Characteristics based Factor Models

Yuan Liao

Rutgers University

based on joint works with Jianqing Fan, Yuan Ke, Weichen Wang

December 17, 2016

イロト イポト イヨト イヨト

э

- Projected principal components analysis in factor models (with Fan and Wang), *Ann. Statist.* 2016
- Robust factor models with covariates (with Fan and Ke), manuscript. 2016+

イロト 不得 トイヨト イヨト

$$y_{it} = \lambda'_i f_t + u_{it}, \quad i \leq N, t \leq T$$

- When the dim is large, often estimated by PCA.
- In high-dim. spiked models, they are asympt. equivalent.
- Large literature in economics, finance, statistics, Chamberlain and Rothschild (83), Stock and Watson (02), Bai and Ng (02), Forni, Hallin, Lippi, Reichlin (00), ...

イロト 不得 トイヨト イヨト

Covariate-based factor models:

\star Depend on covariates through either λ_i , or \mathbf{f}_t or both.

Through loadings:

Estimation is improved when T is small.

★ Through factors:

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ ○

Estimation is improved when N is small.

Key Assumptions about X

X is strongly associated with Y:

• Let $\widehat{\mathbf{Y}}$ be the fitted value when regressing \mathbf{Y} on $\mathbf{X},$ then

The first *K* eigenvalues of $(\frac{1}{NT}\widehat{\mathbf{Y}}\widehat{\mathbf{Y}}')$ is bounded away from $0,\infty$.

• This means:

Through loadings:

$$\frac{1}{N}\sum_{i=1}^{N} \mathbf{g}(\mathbf{X}_i) \mathbf{g}(\mathbf{X}_i)' \text{ does not degenerate}$$

Through factors:

$$\frac{1}{T}\sum_{t=1}^{T} \mathbf{g}(\mathbf{X}_t) \mathbf{g}(\mathbf{X}_t)' \text{ does not degenerate}$$

\star X is mean-independent of (\mathbf{u}_t, γ) .

イロト イポト イヨト イヨト

Semi-parametric factor model: (Connor & Linton, 07; +Mathias 12):

$$y_{it} = \mathbf{g}(\mathbf{X}_i)'\mathbf{f}_t + u_{it}, \text{ or } \lambda_i = g(\mathbf{X}_i)$$

Loadings are modeled using covariates X_i.

- **<u>Finance</u>**: X_i = firm-specific variables: size, PE, PS ratios, etc
- <u>Health</u>: X_i = can be individual char. weight, genetic information, etc.

イロト イポト イヨト イヨト

Loadings are fully explained by X_i , can be restrictive.

Fan, Liao and Wang (16, AOS):

$$\lambda_i = \mathbf{g}(\mathbf{X}_i) + \gamma_i.$$

- Loadings are explained partially.
- Two-step estimation:

<u>Step 1</u> Project **Y** onto the space of **X**, obtain $\widehat{\mathbf{Y}}$.

Step 2 Run PCA on the fitted data $\widehat{\mathbf{Y}}$.

- Results:
 - Factors are consistently estimated when T is finite.
 - Faster rate of convergences when T grows.
 - Specification tests: $\mathbf{g} = 0$ and $\gamma = 0$.

イロト イポト イヨト イヨト

The Idea

So

Projection matrix: $\mathbf{P} = \Phi(\mathbf{X})(\Phi(\mathbf{X})'\Phi(\mathbf{X}))^{-1}\Phi(\mathbf{X})'$.

$$\mathbf{P}\mathbf{Y}_t \approx (\mathbf{P}\mathbf{G} + \underbrace{\mathbf{P}\gamma}_{\approx 0})^T \mathbf{f}_t + \underbrace{\mathbf{P}\mathbf{u}_t}_{\approx 0} \approx (\underbrace{\mathbf{P}\mathbf{G}}_{\approx \mathbf{G}})^T \mathbf{f}_t.$$

$$\frac{1}{T}\widehat{\mathbf{Y}}\widehat{\mathbf{Y}}'\approx\mathbf{G}\mathrm{cov}(\mathbf{f}_t)\mathbf{G}'$$

 $\blacksquare \gamma$ and \mathbf{u}_t are "projected off".

$$\frac{1}{T}\widehat{\mathbf{Y}}\widehat{\mathbf{Y}}'\mathbf{G}\approx\mathbf{G}\mathrm{cov}(\mathbf{f}_t)\mathbf{G}'\mathbf{G}$$

so columns of G are approx. space of the leading eigenvectors

イロト イポト イヨト イヨト

э

Covariates may also appear in factors.

$$\mathbf{f}_t = \mathbf{g}(\mathbf{X}_t) + \boldsymbol{\gamma}_t.$$

Factors may be partially explained by covariates X_t .

- **<u>Finance</u>**: \mathbf{X}_t = Fama-French factors, etc
- <u>Macro-forecasts</u>: X_t = consumption-wealth variable, financial ratios, and term spread, etc.

Fama-French factors cannot fully explain \mathbf{f}_t (Fama-French 15).

イロト イポト イヨト イヨト

э

$$E(\mathbf{Y}_t|\mathbf{X}_t) = \Lambda \mathbf{g}(\mathbf{X}_t), \quad \mathbf{g}(\mathbf{X}_t) = E(\mathbf{f}_t|\mathbf{X}_t).$$

Hence

$$\Sigma := E\{E(\mathbf{Y}_t|\mathbf{X}_t)E(\mathbf{Y}_t|\mathbf{X}_t)'\} = \Lambda \underbrace{E\{\mathbf{g}(\mathbf{X}_t)\mathbf{g}(\mathbf{X}_t)'\}}_{\Sigma_g}\Lambda'$$

<u>Normalization condition</u>: $\frac{1}{N}\Lambda'\Lambda = I$, and Σ_g is diagonal.

Then

$$\frac{1}{N} \Sigma \Lambda = \Lambda \Sigma_g, \quad \mathbf{g}(\mathbf{X}_t) = \frac{1}{N} \Lambda' E(\mathbf{Y}_t | \mathbf{X}_t)$$

★ Exact identification, as opposed to the "asym. ident." in the literature.

= nar

★ Identified up to rotations without normalization conditions.

★ Estimate high-dim cov $\Sigma := E\{E(\mathbf{Y}_t | \mathbf{X}_t) E(\mathbf{Y}_t | \mathbf{X}_t)'\}$. e.g.,

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{NT} \widehat{\boldsymbol{Y}}' \widehat{\boldsymbol{Y}}$$

★ The columns of $\frac{1}{\sqrt{N}}\widehat{\Lambda}$ are the eigenvectors corresponding to the first *K* eigenvalues of $\widehat{\Sigma}$. (usual methods use $\frac{1}{NT}\mathbf{Y'Y}$)

$$\bigstar \widehat{\mathbf{g}}(\mathbf{X}_t) := \frac{1}{N} \widehat{\Lambda}' \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t).$$

 $\bigstar \widehat{\mathbf{f}}_t = \frac{1}{N} \widehat{\Lambda}' \mathbf{Y}_t.$

 $\bigstar \widehat{\boldsymbol{\gamma}}_t = \widehat{\boldsymbol{\mathsf{f}}}_t - \widehat{\boldsymbol{\mathsf{g}}}(\boldsymbol{\mathsf{X}}_t).$

不得下 不足下 不足下

Theorem 1: Suppose under the spectral norm,

$$\|\widehat{\Sigma} - \Sigma\| = o_P(N),$$

then there is **H**, so that

$$\frac{1}{N} \|\widehat{\boldsymbol{\Lambda}} - \boldsymbol{\Lambda} \mathbf{H}\|_F^2 = o_P(1).$$

In addition, if the normalization condition holds,

 $\mathbf{H} = \mathbf{I}.$

イロト イポト イヨト イヨト

э

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t) \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t)', \text{ where } \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t) = \widehat{\mathbf{B}} \Phi(\mathbf{X}_t).$$

- $-\widehat{\Sigma} = \frac{1}{NT} \widehat{\mathbf{Y}}' \widehat{\mathbf{Y}}$: use $\widehat{\mathbf{B}}$ as the least squares.
- Can use a better estimator for $\widehat{\mathbf{B}}$ to protect against heavy tails.

・ロト ・ 理ト ・ モト ・ モト

- Many series in the panel data are heavy tailed.

Example: Monthly data of 131 macroeconomic series 1964-2003 (e.g. Ludvigson and Ng 2009, 2010).

 \star 43 series have tails heavier than t_5

Robust estimation of Σ

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{T} \sum_{t=1}^{T} \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t) \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t)', \text{ where } \widehat{\boldsymbol{E}}(\mathbf{Y}_t | \mathbf{X}_t) = \widehat{\mathbf{B}} \boldsymbol{\Phi}(\mathbf{X}_t).$$

★ For some deterministic sequence $\alpha_T \rightarrow \infty$,

$$\widehat{\mathbf{b}}_{i} = \arg\min_{\mathbf{b} \in \mathbb{R}^{J}} \frac{1}{T} \sum_{t=1}^{T} \rho\left(\frac{y_{it} - \Phi(\mathbf{X}_{t})'\mathbf{b}}{\alpha_{T}}\right), \quad \widehat{\mathbf{B}} = (\widehat{\mathbf{b}}_{1}, ..., \widehat{\mathbf{b}}_{N})'.$$

Huber loss (Huber, 1964):

$$ho(z) = egin{cases} z^2, & |z| < 1 \ 2|z| - 1, & |z| \ge 1. \end{cases}$$

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

Study of US Bond Risk Premia

ヘロト 人間 トイヨト イヨト

3

Sac

Can US bond risk premia be explained by large macroeconomic panel data?

Approaches based on diffusion index models

Regress on $\{\mathbf{X}_t, \mathbf{f}_t\}$ (Stock, Watson 02; Ludvigson, Ng 09, 10)

Our Discoveries

Using \mathbf{X}_t to explain \mathbf{f}_t (instead of as predictors) significantly improves out-of-sample forecast, compared to directly regressing on $\{\mathbf{X}_t, \mathbf{f}_t\}$.

Robust estimations yield further improvements.

ヘロト ヘ戸ト ヘヨト ヘヨト

- ★ $y_t^{(n)}$: US bond risk premia with maturity of *n* years, $n = \{2, \dots, 5\}.$
- ★ Y_t: Monthly data of 131 macroeconomic series 1964-2003 (e.g. Ludvigson and Ng 2009, 2010).
- ★ X_t: 8 observables used to describe the co-movement of the macroeconomic activities (e.g. NBER, 08; Stock, Watson 10).

ヘロト ヘ戸ト ヘヨト ヘヨト

Robustly Fitted Data

The fitted data $\widehat{E}(\mathbf{Y}_t | \mathbf{X}_t)$ are no longer severely heavy-tailed.

★ The estimated idiosyncratic errors preserve the heavy-tailed behavior. **Baw data:** check here

▲ 同 ト ▲ 三 ト

12 B

Linear model

$$y_{t+1} = \alpha + \beta' \mathbf{z}_t + \varepsilon_t$$

Multi-index model (Li, 1991; Fan, Xue, Yao, 2015)

$$y_{t+1} = \alpha + h(\psi'_1 \mathbf{z}_t, \cdots, \psi'_L \mathbf{z}_t) + \varepsilon_t$$

イロト イポト イヨト イヨト

э

z_t: (i) **X**_t; (ii)**f**_t; (iii)(**f**'_t, **X**'_t)'. **L** < dim(**X**_t) ! **f**_t is obtained from 131 macro time series.

- ★ Forecast y_{T+t+1} using the data of the previous T = 240 months.
- ★ The forecast performance is assessed by the out-of-sample R^2

$$R^{2} = 1 - \frac{\sum_{t=0}^{239} (y_{T+t+1} - \hat{y}_{T+t+1}|_{T+t})^{2}}{\sum_{t=0}^{239} (y_{T+t+1} - \bar{y}_{t})^{2}},$$

where \bar{y}_t is the sample mean of y_t over the sample period [1 + t, T + t].

イロト 不得 トイヨト イヨト

Forecast Results: Linear Model

$$\bigstar y_{t+1} = \alpha + \beta' \mathbf{z}_t + \varepsilon_t$$

Table: out-of-sample R^2 , the larger the better

Zt	pr	opose	d metho	bc	PCA			
		Maturit	y(Year))	Maturity(Year)			
	2	3	4	5	2	3	4	5
$(\widehat{\mathbf{f}}_t', \mathbf{X}_t')'$	37.9	32.6	25.6	22.8	23.9	21.4	17.4	17.5
$\widehat{\mathbf{f}}_t'$	38.1	32.9	25.7	23.0	32.6	28.2	23.3	19.7
\mathbf{X}_t	6.1	5.5	4.7	4.5	6.1	5.5	4.7	4.5

ヘロト 人間 トイヨト イヨト

3 Sac

Forecast Results: Multi-index Model

$$y_{t+1} = \alpha + h(\psi'_1 \mathbf{z}_t, \cdots, \psi'_L \mathbf{z}_t) + \varepsilon_t$$

z _t	proposed method				PCA			
	Maturity(Year)				Maturity(Year)			
	2	3	4	5	2	3	4	5
$(\mathbf{f}_t', \mathbf{X}_t')'$	41.7	39.0	35.6	34.1	30.8	26.3	24.6	22.0
\mathbf{f}_t'	41.2	39.1	35.2	34.1	34.5	32.1	27.3	23.7
\mathbf{X}_t	13.6	10.8	10.0	6.8	13.6	10.8	10.0	6.8

★More results in our paper.

<ロト < 回 > < 回 > < 回 > < 回 > .

3

Sac

- X_t contains strong explanatory powers of the latent factors.
- The gain is more substantial when incorporate X_t to estimate f_t than only use it for forecasting.
- Sobust estimations yield significant impovements.
- The multi-index models out-performs linear models.

イロト イヨト イヨト

Projected-PCA:

- Semi-parametric factor model
- Apply PCA on projected data.

Robust Proxy-regressed Method

- Apply PCA on **Robustly** fitted data.
- Little price under light-tails and Big gain under heavy-tails.

イロト イポト イヨト イヨト

э

Faster rate of convergence.