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High dimensional sparse alternatives

Test

H0 : θ = 0, dim(θ) = N� T

sparse alternatives: θ is a sparse vector.
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Example I

yit = θi + b′i ft + uit , i = 1, ...,N, t = 1, ...,T ,

Mean-variance efficiency:

H0 : θ1 = ... = θN = 0

Numerical evidence:

Estimate Fama-French-three-factor regression, based on

rolling windows from previous T = 60 months, Monthly

returns of S&P 500 from Jan. 1980 to Dec. 2012.

On average, N = 618, and 7.3 stocks are “significant”

Market ineff. is mainly due to a few stocks with extra returns.
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Example II

yit = α + x′itβ + uit , i = 1, ...,n, t = 1, ...,T ,

Cross-sectional independence:

H0 : cov(uit ,ujt) = 0, i 6= j

θ : vector of cross-sectional correlations.

Sparse alternatives:

Often, the cross-sectional correlations are weak, yielding sparse

covariance matrices

Σu = (cov(uit ,ujt))
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Standardized Wald test

aT θ̂
′
Vθ̂−N√
2N

→d N (0,1)

Two main challenges

Estimating V is challenging when N > T .

More fundamentally, has low power when ‖θ‖ is not large

(sparse alternatives).
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Low power of Wald test

aT θ̂
′
Vθ̂∼ χ

2
N(‖θ‖2

2)

Theorem

When T = o(
√

N), the Wald test has low power if

Θa ⊂ {θ ∈Θ :
N

∑
j=1

1{θj 6= 0}= o(
√

N/T )}.

The asymptotic power = size.
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Power enhancement principle

J = J0 + J1, J0 ≥ 0

J1 is a test with correct size, but small power under sparse

alternative.

P(J0 = 0|H0)→ 1.

J0 is stochastically unbounded under sparse alternative.

�Hence power is enhanced without sacrificing size.
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Construction of J0

Screening set

Ŝ = {j : |θ̂j |/v̂ar1/2(θ̂j) > δN,T , j = 1, ...,N}

J0 =
√

N ∑
j∈Ŝ

θ̂
2
j v̂ar−1(θ̂j),

δN,T dominates the uniform estimation error:

P(max
j≤N
|θ̂j −θj |/v̂ar1/2(θ̂j) < δN,T/2|H0∪Ha)→ 1. (1)

Under H0, maxj |θ̂j |< v̂ar1/2(θ̂j)δN,T/2

P(J0 = 0|H0)→ 1.
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Power enhancement principle

Theorem Suppose J1→d F under H0 and has power against

Ha : θ ∈ Ω, then

�J0 + J1→d F under H0

�J0 + J1 has power against

Ha : Ω∪{θ ∈ RN : max
j≤N
|θj |> CδT}

The power enhancement achieved uniformly over θ

If J1 = sd. Wald, Ω = {‖θ‖2 ≥ Cδ2
T N/T}.
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Selection of significant components

Ŝ mimics

S =

{
j :
|θj |
σj

> 2δT , j = 1, ...,N

}
,

P(Ŝ = S)→ 1.
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Testing in factor models

yit = θi + b′i ft + uit , i = 1, ...,N, t = 1, ...,T ,

H0 : θ1 = ... = θN = 0

Construction of J1: Pesaran and Yamagata 12:
√

Taf θ̂
′Vθ̂−N√
2N

|H0→d N (0,1)

V = Σ−1
u under homoskedasticity.
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Sparse estimation of Σu (Fan et al. 2011):

Covariance matrix is conditionally sparse (given factors).

Su = (
1
T

T

∑
t=1

ûit ûjt)

Σ̂u = (Su,ij I(Su,ij > C

√
logN

T
))

Finite sample positive definite.

J1 =

√
Taf θ̂

′Σ̂
−1
u θ̂−N√

2Nc
|H0→d N (0,1)
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A technical challenge

We need
T θ̂
′
(Σ̂
−1
u −Σ−1

u )θ̂√
N

= op(1)

�Bound:

T√
2N
‖θ̂‖2‖Σ−1

u − Σ̂
−1
u ‖=

T√
N
× 1

T
×N× 1√

T
=

√
N
T

�Instead, need to consider a weighted convergence directly

θ̂
′
(Σ−1

u − Σ̂
−1
u )θ̂
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�Final test statistic:

J =
√

N ∑
j∈Ŝ

θ̂
2
j v̂ar−1(θ̂j)︸ ︷︷ ︸
J0

+
cT θ̂′Σ̂−1

u θ̂−N√
2N︸ ︷︷ ︸
J1
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Fixed Effect Panel Data

yit = α + x ′itβ + µi + uit , H0 : Σu,ij = 0, i 6= j

(Breusch Pagan, Pesaran et al. 08, Baltagi et al. 12)

Strong correlations: factor structure, cross-sec. AR.

Weak correlations: sparse alternative, block diagonal

∑i 6=j ˆcov(uit ,ujt)
2 has low power under weak correlations.

Power enhancement:

J0 = ∑
ij

ρ̂
2
ij 1(|ρ̂ij |> δN,T )
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Numerical Studies

�Three-factor-model calibrated by the daily returns of top 100

constituents on S&P 500

�Σu is generated as a block-diagonal covariance.

�Two alternatives:

Sparse alternative:

αi =

0.3, i ≤ N
T

0, i > N
T

Weak signal:

αi =


√

logN
T , i ≤ N0.4

0, i > N0.4
.
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Table: Size and power (%) of tests for simulated model

H0 H1
a H2

a

N Jwald PE Ŝ = /0 Jwald PE Ŝ = /0 Jwald PE Ŝ = /0

T = 300

500 5.2 5.4 99.8 48.0 97.6 2.6 69.0 76.4 64.6

800 5.4 6.2 99.2 60.0 99.0 1.2 69.2 76.2 62.2

1000 4.0 4.6 99.0 54.6 98.4 2.6 75.8 82.6 63.2

1200 5.0 5.4 99.6 64.2 99.2 0.8 74.2 81.0 63.6

T = 500

500 5.8 6.0 99.4 33.8 99.2 0.8 73.4 77.2 77.8

800 4.8 5.0 99.8 67.4 100.0 0.0 72.4 76.4 75.0

1000 5.0 5.2 99.8 65.0 100.0 0.2 76.8 80.4 74.0

1200 5.2 5.2 100.0 58.0 100.0 0.2 74.2 78.4 77.0
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Empirical study

Monthly returns of S&P 500 constituents from Jan. 1980 to

Dec. 2012.

Estimate Fama-French-three-factor regression

Estimate and test based on rolling windows from previous

T = 60 months

Screening set:

On average, N = 618, and 7.3 stocks are selected by Ŝ

81% of selected alphas are positive

Market inefficiency is mainly due to a few stocks with extra returns.
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Table: Variable descriptive statistics for the FF-3 model

Variables Mean Std dev. Median Min Max

Nτ 617.70 26.31 621 574 665

|Ŝ|0 5.49 5.48 4 0 37

α̂
τ

i (%) 0.3729 0.1990 0.3338 -0.1735 0.9763

α̂
τ

i∈Ŝ(%) 3.3980 1.7210 3.7181 -6.2903 8.1299

p-value of Jwald 0.1861 0.2947 0.0150 0 0.9926

p-value of PEM 0.1256 0.2602 0.0003 0 0.9836
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Figure: p-values and number of selected stocks
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Summary

Screening test enhances the power

� Enhances power under sparse alternatives, maintaining

correct size

High dimensional Wald test:

� Estimate large error covariance under conditional sparsity.

� Effect of estimation is negligible, but technically involved

Empirical study:

� Market inefficiency is mainly due to a few stocks with extra

returns.
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