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APPENDIX D: AUXILIARY LEMMAS FOR THE PROOF OF PROPOSITION 4.2

DEFINE et = Σ
−1
u ut = (e1t � � � � � eNt)

′, which is an N-dimensional vector with
mean zero and covariance Σ

−1
u , whose entries are stochastically bounded. Let
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One of the key steps of proving a1 = oP(1)�a2 = oP(1) is to establish the
following two convergences:
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[

1√
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s=1

eis
(
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T∑
k=1

ejk
(
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)]∣∣∣∣∣
2

= o(1)�

where SU = {(i� j) : (Σu)ij �= 0}. The proofs of (D.1) and (D.2) are given later
below.

LEMMA D.1: Under H0, a1 = oP(1).
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PROOF: We have a1 = T√
N
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For a12, note that
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where c = (1 − f̄′w)−1 = OP(1). Hence
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By (D.1), Ea2
12 = o(1). On the other hand,
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N
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uit(ûit − uit)

= a111 + a112�

Note that maxi≤N
1
T

∑T

t=1(ûit −uit)
2 = OP(

logN
T

) by Lemma 3.1 of Fan, Liao, and
Mincheva (2011). Since ‖̂θ‖2 = OP(

N logN
T

), ‖Σ−1
u ‖2 = O(1), and N(logN)3 =

o(T 2),
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(
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To bound a112, note that

ûit − uit = θ̂i − θi + (̂bi − bi)
′ft �

max
i

|θ̂i − θi| = OP

(√
logN
T

)
= max

i
‖̂bi − bi‖�
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Also, maxi | 1
T
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In summary, a1 = a12 + a111 + a112 = oP(1). Q.E.D.

LEMMA D.2: Under H0, a2 = oP(1).

PROOF: We have a2 = T√
N
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i �=j�(i�j)∈SU (̂θ
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(ûit ûjt − uitujt)�

Under H0, Σ−1
u θ̂ = 1

T
(1 − f̄′w)−1
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u ut , we have
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By (D.2), Ea2
22 = o(1).

On the other hand, a21 = a211 + a212, where

a211 = T√
N

∑
i �=j�(i�j)∈SU

(̂
θ

′
Σ

−1
u

)
i

(̂
θ

′
Σ

−1
u

)
j

1
T

T∑
t=1
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By the Cauchy–Schwarz inequality, maxij | 1
T
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). Hence
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N
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(̂
θ

′
Σ

−1
u

)2

i

∑
j : (Σu)ij �=0

1
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Similarly to the proof of term a112 in Lemma D.1, maxij | 1
T

∑T

t=1 uit(ûjt −
ujt)| = OP(

logN
T

),

|a212| ≤ OP

(
logN√

N

) ∑
i �=j�(i�j)∈SU

∣∣(̂θ′
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)
i
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j
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(
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√
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T
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In summary, a2 = a22 + a211 + a212 = oP(1). Q.E.D.

D.1. Proof of (D.1) and (D.2)

For any index set A, we let |A|0 denote its number of elements.

LEMMA D.3: Recall that et = Σ
−1
u ut . eit and ujt are independent if i �= j.
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PROOF: Because ut is Gaussian, it suffices to show that cov(eit� ujt)= 0 when
i �= j. Consider the vector (u′

t � e′
t)

′ = A(u′
t �u′

t)
′, where

A =
(

IN 0
0 Σ

−1
u

)
�

Then cov(u′
t � e′
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t �u′
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)(
Σu Σu

Σu Σu

)(
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−1
u

)
=

(
Σu IN
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−1
u

)
�

This completes the proof. Q.E.D.

PROOF OF (D.1): Let X = 1√
NT

∑N

i=1

∑T

t=1(u
2
it −Eu2

it)(
1√
T

∑T

s=1 eis(1− f′sw))
2.

The goal is to show EX2 = o(T). We show respectively 1
T
(EX)2 = o(1) and

1
T

var(X)= o(1). The proof of (D.1) is the same regardless of the type of spar-
sity in Assumption 4.2. For notational simplicity, let

ξit = u2
it −Eu2

it � ζis = eis
(
1 − f′sw

)
�

Then X = 1√
NT

∑N

i=1

∑T

t=1 ξit(
1√
T

∑T

s=1 ζis)
2. Because of the serial indepen-

dence, ξit is independent of ζjs if t �= s, for any i� j ≤ N , which implies
cov(ξit� ζisζik) = 0 as long as either s �= t or k �= t.

Expectation
For the expectation,

EX = 1√
NT

N∑
i=1

T∑
t=1

cov

(
ξit�

(
1√
T

T∑
s=1

ζis

)2)

= 1

T
√
NT

N∑
i=1

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξit� ζisζik)

= 1

T
√
NT

N∑
i=1

T∑
t=1

(
cov

(
ξit� ζ

2
it

) + 2
∑
k �=t

cov(ξit� ζitζik)

)

= 1

T
√
NT

N∑
i=1

T∑
t=1

cov
(
ξit� ζ

2
it

) =O

(√
N

T

)
�

where the second last equality follows since Eξit = Eζit = 0 and when k �= t,
cov(ξit� ζitζik) = Eξitζitζik = EξitζitEζik = 0. It then follows that 1

T
(EX)2 =

O( N
T 2 )= o(1), given N = o(T 2).
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Variance
Consider the variance. We have

var(X) = 1
N

N∑
i=1

var

(
1√
T

T∑
t=1

ξit

(
1√
T

T∑
s=1

ζis

)2)

+ 1
NT 3

∑
i �=j

∑
t�s�k�l�v�p≤T

cov(ξitζisζik� ξjlζjvζjp)

= B1 +B2�

B1 can be bounded by the Cauchy–Schwarz inequality. Note that Eξit =
Eζjs = 0,

B1 ≤ 1
N

N∑
i=1

E

(
1√
T

T∑
t=1

ξit

(
1√
T

T∑
s=1

ζis

)2)2

≤ 1
N

N∑
i=1

[
E

(
1√
T

T∑
t=1

ξit

)4]1/2[
E

(
1√
T

T∑
s=1

ζis

)8]1/2

�

Hence B1 =O(1).
We now show 1

T
B2 = o(1). Once this is done, it implies 1

T
var(X)= o(1). The

proof of (D.1) is then completed because 1
T
EX2 = 1

T
(EX)2 + 1

T
var(X)= o(1).

For two variables X�Y , write X ⊥ Y if they are independent. Note that
Eξit = Eζis = 0, and when t �= s, ξit ⊥ ζjs, ξit ⊥ ξjs, ζit ⊥ ζjs for any i� j ≤ N .
Therefore, it is straightforward to verify that if the set {t� s�k� l� v�p} contains
more than three distinct elements, then cov(ξitζisζik� ξjlζjvζjp) = 0. Hence if
we denote Ξ as the set of (t� s�k� l� v�p) such that {t� s�k� l� v�p} contains no
more than three distinct elements, then its cardinality satisfies: |Ξ|0 ≤ CT 3 for
some C > 1, and∑

t�s�k�l�v�p≤T

cov(ξitζisζik� ξjlζjvζjp)=
∑

(t�s�k�l�v�p)∈Ξ
cov(ξitζisζik� ξjlζjvζjp)�

Hence

B2 = 1
NT 3

∑
i �=j

∑
(t�s�k�l�v�p)∈Ξ

cov(ξitζisζik� ξjlζjvζjp)�

Let us partition Ξ into Ξ1 ∪ Ξ2, where each element (t� s�k� l� v�p) in Ξ1

contains exactly three distinct indices, while each element in Ξ2 contains less
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than three distinct indices. We know that

1
NT 3

∑
i �=j

∑
(t�s�k�l�v�p)∈Ξ2

cov(ξitζisζik� ξjlζjvζjp) = O

(
1

NT 3N
2T 2

)

= O

(
N

T

)
�

which implies

1
T
B2 = 1

NT 4

∑
i �=j

∑
(t�s�k�l�v�p)∈Ξ1

cov(ξitζisζik� ξjlζjvζjp)+Op

(
N

T 2

)
�

The first term on the right hand side can be written as
∑5

h=1 B2h. Each of these
five terms is defined and analyzed separately as below:

B21 = 1
NT 4

∑
i �=j

T∑
t=1

∑
s �=t

∑
l �=s�t

EξitξjtEζ
2
isEζ

2
jl

≤ O

(
1

NT

)∑
i �=j

|Eξitξjt |�

Note that if (Σu)ij = 0, uit and ujt are independent, and hence Eξitξjt = 0. This
implies

∑
i �=j |Eξitξjt | ≤O(1)

∑
i �=j�(i�j)∈SU 1 =O(N). Hence B21 = o(1).

B22 = 1
NT 4

∑
i �=j

T∑
t=1

∑
s �=t

∑
l �=s�t

EξitζitEζisξjsEζ
2
jl�

By Lemma D.3, ujs and eis are independent for i �= j. Also, ujs and fs are inde-
pendent, which implies ξjs and ζis are independent. So Eξjsζis = 0. It follows
that B22 = 0.

B23 = 1
NT 4

∑
i �=j

T∑
t=1

∑
s �=t

∑
l �=s�t

EξitζitEζisζjsEξjlζjl

= O

(
1

NT

)∑
i �=j

|Eζisζjs|

= O

(
1

NT

)∑
i �=j

∣∣EeisejsE(
1 − f′sw

)2∣∣
= O

(
1

NT

)∑
i �=j

|Eeisejs|�
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By the definition es = Σ
−1
u us, cov(es) = Σ

−1
u . Hence Eeisejs = (Σ

−1
u )ij , which

implies B23 ≤ O( N
NT

)‖Σ−1
u ‖1 = o(1).

B24 = 1
NT 4

∑
i �=j

T∑
t=1

∑
s �=t

∑
l �=s�t

EξitξjtEζisζjsEζilζjl = O

(
1
T

)
�

which is analyzed in the same way as B21.
Finally, B25 = 1

NT 4

∑
i �=j

∑T

t=1

∑
s �=t

∑
l �=s�t EξitζjtEζisξjsEζilζjl = 0, because

Eζisξjs = 0 when i �= j, following from Lemma D.3. Therefore, 1
T
B2 = o(1) +

O( N
T 2 )= o(1). Q.E.D.

PROOF OF (D.2): For notational simplicity, let ξijt = uitujt −Euitujt . Because
of the serial independence and the Gaussianity, cov(ξijt� ζlsζnk) = 0 when ei-
ther s �= t or k �= t, for any i� j� l� n≤N . In addition, define a set

H = {
(i� j) ∈ SU : i �= j

}
�

Then by the sparsity assumption,
∑

(i�j)∈H 1 = DN =O(N). Now let

Z = 1√
NT

∑
(i�j)∈H

T∑
t=1

(uitujt −Euitujt)

×
[

1√
T

T∑
s=1

eis
(
1 − f′sw

)][
1√
T

T∑
k=1

ejk
(
1 − f′kw

)]

= 1√
NT

∑
(i�j)∈H

T∑
t=1

ξijt

[
1√
T

T∑
s=1

ζis

][
1√
T

T∑
k=1

ζjk

]

= 1

T
√
NT

∑
(i�j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk�

The goal is to show 1
T
EZ2 = o(1). We respectively show 1

T
(EZ)2 = o(1) =

1
T

var(Z).
Expectation
The proof for the expectation is the same regardless of the type of sparsity

in Assumption 4.2, and is very similar to that of (D.1). In fact,

EZ = 1

T
√
NT

∑
(i�j)∈H

T∑
t=1

T∑
s=1

T∑
k=1

cov(ξijt� ζisζjk)

= 1

T
√
NT

∑
(i�j)∈H

T∑
t=1

cov
(
ξijt� ζ

2
it

)
�
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Because
∑

(i�j)∈H 1 = O(N), EZ = O(
√

N
T
). Thus 1

T
(EZ)2 = o(1).

Variance
For the variance, we have

var(Z)

= 1
T 3N

∑
(i�j)∈H

var

(
T∑
t=1

T∑
s=1

T∑
k=1

ξijtζisζjk

)

+ 1
T 3N

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

∑
t�s�k�l�v�p≤T

cov(ξijtζisζjk� ξmnlζmvζnp)

=A1 +A2�

By the Cauchy–Schwarz inequality and the serial independence of ξijt ,

A1 ≤ 1
N

∑
(i�j)∈H

E

[
1√
T

T∑
t=1

ξijt

1√
T

T∑
s=1

ζis
1√
T

T∑
k=1

ζjk

]2

≤ 1
N

∑
(i�j)∈H

[
E

(
1√
T

T∑
t=1

ξijt

)4]1/2

×
[
E

(
1√
T

T∑
s=1

ζis

)8]1/4[
E

(
1√
T

T∑
k=1

ζjk

)8]1/4

�

So A1 =O(1).
Note that Eξijt = Eζis = 0, and when t �= s, ξijt ⊥ ζms, ξijt ⊥ ξmns, ζit ⊥ ζjs

(independent) for any i� j�m�n ≤ N . Therefore, it is straightforward to verify
that if the set {t� s�k� l� v�p} contains more than three distinct elements, then
cov(ξijtζisζjk� ξmnlζmvζnp) = 0. Hence for the same set Ξ defined as before, it
satisfies: |Ξ|0 ≤ CT 3 for some C > 1, and∑

t�s�k�l�v�p≤T

cov(ξijtζisζjk� ξmnlζmvζnp)

=
∑

(t�s�k�l�v�p)∈Ξ
cov(ξijtζisζjk� ξmnlζmvζnp)�

We proceed by studying the two cases of Assumption 4.2 separately, and
show that in both cases, 1

T
A2 = o(1). Once this is done, because we have just

shown A1 =O(1), then 1
T

var(Z)= o(1). The proof is then completed because
1
T
EZ2 = 1

T
(EZ)2 + 1

T
var(Z)= o(1).
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When DN =O(
√
N)

Because |Ξ|0 ≤ CT 3 and |H|0 = DN = O(
√
N), and | cov(ξijtζisζjk�

ξmnlζmvζnp)| is bounded uniformly in i� j�m�n≤ N , we have

1
T
A2 = 1

T 4N

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

∑
t�s�k�l�v�p∈Ξ

cov(ξijtζisζjk� ξmnlζmvζnp)

= O

(
1
T

)
�

When Dn =O(N), and mN = O(1)
Similarly to the proof of the first statement, for the same set Ξ1 that contains

exactly three distinct indices in each of its element (recall |H|0 =O(N)),

1
T
A2 = 1

NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

∑
t�s�k�l�v�p∈Ξ1

cov(ξijtζisζjk� ξmnlζmvζnp)

+O

(
N

T 2

)
�

The first term on the right hand side can be written as
∑5

h=1 A2h. Each of these
five terms is defined and analyzed separately as below. Before that, let us in-
troduce a useful lemma.

The following lemma is needed when Σu has bounded number of nonzero
entries in each row (mN = O(1)). Let |S|0 denote the number of elements in a
set S if S is countable. For any i ≤N , let

A(i)= {
j ≤N : cov(uit� ujt) �= 0

} = {
j ≤N : (i� j) ∈ SU

}
�

LEMMA D.4: Suppose mN = O(1). For any i� j ≤ N , let B(i� j) be a set of
k ∈ {1� � � � �N} such that:

(i) k /∈A(i)∪A(j),
(ii) there is p ∈ A(k) such that cov(uitujt� uktupt) �= 0.

Then maxi�j≤N |B(i� j)|0 =O(1).

PROOF: First we note that if B(i� j)= ∅, then |B(i� j)|0 = 0. If it is not empty,
for any k ∈ B(i� j), by definition, k /∈ A(i)∪A(j), which implies cov(uit� ukt)=
cov(ujt� ukt) = 0. By the Gaussianity, ukt is independent of (uit� ujt). Hence
if p ∈ A(k) is such that cov(uitujt� uktupt) �= 0, then upt should be correlated
with either uit or ujt . We thus must have p ∈ A(i) ∪ A(j). In other words,
there is p ∈ A(i) ∪ A(j) such that cov(ukt�upt) �= 0, which implies k ∈ A(p).
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Hence,

k ∈
⋃

p∈A(i)∪A(j)

A(p)≡ M(i� j)�

and thus B(i� j) ⊂ M(i� j). Because mN = O(1), maxi≤N |A(i)|0 = O(1), which
implies maxi�j |M(i� j)|0 = O(1), yielding the result. Q.E.D.

Now we define and bound each of A2h. For any (i� j) ∈ H = {(i� j) : (Σu)ij �=
0}, we must have j ∈ A(i). So

A21 = 1
NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n)�=(i�j)�

T∑
t=1

∑
s �=t

∑
l �=t�s

EξijtξmntEζisζjsEζmlζnl

≤ O

(
1

NT

) ∑
(i�j)∈H�

∑
(m�n)∈H�(m�n)�=(i�j)

|Eξijtξmnt |

≤ O

(
1

NT

)
×

∑
(i�j)∈H

( ∑
m∈A(i)∪A(j)

∑
n∈A(m)

+
∑

m/∈A(i)∪A(j)

∑
n∈A(m)

)∣∣cov(uitujt� umtunt)
∣∣�

The first term is O( 1
T
) because |H|0 = O(N) and |A(i)|0 is bounded uni-

formly by mN = O(1). So the number of summands in
∑

m∈A(i)∪A(j)

∑
n∈A(m)

is bounded. For the second term, if m /∈ A(i) ∪ A(j), n ∈ A(m), and
cov(uitujt� umtunt) �= 0, then m ∈ B(i� j). Hence the second term is bounded
by O( 1

NT
)
∑

(i�j)∈H
∑

m∈B(i�j)
∑

n∈A(m) | cov(uitujt� umtunt)|, which is also O( 1
T
) by

Lemma D.4. Hence A21 = o(1).
Similarly, applying Lemma D.4,

A22 = 1
NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

T∑
t=1

∑
s �=t

∑
l �=t�s

EξijtξmntEζisζmsEζjlζnl

= o(1)�

which is proved in the same lines of those of A21.
Also note three simple facts: (1) maxj≤N |A(j)|0 = O(1), (2) (m�n) ∈ H im-

plies n ∈A(m), and (3) ξmms = ξnms. The term A23 is defined as

A23 = 1
NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

T∑
t=1

∑
s �=t

∑
l �=t�s

EξijtζitEζjsξmnsEζmlζnl

≤ O

(
1

NT

) N∑
j=1

∑
i∈A(j)

1
∑

(m�n)∈H�(m�n) �=(i�j)

|Eζjsξmns|
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≤ O

(
2

NT

) N∑
j=1

∑
n∈A(j)

|Eζjsξjns| +O

(
1

NT

) N∑
j=1

∑
m �=j�n �=j

|Eζjsξmns|

= a+ b�

Term a= O( 1
T
). For b, note that Lemma D.3 implies that when m�n �= j, umsuns

and ejs are independent because of the Gaussianity. Also because us and fs are
independent, hence ζjs and ξmms are independent, which implies that b = 0.
Hence A23 = o(1).

The same argument as of A23 also implies

A24 = 1
NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

T∑
t=1

∑
s �=t

∑
l �=t�s

EξijtζmtEζisξmnsEζilζnl

= o(1)�

Finally, because
∑

(i�j)∈H 1 ≤ ∑N

i=1

∑
j∈A(i) 1 ≤ mN

∑N

i=1 1, and mN = O(1), we
have

A25 = 1
NT 4

∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)�

T∑
t=1

∑
s �=t

∑
l �=t�s

EξijtζitEζisζmsEξmnlζnl

≤ O

(
1

NT

) ∑
(i�j)∈H�

∑
(m�n)∈H�(m�n) �=(i�j)

|EξijtζitEζisζmsEξmnlζnl|

≤ O

(
1

NT

) N∑
i=1

N∑
m=1

|Eζisζms|

≤ O

(
1

NT

) N∑
i=1

N∑
m=1

∣∣(Σ−1
u

)
im

∣∣E(
1 − f′sw

)2

≤ O

(
N

NT

)∥∥Σ−1
u

∥∥
1
= o(1)�

In summary, 1
T
A2 = o(1)+O( N

T 2 )= o(1). Q.E.D.

APPENDIX E: FURTHER TECHNICAL LEMMAS FOR SECTION 4

We cite a lemma that will be needed throughout the proofs.

LEMMA E.1: Under Assumption 4.1, there is C > 0,

(i) P(maxi�j≤N | 1
T

∑T

t=1 uitujt −Euitujt |>C
√

logN
T

)→ 0,

(ii) P(maxi≤K�j≤N | 1
T

∑T

t=1 fitujt | >C
√

logN
T

)→ 0,

(iii) P(maxj≤N | 1
T

∑T

t=1 ujt | >C
√

logN
T

)→ 0.
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PROOF: The proof follows from Lemmas A.3 and B.1 in Fan, Liao, and
Mincheva (2011). Q.E.D.

LEMMA E.2: When the distribution of (ut � ft) is independent of θ, there is
C > 0,

(i) supθ∈Θ P(maxj≤N |θ̂j − θj|>C
√

logN
T

|θ)→ 0,

(ii) supθ∈Θ P(maxi�j≤N |σ̂ij − σij|>C
√

logN
T

|θ)→ 0,

(iii) supθ∈Θ P(maxi≤N |σ̂i − σi|>C
√

logN
T

|θ)→ 0.

PROOF: Note that θ̂j − θj = 1
af�T T

∑T

t=1 ujt(1 − f′tw). Here af�T = 1 − f̄′w →p

1 −Ef′t(Eftf′t)
−1Eft > 0, hence af�T is bounded away from zero with probability

approaching 1. Thus by Lemma E.1, there is C > 0 independent of θ, such that

sup
θ∈Θ

P

(
max
j≤N

|θ̂j − θj| >C

√
logN
T

∣∣∣θ)

= P

(
max

j

∣∣∣∣∣ 1
af�TT

T∑
t=1

ujt

(
1 − f′tw

)∣∣∣∣∣>C

√
logN
T

)
→ 0�

(ii) There is C independent of θ, such that the event

A=
{

max
i�j

∣∣∣∣∣ 1
T

T∑
t=1

uitujt − σij

∣∣∣∣∣<C

√
logN
T

�
1
T

T∑
t=1

‖ft‖2 <C

}

has probability approaching 1. Also, there is C2 also independent of θ such
that the event B = {maxi 1

T

∑
t u

2
it < C2} occurs with probability approaching 1.

Then on the event A∩B, by the triangular and Cauchy–Schwarz inequalities,

|σ̂ij − σij| ≤ C

√
logN
T

+ 2 max
i

√
1
T

∑
t

(ûit − uit)2C2

+ max
i

1
T

∑
t

(uit − ûit)
2�

It can be shown that

max
i≤N

1
T

T∑
t=1

(ûit − uit)
2

≤ max
i

(‖̂bi − bi‖2 + (θ̂i − θi)
2
)( 1

T

T∑
t=1

‖ft‖2 + 1

)
�
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Note that b̂i − bi and θ̂i − θi only depend on (ft �ut) (independent of θ). By
Lemma 3.1 of Fan, Liao, and Mincheva (2011), there is C3 > 0 such that
supb�θ P(maxi≤N ‖̂bi − bi‖2 + (θ̂i − θi)

2 > C3
logN
T

) = o(1). Combining the last
two displayed inequalities yields, for C4 = (C + 1)C3,

sup
θ

P

(
max
i≤N

1
T

T∑
t=1

(ûit − uit)
2 >C4

logN
T

∣∣∣θ)
= o(1)�

which yields the desired result.
(iii) Recall σ̂2

j = σ̂jj/af�T , and σ2
j = σjj/(1 −Ef′t(Eftf′t)

−1Eft). Moreover, af�T

is independent of θ. The result follows immediately from part (ii). Q.E.D.

LEMMA E.3: For any ε > 0, supθ P(‖Σ̂
−1

u −Σ
−1
u ‖ > ε|θ)= o(1).

PROOF: By Lemma E.2(ii), supθ∈Θ P(maxi�j≤N |σ̂ij − σij| >C
√

logN
T

|θ)→ 1.
By Fan, Liao, and Mincheva (2011), on the event maxi�j≤N |σ̂ij − σij| ≤
C

√
logN
T

, there is constant C ′ that is independent of θ, ‖Σ̂−1

u − Σ
−1
u ‖ ≤

C ′mN(
logN
T

)1/2. Hence the result follows due to the sparse condition
mN(

logN
T

)1/2 = o(1). Q.E.D.
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