Inferences of panel data models with interactive effects using large covariance matrices

Jushan Bai and Yuan Liao

2017 China meeting

Consider

$$y_{it} = \beta' X_{it} + \lambda'_i f_t + u_{it}$$

• Goal: efficient estimation of β using GLS.

$$\min_{\beta} \min_{\Lambda, F} \sum_{t=1}^{T} (y_t - X_t \beta - \Lambda f_t) \Sigma_u^{-1} (y_t - X_t \beta - \Lambda f_t)$$

- Here $\Sigma_u = \operatorname{cov}(u_t)$.
- We assume:

(i) Σ_u is sparse (locations of zeros are unknown)

(ii) serial independence in $\{u_t : t \ge 1\}$

イロト イポト イヨト イヨト

э

- No cross-sectional correlation bias
- Set Faster rate of convergence when N = o(T).
- Σ_u^{-1} is the first-order optimal weight.
- Applied to studying the effect of law reform on divorce rates, concluded significance in long-run effects
- Technically, it is challenging to show:

the effect of
$$\Sigma_u^{-1} - \widehat{\Sigma}_u^{-1}$$
 is first order negligible

イロト イポト イヨト イヨト

э

$$\widehat{\beta}(W) = \arg\min_{\beta} \min_{\Lambda, F} \sum_{t=1}^{T} (y_t - X_t \beta - \Lambda f_t) W(y_t - X_t \beta - \Lambda f_t)$$

• Bai 09 showed:

$$\sqrt{NT}[\widehat{\beta}(I) - \beta - BIAS] \rightarrow^{d} N(0, V)$$

where $BIAS = O_P(\frac{1}{N})$ is due to cross-sectional correlations in u_{it} .

$$\|\widehat{\beta}(I) - \beta\| = O_P(\frac{1}{\sqrt{NT}} + \frac{1}{N})$$

In contrast,

$$\sqrt{NT}[\widehat{\beta}(\widehat{\Sigma}_{u}^{-1})-\beta] \rightarrow^{d} N(0,V_{2})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• $V_2 \leq V$.

• Obtain $\widehat{\beta}(I)$ and $\widehat{\Lambda}, \widehat{f}_t$

Ompute
$$\widehat{u}_t = y_t - X_t \widehat{\beta}(I) - \widehat{\Lambda} \widehat{f}_t$$
 and $(\widehat{r}_{ij}) = \frac{1}{T} \sum_{t=1}^T \widehat{u}_t \widehat{u}_t'$.

Apply (adaptive) thresholding

$$\widehat{\Sigma}_{u}=(s_{ij}(\widehat{r}_{ij})).$$

 $s_{ij}(\cdot)$: hard, soft, ,...

Positive definite in finite sample even when N > T

ヘロト 人間 トイヨト イヨト

÷,

-

글 > 글

DQC

Hard-thresholding: s(t) = t1{|t| > τ}
Soft-thresholding: s(t) = (t - τ)1{|t| > τ} when t > 0;
symmetric when t < 0.

$$\tau = C(\sqrt{\frac{\log N}{T}} + \frac{1}{\sqrt{N}})$$

 C > 0 is chosen to maintain positive definite for finite sample.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

$$\min_{\beta} \min_{F,\Lambda} [Y - X\beta - \operatorname{vec}(\Lambda F')]' \Sigma_U^{-1} [Y - X\beta - \operatorname{vec}(\Lambda F')]$$

where Y is $(NT) \times 1$ and X is $(NT) \times d$.

- Need to estimate $(NT) \times (NT)$ matrix Σ_U .
- Its (t, s) th block is $N \times N$ matrix $Eu_t u'_s$, which "decays" as $|t s| \rightarrow \infty$.
- Construct $\widehat{\Sigma}_U$ as many "blocks" $\widehat{Eu_t u'_s}$

$$\widehat{\textit{Eu}_t\textit{u}'_s} = \begin{cases} \text{soft-thresholding} \ , & |t-s| < \ell_{\textit{TN}} \\ 0, & |t-s| > \ell_{\textit{TN}} \end{cases}$$

イロト イポト イヨト イヨト

SOG

 Choice of *l*_{TN} depends on (i) mixing condition, (ii) amount of accumulated estimation errors.

Technical challenges: $\widehat{\Sigma}_{u}^{-1} - \Sigma_{u}^{-1} \approx 0$

$$\hat{\beta} = f(D_T, \Sigma_u^{-1}),$$

• Substitute to obtain feasible estimator.

$$\hat{\beta}^* = f(D_T, \hat{\Sigma}_u^{-1})$$

- Similar to Bai 09, $\sqrt{NT}(\hat{\beta} \beta) = \sqrt{NT}A_1\Sigma_u^{-1}A_2 + o_p(1)$
- Show effect of estimating Σ is negligible:

$$\sqrt{NT}(\hat{\beta}-\hat{\beta}^*) = \sqrt{NT}\mathbf{A}_1(\boldsymbol{\Sigma}_{\mathbf{u}}^{-1}-\widehat{\boldsymbol{\Sigma}}_{\mathbf{u}}^{-1})\mathbf{A}_2 + o_{\rho}(1) = o_{\rho}(1)$$

$$||A_1|| = O_P(\sqrt{NT}) = ||A_2||.$$

• In high dimensions, very challenging even if $\|\Sigma_u^{-1} - \widehat{\Sigma}_u^{-1}\|$ achieves the optimal rate

イロト イポト イヨト イヨト

3

500

Need weighted convergence

$$\sqrt{NT}A_1'(\widehat{\Sigma}_u^{-1}-\Sigma_u^{-1})A_2$$

- $\sqrt{NT} \|A_1\| \|A_2\| \|\widehat{\Sigma}_u^{-1} \Sigma_u^{-1}\| \neq o_p(1)$
- Need to expand $A'_1(\widehat{\Sigma}_u^{-1} \Sigma_u^{-1})A_2$
- Also need to assume

$$\frac{1}{\sqrt{NT}}\sum_{s=1}^{T}\sum_{(\Sigma_u)_{ij} \text{ is "large"}} (u_{is}u_{js} - Eu_{is}u_{js})w_{ji} = o_P(\sqrt{T}).$$

イロト イポト イヨト イヨト

500

where $w_{ji} = O_P(1)$ is some random weight.

- Sharp increase of divorce rate in 1960-1970s in U.S.
- Also observe decrease trend eight years after law reforms
- Wolfers (2006) found that "the divorce rate rose sharply following the adoption of unilateral divorce laws, but this rise was reversed within about a decade."
- So law reform may have two-sided effects.

A ∰ ▶ < ∃ ▶ <</p>

The model

$$y_{it} = \sum_{k=1}^{K} X_{it,k} \beta_k + g_{it} + f(\delta_i, t) + u_{it},$$

$$X_{it,k} = \begin{cases} 1, & 2k - 1 \le t - T_i \le 2k \\ 0 \end{cases}$$
(1)

イロト イポト イヨト イヨト

3

whether t is 2k years after the reform.

- Omitted variables may be present, leading to endogeneity.
- interactive effects control for unobserved heterogeneity
- Kim and Oka (14): $g_{it} = \lambda'_i f_t$.
- They concluded insignificance when *k* > 4.
- GLS: yields tighter confidence intervals.

Table: 95% confidence intervals; intervals with * are significant. No time trend

		WPC		Relative	
	estimate con. interval		estimate	con. interval	efficiency
1-2 ys	0.014	[0.007, 0.021]*	0.018	[0.0091, 0.028]*	0.59
3-4 ys	0.034	[0.027, 0.041]*	0.042	[0.032, 0.053]*	0.59
5-6 ys	0.025	[0.017, 0.032]*	0.032	[0.022, 0.042]*	0.58
7-8 ys	0.015	[0.007, 0.023]*	0.030	[0.019, 0.04]*	0.56
9-10 ys	-0.006	[-0.014, 0.001]	0.008	[-0.002, 0.018]	0.56
11-12 ys	-0.008	[-0.015, -0.001]*	0.010	[-0.001, 0.02]	0.53
13-14 ys	-0.009	[-0.017, -0.001]*	0.005	[-0.005, 0.016]	0.53
15 ys+	0.009	[0.001, 0.017]*	0.031	[0.020, 0.042]*	0.55

ヘロト 人間 トイヨト イヨト

= nar

Table: Linear time trend

		WPC		Relative	
	estimate con. interval		estimate con. interval		efficiency
1-2 ys	0.014	[0.006, 0.021]*	0.016	[0.006, 0.026]*	0.55
3-4 ys	0.032	[0.024, 0.039]*	0.037	[0.026, 0.047]*	0.54
5-6 ys	0.018	[0.010, 0.026]*	0.024	[0.012, 0.035]*	0.54
7-8 ys	0.006	[-0.002, 0.014]	0.017	[0.005, 0.028]*	0.52
9-10 ys	-0.017	[-0.025, -0.008]*	-0.007	[-0.019, 0.005]	0.52
11-12 ys	-0.019	[-0.028, -0.010]*	-0.006	[-0.018, 0.006]	0.51
13-14 ys	-0.021	[-0.030, -0.012]*	-0.012	[-0.025, 0.001]	0.50
15 ys+	-0.003	[-0.012, 0.006]	0.014	[0.000, 0.028]*	0.46

$$y_{it} = \lambda'_i f_t + u_{it}$$

 $y_{it} = x'_{it} \beta + \lambda'_i f_t + u_{it}$

u_{it} follows a cross-sectional MA(3) model, so Σ_u is a banded matrix.

$$X_{it,1} = 2.5\lambda_{i1}f_{1,t} - 0.2\lambda_{i2}f_{2,t} - 1 + \eta_{it,1},$$
$$X_{it,2} = \lambda_{i1}f_{1,t} - 2\lambda_{i2}f_{2,t} + 1 + \eta_{it,2}$$
e B - (1.3)'

• true $\beta = (1,3)'$.

イロト イロト イヨト イヨト

= nar

Table: interactive effects

		$\beta_1 = 1$				$\beta_2 = 3$			
		Mean		Normalized SE		Mean		Norm.SE	
Т	Ν	WPC	PC	WPC	PC	WPC	PC	WPC	PC
50	75	1.005	1.013	0.758	1.413	2.99	3.00	0.744	1.472
50	100	1.005	1.010	0.662	1.606	2.99	2.99	0.731	1.616
50	150	1.004	1.008	0.964	1.913	2.99	2.99	0.951	1.881
100	100	1.002	1.010	0.550	1.418	3.00	3.00	0.416	1.353
100	150	1.003	1.007	0.681	1.626	2.99	3.00	0.611	1.683
100	200	1.002	1.005	0.631	1.800	3.00	3.00	0.774	1.752
150	100	1.003	1.006	0.772	1.399	3.00	2.99	0.714	1.458
150	150	1.001	1.005	0.359	1.318	3.00	3.00	0.408	1.379
150	200	1.001	1.003	0.547	1.566	3.00	3.00	0.602	1.762

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

= 990

- Large covariances are important for inference
- Effect of estimating covariance on inference is negligible, but tech. non-trivial
- Current "absolute convergence" is restrictive (for inference)
- More efficient, smaller asym. variance

イロト イポト イヨト イヨト