|^2 \|\Sigma_u^{-1} - \widehat{\Sigma}_u^{-1}\| = \frac{T}{\sqrt{N}} \times \frac{1}{T} \times N \times \frac{1}{\sqrt{T}} = \sqrt{\frac{N}{T}}$$

Instead, need to consider a weighted convergence directly

$$\widehat{\theta}'(\Sigma_u^{-1} - \widehat{\Sigma}_u^{-1})\widehat{\theta}$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Final test statistic:

$$J = \underbrace{\sqrt{N} \sum_{j \in \widehat{S}} \widehat{\theta}_{j}^{2} \widehat{var}^{-1}(\widehat{\theta}_{j})}_{J_{0}} + \underbrace{\frac{cT\widehat{\theta}'\widehat{\Sigma}_{u}^{-1}\widehat{\theta} - N}{\sqrt{2N}}_{J_{1}}}_{J_{1}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

= 990

$$y_{it} = \alpha + x'_{it}\beta + \mu_i + u_{it}, \quad H_0: \Sigma_{u,ij} = 0, i \neq j$$

(Breusch Pagan, Pesaran et al. 08, Baltagi et al. 12)

- Strong correlations: <u>factor structure</u>, <u>cross-sec. AR.</u>
- Weak correlations: sparse alternative, block diagonal
- $\sum_{i \neq j} \hat{cov}(u_{it}, u_{jt})^2$ has low power under weak correlations.
- Power enhancement:

$$J_0 = \sum_{ij} \hat{
ho}_{ij}^2 \mathbf{1}(|\hat{
ho}_{ij}| > \delta_{N,T})$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Numerical Studies

Three-factor-model calibrated by the daily returns of top 100 constituents on S&P 500

 Σ_u is generated as a block-diagonal covariance.

Two alternatives:

Sparse alternative:

$$\alpha_i = \begin{cases} 0.3, & i \leq \frac{N}{7} \\ 0, & i > \frac{N}{7} \end{cases}$$

Weak signal:

$$\alpha_i = \begin{cases} \sqrt{\frac{\log N}{T}}, & i \leq N^{0.4} \\ 0, & i > N^{0.4} \end{cases}$$

イロト イポト イヨト イヨト

Table: Size and power (%) of tests for simulated model

		H ₀			H_a^1			H_a^2	
Ν	J _{wald}	PE	$\widehat{S} = \emptyset$	J _{wald}	PE	$\widehat{S} = \emptyset$	J _{wald}	PE	$\widehat{S} = \emptyset$
T = 300									
500	5.2	5.4	99.8	48.0	97.6	2.6	69.0	76.4	64.6
800	5.4	6.2	99.2	60.0	99.0	1.2	69.2	76.2	62.2
1000	4.0	4.6	99.0	54.6	98.4	2.6	75.8	82.6	63.2
1200	5.0	5.4	99.6	64.2	99.2	0.8	74.2	81.0	63.6
T = 500									
500	5.8	6.0	99.4	33.8	99.2	0.8	73.4	77.2	77.8
800	4.8	5.0	99.8	67.4	100.0	0.0	72.4	76.4	75.0
1000	5.0	5.2	99.8	65.0	100.0	0.2	76.8	80.4	74.0
1200	5.2	5.2	100.0	58.0	100.0	0.2	74.2	78.4	≣ 77.0 °

Yuan Liao (University of Maryland)

Volatility of large portfolios

Empirical study

- Monthly returns of S&P 500 constituents from Jan. 1980 to Dec. 2012.
- Estimate Fama-French-three-factor regression
- Estimate and test based on rolling windows from previous T = 60 months
- Screening set:
 - On average, N = 618, and 7.3 stocks are selected by \widehat{S}
 - 81% of selected alphas are positive
 - Market inefficiency is mainly due to a few stocks with extra returns.

・ロト ・ 同ト ・ ヨト ・ ヨト

= nar

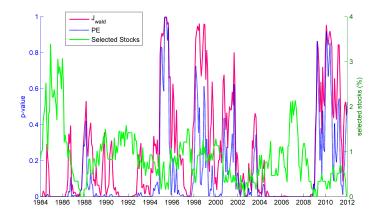
Table: Variable descriptive statistics for the FF-3 model

Variables	Mean	Std dev.	Median	Min	Max
Ντ	617.70	26.31	621	574	665
$ \widehat{\boldsymbol{S}} _{0}$	5.49	5.48	4	0	37
$\overline{\widehat{\alpha}}_{i}^{\tau}(\%)$	0.3729	0.1990	0.3338	-0.1735	0.9763
$\overline{\widehat{lpha}}_{i\in\widehat{\mathcal{S}}}^{ au}(\%)$	3.3980	1.7210	3.7181	-6.2903	8.1299
<i>p</i> -value of J _{wald}	0.1861	0.2947	0.0150	0	0.9926
<i>p</i> -value of PEM	0.1256	0.2602	0.0003	0	0.9836

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

= 990

Figure: p-values and number of selected stocks



Screening test enhances the power

Enhances power under sparse alternatives, maintaining correct size

High dimensional Wald test:

Estimate large error covariance under *conditional sparsity*.

Effect of estimation is negligible, but technically involved

Empirical study:

Market inefficiency is mainly due to a few stocks with extra returns.

イロト イポト イヨト イヨト