SUPPLEMENT TO "POWER ENHANCEMENT IN HIGH-DIMENSIONAL CROSS-SECTIONAL TESTS"

(Econometrica, Vol. 83, No. 4, July 2015, 1497–1541)

By Jianqing Fan, Yuan Liao, and Jiawei Yao

This supplement contains additional proofs of the main paper.

APPENDIX D: AUXILIARY LEMMAS FOR THE PROOF OF PROPOSITION 4.2

DEFINE $\mathbf{e}_t = \boldsymbol{\Sigma}_u^{-1} \mathbf{u}_t = (e_{1t}, \dots, e_{Nt})'$, which is an *N*-dimensional vector with mean zero and covariance $\boldsymbol{\Sigma}_u^{-1}$, whose entries are stochastically bounded. Let $\bar{\mathbf{w}} = (E\mathbf{f}_t\mathbf{f}_t')^{-1}E\mathbf{f}_t$. Also recall that

$$\begin{split} a_1 &= \frac{T}{\sqrt{N}} \sum_{i=1}^{N} \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1} \right)_i^2 (\widehat{\boldsymbol{\sigma}}_{ii} - \boldsymbol{\sigma}_{ii}), \\ a_2 &= \frac{T}{\sqrt{N}} \sum_{i \neq i, (i, i) \in S_U} \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1} \right)_i \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1} \right)_j (\widehat{\boldsymbol{\sigma}}_{ij} - \boldsymbol{\sigma}_{ij}). \end{split}$$

One of the key steps of proving $a_1 = o_P(1)$, $a_2 = o_P(1)$ is to establish the following two convergences:

(D.1)
$$\frac{1}{T}E\left|\frac{1}{\sqrt{NT}}\sum_{i=1}^{N}\sum_{t=1}^{T}\left(u_{it}^{2}-Eu_{it}^{2}\right)\left(\frac{1}{\sqrt{T}}\sum_{s=1}^{T}e_{is}\left(1-\mathbf{f}_{s}^{\prime}\bar{\mathbf{w}}\right)\right)^{2}\right|^{2}=o(1),$$

(D.2)
$$\frac{1}{T}E \left| \frac{1}{\sqrt{NT}} \sum_{i \neq j, (i,j) \in S_U} \sum_{t=1}^{T} (u_{it}u_{jt} - Eu_{it}u_{jt}) \right|$$

$$\times \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - \mathbf{f}_s'\mathbf{\bar{w}}) \right] \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{jk} (1 - \mathbf{f}_k'\mathbf{\bar{w}}) \right]^2$$

$$= o(1),$$

where $S_U = \{(i, j) : (\Sigma_u)_{ij} \neq 0\}$. The proofs of (D.1) and (D.2) are given later below.

DOI: 10.3982/ECTA12749

LEMMA D.1: *Under H*₀, $a_1 = o_P(1)$.

PROOF: We have $a_1 = \frac{T}{\sqrt{N}} \sum_{i=1}^N (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i^2 \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it}^2 - E u_{it}^2)$, which is

$$\frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it}^{2} - u_{it}^{2})
+ \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (u_{it}^{2} - Eu_{it}^{2})
= a_{11} + a_{12}.$$

For a_{12} , note that

$$\left(\widehat{\boldsymbol{\theta}}'\boldsymbol{\Sigma}_{u}^{-1}\right)_{i} = \left(1 - \bar{\mathbf{f}}'\mathbf{w}\right)^{-1}\frac{1}{T}\sum_{s=1}^{T}\left(1 - \mathbf{f}'_{s}\mathbf{w}\right)\left(\mathbf{u}'_{s}\boldsymbol{\Sigma}_{u}^{-1}\right)_{i} = c\frac{1}{T}\sum_{s=1}^{T}\left(1 - \mathbf{f}'_{s}\mathbf{w}\right)e_{is},$$

where $c = (1 - \bar{\mathbf{f}}'\mathbf{w})^{-1} = O_P(1)$. Hence

$$a_{12} = \frac{Tc}{\sqrt{N}} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{s=1}^{T} (1 - \mathbf{f}_{s}^{t} \mathbf{w}) e_{is} \right)^{2} \frac{1}{T} \sum_{t=1}^{T} (u_{it}^{2} - E u_{it}^{2}).$$

By (D.1), $Ea_{12}^2 = o(1)$. On the other hand,

$$a_{11} = \frac{T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^{2}$$

$$+ \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{it} (\widehat{u}_{it} - u_{it})$$

$$= a_{111} + a_{112}.$$

Note that $\max_{i \le N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^2 = O_P(\frac{\log N}{T})$ by Lemma 3.1 of Fan, Liao, and Mincheva (2011). Since $\|\widehat{\boldsymbol{\theta}}\|^2 = O_P(\frac{N \log N}{T})$, $\|\boldsymbol{\Sigma}_u^{-1}\|_2 = O(1)$, and $N(\log N)^3 = o(T^2)$,

$$a_{111} \leq O_P\left(\frac{\log N}{T}\right) \frac{T}{\sqrt{N}} \left\|\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1} \right\|^2 = O_P\left(\frac{(\log N)^2 \sqrt{N}}{T}\right) = o_P(1).$$

To bound a_{112} , note that

$$\widehat{u}_{it} - u_{it} = \widehat{\theta}_i - \theta_i + (\widehat{\mathbf{b}}_i - \mathbf{b}_i)' \mathbf{f}_t,$$

$$\max_i |\widehat{\theta}_i - \theta_i| = O_P \left(\sqrt{\frac{\log N}{T}} \right) = \max_i ||\widehat{\mathbf{b}}_i - \mathbf{b}_i||.$$

O.E.D.

Also, $\max_{i} |\frac{1}{T} \sum_{t=1}^{T} u_{it}| = O_P(\sqrt{\frac{\log N}{T}}) = \max_{i} ||\frac{1}{T} \sum_{t=1}^{T} u_{it} \mathbf{f}_i||$. Hence

$$a_{112} = \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} \frac{1}{T} \sum_{t=1}^{T} u_{it} (\widehat{\boldsymbol{\theta}}_{i} - \boldsymbol{\theta}_{i})$$

$$+ \frac{2T}{\sqrt{N}} \sum_{i=1}^{N} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1})_{i}^{2} (\widehat{\mathbf{b}}_{i} - \mathbf{b}_{i})' \frac{1}{T} \sum_{t=1}^{T} \mathbf{f}_{t} u_{it}$$

$$\leq O_{P} \left(\frac{\log N}{\sqrt{N}} \right) \|\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\|^{2} = o_{P}(1).$$

In summary, $a_1 = a_{12} + a_{111} + a_{112} = o_P(1)$.

LEMMA D.2: *Under H*₀, $a_2 = o_P(1)$.

PROOF: We have $a_2 = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - Eu_{it}u_{jt})$, which is

$$\frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \\
\times \left(\frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - u_{it} u_{jt}) + \frac{1}{T} \sum_{t=1}^T (u_{it} u_{jt} - E u_{it} u_{jt}) \right) \\
= a_{21} + a_{22},$$

where

$$a_{21} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{u}_{it} \widehat{u}_{jt} - u_{it} u_{jt}).$$

Under H_0 , $\boldsymbol{\Sigma}_u^{-1} \widehat{\boldsymbol{\theta}} = \frac{1}{T} (1 - \overline{\mathbf{f}} \mathbf{w})^{-1} \sum_{t=1}^T \boldsymbol{\Sigma}_u^{-1} \mathbf{u}_t (1 - \mathbf{f}_t' \mathbf{w})$, and $\mathbf{e}_t = \boldsymbol{\Sigma}_u^{-1} \mathbf{u}_t$, we have

$$a_{22} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (u_{it} u_{jt} - E u_{it} u_{jt})$$

$$= \frac{Tc}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} \frac{1}{T} \sum_{s=1}^T (1 - \mathbf{f}_s' \mathbf{w}) e_{is} \frac{1}{T} \sum_{k=1}^T (1 - \mathbf{f}_k' \mathbf{w}) e_{jk}$$

$$\times \frac{1}{T} \sum_{t=1}^T (u_{it} u_{jt} - E u_{it} u_{jt}).$$

By (D.2), $Ea_{22}^2 = o(1)$. On the other hand, $a_{21} = a_{211} + a_{212}$, where

$$a_{211} = \frac{T}{\sqrt{N}} \sum_{i \neq j, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T (\widehat{\boldsymbol{u}}_{it} - \boldsymbol{u}_{it}) (\widehat{\boldsymbol{u}}_{jt} - \boldsymbol{u}_{jt}),$$

$$a_{212} = \frac{2T}{\sqrt{N}} \sum_{i \neq i, (i,j) \in S_U} (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_i (\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1})_j \frac{1}{T} \sum_{t=1}^T \boldsymbol{u}_{it} (\widehat{\boldsymbol{u}}_{jt} - \boldsymbol{u}_{jt}).$$

By the Cauchy–Schwarz inequality, $\max_{ij} |\frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it}) (\widehat{u}_{jt} - u_{jt})| =$ $O_P(\frac{\log N}{T})$. Hence

$$\begin{aligned} |a_{211}| &\leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \neq j, (i,j) \in S_{U}} \left| \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right)_{i} \right| \left| \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right)_{j} \right| \\ &\leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \left(\sum_{i \neq j, (i,j) \in S_{U}} \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2}\right)^{1/2} \left(\sum_{i \neq j, (i,j) \in S_{U}} \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right)_{j}^{2}\right)^{1/2} \\ &= O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \sum_{i=1}^{N} \left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right)_{i}^{2} \sum_{j: (\boldsymbol{\Sigma}_{u})_{ij} \neq 0} 1 \\ &\leq O_{P}\left(\frac{\log N}{\sqrt{N}}\right) \left\|\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_{u}^{-1}\right\|^{2} m_{N} \\ &= O_{P}\left(\frac{m_{N}\sqrt{N} (\log N)^{2}}{T}\right) = o_{P}(1). \end{aligned}$$

Similarly to the proof of term a_{112} in Lemma D.1, $\max_{ij} |\frac{1}{T} \sum_{t=1}^{T} u_{it}(\widehat{u}_{jt} - \widehat{u}_{it})|$ $|u_{jt}| = O_P(\frac{\log N}{T}),$

$$|a_{212}| \le O_P \left(\frac{\log N}{\sqrt{N}}\right) \sum_{i \ne j, (i,j) \in S_U} |\left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1}\right)_i| |\left(\widehat{\boldsymbol{\theta}}' \boldsymbol{\Sigma}_u^{-1}\right)_j|$$

$$= O_P \left(\frac{m_N \sqrt{N} (\log N)^2}{T}\right) = o_P(1).$$

In summary, $a_2 = a_{22} + a_{211} + a_{212} = o_P(1)$.

O.E.D.

For any index set A, we let $|A|_0$ denote its number of elements.

LEMMA D.3: Recall that $\mathbf{e}_t = \boldsymbol{\Sigma}_u^{-1} \mathbf{u}_t$. e_{it} and u_{jt} are independent if $i \neq j$.

PROOF: Because \mathbf{u}_t is Gaussian, it suffices to show that $cov(e_{it}, u_{jt}) = 0$ when $i \neq j$. Consider the vector $(\mathbf{u}_t', \mathbf{e}_t')' = \mathbf{A}(\mathbf{u}_t', \mathbf{u}_t')'$, where

$$\mathbf{A} = \begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \boldsymbol{\Sigma}_u^{-1} \end{pmatrix}.$$

Then $cov(\mathbf{u}_t', \mathbf{e}_t') = \mathbf{A} cov(\mathbf{u}_t', \mathbf{u}_t') \mathbf{A}$, which is

$$\begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \boldsymbol{\Sigma}_u^{-1} \end{pmatrix} \begin{pmatrix} \boldsymbol{\Sigma}_u & \boldsymbol{\Sigma}_u \\ \boldsymbol{\Sigma}_u & \boldsymbol{\Sigma}_u \end{pmatrix} \begin{pmatrix} \mathbf{I}_N & 0 \\ 0 & \boldsymbol{\Sigma}_u^{-1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Sigma}_u & \mathbf{I}_N \\ \mathbf{I}_N & \boldsymbol{\Sigma}_u^{-1} \end{pmatrix}.$$

This completes the proof.

O.E.D.

PROOF OF (D.1): Let $X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} (u_{it}^2 - Eu_{it}^2) (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - \mathbf{f}_s' \mathbf{w}))^2$. The goal is to show $EX^2 = o(T)$. We show respectively $\frac{1}{T} (EX)^2 = o(1)$ and $\frac{1}{T} \text{var}(X) = o(1)$. The proof of (D.1) is the same regardless of the type of sparsity in Assumption 4.2. For notational simplicity, let

$$\xi_{it} = u_{it}^2 - Eu_{it}^2, \quad \zeta_{is} = e_{is}(1 - \mathbf{f}_s'\mathbf{w}).$$

Then $X = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \xi_{it} (\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is})^2$. Because of the serial independence, ξ_{it} is independent of ζ_{js} if $t \neq s$, for any $i, j \leq N$, which implies $cov(\xi_{it}, \zeta_{is}\zeta_{ik}) = 0$ as long as either $s \neq t$ or $k \neq t$.

Expectation

For the expectation,

$$EX = \frac{1}{\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \text{cov} \left(\xi_{it}, \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right)^{2} \right)$$

$$= \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \text{cov}(\xi_{it}, \zeta_{is}\zeta_{ik})$$

$$= \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \left(\text{cov}(\xi_{it}, \zeta_{it}^{2}) + 2 \sum_{k \neq t} \text{cov}(\xi_{it}, \zeta_{it}\zeta_{ik}) \right)$$

$$= \frac{1}{T\sqrt{NT}} \sum_{i=1}^{N} \sum_{t=1}^{T} \text{cov}(\xi_{it}, \zeta_{it}^{2}) = O\left(\sqrt{\frac{N}{T}}\right),$$

where the second last equality follows since $E\xi_{it} = E\zeta_{it} = 0$ and when $k \neq t$, $\operatorname{cov}(\xi_{it}, \zeta_{it}\zeta_{ik}) = E\xi_{it}\zeta_{it}\zeta_{ik} = E\xi_{it}\zeta_{it}E\zeta_{ik} = 0$. It then follows that $\frac{1}{T}(EX)^2 = O(\frac{N}{T^2}) = o(1)$, given $N = o(T^2)$.

Variance

Consider the variance. We have

$$\operatorname{var}(X) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{var}\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it} \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is}\right)^{2}\right)$$

$$+ \frac{1}{NT^{3}} \sum_{i \neq j} \sum_{t,s,k,l,v,p \leq T} \operatorname{cov}(\xi_{it} \zeta_{is} \zeta_{ik}, \xi_{jl} \zeta_{jv} \zeta_{jp})$$

$$= B_{1} + B_{2}.$$

 B_1 can be bounded by the Cauchy–Schwarz inequality. Note that $E\xi_{it} = E\zeta_{is} = 0$,

$$B_{1} \leq \frac{1}{N} \sum_{i=1}^{N} E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it} \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is}\right)^{2}\right)^{2}$$

$$\leq \frac{1}{N} \sum_{i=1}^{N} \left[E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{it}\right)^{4} \right]^{1/2} \left[E\left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is}\right)^{8} \right]^{1/2}.$$

Hence $B_1 = O(1)$.

We now show $\frac{1}{T}B_2 = o(1)$. Once this is done, it implies $\frac{1}{T}var(X) = o(1)$. The proof of (D.1) is then completed because $\frac{1}{T}EX^2 = \frac{1}{T}(EX)^2 + \frac{1}{T}var(X) = o(1)$.

For two variables X, Y, write $X \perp Y$ if they are independent. Note that $E\xi_{it} = E\zeta_{is} = 0$, and when $t \neq s$, $\xi_{it} \perp \zeta_{js}$, $\xi_{it} \perp \xi_{js}$, $\zeta_{it} \perp \zeta_{js}$ for any $i, j \leq N$. Therefore, it is straightforward to verify that if the set $\{t, s, k, l, v, p\}$ contains more than three distinct elements, then $\text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) = 0$. Hence if we denote Ξ as the set of (t, s, k, l, v, p) such that $\{t, s, k, l, v, p\}$ contains no more than three distinct elements, then its cardinality satisfies: $|\Xi|_0 \leq CT^3$ for some C > 1, and

$$\sum_{t,s,k,l,v,p\leq T} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik},\xi_{jl}\zeta_{jv}\zeta_{jp}) = \sum_{(t,s,k,l,v,p)\in\Xi} \operatorname{cov}(\xi_{it}\zeta_{is}\zeta_{ik},\xi_{jl}\zeta_{jv}\zeta_{jp}).$$

Hence

$$B_2 = \frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi} \operatorname{cov}(\xi_{it} \zeta_{is} \zeta_{ik}, \xi_{jl} \zeta_{jv} \zeta_{jp}).$$

Let us partition Ξ into $\Xi_1 \cup \Xi_2$, where each element (t, s, k, l, v, p) in Ξ_1 contains exactly three distinct indices, while each element in Ξ_2 contains less

than three distinct indices. We know that

$$\begin{split} \frac{1}{NT^3} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_2} & \operatorname{cov}(\xi_{it} \zeta_{is} \zeta_{ik}, \xi_{jl} \zeta_{jv} \zeta_{jp}) = O\left(\frac{1}{NT^3} N^2 T^2\right) \\ & = O\left(\frac{N}{T}\right), \end{split}$$

which implies

$$\frac{1}{T}B_2 = \frac{1}{NT^4} \sum_{i \neq j} \sum_{(t,s,k,l,v,p) \in \Xi_1} \text{cov}(\xi_{it}\zeta_{is}\zeta_{ik}, \xi_{jl}\zeta_{jv}\zeta_{jp}) + O_p\left(\frac{N}{T^2}\right).$$

The first term on the right hand side can be written as $\sum_{h=1}^{5} B_{2h}$. Each of these five terms is defined and analyzed separately as below:

$$B_{21} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{it} \xi_{jt} E \zeta_{is}^2 E \zeta_{jl}^2$$

$$\leq O\left(\frac{1}{NT}\right) \sum_{i \neq j} |E \xi_{it} \xi_{jt}|.$$

Note that if $(\Sigma_u)_{ij} = 0$, u_{it} and u_{jt} are independent, and hence $E\xi_{it}\xi_{jt} = 0$. This implies $\sum_{i\neq j} |E\xi_{it}\xi_{jt}| \leq O(1) \sum_{i\neq j, (i,j)\in S_U} 1 = O(N)$. Hence $B_{21} = o(1)$.

$$B_{22} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s} E \xi_{it} \zeta_{it} E \zeta_{is} \xi_{js} E \zeta_{jl}^2.$$

By Lemma D.3, u_{js} and e_{is} are independent for $i \neq j$. Also, u_{js} and \mathbf{f}_{s} are independent, which implies ξ_{js} and ζ_{is} are independent. So $E\xi_{js}\zeta_{is} = 0$. It follows that $B_{22} = 0$.

$$B_{23} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E \xi_{it} \zeta_{it} E \zeta_{is} \zeta_{js} E \xi_{jl} \zeta_{jl}$$

$$= O\left(\frac{1}{NT}\right) \sum_{i \neq j} |E \zeta_{is} \zeta_{js}|$$

$$= O\left(\frac{1}{NT}\right) \sum_{i \neq j} |E e_{is} e_{js} E \left(1 - \mathbf{f}_s' \mathbf{w}\right)^2|$$

$$= O\left(\frac{1}{NT}\right) \sum_{i \neq j} |E e_{is} e_{js}|.$$

By the definition $\mathbf{e}_s = \boldsymbol{\Sigma}_u^{-1} \mathbf{u}_s$, $\operatorname{cov}(\mathbf{e}_s) = \boldsymbol{\Sigma}_u^{-1}$. Hence $Ee_{is}e_{js} = (\boldsymbol{\Sigma}_u^{-1})_{ij}$, which implies $B_{23} \leq O(\frac{N}{NT}) \|\boldsymbol{\Sigma}_u^{-1}\|_1 = o(1)$.

$$B_{24} = \frac{1}{NT^4} \sum_{i \neq i} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s, t} E \xi_{it} \xi_{jt} E \zeta_{is} \zeta_{js} E \zeta_{il} \zeta_{jl} = O\left(\frac{1}{T}\right),$$

which is analyzed in the same way as B_{21} .

Finally, $B_{25} = \frac{1}{NT^4} \sum_{i \neq j} \sum_{t=1}^{T} \sum_{s \neq t} \sum_{l \neq s,t} E \xi_{it} \zeta_{jt} E \zeta_{is} \xi_{js} E \zeta_{il} \zeta_{jl} = 0$, because $E \zeta_{is} \xi_{js} = 0$ when $i \neq j$, following from Lemma D.3. Therefore, $\frac{1}{T} B_2 = o(1) + O(\frac{N}{T^2}) = o(1)$.

PROOF OF (D.2): For notational simplicity, let $\xi_{ijt} = u_{it}u_{jt} - Eu_{it}u_{jt}$. Because of the serial independence and the Gaussianity, $cov(\xi_{ijt}, \zeta_{ls}\zeta_{nk}) = 0$ when either $s \neq t$ or $k \neq t$, for any $i, j, l, n \leq N$. In addition, define a set

$$H = \{(i, j) \in S_U : i \neq j\}.$$

Then by the sparsity assumption, $\sum_{(i,j)\in H} 1 = D_N = O(N)$. Now let

$$Z = \frac{1}{\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} (u_{it}u_{jt} - Eu_{it}u_{jt})$$

$$\times \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} e_{is} (1 - \mathbf{f}_{s}^{*}\mathbf{w}) \right] \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} e_{jk} (1 - \mathbf{f}_{k}^{*}\mathbf{w}) \right]$$

$$= \frac{1}{\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \xi_{ijt} \left[\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right] \left[\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right]$$

$$= \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt} \zeta_{is} \zeta_{jk}.$$

The goal is to show $\frac{1}{T}EZ^2 = o(1)$. We respectively show $\frac{1}{T}(EZ)^2 = o(1) = \frac{1}{T}var(Z)$.

Expectation

The proof for the expectation is the same regardless of the type of sparsity in Assumption 4.2, and is very similar to that of (D.1). In fact,

$$EZ = \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \operatorname{cov}(\xi_{ijt}, \zeta_{is}\zeta_{jk})$$
$$= \frac{1}{T\sqrt{NT}} \sum_{(i,j)\in H} \sum_{t=1}^{T} \operatorname{cov}(\xi_{ijt}, \zeta_{it}^{2}).$$

Because
$$\sum_{(i,j)\in H} 1 = O(N)$$
, $EZ = O(\sqrt{\frac{N}{T}})$. Thus $\frac{1}{T}(EZ)^2 = o(1)$. Variance

For the variance, we have

$$\operatorname{var}(Z) = \frac{1}{T^{3}N} \sum_{(i,j)\in H} \operatorname{var}\left(\sum_{t=1}^{T} \sum_{s=1}^{T} \sum_{k=1}^{T} \xi_{ijt} \zeta_{is} \zeta_{jk}\right) + \frac{1}{T^{3}N} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\leq T} \operatorname{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}) = A_{1} + A_{2}.$$

By the Cauchy–Schwarz inequality and the serial independence of ξ_{ijt} ,

$$A_{1} \leq \frac{1}{N} \sum_{(i,j) \in H} E \left[\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt} \frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right]^{2}$$

$$\leq \frac{1}{N} \sum_{(i,j) \in H} \left[E \left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \xi_{ijt} \right)^{4} \right]^{1/2}$$

$$\times \left[E \left(\frac{1}{\sqrt{T}} \sum_{s=1}^{T} \zeta_{is} \right)^{8} \right]^{1/4} \left[E \left(\frac{1}{\sqrt{T}} \sum_{k=1}^{T} \zeta_{jk} \right)^{8} \right]^{1/4}.$$

So $A_1 = O(1)$.

Note that $E\xi_{ijt} = E\zeta_{is} = 0$, and when $t \neq s$, $\xi_{ijt} \perp \zeta_{ms}$, $\xi_{ijt} \perp \xi_{mns}$, $\zeta_{it} \perp \zeta_{js}$ (independent) for any $i, j, m, n \leq N$. Therefore, it is straightforward to verify that if the set $\{t, s, k, l, v, p\}$ contains more than three distinct elements, then $\operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np}) = 0$. Hence for the same set Ξ defined as before, it satisfies: $|\Xi|_0 \leq CT^3$ for some C > 1, and

$$\sum_{t,s,k,l,v,p \leq T} \operatorname{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np})$$

$$= \sum_{(t,s,k,l,v,p) \in \Xi} \operatorname{cov}(\xi_{ijt} \zeta_{is} \zeta_{jk}, \xi_{mnl} \zeta_{mv} \zeta_{np}).$$

We proceed by studying the two cases of Assumption 4.2 separately, and show that in both cases, $\frac{1}{T}A_2 = o(1)$. Once this is done, because we have just shown $A_1 = O(1)$, then $\frac{1}{T} \operatorname{var}(Z) = o(1)$. The proof is then completed because $\frac{1}{T}EZ^2 = \frac{1}{T}(EZ)^2 + \frac{1}{T}\operatorname{var}(Z) = o(1)$.

When $D_N = O(\sqrt{N})$

Because $|\Xi|_0 \le CT^3$ and $|H|_0 = D_N = O(\sqrt{N})$, and $|\operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np})|$ is bounded uniformly in $i, j, m, n \le N$, we have

$$\frac{1}{T}A_2 = \frac{1}{T^4N} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\in\Xi} \operatorname{cov}(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np})$$

$$= O\left(\frac{1}{T}\right).$$

When $D_n = O(N)$, and $m_N = O(1)$

Similarly to the proof of the first statement, for the same set Ξ_1 that contains exactly three distinct indices in each of its element (recall $|H|_0 = O(N)$),

$$\frac{1}{T}A_{2} = \frac{1}{NT^{4}} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t,s,k,l,v,p\in\Xi_{1}} \cos(\xi_{ijt}\zeta_{is}\zeta_{jk}, \xi_{mnl}\zeta_{mv}\zeta_{np}) + O\left(\frac{N}{T^{2}}\right).$$

The first term on the right hand side can be written as $\sum_{h=1}^{5} A_{2h}$. Each of these five terms is defined and analyzed separately as below. Before that, let us introduce a useful lemma.

The following lemma is needed when Σ_u has bounded number of nonzero entries in each row $(m_N = O(1))$. Let $|S|_0$ denote the number of elements in a set S if S is countable. For any $i \leq N$, let

$$A(i) = \{ j \le N : \text{cov}(u_{it}, u_{jt}) \ne 0 \} = \{ j \le N : (i, j) \in S_U \}.$$

LEMMA D.4: Suppose $m_N = O(1)$. For any $i, j \le N$, let B(i, j) be a set of $k \in \{1, ..., N\}$ such that:

- (i) $k \notin A(i) \cup A(j)$,
- (ii) there is $p \in A(k)$ such that $cov(u_{it}u_{jt}, u_{kt}u_{pt}) \neq 0$.

Then $\max_{i,j \le N} |B(i,j)|_0 = O(1)$.

PROOF: First we note that if $B(i, j) = \emptyset$, then $|B(i, j)|_0 = 0$. If it is not empty, for any $k \in B(i, j)$, by definition, $k \notin A(i) \cup A(j)$, which implies $cov(u_{it}, u_{kt}) = cov(u_{jt}, u_{kt}) = 0$. By the Gaussianity, u_{kt} is independent of (u_{it}, u_{jt}) . Hence if $p \in A(k)$ is such that $cov(u_{it}u_{jt}, u_{kt}u_{pt}) \neq 0$, then u_{pt} should be correlated with either u_{it} or u_{jt} . We thus must have $p \in A(i) \cup A(j)$. In other words, there is $p \in A(i) \cup A(j)$ such that $cov(u_{kt}, u_{pt}) \neq 0$, which implies $k \in A(p)$.

Hence,

$$k \in \bigcup_{p \in A(i) \cup A(j)} A(p) \equiv M(i, j),$$

and thus $B(i, j) \subset M(i, j)$. Because $m_N = O(1)$, $\max_{i \le N} |A(i)|_0 = O(1)$, which implies $\max_{i,j} |M(i,j)|_0 = O(1)$, yielding the result. *Q.E.D.*

Now we define and bound each of A_{2h} . For any $(i, j) \in H = \{(i, j) : (\Sigma_u)_{ij} \neq 0\}$, we must have $j \in A(i)$. So

$$A_{21} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j)} \sum_{t=1}^{T} \sum_{s\neq t} \sum_{l\neq t,s} E\xi_{ijt} \xi_{mnt} E\zeta_{is} \zeta_{js} E\zeta_{ml} \zeta_{nl}$$

$$\leq O\left(\frac{1}{NT}\right) \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j)} |E\xi_{ijt} \xi_{mnt}|$$

$$\leq O\left(\frac{1}{NT}\right)$$

$$\times \sum_{(i,j)\in H} \left(\sum_{m\in A(i)\cup A(i)} \sum_{n\in A(m)} + \sum_{m\notin A(i)\cup A(i)} \sum_{n\in A(m)} |\operatorname{cov}(u_{it} u_{jt}, u_{mt} u_{nt})|\right).$$

The first term is $O(\frac{1}{T})$ because $|H|_0 = O(N)$ and $|A(i)|_0$ is bounded uniformly by $m_N = O(1)$. So the number of summands in $\sum_{m \in A(i) \cup A(j)} \sum_{n \in A(m)} \sum_{m \in A(m)} \sum_{m \in A(m)} \sum_{n \in A(m)} |\operatorname{cov}(u_{it}u_{jt}, u_{mt}u_{nt})|$, which is also $O(\frac{1}{T})$ by Lemma D.4. Hence $A_{21} = O(1)$.

Similarly, applying Lemma D.4,

$$A_{22} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^{T} \sum_{l\neq t,s} E\xi_{ijt} \xi_{mnt} E\zeta_{is} \zeta_{ms} E\zeta_{jl} \zeta_{nl}$$

$$= o(1),$$

which is proved in the same lines of those of A_{21} .

Also note three simple facts: (1) $\max_{j \le N} |A(j)|_0 = O(1)$, (2) $(m, n) \in H$ implies $n \in A(m)$, and (3) $\xi_{mms} = \xi_{nms}$. The term A_{23} is defined as

$$A_{23} = \frac{1}{NT^4} \sum_{(i,j)\in H, \ (m,n)\in H, (m,n)\neq (i,j), \ t=1} \sum_{s\neq t}^T \sum_{l\neq t,s} E \xi_{ijt} \zeta_{it} E \zeta_{js} \xi_{mns} E \zeta_{ml} \zeta_{nl}$$

$$\leq O\left(\frac{1}{NT}\right) \sum_{i=1}^N \sum_{j\in A(i)} 1 \sum_{(m,n)\in H, (m,n)\neq (i,j)} |E\zeta_{js}\xi_{mns}|$$

$$\leq O\left(\frac{2}{NT}\right) \sum_{j=1}^{N} \sum_{n \in A(j)} |E\zeta_{js}\xi_{jns}| + O\left(\frac{1}{NT}\right) \sum_{j=1}^{N} \sum_{m \neq j, n \neq j} |E\zeta_{js}\xi_{mns}|$$

$$= a + b.$$

Term $a = O(\frac{1}{T})$. For b, note that Lemma D.3 implies that when m, $n \neq j$, $u_{ms}u_{ns}$ and e_{js} are independent because of the Gaussianity. Also because \mathbf{u}_s and \mathbf{f}_s are independent, hence ζ_{js} and ξ_{mms} are independent, which implies that b = 0. Hence $A_{23} = o(1)$.

The same argument as of A_{23} also implies

$$A_{24} = \frac{1}{NT^4} \sum_{(i,j)\in H, (m,n)\in H, (m,n)\neq (i,j), t=1} \sum_{s\neq t}^{T} \sum_{l\neq t,s} E\xi_{ijt} \zeta_{mt} E\zeta_{is} \xi_{mns} E\zeta_{il} \zeta_{nl}$$

$$= o(1).$$

Finally, because $\sum_{(i,j)\in H} 1 \le \sum_{i=1}^{N} \sum_{j\in A(i)} 1 \le m_N \sum_{i=1}^{N} 1$, and $m_N = O(1)$, we have

$$\begin{split} A_{25} &= \frac{1}{NT^4} \sum_{(i,j) \in H, \ (m,n) \in H, (m,n) \neq (i,j), \ t=1} \sum_{s \neq t}^T \sum_{l \neq t,s} E \xi_{ijt} \zeta_{it} E \zeta_{is} \zeta_{ms} E \xi_{mnl} \zeta_{nl} \\ &\leq O\left(\frac{1}{NT}\right) \sum_{(i,j) \in H, \ (m,n) \in H, (m,n) \neq (i,j)} |E \xi_{ijt} \zeta_{it} E \zeta_{is} \zeta_{ms} E \xi_{mnl} \zeta_{nl}| \\ &\leq O\left(\frac{1}{NT}\right) \sum_{i=1}^N \sum_{m=1}^N |E \zeta_{is} \zeta_{ms}| \\ &\leq O\left(\frac{1}{NT}\right) \sum_{i=1}^N \sum_{m=1}^N |\left(\boldsymbol{\Sigma}_u^{-1}\right)_{im}| E \left(1 - \mathbf{f}_s' \mathbf{w}\right)^2 \\ &\leq O\left(\frac{N}{NT}\right) \|\boldsymbol{\Sigma}_u^{-1}\|_1 = o(1). \end{split}$$

In summary, $\frac{1}{T}A_2 = o(1) + O(\frac{N}{T^2}) = o(1)$.

O.E.D.

APPENDIX E: FURTHER TECHNICAL LEMMAS FOR SECTION 4 We cite a lemma that will be needed throughout the proofs.

LEMMA E.1: *Under Assumption* 4.1, *there is* C > 0,

(i)
$$P(\max_{i,j \le N} | \frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - E u_{it} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \to 0$$
,

(ii)
$$P(\max_{i \le K, j \le N} |\frac{1}{T} \sum_{t=1}^{T} f_{it} u_{jt}| > C \sqrt{\frac{\log N}{T}}) \to 0$$
,

(iii)
$$P(\max_{j \le N} | \frac{1}{T} \sum_{t=1}^{T} u_{jt} | > C \sqrt{\frac{\log N}{T}}) \to 0.$$

PROOF: The proof follows from Lemmas A.3 and B.1 in Fan, Liao, and Mincheva (2011). Q.E.D.

LEMMA E.2: When the distribution of $(\mathbf{u}_t, \mathbf{f}_t)$ is independent of $\boldsymbol{\theta}$, there is C > 0,

(i)
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{j \le N} |\widehat{\boldsymbol{\theta}}_j - \boldsymbol{\theta}_j| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0$$
,

(ii)
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i,j \le N} |\widehat{\boldsymbol{\sigma}}_{ij} - \boldsymbol{\sigma}_{ij}| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0,$$

(iii)
$$\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i \leq N} |\widehat{\sigma}_i - \sigma_i| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 0.$$

PROOF: Note that $\widehat{\theta}_j - \theta_j = \frac{1}{a_{f,T}T} \sum_{t=1}^T u_{jt} (1 - \mathbf{f}_t \mathbf{w})$. Here $a_{f,T} = 1 - \overline{\mathbf{f}} \mathbf{w} \rightarrow^p 1 - E\mathbf{f}_t' (E\mathbf{f}_t \mathbf{f}_t')^{-1} E\mathbf{f}_t > 0$, hence $a_{f,T}$ is bounded away from zero with probability approaching 1. Thus by Lemma E.1, there is C > 0 independent of $\boldsymbol{\theta}$, such that

$$\begin{split} \sup_{\boldsymbol{\theta} \in \Theta} P \bigg(\max_{j \leq N} |\widehat{\boldsymbol{\theta}}_j - \boldsymbol{\theta}_j| > C \sqrt{\frac{\log N}{T}} \bigg| \boldsymbol{\theta} \bigg) \\ = P \bigg(\max_j \left| \frac{1}{a_{f,T} T} \sum_{t=1}^T u_{jt} (1 - \mathbf{f}_t' \mathbf{w}) \right| > C \sqrt{\frac{\log N}{T}} \bigg) \to 0. \end{split}$$

(ii) There is C independent of θ , such that the event

$$A = \left\{ \max_{i,j} \left| \frac{1}{T} \sum_{t=1}^{T} u_{it} u_{jt} - \sigma_{ij} \right| < C \sqrt{\frac{\log N}{T}}, \frac{1}{T} \sum_{t=1}^{T} \|\mathbf{f}_{t}\|^{2} < C \right\}$$

has probability approaching 1. Also, there is C_2 also independent of θ such that the event $B = \{ \max_i \frac{1}{T} \sum_i u_{it}^2 < C_2 \}$ occurs with probability approaching 1. Then on the event $A \cap B$, by the triangular and Cauchy–Schwarz inequalities,

$$|\widehat{\sigma}_{ij} - \sigma_{ij}| \le C\sqrt{\frac{\log N}{T}} + 2\max_{i} \sqrt{\frac{1}{T} \sum_{t} (\widehat{u}_{it} - u_{it})^{2} C_{2}}$$

$$+ \max_{i} \frac{1}{T} \sum_{t} (u_{it} - \widehat{u}_{it})^{2}.$$

It can be shown that

$$\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^{2}$$

$$\leq \max_{i} (\|\widehat{\mathbf{b}}_{i} - \mathbf{b}_{i}\|^{2} + (\widehat{\theta}_{i} - \theta_{i})^{2}) \left(\frac{1}{T} \sum_{t=1}^{T} \|\mathbf{f}_{t}\|^{2} + 1\right).$$

Note that $\widehat{\mathbf{b}}_i - \mathbf{b}_i$ and $\widehat{\theta}_i - \theta_i$ only depend on $(\mathbf{f}_t, \mathbf{u}_t)$ (independent of $\boldsymbol{\theta}$). By Lemma 3.1 of Fan, Liao, and Mincheva (2011), there is $C_3 > 0$ such that $\sup_{\mathbf{b},\boldsymbol{\theta}} P(\max_{i \leq N} \|\widehat{\mathbf{b}}_i - \mathbf{b}_i\|^2 + (\widehat{\theta}_i - \theta_i)^2 > C_3 \frac{\log N}{T}) = o(1)$. Combining the last two displayed inequalities yields, for $C_4 = (C+1)C_3$,

$$\sup_{\boldsymbol{\theta}} P\left(\max_{i \leq N} \frac{1}{T} \sum_{t=1}^{T} (\widehat{u}_{it} - u_{it})^2 > C_4 \frac{\log N}{T} \Big| \boldsymbol{\theta}\right) = o(1),$$

which yields the desired result.

(iii) Recall $\hat{\sigma}_j^2 = \hat{\sigma}_{jj}/a_{f,T}$, and $\sigma_j^2 = \sigma_{jj}/(1 - E\mathbf{f}_t(E\mathbf{f}_t\mathbf{f}_t)^{-1}E\mathbf{f}_t)$. Moreover, $a_{f,T}$ is independent of $\boldsymbol{\theta}$. The result follows immediately from part (ii). *Q.E.D.*

LEMMA E.3: For any
$$\varepsilon > 0$$
, $\sup_{\theta} P(\|\widehat{\boldsymbol{\Sigma}}_{u}^{-1} - \boldsymbol{\Sigma}_{u}^{-1}\| > \varepsilon|\boldsymbol{\theta}) = o(1)$.

PROOF: By Lemma E.2(ii), $\sup_{\boldsymbol{\theta} \in \Theta} P(\max_{i,j \leq N} |\widehat{\boldsymbol{\sigma}}_{ij} - \sigma_{ij}| > C\sqrt{\frac{\log N}{T}} |\boldsymbol{\theta}) \to 1$. By Fan, Liao, and Mincheva (2011), on the event $\max_{i,j \leq N} |\widehat{\boldsymbol{\sigma}}_{ij} - \sigma_{ij}| \leq C\sqrt{\frac{\log N}{T}}$, there is constant C' that is independent of $\boldsymbol{\theta}$, $\|\widehat{\boldsymbol{\Sigma}}_u^{-1} - \boldsymbol{\Sigma}_u^{-1}\| \leq C' m_N (\frac{\log N}{T})^{1/2}$. Hence the result follows due to the sparse condition $m_N (\frac{\log N}{T})^{1/2} = o(1)$.

REFERENCE

FAN, J., Y. LIAO, AND M. MINCHEVA (2011): "High Dimensional Covariance Matrix Estimation in Approximate Factor Models," *The Annals of Statistics*, 39, 3320–3356. [2,13,14]

Dept. of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, U.S.A., International School of Economics and Management, Capital University of Economics and Business, Beijing, China, and Lingnan College, Sun Yat-sen University, Guangzhou, China; jqfan@princeton.edu,

Dept. of Mathematics, University of Maryland, College Park, MD 20742, U.S.A.; yuanliao@umd.edu,

and

Dept. of Operations Research and Financial Engineering, Princeton University, Princeton, NJ 08544, U.S.A.; jiaweiy@princeton.edu.

Manuscript received August, 2014; final revision received February, 2015.