Econometrica Supplementary Material

SUPPLEMENT TO “POWER ENHANCEMENT IN
HIGH-DIMENSIONAL CROSS-SECTIONAL TESTS”
(Econometrica, Vol. 83, No. 4, July 2015, 1497-1541)

BY JIANQING FAN, YUAN LIAO, AND JIAWEI YAO

This supplement contains additional proofs of the main paper.

APPENDIX D: AUXILIARY LEMMAS FOR THE PROOF OF PROPOSITION 4.2

DEFINE e, = 2;]u, = (ey,...,en;), which is an N-dimensional vector with

mean zero and covariance E;l, whose entries are stochastically bounded. Let
w= (Eff)'Ef,. Also recall that

N
T Z (U'u Oii),
i=1
E (0-1 (Tl)
\/Nl#/%):ESU(\/ ’ ]

One of the key steps of proving a; = 0p(1), a, = op(1) is to establish the
following two convergences:

2

=o(1),

1 N T 1z 2
(D.1) TEFZZ — Eu?) <ﬁ21:ei5(1—f;\7v)>

=1 =1

1| 1 :
(D2) TE \/ﬁ Z Z(uituﬁ —El/lizl/ljt)

i#j,(i.)eSy 1=1

x [% éeis(l - t;v‘v)] [% geﬂ«(l - QW)}

=o0(1),

where Sy = {(i, j) : (2.); # 0}. The proofs of (D.1) and (D.2) are given later
below.

LEMMA D.1: Under Hy, a; = op(1).
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PROOF: We have a; = = >, 03,1 (@ — Eul), which is

iT
T ¢ 121 ¢ =2 2
—N Z(ﬁzu ), T Z( it~ uit)
i=1 =1
+ LXN:(/O\,E_I)ZLZ(MZ Euy)
VN i=1 TS ! !
=an + an.

For a,,, note that
11« 1 «
1 < — 7 w—1
B3,),= (1-tw) 'L Y (1 - Ew) @ 3,), = 5 30 (1~ Ewes.
where ¢ = (1 — fw)~! = Op(1). Hence

Te Xf1 T 21
1c Z Z _ _ Z 2 _Eu?
he= VN (T s=1 (1 g )e”) T (uit ui[)‘

By (D.1), Ea?, = o(1). On the other hand,
T o 21 ¢
:—E 0 7]-—2 Ui — i)’
ann /—N — (Nzu )z T - (Ui — uir)

+ 2_T XN:(’O\Izil)Zl XT:uiz(/lZit - uit)
\/N i=1 ! ‘T t=1

= aj + ans.

Note that max;.y % Z,Tzl(ﬁiz —u;)? = O0p( 1"§N ) by Lemma 3.1 of Fan, Liao, and

Mincheva (2011). Since [[8]> = Op(M2Y) | 37", = O(1), and N(logN)* =
o(T?),

logN\ T 1~ logN)*v/N
amSOP( O%, )—HOZ 1||2=Op<%>=op(l).

To bound a;,,, note that

o~

Ui — Uy = 5, -0+ (i;i -b)'t,

—~ log N —~
max|6,»—e,-|=op<\/ = )=max||bi—b,»||.
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T logN T
Also, max; |+ >, uy| = Op(,/=5~) =max; ||+ >_,_, u;f||. Hence

N

aunp = \/__ Z(\,Eu Z uzt(9
+ % 2(70” 3, (b, — b»/% ;ftun

o f5)e -

In summary, a, = ap; + aj + iy = Op(l). QED

LEMMA D.2: Under Hy, a, = op(1).

o~ -1 o w1 T ~ ~
PROOF: We have a, = 530 i (03,00 3,);7 5 (Wlly, —
Eujuj), which is

T -1 -1
ﬁ Z @ZM )i@zu)

i#], (L)) €Sy

1 a PN 1 T
X (T ;(uitujt — Wilj) + T ;(ui,uﬂ — Euiluﬂ)>

=day + axn,

where

az =

T
Z (\/2_1 (/VZ % Z(ﬁitajt — Ui Uj).
t=1

i#),(i,))eSy

%l

Under H,, 2;@: (11— fw)! ZL 2;1u,(1 fw),and e, = 2 u,, we have

Z (NE (\2 ] T Z(uitujt — Eu;uy)

i#],(L,))eSy

Ty - twet Y- e

N i), (0, /)GSU s=1

axp =

%\

17
X T ;(uitujt - Euitujt)-
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By (D.2), Ea}, = o(1).
On the other hand, a,; = @511 + @21, Where

61211—m > (03,003 jTZ(un wi) (W — Uj0),

i#j,(i,))eSy

2T
0212=T Z (NZ (AE jTZun(u,t Ujr).

i#],(i,))eSy

By the Cauchy-Schwarz inequality, maxij|%z;il(i?i, — w) @y — uy)| =
Op( l°gTN ). Hence

log N -1 -1
ol 0n(E2) Y (@2),1@)

i#],(i,)eSy
logN)< ) /2( AN
\/ﬁ i#),(i, €Sy i#], (b eSy ]

—0s(*5) lZij(fTEJ)f > o

J: (300
logN \ |~
ol

(me/N(logN)z)
— OP

= T =0P(1).

Similarly to the proof of term a1, in Lemma D.1, max; |% Z,il wi (U, —
;)| = Op(PEN),

log N -1 -1
|0212|50P< ﬁ) E |(52u )i||(52u)
N i#],(i,))eSy

2
— OP(M) — o0p(1).

In summary, d, = dx + az1 + Az = Op(l). QED

D.1. Proofof (D.1) and (D.2)

For any index set A4, we let | 4|, denote its number of elements.

LEMMA D.3: Recall that e, = E;lu,. e, and u;, are independent if i # .
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PROOF: Because u, is Gaussian, it suffices to show that cov(e;,, u;;) = 0 when
i # j. Consider the vector (u), ¢,)’ = A(u], u))’, where

™t
_(Iy O
A_<0 2u1>.

Then cov(u;, €,) = Acov(u,, u,)A, which is

Iy 0 3, 2N\ (Iyv 0\ (2, Iy
o x'J\zx 3 )\o z')7\, 3')
This completes the proof. Q.E.D.

PROOF OF (D.1): Let X = = 3"" >0 (12 — Eud) (= Y, ei(1—Fw))2.
The goal is to show EX? = o(T). We show respectively (EX)* = o(1) and
+var(X) = o(1). The proof of (D.1) is the same regardless of the type of spar-
sity in Assumption 4.2. For notational simplicity, let

fit:ui—Eui, giszeis(l_fsw)'

Then X = ﬁzg I f,-,(% Zstl is)?. Because of the serial indepen-
dence, §; is independent of (; if ¢ # s, for any i, j < N, which implies
cov(&y, {is{i) =0 as long as either s # ¢ or k # ¢.

Expectation

For the expectation,

1 N T 1z 2
NT;;COV<§”, (ﬁ;@s) )

1 N T T T
= T 22 2 D covldun L)

i=1 t=1 s=1 k=1

EX =

3

N T
= 33 (ol ) 2 D eovtéun )

i=1 t=1 ket

Tjﬁﬁ:icov(gm ?,):0( %)

i=1 t=1

where the second last equality follows since E¢;, = E{;, =0 and when k # ¢,
cov(&ir, Liliu) = E&inlulic = EE4{Ely = 0. It then follows that +(EX)* =
O(£5) =o(1), given N = o(T?).
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Variance
Consider the variance. We have

var(X) = % Zvar<% Y& (% > éu) )

3 Z Z Cov(fttgzsglk, 'f]lgjvg]p

i#j t,s,k,l,v,p<T

:Bl +B2

By can be bounded by the Cauchy-Schwarz inequality. Note that E¢;, =
Egjs = 07

B < ii < Zé"(%é&)zy

wile(rge) ] [z ]

Hence B; = O(1).

We now show =B, = o(1). Once this is done, it implies + var(X) = o(1). The
proof of (D.1) is then completed because 1 EX* = 1 (EX)*+ L var(X) = o(1).

For two variables X, Y, write X | Y if they are independent. Note that
E¢,=E{;=0,and when ¢ # s, & L s, & L &5, L L fjs for any i, j < N.
Therefore, it is straightforward to verify that if the set {¢, s, k, [, v, p} contains
more than three distinct elements, then cov(&{is i, €1¢jvCjp) = 0. Hence if
we denote = as the set of (¢, s, k, [, v, p) such that {¢, s, k, [, v, p} contains no
more than three distinct elements, then its cardinality satisfies: | 5|, < CT* for
some C > 1, and

Z cov(&idisli, Eiililip) = Z cov(&ilislins Eiilinlip)-

t,s,k,l,v,p<T (t,8,k,l,v,p)e=E

Hence

B, = NT® Z Z cov(&ilislin, € djnlip)-

i#j (t,8,k,lv,p)e=

Let us partition = into 5, U &,, where each element (¢, s, k l,v, p) in Z;
contains exactly three distinct indices, while each element in 5, contains less
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than three distinct indices. We know that

1 1
WZ Z cov(&idislins i lilip) =0(NT3N2T2)

I#] (t,s,k,Lv, p)eE;

which implies
1 1 N
TBzz WZ Z COV(fitgi.vgikagjlgjvgjp)"'_op(F)-

i#] (t,5,k,1,v,p)eE

The first term on the right hand side can be written as Zfl:, B»;,. Each of these
five terms is defined and analyzed separately as below:

T
Bu= o YN Y Y B EGES

i#] =1 s#t I#s,t
1
< o(ﬁ) ; |E&q &l

Note that if (¥,); =0, u;, and u;, are independent, and hence E¢;,¢;, = 0. This
implies Zi# |E&q&q] <O(1) Zi#’(i,j)esU 1=0(N). Hence B,; = o(1).

T
Bu= s Y 0 BEGEGEES,

i#] t=1 s#t l#s,t

By Lemma D.3, u;, and e;, are independent for i # j. Also, u;, and f; are inde-
pendent, which implies &;; and {, are independent. So E&;;{;, = 0. It follows
that 322 =0.

T
Bu= s YN Y EG GGG B

i#j t=1 s#t I#s,t

1
= O(W) D IEL:L]

i#]

07 ) SlEewe B~ tw)’

i#]

1
O(W) ZlEeisejs|~

i#]
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By the definition e, = 2;111“ cov(e,) = 2;1. Hence Ee;e;s = (Z;l)ij, which
implies By; < 0(%)”2;1”1 =o(1).

1 i 1
Bu=ora) 2.0 ) E&&iE sl Eduty = 0(?)’

i#] (=1 s#t Is,t

which is analyzed in the same way as By;.

Finally, Bos = = Yo Y Y Y EEalhE L€ ELudy = 0, because
E{ ¢y =0 when i # j, following from Lemma D.3. Therefore, %Bz =o(1)+
O($) =o0(1). Q.E.D.

PROOF OF (D.2): For notational simplicity, let &;, = u;u;, — Eu;u;,. Because
of the serial independence and the Gaussianity, cov(&;,, {i;{u) = 0 when ei-
ther s At or k # ¢, for any i, j,/, n < N. In addition, define a set

H={(i, ) €Sy:i#j}.
Then by the sparsity assumption, » ;1 =Dy = O(N). Now let

1 T
L =— (uu;, — Euyu;,)
,—NT (ig)e:HtZ:; tUjt tUjt

1 T T
=T Y3 1§i,t§m§,k.

(i,)eH 1=1 s=1 k=

The goal is to show +EZ* = o(1). We respectively show 1(EZ)* = o(1) =
1var(Z).

Expectation

The proof for the expectation is the same regardless of the type of sparsity
in Assumption 4.2, and is very similar to that of (D.1). In fact,

1

T T T
TINT Z ZZZCOV(fgz,&s{jk)

(i,j)eH t=1 s=1 k=1

EZ =

1 T
T\/]W Z ZCOV(fl’jt,gi).

(i,j)eH t=1



POWER ENHANCEMENT IN CROSS-SECTIONAL TESTS 9

Because ), , 1=0(N), EZ= O(\/g). Thus +(EZ)* = o(1).
Variance
For the variance, we have

var(Z)
Ly (z >3 i)
(i,))eH t=1 s=1 k=1
Z Z Z COV(gijl gisé/jka gmnl{mv gnp)
(z NeH, (m,n)eH,(m,n)#(,j), t,s,k,l,v,p<T
- A1 + A2.

By the Cauchy—Schwarz inequality and the serial independence of &,

T T T 2
1
Al < — E E[\/_ EZ ijt—  — T ?:1 giSﬁ k§=1 g]k}

(tj)eH
45172
<l Z E iig /
N (ij)eH vT =1 N

[ )|

So A, =0(1).

Note that Egijt = Egis = 07 and when ¢ # S, ‘i:ijt L gms, gijt L gmnsa git L gjs
(independent) for any i, j, m, n < N. Therefore, it is straightforward to verify
that if the set {¢, s, k, [, v, p} contains more than three distinct elements, then
cov(f,],g,,{ ks §mnl§m§np) = 0. Hence for the same set 5 defined as before, it
satisfies: |5, < CT? for some C > 1, and

Z COV(gijtgisgjk: gmnlgmvgnp)

t,s,k,l,v,p<T

= Z Cov(fijt gisgjln ‘fmnlgmvgnp)'

(t,8,k,l,v,p)eE

We proceed by studying the two cases of Assumption 4.2 separately, and
show that in both cases, %A2 = 0(1). Once this is done, because we have just
shown A; = O(1), then %Var( Z) = o(1). The proof is then completed because
1EZ* = Z(EZ)* + zvar(Z) = o(1).
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When Dy = O(¥/N)
Because |Z|y < CT? and |H|y = Dy = O(/N), and |cov(&i il
Emn {mvnp)| 18 bounded uniformly in i, j, m, n < N, we have

1 1
TAQ = m Z Z Z Cov(gijté’isé’jk’ gmnlé’mvgnp)

(i,))eH, (m,n)eH,(m,n)#(i, ), t,s,k,l,v,pe 5

1
-o(z)
When D,, = O(N), and my = O(1)

Similarly to the proof of the first statement, for the same set & that contains
exactly three distinct indices in each of its element (recall [H |y = O(N)),

1 1
TAQ == W Z Z Z Cov(gijtéuis{jk7 gmnlgmugnp)

(i,))eH, (m,n)eH,(m,n)#(i,)), t,s,k,l,v, pe

()

The first term on the right hand side can be written as Zizl A,;,. Each of these
five terms is defined and analyzed separately as below. Before that, let us in-
troduce a useful lemma.

The following lemma is needed when 3, has bounded number of nonzero
entries in each row (my = O(1)). Let |S|, denote the number of elements in a
set S if S is countable. For any i < N, let

AW ={j = N:cov(uy, u;) #0} = {j < N: (i, j) € Sy }.

LEMMA D.4: Suppose my = O(1). For any i,j < N, let B(i, j) be a set of
ke{l,..., N} such that:

(i) k ¢ A() U AQ)),

(ii) thereis p € A(k) such that cov(u; U, UgUpy) # 0.
Then max; <y |B(i, j)|o = O(1).

PROOF: First we note that if B(i, j) =@, then |B(i, j)|o = 0. If it is not empty,
for any k € B(i, j), by definition, k ¢ A(i) U A(j), which implies cov(u;,, uy,) =
cov(u;, ug,) = 0. By the Gaussianity, uy, is independent of (u;, u;). Hence
if p € A(k) is such that cov(u;u;, ugu,) # 0, then u,, should be correlated
with either u; or uj;,. We thus must have p € A(i) U A(j). In other words,
there is p € A(i) U A(j) such that cov(uy,, u,) # 0, which implies k € A(p).
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Hence,
ke |J Amp=Ma,p,
PEADUA()
and thus B(i, j) C M (i, ). Because my = O(1), max,y | A(i)|y = O(1), which
implies max; ; |M (i, j)|o = O(1), yielding the result. Q.E.D.

Now we define and bound each of A,,. For any (i, j) € H ={(i, j): (Z.,); #
0}, we must have j € A(i). So

T
PR ONED DD B) §) WA M F NI

(i,j)eH, (m,n)eH,(m,n)#(i,j), t=1 s#t l#t,s

1
0<ﬁ> Y Y Eguél

(i,j)eH, (m,n)eH, (m,n)#(i,])

()

x Z( Z Z + Z Z >|cov(u,-,u,«t,um[um)|.

(i,j)eH “meA(i)UA(j) neA(m) m¢A(i)UA(j) ne A(m)

IA

IA

The first term is O(%) because |H|y = O(N) and | A(i)|, is bounded uni-
formly by my = O(1). So the number of summands in ., _ ;04 2ncaom

is bounded. For the second term, if m ¢ A(i) U A(j), n € A(m), and
cov (U U, Uty ) # 0, then m € B(i, j). Hence the second term is bounded
bY O(F7) Xi et Qomenii.jy Qoneimy | COV(Uilkjes Upmthn)|, Which is also O(5) by
Lemma D.4. Hence A, = o(1).

Similarly, applying Lemma D.4,

T
A22 = # Z Z ZZZEEijté:mmEgixgmsEgjlgnl

(i,))eH, (m,m)eH,(m,n)#(L, ]), t=1 s#t l#t,s
=o(D),

which is proved in the same lines of those of A4,;.
Also note three simple facts: (1) max;-y |A(j)]o = O(1), (2) (m,n) € H im-
plies n € A(m), and (3) &,ns = Enms- The term A,; is defined as

= DI DEEED B) 9) DY A I

(5,))eH, (m,nm)eH,(m,n)#(i, ]), t=1 s#t l#t,s

1 N
< o(ﬁ) YUY EGéml

j=1 ieA()  (mn)eH.(mm)#G.j)
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2\ & 1\«
—0<W)Z > |E4~s§,~m|+0<ﬁ)z D EL sl

j=1 neA()) j=1 mjnj
=a+b.
Term a = O( %). For b, note that Lemma D.3 implies that when m, n # j, t,,sls
and e, are independent because of the Gaussianity. Also because u, and f; are
independent, hence ¢, and §,,,, are independent, which implies that b = 0.

Hence A,; =o0(1).
The same argument as of A,; also implies

24 NT4 Z Z Z ZZEfzjtémtEgzsgmnsEgzlgnl

(i,))eH, (m,n)eH,(m,n)#(i,)), t=1 s#t I#t,s

=o(1).

Finally, because . 1 < >V djeay L < my SV 1, and my = O(1), we
have

Z Z Z ZZEgl]tgltEgngmvEé:mnlgnl

(i,)eH, (m,n)eH,(m,n)#(i,)), t=1 s#t l#t,s

NL) S Y IE&GELLEE i

(i.j)eH, (m,n)eH,(m,n)#(i,))

(
(N—) XNjXNj E Lo
( 1

I/\

i=1 m=1

W)i£| %) E(1—fw)’

i=1 m=1

N \yery
o 122", o

In summary, + 4, = o(1) + O(%) = o(1). Q.E.D.

IA
o)

IA

APPENDIX E: FURTHER TECHNICAL LEMMAS FOR SECTION 4

We cite a lemma that will be needed throughout the proofs.

LEMMA E.1: Under Assumption 4.1, there is C > 0,
(i) P(max;;-y |+ Zthl uyujy — Euguy| > C logTN) — 0,
(i) P(maxi<x jon |5 2y futtis] > C/*E%) -0,

T log N
(iii) P(maxjoy |+ 30, ] > €/ %% — 0.
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PROOF: The proof follows from Lemmas A.3 and B.1 in Fan, Liao, and
Mincheva (2011). Q.E.D.

LEMMA E.2: When the distribution of (w,,f,) is independent of 0, there is
C=>0,

(i) supy.o P(max;.y [0, — 0;| > C,/ X |0) — 0,
(ll) SUDyco P(maX,‘,jSN |b\'[j — O-ijl >C @|0) d 0,
(iii) supy.p P(maxiy [G; — oy > C,/*2¥10) — 0.
PROOF: Note that ’0\, —0;= ﬁ S up(1—fw). Here apr =1 —fw —7

1 — Ef(Eff)'Ef, > 0, hence a f,} is bounded away from zero with probability
approaching 1. Thus by Lemma E.1, there is C > 0 independent of 6, such that

log N
supP<max|0 —gl> 02 0)
06 j<N T
logN
- <]_ Zuﬂ )| > Cy/f T )—)O.

(ii) There is C independent of @, such that the event

1 « logN 1 ¢«
— C,|——, = £)><C
{nng ] </ = ,Tgntn <

- Z Uitljr — O3
t=1
has probability approaching 1. Also, there is C, also independent of 6 such
that the event B = {max; 7 )", u?, < C,} occurs with probability approaching 1.
Then on the event A N B, by the triangular and Cauchy-Schwarz inequalities,

1 ~
\/7 Z(Un —uy)*G
t

1 —
+max — Z(u,—z — Uy)?

afT

o — oyl <C

It can be shown that

2
maX—E (Ui — Uyy)
i<N

- Iy 1 <
< miaX(”bi —bi|* + (6; — 9;‘)2) (T Z £ 11> + 1)-
=1
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Note that E — b, and ’0\, — 6; only depend on (f;, u,) (independent of ). By
Lemma 3.1 of Fan, Liao, and Mincheva (2011), there is C; > 0 such that
sup,, o P(max;_y Ib; — bi|? + (6; — 6,)* > C31°gTN) = 0(1). Combining the last
two displayed inequalities yields, for C; = (C + 1)G;,

1 « log N
Sl;pP(IE&}lVXT;(ﬁ” - uiz)z > Cy T ‘0) =o(1),

which yields the desired result.
(iii) Recall 7 = G;/ayr, and o7 = a;/(1 — Ef(Eff,)"' Ef,). Moreover, a;r
is independent of . The result follows immediately from part (ii). Q.E.D.

~_1 1
LEMMA E.3: Forany e > 0,sup, P(| ¥, — 2, || > €|0) =o(1).

PROOF: By Lemma E.2(ii), sup,_o P(max;;-y [0; — 0| > C k’gTNW) — 1.
By Fan, Liao, and Mincheva (2011), on the event max;;y|0; — o0y <

. .o ~-1 _
C,/™N there is constant C’ that is independent of , 1%, — Zu]ll <

T
C/mN(@)”z. Hence the result follows due to the sparse condition
my ()12 = o(1). QE.D.
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