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Abstract

While most of the convergence results in the literature on high
dimensional covariance matrix are concerned about the accuracy of
estimating the covariance matrix (and precision matrix), relatively
less is known about the effect of estimating large covariances on sta-
tistical inferences. We study two important models: factor analysis
and panel data model with interactive effects, and focus on the sta-
tistical inference and estimation efficiency of structural parameters
based on large covariance estimators. For efficient estimation, both
models call for a weighted principle components (WPC), which relies
on a high dimensional weight matrix. This paper derives an efficient
and feasible WPC using the covariance matrix estimator of Fan et
al. (2013). However, we demonstrate that existing results on large
covariance estimation based on absolute convergence are not suitable
for statistical inferences of the structural parameters. What is needed
is some weighted consistency and the associated rate of convergence,
which are obtained in this paper. Finally, the proposed method is
applied to the US divorce rate data. We find that the efficient WPC
identifies the significant effects of divorce-law reforms on the divorce
rate, and it provides more accurate estimation and tighter confidence
intervals than existing methods.
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1 Introduction

Estimating a high-dimensional covariance matrix has been an active re-
search area in the recent literature. Many methods are proposed for estimat-
ing the covariance matrix and the precision (inverse covariance) matrix, e.g.
El Karoui (2008), Bickel and Levina (2008), Rothman et al. (2009), Lam
and Fan (2009), Cai and Liu (2011), Fan et al. (2013). Among many theo-
retical results, rates of convergence under various interesting matrix norms
have been derived. In particular, if we write N to denote the dimension and
T to denote the sample size, when the N ×N covariance matrix Σ is sparse
whose eigenvalues are bounded away from zero, we can obtain an estimator
Σ̂ that achieves a near-

√
T -rate under the operator norm:

‖Σ̂− Σ‖ = Op(mN(
logN

T
)
1−q
2 ) = ‖Σ̂−1 − Σ−1‖ (1.1)

where mN and q are parameters that measure the level of sparsity. Cai and
Zhou (2012) showed that the rate of convergence (1.1) is minimax optimal.
However, there is relatively less knowledge about the effect of estimating a
high-dimensional covariance matrix on statistical inferences, e.g., the esti-
mation efficiency for a parametric model, and the effect of estimating large
covariances on the limiting distributions for estimators of some structural
parameters.

We find that when a high-dimensional covariance estimator is applied for
statistical inferences (precisely, deriving limiting distributions of estimated
structural parameters), most of the results in the literature based on abso-
lute convergence like (1.1) are not suitable, even with the minimax optimal
rate. Instead, a “weighted convergence” is needed, which takes the form
‖A1(Σ̂−1 − Σ−1)A2‖, where both A1, A2 are stochastic matrices that weight

the estimation error Σ̂−1 − Σ−1. The weights A1 and A2 further “average
down” the estimation errors, which significantly improve the rate of conver-
gence to make valid statistical inferences. However, the weighted convergence
cannot be implied by the usual results in the literature. One of our contri-
butions is to tackle this problem.

This paper focuses on two models that are of increasing importance in
many statistical applications: factor analysis and panel data model with
interactive effects. In factor analysis, the notion of sparsity is a natural
assumption based on the factor structure, which is proved to be a successful
approach (e.g., Boivin and Ng 2006, Phan 2012, Andersen et al. 2011). This
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paper gives a theoretical justification about how such a sparse structure can
be used to improve the estimation efficiency in two general models. Both
problems involve estimating a large weight matrix, where the problem of
proving “weighted convergence” is present.

1.1 Approximate factor model

We consider a high-dimensional approximate factor model:

yit = λ′ift + uit, i ≤ N, t ≤ T. (1.2)

where ft is an r×1 vector of common factors, λi is a vector of factor loadings,
and uit represents the error term, often known as the idiosyncratic component.
If we denote Yt = (y1t, ..., yNt)

′, Λ = (λ1, ...., λN)′, and ut = (u1t, ..., uNt)
′,

model (1.2) can be written as

Yt = Λft + ut, t ≤ T.

Only Yt is observable in the model. In a data-rich environment, both N and
T can be large and the dimension N might be even much larger than T . The
goal is to make efficient inference about λ′ift, λi, ft or their rotations.

Approximate factor models often require the N × N covariance matrix
Σu = cov(ut) be non-diagonal matrix and the diagonal entries may vary over
a large range (Chamberlain and Rothschild 1983). The traditional method
of principal components (PC) essentially treats uit to be homoskedastic and
uncorrelated over i. As a result, it is inefficient. In this paper, we consider
a weighted principal components (WPC) method to efficiently estimate the
heteroskedastic approximate factor models. The WPC solves a weighted least
squares problem:

min
Λ,ft

T∑
t=1

(Yt − Λft)
′W (Yt − Λft) (1.3)

subject to certain normalization constraints. HereW is anN×N positive def-
inite weight matrix. We propose a feasible efficient WPC that requires con-
sistently estimating the high-dimensional Σ−1

u (when N > T ) as the weight
matrix, and is shown to be optimal over a broad class of estimators.
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1.2 Large panel data model with interactive effects

A closely related model is the panel data with a factor structure in the
error term:

yit = X ′itβ + εit, εit = λ′ift + uit, i ≤ N, t ≤ T, (1.4)

where Xit is a d × 1 vector of regressors; β is a d × 1 vector of unknown
coefficients. The regression noise εit has a factor structure with unknown
loadings and factors. In the model, the only observables are (yit, Xit). The
goal is to estimate the structural parameter β, whose dimension is fixed. In
this model, the factor component λ′ift is regarded as an interactive effect
of the individual and time effects. Because the regressor and factor can be
correlated, simply regressing yit on Xit is not consistent.

Similarly, we propose to estimate β via:

min
β,Λ,ft

T∑
t=1

(Yt −X ′itβ − Λft)
′W (Yt −X ′itβ − Λft), (1.5)

with a high-dimensional weight matrix W . The method is also WPC be-
cause the estimated factors are shown to be principal components of the
weighted sample covariance matrix. In particular, it allows a consistent esti-
mator for Σ−1

u as the optimal weight matrix even when Σ−1
u is non-diagonal

and N/T → ∞. Except for sparsity, the off-diagonal structure of Σu is un-
known. The WPC takes into account both cross-sectional correlation and
heteroskedasticity of uit over i, while the existing methods in the literature,
e.g., Bai 2009, Moon and Weidner 2010, do not.

1.3 Summary of contributions

First of all, we develop the inferential theory using a general high-dimensional
weight W . This admits many promising choices of the weight matrices that
are suitable for specific applied problems for factor analysis. Especially, in
cases where estimating Σu is difficult, our inferential theory is still useful
when suitable weight matrices are chosen to improve the estimation effi-
ciency. Secondly, we show that when W = Σ−1

u is used, the WPC yields an
optimal estimator in the sense that the estimated common component λ′ift
and structural parameter β have the minimum asymptotic variance over a
broad class of estimators.
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Third, we focus on the effect of estimating large covariance matrices on
efficient statistical inferences. In both pure factor analysis and the large
panel data with a factor structure, we employ a consistent estimator for Σ−1

u

recently proposed by Fan et al. (2013), as an operational weight matrix.
Therefore, our optimal estimator is still feasible under N/T →∞. However,
substituting a consistent estimator Σ−1

u is highly non-trivial when N > T .
An interesting phenomenon is observed: most existing results on estimat-
ing large covariances are not suitable for statistical inferences of the models
being considered. We develop a new strategy that investigates the weighted
consistency for the estimated optimal weight matrix to address this problem.

Fourth, we consistently estimate the asymptotic variances of the proposed
estimators under both cross-sectional and serial correlations in uit. Hence
the new WPC estimator for the interative effect model is readily used for
statistical inferences in practice. In contrast, existing methods usually require
additionally modeling the large error covariance (e.g., assuming diagonality,
parametrizing the off-diagonal structure) in order for practical inferences.

Given the popularity of the PC method, why do we need a new estimator
to incorporate the large covariance Σu? Even though most of the existing
methods for panel data models avoid estimating Σu, to demonstrate the po-
tential efficiency loss for existing methods, we present a real-data application
in Section 7, which studies the effect of divorce reform law on the change
of divorce rates. The WPC is applied to the year-state divorce rate data of
U.S. during 1956-1985. It illustrates that after incorporating Σ−1

u in the esti-
mation, WPC captures the significant (negative) effects from nine to twelve
years after the law was reformed, consistent with the previous empirical find-
ings in the social science literature. In contrast, the existing method (PC)
without estimating Σ−1

u would result in wide confidence intervals and po-
tentially conservative conclusions. Numerically, we find an average of 46%
efficiency gained using WPC, relative to the existing method. In addition,
the proposed WPC also enjoys the computational convenience, as it also
admits analytical solutions.

Realizing the limitation of the regular PC method, some important works
have been developed to improve the estimation efficiency for factor analysis,
e.g., Breitung and Tenhofen (2011), Bai and Li (2012) and Doz et al. (2012).
They require the cross-sectional dependences’ structure be specifically mod-
eled. Recently, Choi (2012) specified W = Σ−1

u , which essentially requires
Σu be known. Recently, Fan et al. (2013) proposed a thresholding method
to estimate Σ−1

u . They focused on covariance matrix estimations and did
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not address the efficient estimation for the factors, loadings and panel data
models. As we discussed, replacing Σ−1

u with its consistent estimator is tech-
nically challenging when N/T →∞. Additional literature on factor analysis
and panel data with interactive effects includes, e.g., Pesaran (2006), Ahn
et al. (2001), Su and Chen (2013), Su et al. (2012), Wang (2009), Forni
et al. (2000), Hallin and Lǐska (2007), Lam and Yao (2012), Cheng and
Hansen (2013), Caner and Han (2012), etc. None of these incorporated Σ−1

u

or studied efficient estimation for panel data models. We also remark that
there is a rapidly growing literature on estimating high-dimensional (inverse)
covariance matrices. Besides those mentioned, the list also includes, e.g., d’
Aspremont et al. (2008), Bien and Tibshirani (2011), Luo (2011), Pati et al.
(2012), Xue et al. (2012), among many others.

We assume the number of factors r = dim(ft) to be known. When r is
unknown, it can be consistently estimated by certain information criteria as
in, e.g., Bai and Ng (2002), as we shall briefly discuss in Section 5.

The rest of the paper is organized as follows. Section 2 describes the
general problem of statistical inference based on large covariance matrices.
Section 3 formally proposes the WPC method. The large-sample inferential
theory of WPC with a general weight matrix is presented. Section 4 intro-
duces the efficient WPC. Section 5 applies the WPC method to the panel
data model with interactive effects. Section 6 illustrates numerical compar-
isons of related methods. Section 7 applies WPC to a real data problem of
divorce rate study. Finally, Section 8 concludes. All proofs are given in the
supplementary material.

Throughout the paper, we use λmin(A) and λmax(A) to denote the min-
imum and maximum eigenvalues of matrix A. We also let ‖A‖, ‖A‖1 and
‖A‖F denote the operator norm, L1-norm and Frobenius norm of a ma-
trix, defined as ‖A‖ =

√
λmax(A′A), ‖A‖1 = maxi

∑
j |Aij| and ‖A‖F =√∑

i,j A
2
ij respectively. Note that if A is a vector, ‖A‖ = ‖A‖F is equal

to the Euclidean norm. Finally, for two sequences, we write aT � bT (and
equivalently bT � aT ) if aT = o(bT ) as T →∞.
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2 Challenge of Inference based on Large Es-

timated Covariance

Consider estimating a low-dimensional structural parameter θ that arises
from a model involving a high-dimensional covariance matrix Σ. It is often
the case that when Σ were known, incorporating it in the estimator may
achieve a better estimation accuracy, e.g., smaller standard errors and tighter
confidence intervals. Taking into account Σ, the estimator can be written as
a function of the data DT and Σ as (T denotes the sample size):

θ̂ = f(DT ,Σ),

and the limiting distribution may be derived. In practice, we replace Σ by a
consistent estimator Σ̂ and obtain a feasible efficient estimator f(DT , Σ̂).

To show that replacing Σ with its consistent estimator does not affect the
limiting distribution of θ̂, one often needs aT (f(DT ,Σ)− f(DT , Σ̂)) = op(1)

where a−1
T can be understood as the rate of convergence of θ̂. However, such

a simple substitution is technically difficult if N > T . To see this, note
that often f(DT ,Σ) depends on the precision matrix Σ−1, and the effect of

estimating Σ−1 is approximately linearly dependent on Σ̂−1 − Σ−1. We can
often write

aT (f(DT ,Σ)− f(DT , Σ̂)) = aTA1(Σ̂−1 − Σ−1)A2 + op(1)

whereA1, A2 are typically non-sparse stochastic matrices of dimensions dim(θ)×
N and N × 1 respectively. Applying the Cauchy-Schwarz inequality,

aT‖A1(Σ̂−1 − Σ−1)A2‖ ≤ aT‖A1‖‖A2‖‖Σ̂−1 − Σ−1‖.

As both A1 and A2 are high-dimensional matrices (vectors), the right hand
side of the above inequality is typically not stochastically negligible even if the
“absolute convergence” ‖Σ̂−1−Σ−1‖ achieves the optimal convergence rate.1

The problem arises because ‖A1‖ and ‖A2‖ grow fast with the dimensionality,
so they accumulate the estimation errors and lead to a crude bound.

We further illustrate this issue in two examples, which are to be studied
in detail in the paper.

1When Σ is sparse enough, one can obtain a near
√
T -rate of convergence for the

L1-norm ‖Σ̂−1 − Σ−1‖1, but this still yields a crude bound for aTA1(Σ̂−1 − Σ−1)A2.
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Example 2.1. Consider the high-dimensional factor model (1.2). The pa-
rameter of interest is the common component λ′ift. The efficient estimation

crucially depends on 1√
N

Λ′(Σ̂−1
u − Σ−1

u )ut, for a sparse covariance estimator

Σ̂−1
u . However, the existing results on the optimal convergence of ‖Σ̂−1

u −Σ−1
u ‖

in the literature (e.g., Fan et al. 2013) are not applicable directly when
N > T , because ‖Λ‖ = O(

√
N) and ‖ut‖ = Op(

√
N), but the minimax rate

for ‖Σ̂−1
u − Σ−1

u ‖ is no faster than Op(T
−1/2). Applying the absolute conver-

gence for Σ̂−1
u , 1√

N
‖Λ‖‖Σ̂−1

u − Σ−1
u ‖‖ut‖ = Op(

√
N
T

) 6= op(1) when N > T .

Example 2.2. Consider the high-dimensional panel data model (1.4). The
efficient estimation of β requires estimating the inverse covariance Σ−1

u . Sup-

pose Σ̃−1
u is a consistent estimator. We require

1√
NT

Z ′[(Σ̃−1
u − Σ−1

u )⊗ IT ]U = op(1),

where IT is a T -dimensional identity matrix and Z and U are stochastic
matrices whose dimensions are NT ×dim(β) and NT × 1 respectively. How-
ever, because ‖Z‖ = Op(

√
NT ) = ‖U‖, it is difficult to apply the absolute

convergence ‖Σ̃−1
u −Σ−1

u ‖ (whose minimax rate is no faster than Op(T
−1/2))

to achieve the desired convergence when N > T . The crude bound gives
1√
NT
‖Z‖‖Σ̃−1

u − Σ−1
u ‖‖U‖ = Op(

√
N) 6= op(1). �

As one of the main contributions of this paper, a new strategy of “weighted
convergence” is developed. When analyzing aTA1(Σ̂−1 − Σ−1)A2, we should
not separate the covariance estimation error from the weighting matrices
A1, A2. Intuitively, the weights further “average down” the estimation errors,
to ensure the asymptotic negligibility of the weighted error. We demonstrate
that the weighted convergence is useful for high-dimensional inferences in
panel data and factor models, and cannot be simply implied by the usual
results on “absolute convergence” in the literature.

3 Approximate Factor Models

3.1 Weighted principal components

In model (1.2), the only observables are {Yt}Tt=1, and both the factors
{ft}Tt=1 and loadings Λ = (λ1, ..., λN)′ are parameters to estimate. We esti-
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mate them via the following weighted least squares:

(Λ̂, f̂t) = min
Λ,ft

T∑
t=1

(Yt − Λft)
′WT (Yt − Λft) (3.1)

subject to:

1

T

T∑
t=1

f̂tf̂
′
t = Ir; Λ̂′WT Λ̂ is diagonal. (3.2)

Here WT is an N ×N weight matrix, which can be either stochastic or deter-
ministic. When WT is stochastic, we mean WT to be a consistent estimator of
some positive definite W under the operator norm. We will show in Section
4 that the optimal weight is Σ−1

u . On the other hand, keeping a general WT

admits other choices of the weight for specific applied problems, especially
when it is difficult to estimate the optimal weight matrix.

Solving (3.1) subjected to the restriction (3.2) gives the WPC estimators:

λ̂j and f̂t are both r × 1 vectors such that, the columns of the T × r matrix

F̂ /
√
T = (f̂1, ..., f̂T )′/

√
T are the eigenvectors corresponding to the largest r

eigenvalues of Y ′WTY , and Λ̂ = T−1Y F̂ = (λ̂1, ..., λ̂N)′. We call our method
to be weighted principal components (WPC), to distinguish from the tradi-
tional principal components (PC) method that uses WT = IN . Note that PC
does not encounter the problem of estimating large covariance matrices, and
is not efficient when {uit}’s are cross-sectionally correlated across i.

It has been well known that the factors and loadings are not separably
identifiable without further restrictions. The WPC estimates rotated factors
and loadings with rotation matrix HW . Let V̂ be the r × r diagonal matrix
of the first r largest eigenvalues of YWTY

′/(TN). Let F = (f1, ..., fT )′, then

HW = V̂ −1F̂ ′FΛ′WTΛ/(NT ). We use the subscript W to emphasize the
dependence of the rotation on W .

3.2 General conditions

We present general results for the proposed WPC with a general weight
matrix, which hold for a broad class of estimators. For the general weight
matrix W and its data-dependent version WT , the following assumption is
needed:

Assumption 3.1. (i) ‖WT −W‖ = op(min{T−1/4, N−1/4,
√

N
T
,
√

T
N logN

}).

(ii) ‖ 1√
N

Λ′(WT −W )ut‖ = op(1).
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Condition (i) is easy to satisfy by using many “good” covariance esti-
mators given in the literature. However, the main challenge described in
Section 2 arises from proving condition (ii) in the above assumption. When
WT is a consistent estimator for Σ−1

u , we shall see in Section 4.2 that this
requires a new “weighted convergence”, which is necessary but challenging
to the high-dimensional inference problems being considered.

We allow the factors and idiosyncratic components to be weakly serially
dependent via the strong mixing condition. Let F0

−∞ and F∞T denote the
σ-algebras generated by {(ft, ut) : −∞ ≤ t ≤ 0} and {(ft, ut) : T ≤ t ≤ ∞}
respectively. In addition, define the mixing coefficient

α(T ) = sup
A∈F0

−∞,B∈F∞T

|P (A)P (B)− P (AB)|. (3.3)

Assumption 3.2. (i) {ut, ft}t≥1 is strictly stationary. In addition, Euit =
Euitfjt = 0 for all i ≤ p, j ≤ r and t ≤ T.
(ii) There exist constants c1, c2 > 0 such that c2 < λmin(Σu) ≤ λmax(Σu) < c1,
maxj≤N ‖λj‖ < c1, and c2 < λmin(cov(ft)) ≤ λmax(cov(ft)) < c1.
(iii) Exponential tail: There exist r1, r2 > 0 and b1, b2 > 0, such that for any
s > 0, i ≤ p and j ≤ r, P (|uit| > s) ≤ exp(−(s/b1)r1), and P (|fjt| > s) ≤
exp(−(s/b2)r2).
(iv) Strong mixing: There exists r3 > 0 and C > 0 satisfying: for all T ∈ Z+,

α(T ) ≤ exp(−CT r3).

We assume that W has bounded row sums, that is, ‖W‖1 < M for some
M > 0. Write Λ′W = (d1, ..., dN), with each di being an r × 1 vector. Then
maxj≤N ‖dj‖ <∞.

The following assumptions are standard in the literature. Assumption
3.3 requires the factors be pervasive, which holds when the factors impact a
non-vanishing proportion of individual time series. Assumption 3.4 extends
similar conditions in Stock and Watson (2002) and Bai (2003). When W =
IN is used, they reduce to those in the literature of the regular PC. A simple
sufficient condition for Assumption 3.4 is that uit is i.i.d. in both i and t.

Assumption 3.3. All the eigenvalues of the r×r matrix Λ′Λ/N are bounded
away from both zero and infinity as N →∞.

Assumption 3.4. (i) E‖ 1√
NT

∑T
s=1 fs(u

′
sWut − Eu′sWut)‖2 = O(1).

(ii) For each i ≤ N , E‖ 1√
NT

∑T
t=1

∑N
j=1 dj(ujtuit − Eujtuit)‖ = O(1).
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(iii) For each i ≤ r, E‖ 1√
NT

∑T
t=1

∑N
j=1 djujtfit‖ = O(1).

(iv) There is a constant δ ≥ 4 and M > 0 such that for all large N ,
E| 1√

N
(u′sWut − Eu′sWut)|δ < M and E‖ 1√

N
Λ′Wut‖δ < M .

3.3 Limiting distributions

The factors and loadings are two sets of parameters to estimate. The
limiting distributions of their estimators depend on the following asymptotic
expansions, to be shown in the appendix: for some positive definite matrix
JW , and the rotation matrix HW ,

√
N(f̂t −HWft) = JW

Λ′Wut√
N

+Op(aT )

√
T (λ̂j −H

′−1
W λj) = HW

1√
T

T∑
t=1

ftujt +Op(bT ). (3.4)

where the asymptotic normality arises from the leading terms while aT and
bT are some remaining stochastic sequences.

The limiting distribution of λ̂j requires HW to have a limit. We thus need
the following condition:

Assumption 3.5. (i) There is an r×r matrix ΣΛ such that Λ′WΛ/N → ΣΛ

as N →∞. In addition, the eigenvalues of the ΣΛcov(ft) are distinct.
(ii) For each t ≤ T , (Λ′WΣuWΛ)−1/2Λ′Wut →d N (0, Ir).

According to the expansions of (3.4), the above condition (ii) is almost a

necessary condition for the asymptotic normality of f̂t. Note that 1√
N

Λ′Wut =
1√
N

∑N
i=1 diuit. Hence a cross-sectional central limit theorem can indeed ap-

ply. Condition (ii) is only for f̂t, and the limiting distribution of the estimated

loading λ̂j in Theorem 3.1 below does not depend on this condition.
We now introduce some notation that are needed to present the limiting

distributions. Let V be an r× r diagonal matrix with element as the largest
r eigenvalues of Σ

1/2
Λ cov(ft)Σ

1/2
Λ , and ΓW be the corresponding eigenvector

matrix such that Γ′WΓW = Ir. We use the subscript W to indicate that ΓW
depends on W via ΣΛ. Recall that ΣΛ is defined in Assumption 3.5. Let
QW = V 1/2Γ′WΣ

−1/2
Λ . In fact HW →p Q

′−1
W . In addition, to account for the

serial correlation over t, let

Φj = E(ftf
′
tu

2
jt) +

∞∑
t=1

E[(f1f
′
1+t + f1+tf

′
1)uj1uj,1+t]. (3.5)
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Theorem 3.1. Assume (logN)2 = o(T ) and T = o(N2). Under Assump-
tions 3.1-3.5(i), for each j ≤ N ,

√
T (λ̂j −H

′−1
W λj)→d N (0, Q

′−1
W ΦjQ

−1
W ).

If in addition, N = o(T 2) and Assumption 3.5(ii) holds,

N(V −1QWΛ′WΣuWΛQ′WV
−1)−1/2(f̂t −HWft)→d N (0, Ir).

For the common component, we have

λ̂′if̂t − λ′ift
(λ′iΞWλi/N + f ′tΩift/T )1/2

→d N (0, 1).

where ΞW = Σ−1
Λ Λ′WΣuWΛΣ−1

Λ /N and Ωi = cov(ft)
−1Φicov(ft)

−1.

Remark 3.1. The eigenvalues of (V −1QWΛ′WΣuWΛQ′WV
−1)−1/2 are of or-

der O(N−1/2). Hence Theorem 3.1 implies the
√
N -consistency of the esti-

mated factors. If we further assume that Λ′WΣuWΛ/N has a limit, say G,
then immediately we have

√
N(f̂t −HWft)→d N (0, V −1QWGQ

′
WV

−1),

where the
√
N -consistency is more clearly demonstrated.

The uniform convergence of f̂t and λ̂j are given below.

Theorem 3.2. Let α = max{1/r1, 1/r2} with r1, r2 defined in Assumption
3.2. Let δ ≥ 4 be as defined in Assumption 3.4. Under Assumptions 3.1-3.4,
as N, T →∞,

max
t≤T
‖f̂t −HWft‖ = Op

(
(log T )α‖WT −W‖+

T 1/δ

√
N

+
1√
T

)
, (3.6)

max
j≤N
‖λ̂j −H

′−1
W λj‖ = Op

(
‖WT −W‖+

1√
N

+

√
logN

T

)
. (3.7)

Remark 3.2. The uniform convergence in (3.6) and (3.7) is important under
large N and T . For example, in estimating large covariance matrices, it is
used to derive the proper levels of thresholding or shrinkage (e.g., Fan et al.
2013, Ledoit and Wolf 2012).
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3.4 Heteroskedastic WPC

As a simple choice for W ,

W = (diag(Σu))
−1.

This choice improves the regular PC when cross-sectional heteroskedasticity
is present. This weight can be easily estimated using the residuals. First
apply the regular PC by taking WT = IN , and obtain a consistent estimator
Ĉit of the common component λ′ift for each i ≤ N, t ≤ T. Define

W h
T = diag{σ̂−1

u,11, ..., σ̂
−1
u,NN}, where σ̂u,ii =

1

T

T∑
t=1

(yit − Ĉit)2.

Then in the second step, apply the WPC with weight matrix W h
T .

The heteroskedastic WPC (which we call HWPC) method has been pre-
viously suggested by, e.g., Breitung and Tenhofen (2011). Investigations of
its theoretical properties can be found in the appendix. Moreover, numerical
studies in Section 6 show that this method improves the efficiency relative
to the regular PC method.

4 Efficient Principal Components Under Con-

ditional Sparsity

In the approximate factor models, uit’s are correlated (over i). A more
efficient estimator (which we call EWPC) should take W = Σ−1

u as the weight
matrix. This estimator has been recently suggested by Choi (2012), but Σ−1

u

was assumed to be known.
There are two main challenges in practice: on one hand, when N > T ,

Σ−1
u is hard to estimate as the sample covariance based on the residual ûit

is no longer invertible. On the other hand, as we illustrated in Section 2,
even if a consistent estimator for Σ−1

u is available, it is technically difficult to
prove that the effect of covariance estimation is neglibile when N/T → ∞.
We first apply Fan et al. (2013)’s method to estimate Σ−1

u , and then address
the second problem in Section 4.2.
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4.1 Conditional Sparsity

We apply a thresholded covariance estimator to estimate Σ−1
u , which is

recently proposed by Fan et al. (2013) for factor analysis. Let (νj, ξj)
N
j=1 be

the eigenvalues-eignvectors of the sample covariance Sy of Yt, in a decreasing
order such that ν1 ≥ ν2 ≥ ... ≥ νN . Let

R = Sy −
r∑
i=1

νiξiξ
′
i.

Define a general thresholding function sij(z) : R → R as in Rothman et al.
(2009) and Cai and Liu (2011) with an entry-dependent threshold τij such
that:
(i) sij(z) = 0 if |z| < τij;
(ii) |sij(z)− z| ≤ τij.
(iii) There are constants a > 0 and b > 1 such that |sij(z) − z| ≤ aτ 2

ij if
|z| > bτij.
Examples of sij(z) include the hard-thresholding: sij(z) = zI(|z|>τij); SCAD
(Fan and Li 2001), MPC (Zhang 2010) etc. As for the threshold value, we
specify

τij = C
√
RiiRjjωT , where ωT =

√
logN

T
+

1√
N

(4.1)

for some pre-determined universal C > 0, chosen from cross-validation as in
Fan et al. (2013). Then estimate Σu by Σ̂u = (Σ̂u,ij)N×N ,

Σ̂u,ij =

{
Rii, i = j

sij(Rij), i 6= j
, where R = (Rij)N×N .

Intuitively, Σ̂u thresholds off the small entries of the residual covariance
1
T

∑T
t=1 ûtû

′
t obtained from the regular PC estimate.

To apply such a weight estimator, we assume Σu to be a sparse matrix.
In an approximate factor model, such a special structure is known to be
conditionally sparse (given the common factors). Consider the notion of
generalized sparsity: write Σu = (Σu,ij)N×N . For some q ∈ [0, 1/2), define

mN = max
i≤N

N∑
j=1

|Σu,ij|q. (4.2)
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In particular, when q = 0, define mN = maxi≤N
∑N

j=1 I(Σu,ij 6=0). Mathemat-
ically, the conditional sparse structure on Σu assumes, there is q ∈ [0, 1/2),
such that

mN = o

(
min

{
1

N1/4

(
T

logN

)(1−q)/2

, N1/4−q/2

})
. (4.3)

In the sparse covariance estimation literature, Condition (4.3) itself is

enough to achieve a covariance estimator such that ‖Σ−1
u − Σ̂−1

u ‖ = op(1),
whose rate of convergence is nearly

√
T (e.g., Cai and Zhou 2012, Fan et

al. 2013, etc.). But for the “weighted convergence” needed for efficient
estimations in factor analysis and large panel data models, this condition
is not sufficient. Therefore, we introduce a more refined description of the
sparse structure of Σu (condition (ii) in Assumption 4.1 below), which is
similar to those in Rothman et al. (2008).

Let SL and SU denote two disjoint sets and respectively include the indices
of small and large elements of Σu in absolute value, and

{(i, j) : i ≤ N, j ≤ N} = SL ∪ SU . (4.4)

We assume (i, i) ∈ SU for all i ≤ N. The sparsity condition assumes that
most of the indices (i, j) belong to SL when i 6= j. A special case arises when
Σu is strictly sparse, in the sense that its elements with small magnitudes
(SL) are exactly zero. For the banded matrix as an example, Σu,ij = 0 if
|i − j| > k for some fixed k ≥ 1. Then SL = {(i, j) : |i − j| > k} and
SU = {(i, j) : |i− j| ≤ k}. Another example is the block-diagonal matrix.

The following assumption mathematically defines the “conditional spar-
sity” for the approximate factor model.

Define

ωT =

√
logN

T
+

1√
N
.

Assumption 4.1. (i) There is q ∈ [0, 1/2) such that (4.3) holds.
(ii) There is a partition {(i, j) : i ≤ N, j ≤ N} = SL ∪ SU such that∑

i 6=j,(i,j)∈SU
1 = O(N) and

∑
(i,j)∈SL

|Σu,ij| = O(1). In addition,

max
(i,j)∈SL

|Σu,ij| = O(ωT ), ωT = O( min
(i,j)∈SU

|Σu,ij|).
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If for example, Σu is a block covariance matrix with finite block sizes, this
assumption is naturally satisfied as long as the signal is not too-weak (that
is, ωT = o(min(i,j)∈SU

|Σu,ij|)). Condition (ii) requires the elements in SL and
SU be well-separable. The partition {(i, j) : i ≤ N, j ≤ N} = SL ∪ SU may
not be unique. Most importantly, we do not need to know either SL or SU ;
hence the block size, the banding length, or the locations of the zero entries
can be completely unknown. Our analysis suffices as long as such a partition
exists.

4.2 Weighted convergence using the optimal weight
matrix

We now formally discuss the issue brought by Assumption 3.1. In order
for the effect of estimating Σ−1

u to be negligible, ‖ 1√
N

Λ′(Σ̂−1
u −Σ−1

u )ut‖ = op(1)
is required, which is a tight condition. However, a direct application of
the optimal rate of convergence (i.e., Fan et al. 2013, Cai and Zhou 2012)

‖Σ̂−1
u − Σ−1

u ‖ = Op(mNω
1−q
T ) implies

‖ 1√
N

Λ′(Σ̂−1
u − Σ−1

u )ut‖ ≤
1√
N
‖Λ‖‖Σ̂−1

u − Σ−1
u ‖‖ut‖ = Op(

√
NmNω

1−q
T ),

which is Op(1 +
√
N(logN)/T ) even if mN is bounded and q = 0. Hence

this leads to a crude bound that does not converge. The problem is present
even if Σ−1

u is estimated with the optimal rate of convergence.
We realize that such a technical problem is common for statistical infer-

ences that involve estimating a high-dimensional covariance. In fact, most
of the existing approaches in the literature only produce “absolute conver-
gence” ‖Σ̂−1

u − Σ−1
u ‖. For statistical inference purposes like the primary in-

terest of this paper, however, the absolute convergence is not sufficient when
N/T →∞.

We propose a new technical strategy to solve this problem, by directly
investigating the “weighted convergence” of the weighted error:

‖ 1√
N

Λ′(Σ̂−1
u − Σ−1

u )ut‖. (4.5)

Intuitively, the weights Λ′ and ut “average down” the estimation errors, and
improve the rate of convergence. Formal analysis requires us to re-investigate
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the asymptotic behavior of the thresholded covariance estimator. We require
the following technical assumption.

Let Λ′Σ−1
u = (ξ1, ..., ξN). Assuming ‖Σ−1

u ‖1 = O(1), we then have maxj≤N ‖ξj‖ <
C for some C > 0. In addition, let et = Σ−1

u ut, then et has mean zero and
covariance Σ−1

u .

Assumption 4.2. For each t ≤ T and k ≤ r,
(i) 1

T
√
N

∑N
i=1

∑T
s=1(u2

is − Eu2
is)ξieit = op(1)

(ii) 1
NT
√
N

∑N
i=1

∑T
s=1

∑N
j=1(ujsuis − Eujsuis)λjλ′ieitξik = op(1),

(iii) 1
T
√
N

∑
i 6=j,(i,j)∈SU

∑T
s=1(uisujs − Euisujs)ξiejt = op(1),

(iv) 1
NT
√
N

∑
i 6=j,(i,j)∈SU

∑N
v=1

∑T
s=1(uisuvs − Euisuvs)ξikejtλvλ′j = op(1).

The above conditions are new in the literature and essential to estab-
lish the weighed convergence. The intuition of these conditions is that, the
weighted average of the standardized sum 1√

T

∑T
t=1(uitujt−Euitujt) is op(1)

once averaged across i and j. The extra term 1
N

appeared in 1
NT
√
N

of Con-

ditions (ii) and (iv) is a scaling factor because under the sparsity condition,
the number of summands of

∑N
i=1 and

∑
i 6=j,(i,j)∈SU

is at most O(N) (e.g., in

block diagonal and banded matrices).
We verify the key assumption 4.2 in the following lemma, when {ut}t≤T

is serially independent. We require N = o(T 2) but still allow N/T →∞.

Lemma 4.1. Suppose {uit}t≤T is independent across t (but can still be cor-
related across i), and the sparse condition Assumption 4.1 holds. Then when
N = o(T 2), Assumption 4.2 is satisfied.

We have the following weighted consistency for the estimated weight ma-
trix, which as we have explained, cannot be implied directly by the absolute
convergence ‖Σ̂−1

u − Σ−1
u ‖ even when Σu is diagonal. As one of the main

contributions of this paper, result of this type is potentially widely useful for
high-dimensional inferences when large covariance estimation is involved.

Proposition 4.1. Suppose
√
Nm2

Nω
2−2q
T = o(1), and Assumptions 3.2- 3.5,

4.1, 4.2 hold. For q, mN and ωT defined in (4.2) and (4.1), and for each
t ≤ T , we have

‖ 1√
N

Λ′(Σ̂−1
u − Σ−1

u )ut‖ = op(1).

Therefore Assumption 3.1 is satisfied for W = Σ−1
u .
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Remark 4.1. Consider a strictly sparse case where
mN = maxi≤N

∑N
j=1 I(Σu,ij 6= 0) = O(1). The condition in the theorem√

Nm2
Nω

2−2q
T = o(1) then holds as long as

√
N logN = o(T ). As always the

case, requiring N = o(T 2) is needed for the asymptotic normality of f̂t.

4.3 Efficient estimation

We use WT = Σ̂−1
u as the feasible weight matrix. Let the columns of the

T × r matrix F̂ e/
√
T = (f̂ e1 , ..., f̂

e
T )′/
√
T be the eigenvectors corresponding

to the largest r eigenvalues of Y ′Σ̂−1
u Y , and Λ̂e = T−1Y F̂ e = (λ̂e1, ..., λ̂

e
N)′.

Here the superscript e denotes “efficient” WPC.
We denote ΣΛ,e as the limit of Λ′Σ−1

u Λ/N . Let Ve be an r × r diagonal

matrix with elements as the largest r eigenvalues of Σ
1/2
Λ,ecov(ft)Σ

1/2
Λ,e , and Γe

be the corresponding eigenvector matrix such that Γ′eΓe = Ir. In addition,

let Qe = V
1/2
e Γ′eΣ

−1/2
Λ,e . We have the following limiting distributions for the

estimated factors and loadings.

Theorem 4.1. Under the assumptions of Proposition 4.1, for each t ≤ T
and j ≤ N , √

T (λ̂ej −H
′−1
e λj)→d N (0, Q

′−1
e ΦjQ

−1
e ).

√
N(f̂ et −Heft)→d N (0, V −1

e ).

where Φj is as defined in (3.5). In addition, for the estimated common com-
ponent,

λ̂e
′
i f̂

e
t − λ′ift

(λ′iΞeλi/N + f ′tΩift/T )1/2
→d N (0, 1).

where Ξe = (Λ′Σ−1
u Λ/N)−1 and Ωi is defined as in Theorem 3.1.

For completeness, the following result gives the uniform rate of conver-
gence.

Theorem 4.2. Suppose N1/(2−2q) logN = o(T ) and T = o(N2). Under the
assumptions of Theorem 4.1, there is an r × r matrix He such that

max
t≤T
‖f̂ et −Heft‖ = Op

(
T 1/δ

√
N

+ (log T )αmNω
1−q
T

)
,

max
j≤N
‖λ̂ej −H

′−1
e λj‖ = Op

(
mNω

1−q
T

)
.

18



Table 1: Three interesting choices of W

Objective function Eigenvectors of W

regular PC
∑T

t=1(Yt − Λft)
′(Yt − Λft) Y ′Y Ir

HWPC
∑T

t=1(Yt − Λft)
′diag(Σ̂u)

−1(Yt − Λft) Y ′diag(Σ̂u)
−1Y diag(Σu)

−1

EWPC
∑T

t=1(Yt − Λft)
′Σ̂−1

u (Yt − Λft) Y ′Σ̂−1
u Y Σ−1

u

The estimated F̂ /
√
T is the eigenvectors of the largest r eigenvalues of Y ′WTY ,

and Λ̂ = T−1Y F̂ . HWPC represents the heteroskedastic WPC; EWPC represents
the efficient WPC.

Remark 4.2. Typically in the strictly sparse case mN = O(1) and q = 0.
When N/T →∞, the above rates become:

max
t≤T
‖f̂ et −Heft‖ = Op

(
T 1/δ

√
N

+
(log T )α

√
logN√

T

)
,

max
j≤N
‖λ̂ej −H

′−1
e λj‖ = Op

(√
logN

T

)
.

4.4 Optimal weight matrix

Regular PC, heteroskedastic WPC and the efficient WPC minimize dif-
ferent objective functions, depending on the choices of the weight matrix.
Thus the estimated F̂ /

√
T are the eigenvectors from three different matri-

ces. Table 1 summarizes the main differences of the estimators.
A natural question arises: is the consistent estimator for W = Σ−1

u indeed
the optimal choice over a broad class of positive definite weight matrices?
One can answer this question via looking at the asymptotic variance of the
estimators, as choosing the optimal weight for GMM (Hansen 1982). How-
ever, because WPC estimators are estimating rotated factors and loadings,
the rotation depends on the choice of W. But regardless of the choice W , the
common component λ′ift is always directly estimated. The following result
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demonstrates that WT = Σ̂−1
u yields the minimum asymptotic variance of

λ̂′if̂t among WPC estimators.

Theorem 4.3. Let (λ′iΞeλi/N + f ′tΩift/T ) denote the asymptotic variance

of λ̂e
′
i f̂

e
t based on Σ̂−1

u as in Theorem 4.1. For any positive definite matrix

W , let (λ′iΞWλi/N + f ′tΩift/T ) denote the asymptotic variance of λ̂′if̂t as in
Theorem 3.1 based on W . Then for each i ≤ N and t ≤ T ,

λ′iΞeλi/N + f ′tΩift/T ≤ λ′iΞWλi/N + f ′tΩift/T.

In fact, for all large N , ΞW − Ξe is semi-positive definite for each positive
definite matrix W .

4.5 Estimating asymptotic covariances

We derive consistent estimators for the asymptotic variances that ap-
peared in Theorem 4.1. Hence the derived optimal limiting distributions can
be used for statistical inferences. These estimators account for the serial and
cross-sectional correlations of the data in both i and t.

The factor estimator has an asymptotic expansion:

√
N(f̂ et −Heft) = V̂ −1 F̂

e′F

T

Λ′Σ−1
u ut√
N

+ op(1)

where V̂ is the r × r diagonal matrix of the first r largest eigenvalues of
1
TN
Y Σ̂−1

u Y ′. Theorem 4.1 shows that the asymptotic variance is V −1
e . Hence,

V̂ −1 F̂
e′F

T

Λ′Σ−1
u Λ

N

F ′F̂ e

T
V̂ −1 →p V −1

e (4.6)

The left hand side involves the product FΛ′, which can be estimated by
F̂ eΛ̂e′ . A consistent estimator of V −1

e is then given by (note that 1
T
F̂ e′F̂ e = Ir)

V̂ −1
e = V̂ −1 F̂

e′F̂ e

T

Λ̂e′Σ̂−1
u Λ̂e

N

F̂ e′F̂ e

T
V̂ −1 =

1

N
V̂ −1Λ̂e′Σ̂−1

u Λ̂eV̂ −1.

The loading estimator has an asymptotic expansion:

√
T (λ̂j −H

′−1
e λj) =

1√
T

T∑
t=1

Heftujt + op(1).
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Here Heftujt can be estimated by f̂ et ûjt, where ûjt is a WPC estimator of the

error term (e.g., ûjt = yit − λ̂e
′
j f̂

e
t ). We apply the HAC (heteroskedasticity

and autocorrelation consistent) estimator of Newey and West (1987) to esti-

mate Q
′−1
e ΦjQ

−1
e , the asymptotic variance of

√
T (λ̂j−H

′−1
e λj), based on the

sequence {f̂ et ûjt}:

Ψ̂j =
1

T

T∑
t=1

û2
jtf̂

e
t f̂

e′

t +
K∑
l=1

(1− l

K + 1
)

1

T

T∑
t=l+1

ûjtûj,t−l(f̂
e
t f̂

e′

t−l + f̂ et−lf̂
e′

t ),

where K = KT,N →∞ is an increasing sequence such that
K = o(min{T 1/4, N1/4}). The advantages of using the HAC estimator are:
it accounts for the serial correlations of {ftu′t}t≥1, and it also guarantees the
positive semi-definiteness for any given finite sample as shown by Newey and
West (1987).

The asymptotic variance of the common component in Theorem 4.1 con-
sists of λ′iΞeλi and f ′tΩift, where Ξe = ( 1

N
Λ′Σ−1

u Λ)−1 and
Ωi = cov(ft)

−1Φicov(ft)
−1. We respectively estimate them by

Θ̂1i =
1

N
λ̂e
′

i V̂
−1Λ̂e′Σ̂−1

u Λ̂eV̂ −1λ̂ei , Θ̂2,it = f̂ e
′

t Ψ̂if̂
e
t .

Theorem 4.4. Under the assumptions of Theorem 4.2, as T , N →∞, and
K = KT,N = o(min{T 1/4, N1/4}),

V̂ −1
e →p V −1

e , Ψ̂j →p Q
′−1
e ΦjQ

−1
e ,

Θ̂1i →p λ′iΞeλi, Θ̂2,it →p f ′tΩift.

These covariance estimators can be easily computed.

5 WPC for Panel data Models with Interac-

tive Effects

The factor model we have considered so far is closely related to the fol-
lowing panel data model:

yit = X ′itβ + εit, εit = λ′ift + uit, i ≤ N, t ≤ T (5.1)

The regression noise has a factor structure with unknown λi and ft, and uit
still represents the idiosyncratic error component. It is assumed that uit is
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independent of (Xit, ft). In the model, the only observables are (yit, Xit).
The goal is to estimate β, the structural parameter of the model.

Substituting the second equation to the first one in (5.1), we obtain

yit = X ′itβ + λ′ift + uit. (5.2)

If we treat λi as the “individual effect” and ft as the “time effect”, then the
factor structure λ′ift represents the interaction between the individual and
time effects, so called “interactive effect”. This model was previously studied
by, e.g., Ahn et al. (2001), Pesaran (2006), Bai (2009), Moon and Weidner
(2010).

The difficulty of estimating β is that, in many applied problems the re-
gressor Xit is correlated with the time effect (common factor) ft, individual
effect λi, or both. As a result, Xit and εit are also correlated, so regressing
yit directly on Xit cannot produce a consistent estimator for β. In addition,
existing methods ignore the heteroskedasticity and correlation in {uit}i≤N .
Hence efficiency is lost, for instance, when Σu is non-diagonal or its diago-
nal entries vary over a large range. We shall illustrate the consequence of
efficiency loss using a real data application in Section 7.

5.1 WPC estimation of β

Let Xt = (X1t, ..., XNt)
′, (N × d). We estimate β via

min
β,ft,Λ

T∑
t=1

(Yt − Λft −Xtβ)′W (Yt − Λft −Xtβ), (5.3)

for some positive definite N × N weight matrix. Similar to the generalized
least squares estimator (GLS) for linear regressions, we choose the weight
matrix to be

W = Σ−1
u .

This choice produces similar estimators as the efficient WPC. The estima-
tor is feasible once we consistently estimate Σ−1

u , which can be done under

the assumption that Σu is sparse. Suppose Σ̃−1
u is a consistent covariance

estimator. The feasible WPC estimates β by:

β̂ = arg min
β

min
ft,Λ

T∑
t=1

(Yt − Λft −Xtβ)′Σ̃−1
u (Yt − Λft −Xtβ), (5.4)

22



where the minimization is subjected to the constraint 1
T

∑T
t=1 ftf

′
t/T = Ir

and Λ′Σ̃−1
u Λ being diagonal. The estimated β for each given (Λ, ft) is simply

β(Λ, ft) = (
T∑
t=1

X ′tΣ̃
−1
u Xt)

−1

T∑
t=1

X ′tΣ̃
−1
u (Yt − Λft).

On the other hand, given β, the variable Yt − Xtβ has a factor struc-
ture. Hence the estimated (Λ, ft) are the WPC estimators: let X(β̂) be
an N × T matrix X(β̂) = (X1β̂, ..., XT β̂). The columns of the T × r matrix

F̃ /
√
T = (f̃1, ..., f̃T )′/

√
T are the eigenvectors corresponding to the largest r

eigenvalues of (Y −X(β̂))′Σ̃−1
u (Y −X(β̂)), and Λ̃ = T−1(Y −X(β̂))F̃ . There-

fore, given (Λ, ft), we can estimate β, and given β, we can estimate (Λ, ft).
So β̂ can be simply obtained by iterations, with an initial value β̂0. This iter-
ation scheme only requires two matrix inverses: Σ̃−1

u and (
∑T

t=1 X
′
tΣ̃
−1
u Xt)

−1,
which do not update during iterations. Based on our experience of numerical
studies, the iterations converge fast.

Similar to Fan et al. (2013), the covariance estimator can be constructed
based on thresholding. Let β̂0 be a “regular PC estimator” that takesW = IN
in (5.3), which is known to be

√
NT -consistent (e.g., Bai 2009, Moon and

Weidner 2010). Apply the singular value decomposition to

1

T

T∑
t=1

(Yt −Xtβ̂0)(Yt −Xtβ̂0)′ =
N∑
i=1

νigig
′
i,

where (νj, gj)
N
j=1 are the eigenvalues-eigenvectors of 1

T

∑T
t=1(Yt −Xtβ̂0)(Yt −

Xtβ̂0)′ in a decreasing order such that ν1 ≥ ν2 ≥ ... ≥ νN . Then Σ̃u =

(Σ̃u,ij)N×N ,

Σ̃u,ij =

{
R̃ii, i = j

sij(R̃ij), i 6= j
, R̃ = (R̃ij)N×N =

N∑
i=r+1

νigig
′
i,

where sij(·) is the same thresholding function as defined in Section 4.2 with
the same threshold τij.

5.2 Assumptions for asymptotic analysis

Rearrange the design matrix

Z = (X11, ..., X1T , X21, ..., X2T , ..., XN1, ..., XNT )′, NT × d.
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For any T×r matrix F , letMF = IT−F (F ′F )−1F ′/T . The following matrices
play an important role in the identification and asymptotic analysis:

AF =
[
Σ−1
u − Σ−1

u Λ
(
Λ′Σ−1

u Λ
)−1

Λ′Σ−1
u

]
⊗MF ,

V (F ) =
1

NT
Z ′AFZ, (5.5)

where (Λ,Σ−1
u ) in the above represent the true loading matrix and inverse

error covariance in the data generating process, and ⊗ denotes the Kronecker
product. Our first condition assumes that V (F ) is positive definite in the
limit uniformly over a class of F .

Assumption 5.1. With probability approaching one,

inf
F :F ′F/T=Ir

λmin(V (F )) > 0.

If we write BF =
[
Σ
−1/2
u − Σ−1

u Λ (Λ′Σ−1
u Λ)

−1
Λ′Σ

−1/2
u

]
⊗MF , then AF =

BFB
′
F . So V (F ) is at least semi-positive definite. Also, summing over NT

rows of Z should lead to a strictly positive definite matrix V (F ). As a
sufficient condition, if Xit depends on the factors and loadings through:

Xit = τi + θt +
r∑

k=1

akλik +
r∑

k=1

bkfkt +
r∑

k=1

ckλikfkt + ηit

where ak, bk, ck are constants (can be zero) and ηit is i.i.d. over both i and t,
then Assumption 5.1 is satisfied (see Bai 2009).

Let U = (u11, ..., u1T , u21, ..., u2T , ..., uN1, ..., uNT )′, and F0 be the T × r
matrix of true factors.

Assumption 5.2. There is a dim(β) × dim(β) positive definite matrix Γ
such that

V (F0)→p Γ,
1√
NT

Z ′AF0U →d N (0,Γ).

This assumption is required for the asymptotic normality of β̂, because
it can be shown that,

√
NT (β̂ − β) = V (F0)−1 1√

NT
Z ′AF0U + op(1).
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Hence the asymptotic normality depends on that of 1√
NT
Z ′AF0U . Assump-

tion 5.2 is not stringent because if we writeB′F0
U = (ũ11, ..., ũ1T , ũ21, ..., ũNT )′,

and Z ′BF0 = (Z̃11, ..., Z̃1T , Z̃21, ..., Z̃NT ), then
1√
NT
Z ′AF0U = 1√

NT

∑T
t=1

∑N
i=1 Z̃itũit is a standardized summation. We can

further write

√
NT (β̂ − β) =

(
1

NT

T∑
t=1

N∑
i=1

Z̃itZ̃
′
it

)−1

1√
NT

T∑
t=1

N∑
i=1

Z̃itũit + op(1).

Hence the second statement of Assumption 5.2 is a central limit theorem for
1√
NT

∑T
t=1

∑N
i=1 Z̃itũit on both cross-sectional and time domains. In addition,

in the absence of serial correlation, the conditional covariance of 1√
NT
Z ′AF0U

given Z and F0 equals 1
NT
Z ′AF0(Σu ⊗ IT )AF0Z = V (F0). This implies that

the asymptotic variance of
√
NT (β̂ − β0) is simply Γ−1.

5.3 Weighted convergence for estimating the weight
matrix

The issue described in Section 2 arises in establishing

1√
NT

Z ′[(Σ̃−1
u − Σ−1

u )⊗ IT ]U = op(1), (5.6)

which is the effect of estimating the large covariance Σ−1
u . In fact, the first

order condition of β̂ leads to

√
NT (β̂ − β) = V (F0)−1 1√

NT
Z ′ÂU + op(1),

where Â is as AF0 with Σ−1
u replaced with Σ̃−1

u and F0 replaced with F̃ . Hence
we need

1√
NT

Z ′(Â− AF0)U = op(1). (5.7)

This requires the weighted convergence (5.6). However, when N/T → ∞,
achieving (5.6) is technically difficult. Similar to the case described in the

approximate factor model, the absolute convergence of ‖Σ̃−1
u − Σ−1

u ‖ is not
suitable for inferences.

We consider the Gaussian case for simplicty, and the problem is still highly
technically involved. Non-Gaussian case will be even more challenging, and
we shall leave it for future research.
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Assumption 5.3. (i) ut is distributed as N (0,Σu).
(ii) {ut}t≥1 is independent of {ft, Xt}t≥1, and {ut, ft, Xt} are serially inde-
pendent across t.

It is possible to relax Condition (ii) to allow for serial correlations, but β̂
will be asymptotically biased.

5.4 Limiting distribution

We require the same conditions on the data generating process for the
factors, loadings and the sparsity of Σu as in Sections 2 and 4.

Proposition 5.1. Under Assumptions 3.2- 3.4, 4.1, 5.1-5.3, as N/T →∞,
and mN = o(T 2), we have the weighted convergence:

1√
NT

Z ′(Â− AF0)U = op(1).

We have the following limiting distribution.

Theorem 5.1. Under the assumptions of Proposition 5.1, the asymptotic
limiting distribution of β̂ is the same when either W = Σ−1

u or the feasible

weight WT = Σ̃−1
u is used as the weight matrix, and is given by

√
NT (β̂ − β)→d N (0,Γ−1),

where Γ is as defined in Assumption 5.2.

The asymptotic variance Γ−1 is the limit of V (F0)−1. Note that under
the same set of conditions, the regular PC method of Bai (2009) and Moon
and Weidner (2010) gives an asymptotic conditional covariance (given Z, F0)
of the sandwich-formula:

V2 ≡ (
1

NT
Z ′GZ)−1 1

NT
Z ′G(Σu ⊗ IT )GZ(

1

NT
Z ′GZ)−1,

where G is defined as AF0 with Σ−1
u replaced with IN . It is not hard to show

that V2 − V (F0)−1 is semi-positive definite. So relative efficiency is gained

when WPC is used. In fact, the choice W = Σ̃−1
u is also the optimal weight

matrix for WPC in this case.
To estimate the asymptotic variance of β̂, let Ã equal AF with F , Λ and

Σ−1
u replaced with F̃ , Λ̃ and Σ̃−1

u . Define Γ̃ = 1
NT
Z ′ÃZ. The following result

enables us to construct confidence intervals and conduct hypothesis tests for
β under large samples.
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Theorem 5.2. Under the assumptions of Theorem 5.1,

Γ̃−1 →p Γ−1.

The methods of Section 4 also carry over to derive the limiting distri-
butions of the estimated interactive effects λ′ift. The procedure and corre-
sponding results are very similar given the

√
NT -consistency of β̂. Hence we

omit repeated discussions.

5.5 Estimation with unknown number of factors

For simplicity of presentations, we have assumed the number of factors r
to be known. As was shown by many authors, estimation results are often
robust to over-estimating r. For instance, Moon and Weidner (2011) have
shown that for inference on the regression coefficients one does not need to
estimate r consistently, as long as the “working number” is not less than the
true value. On the other hand, we can also start with a consistent estimator
r̂ using a similar method of Bai and Ng (2002) and Bai (2009).

Specifically, suppose there is a known upper bound r̄ of the number of
factors. For each k ≤ r̄, define

σ̂2(k) = min
β,Λk,ft,k

1

NT

T∑
t=1

(Yt − Λ′kft,k −Xtβ)′(Yt − Λ′kft,k −Xtβ)

where each row of Λk is a k-dimensional loading vector, and ft,k is also
k-dimensional. The above minimization is subject to the constraint that
1
T

∑T
t=1 ft,kf

′
t,k = Ik and Λ′kΛk is diagonal. The iterative algorithm based on

principal components can calculate the above minimization fast. Under our
conditions, Bai (2009) showed that r can be consistently estimated by either
minimizing CP(k) or IC(k), where

CP(k) = σ̂2(k) + σ̂2(k̄)[k(N + T )− k2]
log(NT )

NT
,

and

IC(k) = log σ̂2(k) + [k(N + T )− k2]
log(NT )

NT
.

We then can apply the estimator r̂ to construct the WPC estimator, and
achieve the same limiting distributions. Estimation procedure and its theo-
retical properties can be proved to be the same as before, so details are not
presented to avoid repetition.
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6 Simulated Experiments

We conduct numerical experiments to compare the proposed WPC with
the popular methods in the literature2. The idiosyncratic error terms are
generated as follows: let {εit}i≤N,t≤T be i.i.d. N (0, 1) in both t, i. Let

u1t = ε1t, u2t = ε2t + a1ε1t, u3t = ε3t + a2ε2t + b1ε1t,

ui+1,t = εi+1,t + aiεit + bi−1εi−1,t + ci−2εi−2,t,

where {ai, bi, ci}Ni=1 are i.i.d. N (0, 1). Then Σu is a banded matrix, pos-
sessing both cross-sectional correlation and heteroskedasticity. Let the two
factors {f1t, f2t} be i.i.d. N (0, 1), and {λi,1, λi,2}i≤N be uniform on [0, 1].
We estimate the optimal weight matrix by soft-thresholding the “correlation
matrix” of R as suggested by Fan et al. (2013).

Design 1
Consider the pure factor model yit = λi1f1,t + λi,2f2t + uit, where we

estimate the factor loadings {λi,1, λi,2}i≤N and factors {f1t, f2t}. For each
estimator, the smallest canonical correlation (the larger the better) between
the estimators and parameters are calculated, as an assessment of the esti-
mation accuracy. The simulation is replicated for one hundred times, and the
average canonical correlations for several competing methods are reported in
Table 2. The mean squared error of the estimated common components are
also compared.

We see that the estimation becomes more accurate when we increase the
dimensionality. HWPC improves the regular PC, while the EWPC gives the
best estimation results.

Design 2
Adding a regression term to the model of Design 1, we consider the panel

data model with interactive effect: yit = X ′itβ + λi1f1,t + λi,2f2t + uit, where
the true β = (1, 3)′. The regressors are generated to be dependent on (ft, λi):

Xit,1 = 2.5λi1f1,t − 0.2λi2f2,t − 1 + ηit,1, Xit,2 = λi1f1,t − 2λi2f2,t + 1 + ηit,2

where ηit,1 and ηit,2 are independent i.i.d. standard normal.

2 We have written a Matlab code to implement the proposed WPC for any user-specified
weight matrix as well as the optimal WPC for both the factor model and panel data model
with interactive effects, available upon request.
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Table 2: Canonical correlations for simulation study

Loadings Factors ( 1
NT

∑
i,t(λ̂

′
if̂t − λ′ift)2)1/2

T N PC HWPC EWPC PC HWPC EWPC PC HWPC EWPC
(the larger the better) (the larger the better) (the smaller the better)

50 75 0.346 0.429 0.487 0.403 0.508 0.566 0.621 0.583 0.545
50 100 0.411 0.508 0.553 0.476 0.602 0.666 0.546 0.524 0.498
50 150 0.522 0.561 0.602 0.611 0.679 0.746 0.467 0.444 0.427

100 80 0.433 0.545 0.631 0.427 0.551 0.652 0.570 0.540 0.496
100 150 0.613 0.761 0.807 0.661 0.835 0.902 0.385 0.346 0.307
100 200 0.751 0.797 0.822 0.827 0.882 0.924 0.333 0.312 0.284

150 100 0.380 0.558 0.738 0.371 0.557 0.749 0.443 0.394 0.334
150 200 0.836 0.865 0.885 0.853 0.897 0.942 0.313 0.276 0.240
150 300 0.882 0.892 0.901 0.927 0.946 0.973 0.257 0.243 0.222

The columns of loadings and factors report the canonical correlations. PC is the
regular principal components method; HWPC represents the heteroskedastic

WPC; EWPC uses Σ̂−1
u as the weight matrix.

Both the methods PC (Bai 2009 and Moon and Weidner 2011) and the
proposed WPC are carried out to estimate β for the comparison. Also com-
pared is the mean squared error of the estimated common components. The
simulation is replicated for one hundred times; results are summarized in
Table 3. We see that both methods are almost unbiased, while the efficient
WPC indeed has significantly smaller standard errors than the regular PC
method in the panel model with interactive effects.

7 Empirical Study : Effects of Divorce Law

Reforms

This section shows the advantages of our proposed WPC method in a real
data application. It demonstrates the gain of incorporating the estimated
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Table 3: Method comparison for the panel data with interactive effects, sim-
ulation

β1 = 1 β2 = 3
Mean Normalized SE Mean Normalized SE

T N WPC PC WPC PC WPC PC WPC PC

50 75 1.005 1.013 0.758 1.413 2.998 3.002 0.744 1.472
50 100 1.005 1.010 0.662 1.606 2.997 2.998 0.731 1.616
50 150 1.004 1.008 0.964 1.913 2.999 2.999 0.951 1.881

100 100 1.002 1.010 0.550 1.418 3.000 3.003 0.416 1.353
100 150 1.003 1.007 0.681 1.626 2.999 3.000 0.611 1.683
100 200 1.002 1.005 0.631 1.800 3.000 3.000 0.774 1.752

150 100 1.003 1.006 0.772 1.399 3.000 2.999 0.714 1.458
150 150 1.001 1.005 0.359 1.318 3.000 3.001 0.408 1.379
150 200 1.001 1.003 0.547 1.566 3.000 3.000 0.602 1.762

WPC (with weight Σ̃−1
u ) and PC (existing method) comparison. “Mean” is the

average of the estimators; “Normalized SE” is the standard error of the
estimators multiplied by

√
NT .

Σu in the panel data estimation and the efficiency gains compared to the
traditional PC.

7.1 Real Data Application

An important question in sociology is the cause of the sharp increase
in the U.S. divorce rate in the 1960s and 1970s. The association between
divorce rates and divorce law reforms has been considered a potential key,
and during 1970s, about three quarters of states in the U.S. liberalized their
divorce system, so-called “no-fault revolution”. There is plenty empirical
research regarding the effects of divorce law reforms on the divorce rates (e.g.,
Peters 1986, Allen 1992), and statistical significance of these effects has been
found (e.g., Friedberg 1998). In other words, states’ law reforms are found
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to have significantly contributed to the increase in state-level divorce rates
within the first eight years following reforms.

On the other hand, there is a puzzle about longer effects. Empirical
evidence also illustrates the subsequent decrease of the divorce rates starting
from (around) 1975, which is between nine and fourteen years after the law
reforms in most states. So whether law reforms continue to contribute to
the rate decrease has been an interesting question. Wolfers (2006) studied
a treatment effect panel data model, and identified negative effects for the
subsequent years. This suggests that, the increase in divorce following reform
and the subsequent decrease may be two sides of the same treatment: after
earlier dissolution of bad matches after law reforms, marital relations were
gradually affected and changed. However, it has been argued that Wolfers
(2006)’s approach may not capture the complex unobserved heterogeneity.
The heterogeneity may exist through an interactive effect, where unobserved
common factors may change over time.

Kim and Oka (2013) pioneered using interactive effect model for the
study:

yit =
K∑
k=1

Xit,kβk + λ′ift + µi + αt + f(δi, t) + uit, (7.1)

where yit is the divorce rate for state i in year t; Xit,k is a binary regressor,
representing the treatment effect 2k years after the reform. Specifically, we
observe the law reform year Ti for each state. Then Xit,k = 1 if 2k − 1 ≤
t− Ti ≤ 2k, and zero otherwise. In addition to the interactive effect λ′ift as
being discussed, the model also contains unobserved state and time effects
(µi, αt) and time trend f(δi, t). For instance, the linear trend defines f(δi, t) =
δit with unknown coefficient δi. Using the regular PC method, Kim and
Oka (2013) concluded insignificant (β5, ..., β8), that is, the divorce rates after
eight years and beyond are not affected by the reforms. However, We argue
that using the regular PC method to estimate the model may lose efficiency
because it ignores the off-diagonal entries. As a result, this can result in wide
confidence intervals and possibly conservative conclusions.

We re-estimate Kim and Oka (2013)’s model using the new WPC, and
compare with the regular PC. As a first step, we rewrite the model to fit in
the form being considered in this paper. Introduce the conventional notation:

ẏit = yit −
1

T

T∑
t=1

yit −
1

N

N∑
i=1

yit +
1

NT

N∑
i=1

T∑
t=1

yit.
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Let Ẋit,k, u̇it be defined similarly. If the time trend f(δi, t) is not present,3

under the conventional normalizations
∑N

i=1 λi =
∑T

t=1 ft = 0,
∑N

i=1 µi =∑T
t=1 αt, we have ẏit = Ẋ ′itβ + λ′ift + u̇it.
The same data as in Wolfers (2006) and Kim and Oka (2013) are used,

which contain the divorce rates, state-level reform years and binary regressors
from 1956 to 1988 (T = 33) over 48 states. We fit the models both with and
without linear time trend, and apply regular PC and our proposed WPC in
each model to estimate β with confidence intervals. The number of factors is
selected in a data-driven way as in Bai (2009). His IC and CP both suggested
ten factors. 4 Moreover, for the WPC, the threshold value in the estimated
covariance is obtained using the suggested cross-validation procedure in Fan
et al. (2013). The estimated (β1, ..., β8) and their confidence intervals are
summarized in Table 4.

Both models produce similar estimates. Interestingly, WPC confirms that
the law reforms significantly contribute to the subsequent decrease of the
divorce rates, more specifically, 9-14 years after the reform in the model with
linear time trends, and 11-14 years after in the model without linear time
trends. In contrast, the regular PC reaches a more conservative conclusion as
it does not capture these significant negative effects. Moreover, both methods
show that the effect on the increase of divorce rates for the first 6 years are
significant, which is consistent with previous findings in this literature.

We also report the relative efficiency using WPC, relative to the regular
PC. The reported numbers are var(WPC)/var(PC), where var(A) calculates
the estimated variance of the estimator using method A. It is clear from the
table that WPC achieves almost 50% of efficiency gain relative to the regular
PC method.

3When the time trend is present, we can do a simple projection to eliminate the time
trend, and still estimate the untransformed β from the familiar interactive effect model.
For instance, suppose f(δi, t) = δit. Let M = (1, 2, ..., T )′ and PM = IT −M(M ′M)−1M ′.

We can define Ỹi = PM (yi1, ..., yiT )′, and X̃i = PM (Xi1, ..., XiT )′, and define ˙̃yit and
˙̃
Xit

accordingly from ỹit and X̃it.
4This is the same as in Kim and Oka (2013). We also tried a few larger values for

r, and the estimates are similar, consistent with previous findings that the estimation is
robust to over-estimating r.
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Table 4: Method comparison in effects of divorce law reform: real data

Interactive effect
WPC PC Relative

estimate confidence interval estimate confidence interval efficiency

First 2 years 0.014 [0.007, 0.021]* 0.018 [0.0091, 0.028]* 0.59
3-4 years 0.034 [0.027, 0.041]* 0.042 [0.032, 0.053]* 0.59
5-6 years 0.025 [0.017, 0.032]* 0.032 [0.022, 0.042]* 0.58
7-8 years 0.015 [0.007, 0.023]* 0.030 [0.019, 0.04]* 0.56
9-10 years -0.006 [-0.014, 0.001] 0.008 [-0.002, 0.018] 0.56
11-12 years -0.008 [-0.015, -0.001]* 0.010 [-0.001, 0.02] 0.53
13-14 years -0.009 [-0.017, -0.001]* 0.005 [-0.005, 0.016] 0.53
15 years+ 0.009 [0.001, 0.017]* 0.031 [0.020, 0.042]* 0.55

Interactive effect+linear trend
WPC PC Relative

estimate confidence interval estimate confidence interval efficiency

First 2 years 0.014 [0.006, 0.021]* 0.016 [0.006, 0.026]* 0.55
3-4 years 0.032 [0.024, 0.039]* 0.037 [0.026, 0.047]* 0.54
5-6 years 0.018 [0.010, 0.026]* 0.024 [0.012, 0.035]* 0.54
7-8 years 0.006 [-0.002, 0.014] 0.017 [0.005, 0.028]* 0.52
9-10 years -0.017 [-0.025, -0.008]* -0.007 [-0.019, 0.005] 0.52
11-12 years -0.019 [-0.028, -0.010]* -0.006 [-0.018, 0.006] 0.51
13-14 years -0.021 [-0.030, -0.012]* -0.012 [-0.025, 0.001] 0.50
15 years+ -0.003 [-0.012, 0.006] 0.014 [0.000, 0.028]* 0.46

95% confidence intervals are reported; intervals with * are significant. Relative
efficiency is referred to WPC relative to PC, as estimated var(WPC)/var(PC).

7.2 Simulated data

Let us further demonstrate the relative efficiency WPC gains by incorpo-
rating the estimated Σ−1

u through simulated data. The true parameters are
estimated from the real data as described above. Specifically, we use the first
column from Table 4 (no linear trend) as the true β, and the corresponding
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estimated Λ as the true loading matrix. We fix N = 48 as before. To per-
tain the actual cross-sectional dependence, in the simulation, the true error
terms, factors, and regressors are generated as simple random samples (with
replacement) of size T from the estimated residuals, factors and regressors
from the real data.

Simulations are conducted with one hundred replications. The averages
and the standard deviations for each estimated component are reported in
Table 5, representing the bias and standard error. Also reported is the rela-
tive efficiency, defined as var(WPC)/var(PC). It is clearly shown in the table
that the standard errors of WPC are uniformly smaller than those of PC. In
addition, most of the time WPC also reduces the finite sample bias. The rel-
ative efficiency varies from 39% to 52%, which illustrates 48%-61% efficiency
gain. Overall, after incorporating the error covariance, the performance of
the estimator is significantly improved.

8 Conclusion

The literature on estimating high-dimensional sparse covariance matri-
ces has targeted on the covariance and inverse covariance directly, and the
theoretical results are mostly in an absolute convergence form. We see
that the absolute convergence, even though achieving the minimax opti-
mal rate, is often not suitable for statistical inference. Thus using an es-
timated high-dimensional covariance matrix as the optimal weight matrix is
highly-nontrivial. We study a new notion of “weighted convergence” to show
that the effect of estimating a high-dimensional covariance matrix is indeed
asymptotically negligible.

This paper studies in detail two models that are of increasing impor-
tance in applied statistics: approximate factor model and panel data with
unobservable interactive effects. We propose a method of weighted princi-
pal components, which uses a high-dimensional weight matrix. The efficient
weight uses the inverse error covariance matrix. The EWPC considers both
heteroskedasticity and cross-sectional dependence. It is shown that EWPC
uses the optimal weight matrix over the class of WPC estimators thus it is
the most efficient.

The EWPC is applied to the year-state divorce rate data. The new
method captures the significant (negative) effects from nine to twelve years
after the law was reformed, consistent with the previous empirical findings
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Table 5: Method comparison in effects of divorce law reform: simulated data

Bias Normalized SE Relative
WPC PC WPC PC Efficiency

T = 50
First 2 years -0.008 -0.013 1.077 1.714 0.393

3-4 years -0.023 -0.033 1.911 2.694 0.494
5-6 years -0.040 -0.058 2.743 3.821 0.525
7-8 years -0.054 -0.080 3.429 4.899 0.501
9-10 years -0.068 -0.103 4.017 5.633 0.501
11-12 years -0.073 -0.107 4.262 6.221 0.475
13-14 years -0.081 -0.124 4.703 6.907 0.462
15 years+ -0.090 -0.133 5.094 7.691 0.439

T = 70
First 2 years -0.002 -0.000 0.927 1.449 0.408

3-4 years -0.008 -0.008 1.623 2.434 0.438
5-6 years -0.021 -0.028 2.434 3.420 0.505
7-8 years -0.030 -0.039 3.246 4.579 0.507
9-10 years -0.043 -0.060 4.115 5.738 0.513
11-12 years -0.048 -0.061 4.579 6.492 0.501
13-14 years -0.055 -0.076 5.101 7.245 0.495
15 years+ -0.062 -0.079 5.564 8.173 0.465

“Normalized SE” is the standard error of the estimator multiplied by
√
NT .

The relative efficiency is calculated as the square of the ratio of the third
and fourth columns, estimating var(WPC)/var(PC)

in the social science literature. The estimator is more accurate and produces
tighter confidence intervals.

References

[1] Ahn, S., Lee, Y. and Schmidt, P. (2001). GMM estimation of linear
panel data models with time-varying individual effects. J. Econometrics.
101, 219-255.

35



[2] Allen, D. W. (1992). Marriage and divorce: comment. American Eco-
nomic Review, 82, 679-685.

[3] Andersen, T., Bollerslev, T., Christoffersen, P. and
Diebold, F. (2011). Financial risk measurement for financial risk man-
agement. Manuscript. Northwestern University.

[4] Bai, J. (2003). Inferential theory for factor models of large dimensions.
Econometrica. 71 135-171.

[5] Bai, J. (2009). Panel data models with interactive fixed effects. Econo-
metrica. 77 1229-1279.

[6] Bai, J. and Li, K. (2012). Statistical analysis of factor models of high
dimension. Ann. Statist. 40, 436-465.

[7] Bai, J. and Ng, S.(2002). Determining the number of factors in approx-
imate factor models. Econometrica. 70 191-221.

[8] Bickel, P. and Levina, E. (2008). Covariance regularization by thresh-
olding. Ann. Statist. 36 2577-2604.

[9] Bien, J. and Tibshirani, R. (2011). Sparse estimation of a covariance
matrix.Biometrika, 98 807-820.

[10] Boivin, J. and Ng, S. (2006). Are More Data Always Better for Factor
Analysis? J. Econometrics. 132, 169-194.

[11] Breitung, J. and Tenhofen, J. (2011). GLS estimation of dynamic
factor models. J. Amer. Statist. Assoc. 106, 11501166.

[12] Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covari-
ance matrix estimation. J. Amer. Statist. Assoc. 106, 672-684.

[13] Cai, T. and Zhou, H. (2012). Optimal rates of convergence for sparse
covariance matrix estimation. Ann. Statist. 40, 2389-2420.

[14] Caner, M. and Han, X. (2012). Using bridge estimators to deter-
mine number of factors in multifactor models: case of large panel data.
Manuscript.

36



[15] Chamberlain, G. and Rothschild, M. (1983). Arbitrage, factor
structure and mean-variance analysis in large asset markets. Economet-
rica. 51 1305-1324.

[16] Cheng, X. and Hansen, B. (2013). Forecasting with factor-augmented
regression: a frequentist model averaging approach. Forthcoming in J.
Econometrics.

[17] Choi, I. (2012). Efficient estimation of factor models. Econometric The-
ory. 28 274-308.

[18] d’Aspremont, A., Banerjee, O. and Ghaoui, L. (2008). First-
order methods for sparse covariance selection. SIAM Journal on Matrix
Analysis and Applications. 30, 56-66

[19] Doz, C., Giannone, D. and Reichlin, L. (2012). A quasi-maximum
likelihood approach for large, approximate dynamic factor models. The
Review of Economics and Statistics. 94, 1014-1024.

[20] El Karoui, N. (2008). Operator norm consistent estimation of large-
dimensional sparse covariance matices. Ann. Statist. 36, 2717-2756.

[21] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized
likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-
1360

[22] Fan, J., Liao, Y. and Mincheva, M. (2013). Large covariance estima-
tion by thresholding principal orthogonal complements (with discussion).
J. R. Stat. Soc. Ser. B.. To appear.

[23] Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000). The
generalized dynamic factor model: identification and estimation. The Re-
view of Economics and Statistics. 82 540-554.

[24] Friedberg, L. (1998). Did unilateral divorce raise divorce rates? Evi-
dence from panel data. American Economic Review, 88, 608-627
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