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Factor models

yit = λ
′
i ft + uit , i ≤ N, t ≤ T

� When the dim is large, often estimated by PCA.

� In high-dim. spiked models, they are asympt. equivalent.

� Large literature in economics, finance, statistics,
Chamberlain and Rothschild (83), Stock and Watson (02) , Bai and Ng

(02), Forni, Hallin, Lippi, Reichlin (00), ...
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Use of Covariate information

Covariate-based factor models:

F Depend on covariates through either λi , or ft or both.

F Through loadings:

λi = g(Xi )︸ ︷︷ ︸
explained components

+ γi︸︷︷︸
remainders

,

Estimation is improved when T is small.

F Through factors:

ft = g(Xt )︸ ︷︷ ︸
explained components

+ γt︸︷︷︸
remainders

.

Estimation is improved when N is small.
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Key Assumptions about X

FX is strongly associated with Y:

Let Ŷ be the fitted value when regressing Y on X, then

The first K eigenvalues of (
1

NT
ŶŶ
′
) is bounded away from 0,∞.

This means:

Through loadings:

1
N

N

∑
i=1

g(Xi )g(Xi )
′ does not degenerate

Through factors:

1
T

T

∑
t=1

g(Xt )g(Xt )
′ does not degenerate

FX is mean-independent of (ut ,γ).
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Through loadings

Semi-parametric factor model: (Connor & Linton, 07; +Mathias 12):

yit = g(Xi)
′ft + uit , or λi = g(Xi)

�Loadings are modeled using covariates Xi .

Finance: Xi = firm-specific variables: size, PE, PS ratios, etc

Health: Xi = can be individual char. weight, genetic information, etc.

�Loadings are fully explained by Xi , can be restrictive.
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Flexible semiparametric model

Fan, Liao and Wang (16, AOS ):

λi = g(Xi) + γi .

Loadings are explained partially.

Two-step estimation:

Step 1 Project Y onto the space of X, obtain Ŷ.

Step 2 Run PCA on the fitted data Ŷ.

Results:

Factors are consistently estimated when T is finite.

Faster rate of convergences when T grows.

Specification tests: g = 0 and γ = 0.
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The Idea

�Projection matrix: P = Φ(X)(Φ(X)′Φ(X))−1Φ(X)′.

�

PYt ≈ (PG + Pγ︸︷︷︸
≈0

)T ft + Put︸︷︷︸
≈0

≈ ( PG︸︷︷︸
≈G

)Tft.

So
1
T

ŶŶ
′ ≈ Gcov(ft)G′

�γ and ut are “projected off”.

1
T

ŶŶ
′
G≈ Gcov(ft)G′G

so columns of G are approx. space of the leading eigenvectors
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Through factors

Covariates may also appear in factors.

ft = g(Xt) + γt .

�Factors may be partially explained by covariates Xt .

Finance: Xt = Fama-French factors, etc

Macro-forecasts: Xt = consumption-wealth variable, financial ratios,

and term spread, etc.

�Fama-French factors cannot fully explain ft (Fama-French 15).
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Identification

E(Yt |Xt ) = Λg(Xt ), g(Xt ) = E(ft |Xt ).

Hence

Σ := E{E(Yt |Xt )E(Yt |Xt )
′}= ΛE{g(Xt )g(Xt )

′}︸ ︷︷ ︸
Σg

Λ′

Normalization condition: 1
N Λ′Λ = I, and Σg is diagonal.

Then
1
N

ΣΛ = ΛΣg , g(Xt ) =
1
N

Λ′E(Yt |Xt )

F Columns of Λ are the leading eigenvectors of Σ.

F Exact identification, as opposed to the “asym. ident.” in the literature.

F Identified up to rotations without normalization conditions.
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The estimators

F Estimate high-dim cov Σ := E{E(Yt |Xt)E(Yt |Xt)
′}. e.g.,

Σ̂ =
1

NT
Ŷ
′
Ŷ

F The columns of 1√
N

Λ̂ are the eigenvectors corresponding to

the first K eigenvalues of Σ̂. (usual methods use 1
NT Y′Y)

F ĝ(Xt) := 1
N Λ̂
′
Ê(Yt |Xt).

F f̂t = 1
N Λ̂′Yt .

F γ̂t = f̂t − ĝ(Xt).
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General Consistency

Theorem 1: Suppose under the spectral norm,

‖Σ̂−Σ‖= oP(N),

then there is H, so that

1
N
‖Λ̂−ΛH‖2

F = oP(1).

In addition, if the normalization condition holds,

H = I.
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Heavy-tailed Panel Data

Σ̂ =
1
T

T

∑
t=1

Ê(Yt |Xt)Ê(Yt |Xt)
′, where Ê(Yt |Xt) = B̂Φ(Xt).

– Σ̂ = 1
NT Ŷ

′
Ŷ: use B̂ as the least squares.

– Can use a better estimator for B̂ to protect against heavy tails.

– Many series in the panel data are heavy tailed.
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Example: Monthly data of 131 macroeconomic series

1964-2003 (e.g. Ludvigson and Ng 2009, 2010).

Histgram of Excess Kurtosis
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F43 series have tails heavier than t5
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Robust estimation of Σ

Σ̂ =
1
T

T

∑
t=1

Ê(Yt |Xt )Ê(Yt |Xt )
′, where Ê(Yt |Xt ) = B̂Φ(Xt ).

FFor some deterministic sequence αT → ∞,

b̂i = arg min
b∈RJ

1
T

T

∑
t=1

ρ

(
yit −Φ(Xt )

′b
αT

)
, B̂ = (b̂1, ..., b̂N)′.

Huber loss(Huber, 1964):

ρ(z) =

z2, |z|< 1

2|z|−1, |z| ≥ 1.
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Study of US Bond Risk Premia
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Econometric Motivation

Can US bond risk premia be explained by large macroeconomic

panel data?

Approaches based on diffusion index models

�Regress on {Xt , ft} (Stock, Watson 02; Ludvigson, Ng 09, 10)

Our Discoveries

�Using Xt to explain ft (instead of as predictors) significantly

improves out-of-sample forecast, compared to directly

regressing on {Xt , ft}.
�Robust estimations yield further improvements.
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Data and Model

F y (n)
t : US bond risk premia with maturity of n years,

n = {2, · · · ,5}.

F Yt : Monthly data of 131 macroeconomic series 1964-2003

(e.g. Ludvigson and Ng 2009, 2010).

F Xt : 8 observables used to describe the co-movement of the

macroeconomic activities (e.g. NBER, 08; Stock, Watson

10).
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Robustly Fitted Data

Excess Kurtosis of Fitted X
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FThe fitted data Ê(Yt |Xt ) are no longer severely heavy-tailed.

FThe estimated idiosyncratic errors preserve the heavy-tailed behavior.

Raw data: check here
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Forecast models

Linear model

yt+1 = α + β
′zt + εt

Multi-index model (Li, 1991; Fan, Xue, Yao, 2015)

yt+1 = α + h(ψ
′
1zt , · · · ,ψ′Lzt) + εt

�zt : (i) Xt ; (ii)ft ; (iii)(f′t ,X
′
t)
′. �L < dim(Xt) !

�ft is obtained from 131 macro time series.
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Rolling Window Forecast

F Forecast yT+t+1 using the data of the previous T = 240

months.

F The forecast performance is assessed by the out-of-sample

R2

R2 = 1−

239
∑

t=0
(yT+t+1− ŷT+t+1|T+t)

2

239
∑

t=0
(yT+t+1− ȳt)2

,

where ȳt is the sample mean of yt over the sample period

[1 + t,T + t].
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Forecast Results: Linear Model

Fyt+1 = α + β
′zt + εt

Table: out-of-sample R2, the larger the better

zt proposed method PCA

Maturity(Year) Maturity(Year)

2 3 4 5 2 3 4 5

(̂f
′
t , X′t)

′ 37.9 32.6 25.6 22.8 23.9 21.4 17.4 17.5

f̂
′
t 38.1 32.9 25.7 23.0 32.6 28.2 23.3 19.7

Xt 6.1 5.5 4.7 4.5 6.1 5.5 4.7 4.5
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Forecast Results: Multi-index Model

yt+1 = α + h(ψ
′
1zt , · · · ,ψ′Lzt) + εt

zt proposed method PCA

Maturity(Year) Maturity(Year)

2 3 4 5 2 3 4 5

(f′t , X′t)
′ 41.7 39.0 35.6 34.1 30.8 26.3 24.6 22.0

f′t 41.2 39.1 35.2 34.1 34.5 32.1 27.3 23.7

Xt 13.6 10.8 10.0 6.8 13.6 10.8 10.0 6.8

FMore results in our paper.
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Findings

1 Xt contains strong explanatory powers of the latent factors.

2 The gain is more substantial when incorporate Xt to

estimate ft than only use it for forecasting.

3 Robust estimations yield significant impovements.

4 The multi-index models out-performs linear models.
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Conclusion

Projected-PCA:

� Semi-parametric factor model

� Apply PCA on projected data.

Robust Proxy-regressed Method

� Apply PCA on Robustly fitted data.

� Little price under light-tails and Big gain under heavy-tails.

� Faster rate of convergence.
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