Characteristics based Factor Models

Yuan Liao

Rutgers University

based on joint works with **Jianqing Fan, Yuan Ke, Weichen Wang**

December 17, 2016

(ロ) (何) (ヨ) (ヨ) (

∍

- Projected principal components analysis in factor models (with Fan and Wang), *Ann. Statist.* 2016
- Robust factor models with covariates (with Fan and Ke), *manuscript.* 2016+

イロト イ押 トイラ トイラトー

E.

$$
y_{it} = \lambda'_i t_t + u_{it}, \quad i \leq N, t \leq T
$$

- When the dim is large, often estimated by PCA.
- In high-dim. spiked models, they are asympt. equivalent.
- \blacksquare Large literature in economics, finance, statistics, Chamberlain and Rothschild (83), Stock and Watson (02) , Bai and Ng (02), Forni, Hallin, Lippi, Reichlin (00), ...

イロト イ押 トイラ トイラトー

E.

Covariate-based factor models:

 \star Depend on covariates through either λ_i , or f_t or both.

★ Through loadings:

Estimation is improved when *T* is small.

★ Through factors:

イロト イ押 トイラト イラト・ラー

 Ω

Estimation is improved when *N* is small.

Key Assumptions about X

F**X** is **strongly associated with Y**:

Let **^Y**b be the fitted value when regressing **^Y** on **^X**, then

The first *K* eigenvalues of $\left(\frac{1}{\Delta t}\right)$ $\frac{1}{NT}\hat{\mathbf{Y}}\hat{\mathbf{Y}}'$) is bounded away from 0,∞.

• This means:

Through loadings:

$$
\frac{1}{N} \sum_{i=1}^{N} \mathbf{g}(\mathbf{X}_i) \mathbf{g}(\mathbf{X}_i)' \text{ does not degenerate}
$$

Through factors:

$$
\frac{1}{T} \sum_{t=1}^T \mathbf{g}(\mathbf{X}_t) \mathbf{g}(\mathbf{X}_t)'
$$
 does not degenerate

 \star **X** is mean-independent of (\mathbf{u}_t, γ) .

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Semi-parametric factor model: (*Connor & Linton, 07; +Mathias 12*):

$$
y_{it} = g(\mathbf{X}_i)' \mathbf{f}_t + u_{it}, \quad \text{or} \quad \lambda_i = g(\mathbf{X}_i)
$$

Loadings are modeled using covariates X_i.

- **Finance:** X_i = firm-specific variables: size, PE, PS ratios, etc
- **Health:** X_i = can be individual char. weight, genetic information, etc.

イロト イ押 トイラ トイラトー

 Ω

ELoadings are fully explained by X_i **, can be restrictive.**

Fan, Liao and Wang (16, AOS):

$$
\lambda_i = \mathbf{g}(\mathbf{X}_i) + \gamma_i.
$$

- Loadings are explained partially.
- **•** Two-step estimation:

Step 1 Project **^Y** onto the space of **^X**, obtain **^Y**b. **Step 2** Run PCA on the fitted data **^Y**b.

- **a** Results:
	- Factors are consistently estimated when *T* is finite.

(ロ) (何) (ヨ) (ヨ) (

- Faster rate of convergences when *T* grows.
- **•** Specification tests: $\mathbf{g} = 0$ and $\gamma = 0$.

The Idea

 \blacksquare Projection matrix: $\mathbf{P} = \Phi(\mathbf{X})(\Phi(\mathbf{X})' \Phi(\mathbf{X}))^{-1} \Phi(\mathbf{X})'.$

$$
PY_t \approx (PG + \underbrace{P\gamma}_{\approx 0})^T f_t + \underbrace{Pu_t}_{\approx 0} \approx \underbrace{(PG)}^T f_t.
$$

So

$$
\frac{1}{7}\widehat{\mathsf{Y}}\widehat{\mathsf{Y}}' \approx \mathsf{G}\text{cov}(\mathbf{f}_t)\mathsf{G}'
$$

γ and **u***^t* are "projected off".

$$
\frac{1}{\mathcal{T}}\widehat{\mathsf{Y}}\widehat{\mathsf{Y}}'\mathsf{G} \approx \mathsf{G}\text{cov}(\mathsf{f}_t)\mathsf{G}'\mathsf{G}
$$

so columns of **G** are approx. space of the leading eigenvectors

イロト イ押 トイラト イラトー

∍

Covariates may also appear in factors.

$$
\mathbf{f}_t = \mathbf{g}(\mathbf{X}_t) + \gamma_t.
$$

Factors may be partially explained by covariates **X***^t* .

- **Finance**: **X***^t* = Fama-French factors, etc
- **Macro-forecasts:** X_t = consumption-wealth variable, financial ratios, and term spread, etc.

Fama-French factors cannot fully explain **f***^t* (Fama-French 15).

イロト イ押ト イラト イラトー

$$
E(\mathbf{Y}_t|\mathbf{X}_t)=\Lambda \mathbf{g}(\mathbf{X}_t), \quad \mathbf{g}(\mathbf{X}_t)=E(\mathbf{f}_t|\mathbf{X}_t).
$$

Hence

$$
\Sigma := E\{E(\mathbf{Y}_t|\mathbf{X}_t)E(\mathbf{Y}_t|\mathbf{X}_t)'\} = \Lambda \underbrace{E\{\mathbf{g}(\mathbf{X}_t)\mathbf{g}(\mathbf{X}_t)'\}}_{\Sigma_g} \Lambda'
$$

Normalization condition: $\frac{1}{N}$ Λ' Λ = **I**, and Σ_g is diagonal.

Then

$$
\frac{1}{N}\Sigma\Lambda = \Lambda\Sigma_g, \quad \mathbf{g}(\mathbf{X}_t) = \frac{1}{N}\Lambda'E(\mathbf{Y}_t|\mathbf{X}_t)
$$

★ Columns of
$$
\Lambda
$$
 are the leading eigenvectors of Σ .

 \bigstar Exact identification, as opposed to the "asym. ident." in the literature.

 \equiv

 QQ

F Identified up to rotations without normalization [co](#page-8-0)[nd](#page-10-0)[iti](#page-8-0)[on](#page-9-0)[s](#page-10-0)[.](#page-0-0)

 \star Estimate high-dim cov $\Sigma := E\{E(\mathbf{Y}_t|\mathbf{X}_t)E(\mathbf{Y}_t|\mathbf{X}_t)'\}$. e.g.,

$$
\widehat{\Sigma} = \frac{1}{NT} \widehat{\mathbf{Y}}' \widehat{\mathbf{Y}}
$$

 \bigstar The columns of $\frac{1}{\sqrt{2}}$ $\frac{1}{N}$ Λ are the eigenvectors corresponding to the first *K* eigenvalues of $\widehat{\Sigma}$. (usual methods use $\frac{1}{NT}Y'Y$)

$$
\bigstar \widehat{\mathbf{g}}(\mathbf{X}_t) := \frac{1}{N} \widehat{\Lambda}' \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t).
$$

 $\star \hat{\mathbf{f}}_t = \frac{1}{N}$ $\frac{1}{N}$ $\widehat{\Lambda}$ ^{*'*}**Y**_{*t*}.

$$
\bigstar \widehat{\gamma}_t = \widehat{\mathbf{f}}_t - \widehat{\mathbf{g}}(\mathbf{X}_t).
$$

 $\mathcal{A} \oplus \mathcal{B}$ \rightarrow $\mathcal{A} \oplus \mathcal{B}$ \rightarrow \mathcal{A}

Theorem 1: Suppose under the spectral norm,

$$
\|\widehat{\Sigma}-\Sigma\|=o_P(N),
$$

then there is **H**, so that

$$
\frac{1}{N} \|\widehat{\Lambda} - \Lambda \mathbf{H}\|_F^2 = o_P(1).
$$

In addition, if the normalization condition holds,

 $H = I$.

イロト イ押 トイラト イラトー

∍

$$
\widehat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t) \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t)', \text{ where } \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t) = \widehat{\mathbf{B}} \Phi(\mathbf{X}_t).
$$

- $-\widehat{\Sigma} = \frac{1}{N\overline{I}}\widehat{\mathbf{Y}}'\widehat{\mathbf{Y}}$: use $\widehat{\mathbf{B}}$ as the least squares.
- Can use a better estimator for $\widehat{\mathbf{B}}$ to protect against heavy tails.

 $AB + AB$

 Ω

– Many series in the panel data are heavy tailed.

Example: Monthly data of 131 macroeconomic series 1964-2003 (e.g. Ludvigson and Ng 2009, 2010).

 $\mathbf{b} = \mathbf{d}$ 重き Ŧь E Ω

 \star 43 series have tails heavier than t_5

$$
\widehat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t) \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t)', \text{ where } \widehat{E}(\mathbf{Y}_t | \mathbf{X}_t) = \widehat{\mathbf{B}} \Phi(\mathbf{X}_t).
$$

For some deterministic sequence $\alpha_{\mathcal{T}} \rightarrow \infty$,

$$
\widehat{\mathbf{b}}_i = \arg \min_{\mathbf{b} \in \mathbb{R}^J} \frac{1}{T} \sum_{t=1}^T \rho \left(\frac{y_{it} - \Phi(\mathbf{X}_t)' \mathbf{b}}{\alpha_T} \right), \quad \widehat{\mathbf{B}} = (\widehat{\mathbf{b}}_1, ..., \widehat{\mathbf{b}}_N)'.
$$

Huber loss(Huber, 1964):

$$
\rho(z) = \begin{cases} z^2, & |z| < 1 \\ 2|z| - 1, & |z| \ge 1. \end{cases}
$$

イロトメ 御 トメ 君 トメ 君 トー

 \equiv

 QQ

Study of US Bond Risk Premia

イロトメ 倒 トメ ヨトメ ヨトー

 \equiv

 QQ

Can US bond risk premia be explained by large macroeconomic panel data?

Approaches based on diffusion index models

Regress on {**X***^t* ,**f***t*} (Stock, Watson 02; Ludvigson, Ng 09, 10)

Our Discoveries

EUsing **X**_t to **explain f**_t (instead of as predictors) significantly improves out-of-sample forecast, compared to directly regressing on $\{X_t, \mathsf{f}_t\}$.

Robust estimations yield further improvements.

(* * * * * * * * * * * * *

E.

- \star y_t⁽ⁿ⁾ *t* : US bond risk premia with maturity of *n* years, $n = \{2, \cdots, 5\}.$
- \star Y_t: Monthly data of 131 macroeconomic series 1964-2003 (e.g. Ludvigson and Ng 2009, 2010).
- \star X_t : 8 observables used to describe the co-movement of the macroeconomic activities (e.g. NBER, 08; Stock, Watson 10).

(* * * * * * * * * * * * *

E.

Robustly Fitted Data

 \bigstar The fitted data $\widehat{E}(\mathbf{Y}_t|\mathbf{X}_t)$ are no longer severely heavy-tailed.

 \bigstar The estimated idiosyncratic errors preserve the heavy-tailed behavior.

4 0 8

 \equiv

Þ

 Ω

Raw data: [check here](#page-13-0)

Linear model

$$
y_{t+1} = \alpha + \beta' \mathbf{z}_t + \epsilon_t
$$

Multi-index model (Li, 1991; Fan, Xue, Yao, 2015)

$$
y_{t+1} = \alpha + h(\psi'_1 \mathbf{z}_t, \cdots, \psi'_L \mathbf{z}_t) + \varepsilon_t
$$

イロト イ押 トイラト イラトー

舌

 Ω

z_{*t*}: (i) **X**_{*t*}; (ii)**f**_{*t*}, (iii)(**f**_{*t*}, **X**_{*t*})^{*t*}. \blacksquare L < dim(**X**_{*t*})</sub> ! **f**_{*t*} is obtained from 131 macro time series.

- Forecast y_{T+t+1} using the data of the previous $T = 240$ months.
- \bigstar The forecast performance is assessed by the out-of-sample *R* 2

$$
R^{2} = 1 - \frac{\sum_{t=0}^{239} (y_{T+t+1} - \hat{y}_{T+t+1|T+t})^{2}}{\sum_{t=0}^{239} (y_{T+t+1} - \bar{y}_{t})^{2}},
$$

where \bar{y}_t is the sample mean of y_t over the sample period $[1 + t, T + t]$.

イロト イ押 トイラト イラトー

B

Forecast Results: Linear Model

$$
\bigstar y_{t+1} = \alpha + \beta' \mathbf{z}_t + \varepsilon_t
$$

Table: out-of-sample *R* 2 , the larger the better

イロト イ押 トイモト イモト

E.

 QQ

Forecast Results: Multi-index Model

$$
y_{t+1} = \alpha + h(\psi'_1 \mathbf{z}_t, \cdots, \psi'_L \mathbf{z}_t) + \varepsilon_t
$$

イロトメ 御 トメ 君 トメ 君 トー

E.

 QQ

 \bigstar More results in our paper.

- ¹ **X***^t* contains strong explanatory powers of the latent factors.
- \bullet The gain is more substantial when incorporate \mathbf{X}_t to estimate \mathbf{f}_t than only use it for forecasting.
- Robust estimations yield significant impovements.
- ⁴ The multi-index models out-performs linear models.

(ロ) (*同*) (ヨ) (ヨ) (

Projected-PCA:

- Semi-parametric factor model
- **Apply PCA on projected data.**

Robust Proxy-regressed Method

- **Apply PCA on Robustly fitted data.**
- Little price under light-tails and Big gain under heavy-tails.

イタト イミト イミト

∍

 Ω

Faster rate of convergence.