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Abstract

We provide an econometric analysis for the factor models when the latent factors

can be explained partially by several observed explanatory proxies. In financial fac-

tor models for instance, the unknown factors can be reasonably well predicted by a

few observable proxies, such as the Fama-French factors. In diffusion index forecasts,

identified factors are strongly related to several directly measurable economic variables

such as consumption-wealth variable, financial ratios, and term spread. To incorporate

the explanatory power of these observed characteristics, we propose a new two-step

estimation procedure: (i) regress the data onto the observables, and (ii) take the prin-

cipal components of the fitted data to estimate the loadings and factors. The proposed

estimator is robust to possibly heavy-tailed distributions, which are encountered by

many macroeconomic and financial time series. With those proxies, the factors can

be estimated accurately even if the cross-sectional dimension is mild. Empirically, we

apply the model to forecast US bond risk premia, and find that the observed macroe-

conomic characteristics contain strong explanatory powers of the factors. The gain of

forecast is more substantial when these characteristics are incorporated to estimate the

common factors than directly used for forecasts.
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1 Introduction

This paper provides an econometric analysis for the factor models when the factors depend

on several observed explanatory variables. Consider the following factor model:

xt = Λft + ut, t ≤ T, (1.1)

where the latent factors ft can be partially explained by a vector of observables wt:

ft = g(wt) + γt, (1.2)

for some function g = E(ft|wt), a nonparametric function. Here xt = (x1t, ..., xNT )′ is the

outcome; Λ = (λ1, ....,λN)′ is an N × K matrix of unknown loadings; ut = (u1t, ..., uNt)
′

denotes the idiosyncratic vector. In (1.2), γt is interpreted as the factors’ components that

cannot be explained by the observables, whose covariance cov(γt) may or may not be close to

zero. When cov(γt) is close to zero, the true factors are mostly explained by the observables

wt; the latter is then interpreted as the good proxy of the true factors.

Factor models are found to be extremely useful for summarizing the information of a large

number of economic variables. In economic applications, it is often the case that common

factors are associated with some time-dependent observables. In financial factor models for

instance, the factors are explained by a few observable proxies, such as the Fama-French

factors (Fama and French, 1992, 2015). In diffusion index forecasts, Stock and Watson

(2002a,b) and Ludvigson and Ng (2009) identified seven factors that represent production

outcomes, the housing variables, stock markets, etc. The identified factors are strongly

associated with several directly measurable economic variables such as consumption-wealth

variable, financial ratios (ratios of price to dividends or earnings), and term spread.

To incorporate the explanatory power of wt, we propose a robust proxy-regressed method

to estimate the factors and loadings. The method consists of two major steps:

(i) (robustly) regress {xt} on the observables {wt} and obtain fitted value {x̂t};
(ii) take the principal components of (x̂1, ..., x̂T ) to estimate the loadings and factors.

Since wt is uncorrelated with ut, the regression step effectively removes the effects of id-

iosyncratic components. As a result, the loadings and g function can be identified (up to

a rotation) under any given N , as apposed to being identified asymptotically in traditional

studies (as N →∞, e.g., Chamberlain and Rothschild (1983)). In addition, when γt is near

zero (wt nearly fully explains ft, which is a testable statement), the estimated g(wt) can be
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directly used as factor estimators, whose rate of convergence is nearly OP (T−1 + (NT )−1/2),

and is faster than the usual estimates when N = o(T 2). This shows it is possible to estimate

the factors well when the dimension is not very large relative to the sample size.

The proposed estimation procedure is robust to possibly heavy-tailed errors. It is well

known that returns of many macroeconomic and financial time series are heavy-tailed and

skewed. Indeed, by examining the kurtosis of the macroeconomic dataset commonly used for

diffusion index forecast (Stock and Watson, 2002a; Ludvigson and Ng, 2009), we find that

most of these variables have heavier tails than the t-distribution with degrees of freedom

five. Most of the existing methods (PCA, MLE, etc.), however, are known to be sensitive

to the tail distribution. In particular, when the number of cross-sectional units is large,

these estimation methods require the tail distribution of the errors to exponentially decay

in order to achieve good statistical properties (Fan et al., 2013). The sensitivity to the

tail distributions, therefore, limits the application scopes of these estimators. We employ

Huber (1964)’s robust M-estimation with a diverging regularity parameters in step (i) of

our estimation. This demonstrates another advantage of our estimation procedure: the

regression step projects the original data to the space of wt, whose distribution is no longer

heavy-tailed, and is suitable for the PCA step (ii).

We consider two specific applications of the model with explanatory variables wt for the

common factors.

Testing Proxy Factors for Financial Returns

In model (1.2), we test

H0 : cov(γt) = 0,

where wt represents a set of observable proxies to the true factors, (e.g., Fama-French fac-

tors). The null hypothesis is equivalent to γt = 0 almost surely in the entire sampling period,

under which the observed proxies fully explain the true factors. While it is well known that

the commonly used Fama-French factors have explanatory power for most of the variations

of stock returns, it is questionable whether they fully explain the true (yet unknown) factors.

These observed proxies are nevertheless used as the factors empirically, and the remaining

components (γt and ut) have all been mistakenly regarded as the idiosyncratic components.

The proposed test provides a diagnostic tool for the specification of common factors

in empirical studies, and complements the “efficiency test” in the financial econometric

literature (e.g., Gibbons et al. (1989); Pesaran and Yamagata (2012); Gungor and Luger

(2013); Fan et al. (2015a)). While the efficiency test aims to test whether the alphas of

excess returns are simultaneously zero for the specified factors, here we directly test whether
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the factor proxies are correctly specified. We test the specification of Fama French factors for

the returns of S&P 500 constituents using rolling windows. The null hypothesis is more often

to be rejected using the daily data compared to the monthly data, due to a larger volatility

of the unexplained factor components. The estimated volatility of unexplained components

varies over time and drops significantly during the acceptance period.

Multi-Index Regression

With more accurately estimated latent factors, we also consider a multi-index regression

model using both latent factors and observed attributes:

Yt = h(ψ′1zt, ...,ψ
′
Lzt) + εt, zt = (f ′t,w

′
t)
′, t = 1, ..., T, (1.3)

where Yt represents an observed scalar outcome and (ψ1, ...,ψL) denote a set of regression

indices. Here ft and wt are allowed to have overlapped components. For instance, in treat-

ment effect studies, Yt represents the outcome, and wt denotes the treatments and a set of

observed demographic variables for the individual t. In macroeconomic forecasts, Yt := yt+1

represents a scalar macroeconomic variable to forecast; and wt denotes the observed charac-

teristics at time t. The regression depends on a nonparametric link function h. In particular,

it admits a factor-augmented linear model as a special case.

We estimate the common factors using the proposed robust proxy-regressed method from

a large panel of variables. For prediction and forecast purposes, the multi-index model

considered here does not require the identification of the index coefficients or complicated

semi-parametric methods to individually estimate them. Using the “dimension reduction”

techniques in the statistical literature (Li, 1991; Cook and Lee, 1999), our method only

requires estimating the space spanned by the index coefficients.

In the empirical study, we apply the multi-index regression to forecast the risk premia of

U.S. government bonds. We find that the observed macroeconomic characteristics contain

strong explanatory powers of the factors. Incorporating these characteristics in the esti-

mation of factors leads to a substantially improved out-of-sample forecast compared to the

usual procedures that directly use them for forecasts.

1.1 Further related literature, Organization and Notation

Various methods have been developed in the literature to estimate the common factors,

including principal components analysis (PCA, e.g., Connor and Korajczyk (1986); Stock

and Watson (2002a)), maximum likelihood estimate (MLE, Doz et al. (2012); Bai and Li
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(2012)), Kalman filtering (Doz et al., 2011), among others. We study the static factor model,

which is different from the dynamic factor model. The dynamic model allows more general

infinite dimensional representations using the frequency domain PCA (Brillinger, 1981). We

refer to Forni et al. (2000, 2005); Hallin and Lǐska (2007) for the literature, among others.

In the financial econometric literature, observed characteristics are often imposed to ex-

plain the loading matrix. For instance, Connor et al. (2012) considered a model where the

loadings depend on a set of firm-specific characteristics (market capitalization, price-earning

ratio, etc). They proposed a kernel-based method to iteratively estimate the loading matrix

and factors. Their characteristics are observed cross-sectionally (firm-specific). Improved

estimation of factors, on the other hand, is particularly important for predictions and fore-

casts. As is recently demonstrated by Bai and Liao (2016), more accurate estimations of

the factors can substantially improve the out-of-sample forecasts. There is also an exten-

sive literature on prediction/forecast based factor models. In addition to those discussed

above, the literature includes, Stock and Watson (2002a); Bernanke et al. (2005); Bai and

Ng (2008); Ludvigson and Ng (2010); Kim and Swanson (2014); Cheng and Hansen (2015),

among many others.

Finally, the robust estimation is not rare in the econometric literature. For instance, it

has been extensively studied in the time series literature (e.g., Andrews et al. (2007); Hill

(2015)). The quantile regression is another type of robust estimation. However, quantile

regression does not estimate conditional mean functions when the data are asymmetrically

distributed.

The rest of the paper is organized as follows. Section 2 overviews the method and defines

the estimators. Section 3 presents the general asymptotic theory of the estimators. Section

4 proposes a new test on the specification of Fama-French factors, which tests whether the

factor proxies fully explain the true factors. Section 5 applies the proposed method to multi-

index nonlinear regression. Section 6 provides simulations and Section 7 applies the methods

to an empirical application on bond risk premia. Finally Section 8 concludes. The appendix

contains an empirical study of testing Fama-French factors, as well as all the technical proofs.

Throughout the paper, we use λmin(A) and λmax(A) to denote the minimum and max-

imum eigenvalues of a matrix A. We also denote by ‖A‖F , ‖A‖, ‖A‖1 and ‖A‖max

the Frobenius norm, spectral norm (also called operator norm), `1-norm, and element-

wise norm of a matrix A, defined respectively by ‖A‖F = tr1/2(A′A), ‖A‖ = λ
1/2
max(A′A),

‖A‖1 = maxj
∑

i |aij| and ‖A‖max = maxi,j |aij|. Note that when A is a vector, both ‖A‖F
and ‖A‖ are equal to the Euclidean norm. Finally, for two sequences, we write aT � bT if
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bT = o(aT ) and aT � bT if aT = O(bT ) and bT = O(aT ).

2 Identification and Estimations

2.1 Identification

Suppose that there is a d-dimensional observable vector wt that is: (i) associated with the

latent factors ft, and (ii) mean-independent of the idiosyncratic term. We focus on the effect

of observing wt on the identification and estimation of the factors and loadings. Taking the

conditional mean on both sides of (1.1), we have

E(xt|wt) = ΛE(ft|wt) (2.1)

and

E(xt|wt)E(xt|wt)
′ = ΛE(ft|wt)E(ft|wt)

′Λ′. (2.2)

Suppose the following normalization conditions hold: 1
N

Λ′Λ = IK , and that E{E(ft|wt)E(ft|wt)
′}

is a diagonal matrix, with distinct diagonal entries. Then taking expectation on both sides

of (2.2), and right multiplying by Λ/N , by the normalization condition, we reach:

1

N
E{E(xt|wt)E(xt|wt)

′}Λ = ΛE{E(ft|wt)E(ft|wt)
′}. (2.3)

Since E(xt|wt) is identified by the data generating process with observables {(xt,wt)}t≤T ,

we see that the columns of 1√
N

Λ (up to a sign change) are identified as the eigenvectors cor-

responding to the first K = dim(ft) eigenvalues of E{E(xt|wt)E(xt|wt)
′}, which is assumed

to have rank K. Let

Σ := E{E(xt|wt)E(xt|wt)
′}.

From (2.2), we have Σ = ΛE{E(ft|wt)E(ft|wt)
′}Λ′. Note that E{E(ft|wt)E(ft|wt)

′} is a

K × K matrix, hence Σ has at most K nonzero eigenvalues. As a result, from (2.3), Λ

corresponds to these K nonzero eigenvalues. Left multiplying Λ′/N on both sides of (2.1),

one can see that E(ft|wt) is also identified as:

g(wt) := E(ft|wt) =
1

N
Λ′E(xt|wt).

We impose the normalization conditions above to facilitate our heuristic arguments. In
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this paper, these normalization conditions are not imposed. Then the same argument shows

that Λ and g(wt) can be identified up to a matrix transformation. It is important to note

that here the identification of Λ (or its transformation) is “exact” in the sense that it can be

written as leading eigenvectors of identified covariance matrices for any given N . This is in

contrast to the “asymptotic identification” (as N → ∞) as in Chamberlain and Rothschild

(1983) where the loading matrix (or its transformation) is identified only when there are

sufficiently large number of cross-sectional units. Here the exact identification is achieved

due to the fact that the conditional expectation operation E(·|wt) removes the effects of

idiosyncratic components in the equality (2.1).

The key assumption to be made about the role of wt is as follows:

Assumption 2.1. There are c, c̄ > 0 so that all the eigenvalues of E{E(ft|wt)E(ft|wt)
′} are

confined in [c, c̄].

This assumption requires that the observed characteristics wt should have an explanatory

power for ft, which is essential whenever wt is incorporated in the estimation procedure. For

instance, when wt represents the Fama-French factors (Fama and French, 1992), they are

believed to be strongly associated with the “true” factors. In the ideal case that wt fully

explains ft, we have E(ft|wt) = ft almost surely. Then this assumption is naturally satisfied

so long as E(ftf
′
t) is well conditioned.

2.2 Definition of the estimators

2.2.1 The estimators

The identification strategy motivates us to estimate Λ and E(ft|wt) respectively by Λ̂ and

ĝ(wt) as follows: let Σ̂ be some covariance estimator of Σ, whose definition will be clear

below, and Ê(xt|wt) be an estimator of E(xt|wt). Then the columns of 1√
N

Λ̂ are defined as

the eigenvectors corresponding to the first K eigenvalues of Σ̂, and

ĝ(wt) :=
1

N
Λ̂
′
Ê(xt|wt).

Recall that ft = g(wt) + γt. We assume that cov(γt|wt) = cov(γt) is independent of wt.

When cov(γt) is small, ĝ(wt) also serves as an estimator for the unknown factor ft. Above

all, ĝ(wt) is consistent for ft so long as cov(γt) = o(1). In general, cov(γt) > 0 might not
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vanish and we estimate ft directly using OLS:

f̂t := (Λ̂
′
Λ̂)−1Λ̂

′
xt =

1

N
Λ̂
′
xt.

Finally, we estimate γt by:

γ̂t = f̂t − ĝ(wt) =
1

N
Λ̂
′
(xt − Ê(xt|wt)).

2.2.2 Robust estimation for Σ̂

Several covariance estimators Σ̂ for Σ are available. Note that Σ is a high-dimensional

matrix when N is large, hence it is difficult to estimate it consistently under usual matrix

norms (e.g., Fronenius norm or spectral norm). Fortunately, as we show in Theorem 2.1

below, consistency for Σ is not a requirement for the consistency of Λ̂, ĝ(wt) or f̂t. The

proposed estimators work so long as a “not-too-bad” estimator Σ̂ is used. The required

condition is mild.

Throughout the paper, we assume both N and T grow to infinity, while K = dim(ft) and

d = dim(wt) are constant. Write ΣΛ,N := 1
N

Λ′Λ.

Assumption 2.2. (i) All the eigenvalues of the K×K matrix ΣΛ,N are bounded away from

both zero and infinity;

(ii) The eigenvalues of Σ
1/2
Λ,NE{E(ft|wt)E(ft|wt)

′}Σ1/2
Λ,N are distinct.

Remark 2.1. We focus on strong factors throughout the paper, and condition (i) is the

usual “pervasive condition” for approximate factor models. It requires that the common

factors should impact on a non-negligible portion of the components of xt. As we take the

principal components of Σ̂ in the second step, we still require the first K eigenvalues of Σ

to be large in order to signal the corresponding eigenvectors. This gives rise to the pervasive

condition in the current context.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold. Let Σ̂ be such that

‖Σ̂−Σ‖ = oP (N) (2.4)

Then there exists an invertible K×K matrix H (whose dependence on N and T is suppressed
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for notational simplicity) such that, as N, T →∞,

1

N
‖Λ̂−ΛH‖2

F = oP (1).

In addition, if the normalization conditions hold: ΣΛ,N = IK , and E{E(ft|wt)E(ft|wt)
′} is

a diagonal matrix, then H = IK .

Recall that (2.4) uses the spectral norm for matrices. A useful sufficient condition for

(2.4) is the element-wise convergence:

‖Σ̂−Σ‖max = oP (1),

which is a very weak convergence requirement. Recall that Σ = E{E(xt|wt)E(xt|wt)
′}.

Hence we construct an estimator Ê(xt|wt) first as follows.

Let Φ(wt) = (φ1(wt), ..., φJ(wt))
′ be a J × 1 dimensional vector of sieve basis. Sup-

pose E(xt|wt) can be approximated by a sieve representation: E(xt|wt) ≈ BΦ(wt), where

B = (b1, ...,bN)′ is an N × J matrix of sieve coefficients. This setup includes structured

nonparametric models such as the additive model and the parametric model (e.g., linear

models). To adapt for different heaviness of the tails of idiosyncratic components to robus-

tify the estimation, we use the Huber loss function (Huber (1964)) to estimate the sieve

coefficients. Define

ρ(z) =

z2, |z| < 1

2|z| − 1, |z| ≥ 1.

For some deterministic sequence αT → ∞, we estimate the sieve coefficients B by the

following convex optimization:

b̂i = arg min
b∈RJ

1

T

T∑
t=1

ρ

(
xit − Φ(wt)

′b

αT

)
, B̂ = (b̂1, ..., b̂N)′.

We then estimate Σ by

Σ̂ =
1

T

T∑
t=1

Ê(xt|wt)Ê(xt|wt)
′, where Ê(xt|wt) = B̂Φ(wt).

We regard αT as a tuning parameter, which diverges in order to reduce the biases of esti-

mating the conditional mean E(xt|wt) when the distribution of xt−E(xt|wt) is asymmetric.

9



Throughout the paper, we shall set

αT = C

√
T

log(NJ)

for some constant C > 0. We recommend choose the constant C through a multifold cross-

validation. We explain this choice in Section 3.2. Our method is particularly suitable for

applications of financial and macroeconomic time series that often exhibit heavy tails (Balke

and Fomby, 1994; Sakata and White, 1998; Atkinson et al., 1997). To our best knowledge,

factor models with this type of distributions have not been studied previously.

2.3 Alternative estimation methods

We discuss some alternative estimation strategies.

2.3.1 Sieve-LS covariance estimator

Recall that Φ(wt) = (φ1(wt), ..., φJ(wt))
′ is a J × 1 dimensional vector of sieve basis. Let

P = Φ′(ΦΦ′)−1Φ, (T × T ), Φ = (Φ(w1), ...,Φ(wT )), (J × T ), X = (x1, ...,xT ), (N × T ).

Then, the fitted values of the least-squares estimate for E(X|w1, ...,wT ) is simply XP and

the sieve-LS covariance estimator for Σ is Σ̃ = 1
T
XPX′. While the sieve-LS is attractive

due to its closed form, it is not suitable when the idiosyncratic distribution has heavier tails.

Nevertheless, in complicated real data analysis, applied researchers might like to use

simple but possibly not robust estimators, for sake of simplicity. In that case, Σ̃ can still

serve as an alternative estimator for Σ. Our major estimation procedure for incorporating

the information from wt still carries over. As expected, our numerical studies in Section

6 demonstrate that sieve-LS performs well in light-tailed scenarios, but is less robust to

heavy-tailed distributions.

2.3.2 Panel data with interactive effects

Plugging ft = g(wt) + γt into (1.1), we obtain

xt = h(wt) + Λγt + ut, where h(wt) = Λg(wt). (2.5)
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Alternatively, one may also consider the following model:

xt = h(wt) + Λft + ut, (2.6)

for a nonparametric function h(·), or simply a linear form h(wt) = βwt. Models (2.5) and

(2.6) are known as the panel data models with interactive effects in the literature (Ahn et al.,

2001; Bai, 2009; Moon and Weidner, 2015), where parameters are often estimated using least

squares. For instance, we can estimate model (2.5) by

min
h,Λ,γt

1

T

T∑
t=1

‖xt − h(wt)−Λγt‖2. (2.7)

But this approach is not appropriate in the current context when wt almost fully explains

ft for all t = 1, ..., T . In this case, γt ≈ 0, and least squares (2.7) would be inconsistent.
∗ In addition, Λ in (2.6) would be very close to zero because the effects of ft would be

fully explained by h(wt). As a result, the factors in (2.6) cannot be consistently estimated

(Onatski, 2012) either. We conduct numerical comparisons with this method in the sim-

ulation section. In all simulated scenarios, the interactive effect approach gives the worst

estimation performance.

3 Asymptotic Theory: The General Case

3.1 Assumptions

Let

eit := xit − E(xit|wt).

Suppose the conditional distribution of eit given wt = w is absolutely continuous for almost

all w, with a conditional density ge,i(·|w).

Assumption 3.1 (Tail distributions). (i) There are ζ1, ζ2 > 2, C > 0 and M > 0, so that

for all x > M ,

sup
w

max
i≤N

ge,i(x|w) ≤ Cx−ζ1 , sup
w

max
i≤N

E(e2
it1{|eit| > x}|wt = w) ≤ Cx−ζ2 . (3.1)

∗The inconsistency is due to the fact that aΛγt ≈ Λγt for any scalar a, since the true γt ≈ 0.
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(ii) Φ(wt) is a sub-Gaussian vector, that is, there is L > 0, for any ν ∈ RJ so that ‖ν‖ = 1,

P (|ν ′Φ(wt)| > x) ≤ exp(1− x2/L), ∀x ≥ 0.

(iii) For γkt := fkt − E(fkt|wt), there is v > 1, so that maxk≤K E[E(γ4
kt|wt)]

v <∞.

We allow eit to have a tail distribution that is heavier than the exponential-type tails.

Note that eit = uit + λ′iγt. Therefore if the distribution of factors has a light tail (e.g.,

decays either exponentially or polynomially faster than that of uit), then the required tail

conditions on eit directly carry over to uit.

The following condition is regarding the sieve approximation.

Assumption 3.2. For k = 1, ..., K, let vk = arg minv E(fkt − v′Φ(wt))
2. Then there is

η ≥ 1, as J →∞,

max
k≤K

sup
w
|E(ftk|wt = w)− v′kΦ(w)| = O(J−η).

Suppose E(fkt|wt = ·) belongs to a Hölder class: for some r, α > 0,

G = {h : |h(r)(x1)− h(r)(x2)| ≤ L|x1 − x2|α},

then this condition is satisfied by common basis such as the polynomials and B-splines with

η = 2(r+α)/ dim(wt). If E(fkt|wt = ·) admits an additive structure and each component is

in the Hölder class, then we can take η = 2(r+α). Furthermore, as co-movements of the cross-

sectional units are driven by the common factors, this assumption ensures that E(xit|wt = ·)
can be approximated by the sieve representation uniformly well across i = 1, ..., N .

Assumption 3.3. There are c1, c2 > 0 so that

c1 ≤ λmin(EΦ(wt)Φ(wt)
′) ≤ λmax(EΦ(wt)Φ(wt)

′) ≤ c2,

c1 ≤ λmin(EΦ(wt)f
′
tftΦ(wt)

′) ≤ λmax(EΦ(wt)f
′
tftΦ(wt)

′) ≤ c2.

Assumption 3.4. (i) E(ut|ft,wt) = 0, and maxi≤N ‖λi‖ <∞.

(ii) (serial independence) {ft,ut,wt}t≤T is independent and identically distributed;

(iii) (weak cross-sectional dependence)

sup
w,f

max
i≤N

N∑
j=1

|E(uitujt|wt = w, ft = f)| <∞.
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Note that we allow for conditional heteroskedasticity and cross-sectional correlations in

ut. A limitation of our theory is that serial independence is required, as required in Assump-

tion 3.4 (ii). The serial independence is solely a technical condition for robust estimations.

Unlike the usual principal components methods, the robust estimation based on Huber’s loss

does not have a closed form solution. In order to achieve sharp rates of convergence and

limiting distributions, the asymptotic analysis relies on the uniform Bahadur representation

(Bahadur (1966)) of the robust M-estimator:

Ê(xit|wt) = E(xit|wt) +
1

T

T∑
s=1

αT ρ̇(α−1
T eis)Φ(ws)

′AΦ(wt) + zit + ∆it,

where ρ̇ denotes the derivative of the Huber’s loss function:

ρ̇(z) =

2z, |z| < 1

2sgn(z), |z| ≥ 1.

Here sgn(z) denotes the sign function; A denotes the Hessian matrix of the expected Huber’s

loss function; zit is the sieve approximation error of E(xit|wt); ∆it is the remainder of the

representation. The key technical argument is to bound the remainder uniformly over the

cross-sectional units: maxi≤N |∆it|. We appeal to the empirical process theories of van der

Vaart and Wellner (1996) for this task, which requires the data be independently distributed.

Remark 3.1. When the data are not heavy-tailed, the sieve-LS estimator Σ̃ can be employed

instead. In that case, the serial independence assumption can be replaced with strong mixing

conditions to allow for serial correlations.

3.2 Choice of the tuning parameter

As mentioned earlier, throughout this paper, we take

αT = C

√
T

log(NJ)
(3.2)
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for a constant C chosen by the cross-validation. The Huber-estimator is biased for estimating

the mean coefficient, whose population counterpart is

bi,α := arg min
b∈RJ

Eρ

(
xit − Φ(wt)

′b

αT

)
,

As αT increases, the Huber loss behaves like a quadratic loss. In fact, we show in the

appendix (Proposition D.1) that for bi := arg minb∈RJ E[xit − b′Φ(wt)]
2,

max
i≤N
‖bi,α − bi‖ = O(α

−(ζ2+1)+ε
T )

for an arbitrarily smal ε > 0, where ζ2 is defined in Assumption 3.1. Hence the bias decreases

as αT grows as expected. On the other hand, we shall investigate the uniform convergence

(in i = 1, ..., N) of

max
i≤N
‖ 1

T

T∑
t=1

ρ̇(α−1
T eit)Φ(wt)‖, (3.3)

which is the leading term in the Bahadur expansion of the Huber-estimator. It turns out

that αT cannot grow faster than O(
√

T
log(NJ)

) in order to guard for robustness and to have

a sharp uniform convergence, where J is the number of sieve basis. Hence the choice (3.2)

leads to the asymptotically least-biased robust estimation.

3.3 Asymptotic properties

We have the following result. Recall that g(wt) = E(ft|wt), and γt = ft − g(wt).

Theorem 3.1 (Loadings). Suppose J2 log3N = O(T ) and J = O(N). Under Assumptions

2.1–3.4, there is an invertible matrix H, as N, T, J →∞, we have

1

N

N∑
i=1

‖λ̂i −H′λi‖2 = OP

(
J

T
+

1

J2η−1

)
, (3.4)

max
i≤N
‖λ̂i −H′λi‖ = OP

(√
J logN

T
+

1

Jη−1/2

)
. (3.5)

Remark 3.2. The optimal rate for J in (3.4) is J � T 1/(2η), which results in

1

N

N∑
i=1

‖λ̂i −H′λi‖2 = OP (T−(1−1/(2η))).
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Here η represents the smoothness of E(xit|wt = ·). When η is sufficiently large, the rate

is close to OP (T−1), which is faster than the rate of the usual principal components (PC)

estimator when N is relatively small compared to T . In fact, the PC estimator λ̃i (e.g., Bai

(2003)) satisfies, for some H̃,

1

N

N∑
i=1

‖λ̃i − H̃′λi‖2 = OP (T−1 +N−1).

The estimation improvement is essentially due to a better estimation of the factors when N

is relatively small. In the contrary, the usual PC estimator cannot estimate the factors well

when N is small.

Define

J∗ = min

{
(TN)1/(2η), (

T

logN
)1/(1+η)

}
.

Theorem 3.2 (Factors). Let J � J∗. Suppose (J∗)2 log3N = O(T ), J∗ = O(N), and

Assumptions 2.1–3.4 hold. For H in Theorem 3.1, as N, T →∞, we have

1

T

T∑
t=1

‖ĝ(wt)−H−1g(wt)‖2 = OP

(
J∗‖ cov(γt)‖

T
+ (

1

TN
)1−1/(2η) + (

logN

T
)2−3/(1+η)

)
,

(3.6)

1

T

T∑
t=1

‖γ̂t −H−1γt‖2 = OP

(
J∗‖ cov(γt)‖

T
+

1

N
+ (

1

TN
)1−1/η + (

logN

T
)2−4/(1+η)

)
, (3.7)

where cov(γt) denotes the covariance matrix of γt.

Remark 3.3. The term ‖ cov(γt)‖ reflects the impact of the components in the factors that

cannot be explained by wt. In the special case when cov(γt) = 0, we have ft = g(wt), and

(3.6) implies

1

T

T∑
t=1

‖ĝ(wt)−H−1ft‖2 = OP

(
(

1

TN
)1−1/(2η) + (

logN

T
)2−3/(1+η)

)
.

When η is large, this rate is faster than the usual PC estimator f̃t, since the latter has the

following rate of convergence (e.g., Stock and Watson (2002a); Bai (2003)):

1

T

T∑
t=1

‖f̃t − H̃−1ft‖2 = OP

(
1

T
+

1

N

)
.
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On the other hand, when cov(γt) is bounded away from zero and η is large, the rate of

convergence for γ̂t is approximately

1

T

T∑
t=1

‖γ̂t −H−1γt‖2 = OP (
1

T
+

1

N
)

which is the same as that of the PC estimator for ft.

Remark 3.4. For a general J , the rates of convergence of the two factor components are:

1

T

T∑
t=1

‖ĝ(wt)−H−1g(wt)‖2 = OP

(
J‖ cov(γt)‖

T
+

J

TN
+
J3 logN log J

T 2
+

1

J2η−1

)
, (3.8)

1

T

T∑
t=1

‖γ̂t −H−1γt‖2 = OP

(
J‖ cov(γs)‖

T
+

1

N
+
J4 logN log J

T 2
+

1

J2η−1

)
. (3.9)

In fact J � J∗ is the optimal choice in (3.8) ignoring the term involving ‖ cov(γt)‖.

We now present the asymptotic distribution for γ̂t, which can be used to derive the

confidence interval for (rotated) γt for each fixed t. We introduce an additional assumption

and some notation. Let Σu denote the covariance matrix of ut. Assumption 3.5 below is the

cross-sectional central limit theorem, and is commonly imposed for the limiting distribution

of estimated factors (e.g., Bai (2003)).

Assumption 3.5. Suppose limN→∞
1
N

Λ′ΣuΛ = Q, and for each fixed t,

1√
N

N∑
i=1

λiuit →d N (0,Q).

Define ΣF = E{E(ft|wt)E(ft|wt)
′}, ΣΛ = limN→∞

1
N

Λ′Λ. Let V be a K ×K diagonal

matrix, whose diagonal elements are the eigenvalues of Σ
1/2
Λ ΣFΣ

1/2
Λ , and Γ be the K ×K

matrix whose columns are the corresponding eigenvectors. Let J := V−1/2Γ′Σ
1/2
F , G :=

EftΦ(wt)
′, and S := (EΦ(wt)Φ(wt)

′)−1. Finally, let

Mt = cov(γt)α
′
tSαt − cov(γt)βtα

′
tSG′ − (cov(γt)βtα

′
tSG′)′ + GSG′β′t cov(γt)βt,

where αt = Φ(wt)−G′Σ−1
F γt, βt = Σ−1

F γt. It can be shown that Mt is positive definite.
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Theorem 3.3 (Limiting distribution for γ̂t). Suppose J4 log2N = o(T ), J1−η = o(1/
√
N +

1/
√
T ). Then under Assumptions 2.1–3.5, for each fixed t = 1, ..., T ,

(T−1JΣΛMtΣΛJ′ +N−1JQJ′)−1/2(γ̂t −H−1γt)→d N (0, I).

All terms in the asymptotic variance can be estimated using their sample counterparts:

respectively define Σ̂F = 1
T

∑T
t=1 ĝ(wt)ĝ(wt)

′, Σ̂Λ = 1
N

Λ̂
′
Λ̂, Ĝ = 1

T

∑T
t=1 f̂tΦ(wt)

′, Ŝ =

( 1
T

∑T
t=1 Φ(wt)Φ(wt)

′)−1, ĉov(γt) = 1
T

∑T
t=1 γ̂tγ̂

′
t, and Q̂ = Λ̂

′
Σ̂
−1

u Λ̂, where the covariance

matrix estimator Σ̂u for Σu can be easily constructed based on the residuals in the absence of

cross-sectional correlations (see section 4 below, where we also present a covariance estimator

allowing for cross-sectional correlations). Finally, αt, βt and Mt can be estimated similarly:

M̂t = ĉov(γt)α̂
′
tŜα̂t − ĉov(γt)β̂tα̂

′
tŜĜ′ − (ĉov(γt)β̂tα̂

′
tŜĜ′)′ + ĜŜĜ′β̂

′
tĉov(γt)β̂t,

where α̂t = Φ(wt)− Ĝ′Σ̂
−1

F γ̂t, and β̂t = Σ̂
−1

F γ̂t.

The following result provides the limiting distribution of γ̂t with consistent covariance

estimators.

Corollary 3.1. Assume the assumptions of Theorem 3.3 and cross-sectional independence.

As T,N →∞,

(T−1Σ̂ΛM̂tΣ̂Λ +N−1Q̂)−1/2(γ̂t −H−1γt)→d N (0, I).

4 Application: Testing Fama-French Factors

The Fama-French three-factor model (Fama and French, 1992) is one of the most celebrated

ones in the empirical asset pricing. It takes into account the size and value effects, in addition

to the market risk. Ever since its proposal, there is much evidence that the three-factor model

can leave the cross-section of expected stock returns unexplained. To isolate exposures to the

different dimensions of returns, different factor definitions have been explored, e.g., Carhart

(1997) and Novy-Marx (2013). Fama and French (2015) added profitability and investment

factors to the three-factor model. They modeled the excess return rit on security or portfolio

i for period t as

rit = αi + birMt + siSMBt + hiHMLt + ciRMWt + diCMAt + uit,
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where rMt, SMBt and HMLt are the three factors of (Fama and French, 1992), respectively

representing the the excess returns of the market, the difference of returns between stocks

with small and big market capitalizations (“small minus big”), and the difference of re-

turns between stocks with high book to equity ratios and those with low book to equity

ratios (“high minus low”). Two additional factors were included: RMW (profitability) is

the difference between the returns on diversified portfolios of stocks with robust and weak

profitability, and CMA (investment) is the difference between the returns on diversified port-

folios of low and high investment stocks. In addition, Fama and French (2015) conducted

GRS tests (Gibbons et al., 1989) on the five-factor models and its different variations. Their

tests “reject all models as a complete description of expected returns”.

On the other hand, the Fama-French factors, though imperfect, are good proxies for the

true unknown factors. Consequently, they form a natural choice for wt. These observables

are actually diversified portfolios, which have explanatory power on the latent factors ft, as

supported by financial economic theories as well as empirical studies. Our general results in

Section 3 immediately apply to the estimation of the loadings and true factors, incorporating

the extra information from observing wt.

4.1 Testing the explanatory power of the factor proxies

We shall use wt as the “observed proxy” of the true factors, such as the Fama-French factors.

We are interested in testing: (recall that γt = ft − E(ft|wt).)

H0 : cov(γt) = 0. (4.1)

Under H0, ft = E(ft|wt) over the entire sampling period t = 1, ..., T , implying that observed

Fama-French factors wt fully explain the true factors ft. The GRS test and related tests, in

contrast, are designed to test the “zero-alpha” hypothesis (H0 : αi = 0 for all i = 1, ..., N)

using wt as the factors in the empirical asset pricing model. The “zero-alpha” test is used to

assess the proxy of the true factors only when the market is mean-variance efficient (Gungor

and Luger, 2013). In contrast, our proposed test aims directly at the question whether the

observed proxy wt is adequate or not, without assuming the efficient market hypothesis.

Our method can also be used to test whether there are any missing factors in financial

studies. To illustrate this, consider a simple example where there are four true factors, which
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are characterized by four variables: w1t, w2t, w3t, w4t as follows:
f1t

f2t

f3t

f4t

 =


F1(w1t, w2t, w3t, w4t)

F2(w1t, w2t, w3t, w4t)

F3(w1t, w2t, w3t, w4t)

F4(w1t, w2t, w3t, w4t)

 , t = 1, ..., T,

where Fi(w1t, w2t, w3t, w4t) are unknown functions (e.g., Fi(w1t, w2t, w3t, w4t) = wit, i =

1, ..., 4). Suppose however, only w1t, w2t, w3t are identified and measured (e.g., Fama-French

three factors), but w4t is missing. Then in our notation, wt = (w1t, w2t, w3t), and we write

the factors as
f1t

f2t

f3t

f4t

 =


g1(w1t, w2t, w3t) + γ1t

g2(w1t, w2t, w3t) + γ2t

g3(w1t, w2t, w3t) + γ3t

g4(w1t, w2t, w3t) + γ4t

 , g = (g1, ..., g4)′, γt = (γ1t, ..., γ4t)
′.

If at least one of the true factors depends on w4t, then at least one of the γit’s must be

nonzero. This can be detected by testing (4.1) as the test is equivalent to testing γt = 0 for

t = 1, ..., T almost surely.

In our empirical study (Appendix A) on the S&P 500 constituents, we find that the null

hypothesis is more often to be rejected using the daily data compared to the monthly data,

possibly because daily data tend to demonstrate larger volatilities on γt. In addition, the

estimated overall volatilities of factors are significantly smaller during the acceptance period.

4.2 Test statistic

Our test statistic is based on a weighted quadratic statistic

S(W) :=
N

T

T∑
t=1

γ̂ ′tWγ̂t =
1

TN

T∑
t=1

(xt − Ê(xt|wt))
′Λ̂WΛ̂

′
(xt − Ê(xt|wt)).

The weight matrix normalizes the test statistic, taken as W = AVar(
√
N γ̂t)

−1, where

AVar(γ̂t) represents the asymptotic variance-covariance matrix of γ̂t under the null, and

is given by

AVar(
√
N γ̂t) =

1

N
H′Λ′ΣuΛH.
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As Σu is a high-dimensional covariance matrix, to facilitate the technical arguments, in this

section we assume {uit} to be cross-sectionally uncorrelated, and estimate Σu by:

Σ̂u = diag{ 1

T

T∑
t=1

û2
it, i = 1, ..., N}, ûit = xit − λ̂

′
if̂t.

The feasible test statistic is defined as

S := S(Ŵ), Ŵ := (
1

N
Λ̂
′
Σ̂uΛ̂)−1.

We reject the null hypothesis for large values of S.

4.3 Sparse idiosyncratic covariance with heavy-tailed data

It is reasonable to allow cross-sectional dependence by assuming Σu to be a sparse covari-

ance, in the sense that most off-diagonal entries of Σu are either zero or nearly so. The

sparsity condition is a natural extension of the standard setup of approximate factor models

(Chamberlain and Rothschild, 1983), and has been recently used in the financial economet-

rics literature by, e.g., Fan et al. (2015a); Gagliardini et al. (2016). Following the construction

of Fan et al. (2015a), we can estimate Σu by, for some estimator σ̂ij for E(uitujt),

(Σ̂u)ij =

σ̂ij, if i = j,

hij(σ̂ij), if i 6= j.

Here hij(x) = sgn(x)(|x| − τij)+ is taken as a the soft-thresholding function, commonly used

in the statistical literature, where (x)+ = max{x, 0}. The threshold value τij is chosen to

guarantee that

max
ij
|σ̂ij − E(uitujt)| = OP (τij). (4.2)

The resulting estimator is a sparse covariance matrix, which thresholds off most off-diagonal

entries ((Σ̂u)ij is zero so long as |σ̂ij| < τij). When uit is possibly heavy-tailed, the uniform

convergence (4.2) requires a robust variance estimator σ̂ij, which can be defined as

σ̂ij := arg min
σ

1

T

T∑
t=1

ρ

(
ûitûjt − σ

αT

)
.
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While these extensions are straightforward, we expect that the asymptotic analysis might

be quite involved, and do not pursue it in this paper.

4.4 Limiting distribution under H0

We will show that the test statistic has the following asymptotic expansion:

S =
1

T

T∑
t=1

u′tΛ(Λ′ΣuΛ)−1Λ′ut + oP (
1√
T

).

Thus the limiting distribution is determined by that of S̄ := 1
T

∑T
t=1 u′tΛ(Λ′ΣuΛ)−1Λ′ut.

Note that the cross-sectional central limit theorem (Assumption 3.5) implies as N →∞,

(
1

N
Λ′ΣuΛ)−1/2 1√

N
u′tΛ→d N (0, IK).

Hence each component of S̄ can be roughly understood as χ2-distributed with degrees of

freedom K being the number of common factors, whose variance is 2K. This motivates the

following assumption.

Assumption 4.1. Suppose as T,N →∞, 1
T

∑T
t=1 var(u′tΛ(Λ′ΣuΛ)−1Λ′ut)→ 2K.

We now state the null distribution in the following theorem.

Theorem 4.1. Suppose {uit}i≤N is cross-sectionally independent, and Assumption 4.1 and

assumptions of Theorem 3.2 hold. Then, when NJ4 logN log J = o(T 3/2), T = o(N2),

N
√
T = o(J2η−1), as T,N →∞,√

T

2K
(S −K)→d N (0, 1).

Remark 4.1. There are three technical conditions in this theorem that characterize the

relationship among (N, T, J): The first condition (i) NJ4 logN log J = o(T 3/2) requires that

T should be large relative to N . High-dimensional estimation errors accumulate in the test

statistic as N increases. Hence this condition controls the error accumulations under a large

panel. Condition (ii) T = o(N2), on the other hand, is commonly required to guarantee

the asymptotic accuracy of estimating the unknown factors. Importantly, we allow either

N/T → ∞ or T/N → ∞. Finally, condition (iii) N
√
T = o(J2η−1) requires the function
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E(ft|wt = ·) be sufficiently smooth so that the sieve approximation error is negligible, and

does not play a role in the limiting distribution.

5 Application: Multi-index regression

5.1 The model

Consider a multi-index regression model:

Yt = h(ψ′1zt, ...,ψ
′
Lzt) + εt, zt = (f ′t,w

′
t)
′, t = 1, ..., T, (5.1)

where Yt represents an observed scalar outcome; ft is a set of latent factors that have a

predicting power about Yt; wt is a set of observed conditioning variables that might be

associated with ft and Yt. For instance, in treatment effect studies, Yt represents the outcome,

and wt denotes the treatments and a set of observed demographic variables for the individual

t. In macroeconomic forecasts, Yt := yt+1 represents a scalar macroeconomic variable to be

forecast. The common factors are often inferred by using a large panel data:

xt = Λft + ut. (5.2)

Our goal is to predict/forecast YT using the data {Yt,wt,xt}T−1
t=1 and {wT ,xT}. Forecasts

based on the estimated factors of large datasets have been extensively studied, where yt+1

represents industrial production outputs, excess returns of stocks or U.S. government bonds

(Stock and Watson, 2002a,b; Ludvigson and Ng, 2009, 2010), among many others.

Here the non-parametric link function h depends on L indices {ψ′lzt}l≤L with unknown

coefficients ψl’s, and L < dim(zt) is imposed for the dimension reduction. While numerous

regression models focus on linear models, some empirical evidence also suggests the possibility

of nonlinear dynamics. For instance, nonlinearity is an important part of the theories that

attempt to explain the Great Recession with a financial accelerator mechanism (Bemanke

et al., 1996). Omitted nonlinearity can lead to biases in predictions. On the other hand,

a full nonparametric model may suffer from the curse of dimensionality of zt. Our goal is

to enhance the prediction using improved estimated factors, incorporating the explanatory

power of the observed conditioning variables.
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5.2 The intuitions of the method

Since the function h is unknown, neither the index parameters nor the unknown factors are

separately identifiable. However, we can find a proper transformation

z̃t = M−1zt, ψ̃i = M′ψi, i = 1, ..., L.

such that Ez̃tz̃
′
t = I and span{ψ̃1, ..., ψ̃L} is identified, where span{ψ̃1, ..., ψ̃L} denotes the

space spanned by the index coefficients. As a result, we consider the following observationally

equivalent model:

Yt = h(ψ̃
′
1z̃t, ..., ψ̃

′
Lz̃t) + εt, (5.3)

For the ease of reading and to avoid complicated notations in this section, we give the

definition of M in the appendix.

The method we introduce below does not require the identification of the individual

coefficients. The estimation procedure is summarized as follows.

Step 1 Estimate z̃t by M̂−1ẑt, where

ẑt = (f̂ ′t,w
′
t)
′, M̂ = (

1

T

T∑
s=1

ẑtẑ
′
t)

1/2. (5.4)

Here f̂t is the proposed robust proxy-regressed factor estimator, with wt incorporated

in the estimation procedure.

Step 2 Find {ψ̂1, ..., ψ̂L} so that span{ψ̂1, ..., ψ̂L} consistently estimates span{ψ̃1, ..., ψ̃L}.
Then our estimated indices are written as ψ̂

′
iM̂
−1ẑt, i = 1, ..., L.

Step 3 Finally, obtain a nonparametric estimator ĥ using any smoothing technique by re-

gressing Yt onto the estimated indices ψ̂
′
iM̂
−1ẑt, for t = 1, ..., T − 1. We then predict

YT by

ŶT := ĥ(ψ̂
′
1M̂

−1ẑT , ...., ψ̂
′
LM̂−1ẑT ).

In particular, when Yt = yt+1 in the forecast context, we forecast yT+1 by ŷT+1|T := ŶT .

A standard procedure of estimating the common factors is to apply the principal com-

ponents (PC) estimator on (5.2). In contrast, we employ the proposed factor estimators.

Our estimator potentially have two advantages compared to the PC estimator: (i) macroe-

conomic variables and financial excess returns are heavy-tailed. We shall also demonstrate it
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in our empirical study. (ii) The conditioning variables wt can have strong explanatory pow-

ers on the factors. Indeed, numerous empirical studies of the macroeconomic dataset used

in Stock and Watson (2002a) and Ludvigson and Ng (2009) have identified several factors

related to housing variables and stock markets. These factors are believed to be strongly

associated with, e.g., the consumption-wealth variable, financial ratios (ratios of price to

dividends or earnings), and term spread (e.g., Lettau and Ludvigson (2010); Campbell and

Shiller (1988); Fama and French (1988); Campbell (1991)). By incorporating these variables

as wt, the estimation of ft can be improved, which can potentially lead to significantly better

predictions.

In step 2 we shall directly estimate span{ψ̃1, ..., ψ̃L}. In the statistical literature on

dimension reductions (Li, 1991; Cook and Lee, 1999), this space is also called dimension-

reduction subspace. We now explain the rationale of using this space for the multi-index

regression. We assume that the indices are sufficient for Yt in the sense that the conditional

distribution of Yt|z̃t satisfies:

Yt|z̃t =d Yt|(ψ̃
′
1z̃t, ..., ψ̃

′
Lz̃t) (5.5)

for all values of z̃t in its marginal sample space. As is shown by Cook and Lee (1999), (5.5)

still holds when (ψ̃1, ..., ψ̃L) is replaced with any (ξ1, ..., ξL) such that

span{ψ̃1, ..., ψ̃L} = span{ξ1, ..., ξL}.

In other words, all the information of Yt|z̃t is preserved by using (ξ′1z̃t, ..., ξ
′
Lz̃t). This then

implies,

h(ψ̃
′
1z̃t, ..., ψ̃

′
Lz̃t) = E(Yt|z̃t) = E(Yt|ξ′1z̃t, ..., ξ′Lz̃t). (5.6)

We shall propose (ψ̂1, ..., ψ̂L) so that ψ̂
′
iM̂
−1ẑt →P ξ′iz̃t for a particular set of {ξi}.

Hence

ĥ(ψ̂
′
1M̂

−1ẑt, ...., ψ̂
′
LM̂−1ẑt)→P h(ψ̃

′
1z̃t, ..., ψ̃

′
Lz̃t).

5.3 Estimating the space spanned by index coefficients

We now describe the identification and estimation of span{ψ̃1, ..., ψ̃L}, which is based on

the sliced inverse regression method of Li (1991). Fix H ≥ max{L, 2}, and divide the

range of data {Y1, ..., YT−1} into H disjoint “slices” I1, ..., IH such that P (Yt ∈ Ih) = 1/H.
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Specifically, let Fy denote the cumulative distribution function (CDF) of Yt, and let

Ih = [F−1
y ((h− 1)/H), F−1

y (h/H)].

In practice, we replace Fy with the sample CDF to construct Ih. Now define a “sliced

covariance matrix”

Σz|y :=
1

H

H∑
h=1

E(z̃t|Yt ∈ Ih)E(z̃t|Yt ∈ Ih)′.

It follows from Li (1991) that span{ψ̃1, ..., ψ̃L} can be identified as the space spanned by

the eigenvectors ξ1, ..., ξL of Σz|y, corresponding to the first L eigenvalues †:

span{ψ̃1, ..., ψ̃L} = span{ξ1, ..., ξL}.

We shall present this proposition and its proof in Appendix F.

Importantly, Σz|y is easy to estimate using its sample counterpart, whose leading eigen-

vectors span a subspace that consistently estimates span{ψ̃1, ..., ψ̃L}. Let Ê(z̃t|Yt ∈ Ih) be

the sample analogue of E(z̃t|Yt ∈ Ih), which is the sample average of M̂−1ẑt for all Yt ∈ Ih,
for t = 1, ..., T − 1:

Ê(z̃t|Yt ∈ Ih) :=
M̂−1

∑T−1
t=1 ẑt1{Yt ∈ Ih}∑T−1

t=1 1{Yt ∈ Ih}
,

where M̂−1ẑt is as defined in (5.4). We then let {ψ̂1, ..., ψ̂L} be the eigenvectors of the first

L eigenvalues of

Σ̂z|y =
1

H

H∑
h=1

Ê(z̃t|Yt ∈ Ih)Ê(z̃t|Yt ∈ Ih)′.

It is shown by Li (1991) and many authors in the statistical literature that the eigenvectors

of Σz|y is non-sensitive to H. Indeed, the choice of H has very little impact on the estimated

eigenvector space. This was elucidated by Fan et al. (2015). The following result presents the

estimation consistency of the index space. Similar results of this type was recently obtained

by Fan et al. (2015). Theorem 5.1 in contrast, provides a robust estimator for the factors

that takes advantages of the information contained in the observables wt. In addition, our

procedure is suitable for possibly heavy-tailed economic data. As recently noted by Bai and

Liao (2016), more accurate estimation of the common factors can lead to better out-of-sample

forecast performances.

†The formal statement of this proposition is given in Appendix F.1.
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Define

bNT =

√
J‖ cov(γt)‖+ logN

T
+

1√
N

+
1

Jη−1/2

Theorem 5.1. For any given H ≥ L, if the largest L eigenvalues of Σz|y are distinct, then

max
i≤L
‖ψ̂i − ξi‖ = OP (bNT ).

In addition, for each fixed t, M̂−1zt − z̃t = OP (bNT ), and

1

T

∑
t

‖M̂−1ẑt − z̃t‖2 = OP (b2
NT ).

Theorem 5.1 immediately implies ψ̂
′
iM̂
−1ẑt consistently estimates ξ′iz̃t for each fixed t.

Then by regressing Yt onto {ψ̂
′
iM̂
−1ẑt}i≤L, the function ĥ(ψ̂

′
1M̂

−1ẑT , ..., ψ̂
′
LM̂−1ẑT ) consis-

tently estimates E(YT |ψ̃
′
1z̃T , ..., ψ̃

′
Lz̃T ) = E(YT |fT ,wT ), whenever ĥ is consistent. The latter

is a conditional mean predictor for YT .

6 Simulation Studies

6.1 Model settings

In this section, we use simulated examples to demonstrate the finite sample performance of

the proposed robust proxy-regressed method and compare it with existing ones. Throughout

this section, we respectively specify five factors (K = 5) and five characteristics, and the

sample size is N = 50, T = 100. More results based on different sample sizes (N = 100, T =

50 and N = 100, T = 100) are presented in Appendix B, and the results are very similar.

The sieve basis is chosen as the additive Fourier basis with J = 5. As discussed in Section

3.2, the tuning parameter αT in the Huber loss is of form αT = C
√

T
log(NJ)

. We selected the

constant C by the 5 fold cross validation.

Consider the following model,

xt = Λft + ut, (6.1)

ft = g(wt) + γt, t = 1, · · · , T,

where σ =
√

var(γt) is set to be 0.01, 0.3 and 1. The smaller the σ is, the more ft and

26



g(wt) are correlated. In this study, Λ, wt and γt are drawn from i.i.d. standard normal

distribution. The unknown function g(·) is set to be one of the following 3 models:

(I) g(wt) = Dwt, where D is a K ×K matrix with each entry drawn from U [1, 2];

(II) g(wt) = sin(0.5πwt);

(III) g(wt) = 0, which implies that wt is irrelevant to ft.

In addition, ut is drawn from one of the following four distributions:

(1) Normal distribution (N(0, 8));

(2) Mixture Normal distribution (MixN) 0.5∗N(−1, 4)+0.5∗N(8, 1), which is asymmetric

and light tailed;

(3) Two times the t−distribution with degrees of freedom 3 (2t3), which is symmetric and

heavy-tailed;

(4) Log-normal distribution (LogN) e1+2Z , where Z is standard normal, which is asym-

metric and heavy-tailed.

The generated ut has been centralized to have zero mean. For Model (III), we only consider

σ = 1, as the observables wt are independent of latent factors and other choices would have

yield similar results.

In the presentation below, we shall abbreviate the proposed robust proxy-regressed method

as RPR. For comparisons, we estimate the factors and loadings in (6.1) by the proposed RPR,

Sieve-LS (Section 2.3.1), the regular PCA and INT under different scenarios. In particular,

the INT method estimates the factors and loadings from the panel data with interactive

effects (INT) model (Bai, 2009) as follows

xt = Λg(wt) + Λγt + ut, t = 1, · · · , T,

by solving the least squares problem (2.5).
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6.2 In-sample Estimation

First, we compare the in-sample model fitting performance among RPR, Sieve-LS, PCA and

INT under different scenarios. Let F = (f1, · · · , fT )′ be the T ×K matrix of factors. We

use PCA as a benchmark and define the relative estimation error as

‖Λ̂F̂ ′ − ΛF ′‖2
F

‖Λ̃F̃ ′ − ΛF ′‖2
F

,

where Λ̃ and F̃ are the estimators of Λ and F obtained by PCA, Λ̂ and F̂ are the estimators

of Λ and F obtained by one of the methods to be compared. For each scenario, we conduct

200 simulations and calculate the average of relative estimation error. Results are presented

in Table 1. Besides, one may be also interested in the estimation accuracy of factors or

loadings alone rather than their products. As the factors and loading may be estimated up

to a rotation matrix, the canonical correlations between the parameter and its estimator can

be used to measure the estimation accuracy (Bai and Liao, 2016). For Model (I) and (II) we

report the sample mean of the median of 5 canonical correlations between the true loading

matrix and estimated one and the true factors and estimated ones(Bai (2003)). The results

are presented in Table 2 and 3.

According to Tables 1– 3, Sieve-LS and RPR are comparable for light-tail distributions.

This implies that we do not pay much the price for robustness. However, when the error

distributions have heavy tails, RPR yields much better estimation than other methods as

expected. Sieve-LS out-performs PCA when wt and ft are well correlated. In general,

PCA gives the worst estimation performance as it does not exploit the information in wt.

When σ = 1, the observabed wt is not as informative and hence the performance of RPR

and Sieve-LS deteriorates. The interactive-effect based method (INT) has worse estimation

performance then Sieve-LS under light tailed scenarios and performs similarly to PCA under

heavy-tailed cases.

6.3 Out-of-sample Forecast

Consider yt+1 as a linear function of ft:

yt+1 = β′ft + εt,
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Table 1: Mean relative estimation error of ΛF ′ (%) when N = 50, T = 100: the smaller the
better (with PCA as the benchmark)

Model (I) Model (II) Model (III)
ut σ RPR Sieve-LS INT RPR Sieve-LS INT RPR Sieve-LS INT

N(0, 8)
0.01 0.76 0.75 0.85 0.78 0.78 0.84
0.3 0.83 0.82 0.91 0.85 0.85 0.90
1.0 1.59 1.58 1.92 1.37 1.36 1.77 2.29 2.28 2.44

MixN
0.01 0.78 0.78 0.86 0.86 0.86 0.90
0.3 0.91 0.90 0.95 0.92 0.92 0.94
1.0 1.72 1.70 2.13 1.44 1.43 1.64 2.67 2.64 2.75

2t3

0.01 0.62 0.84 0.94 0.56 0.85 0.95
0.3 0.63 0.85 0.96 0.57 0.85 0.95
1.0 0.64 0.86 0.99 0.58 0.86 1.00 1.18 1.18 1.20

LogN
0.01 0.66 0.81 0.93 0.64 0.83 0.94
0.3 0.66 0.82 0.96 0.65 0.84 0.95
1.0 0.67 0.83 0.99 0.65 0.84 0.97 1.16 1.16 1.23

Table 2: Median of 5 canonical correlations of estimated loading matrix and true one when
N = 50, T = 100: the larger the better

Model (I) Model (II)
ut σ RPR Sieve-LS PCA INT RPR Sieve-LS PCA INT

N(0, 8)
0.01 0.93 0.93 0.85 0.90 0.91 0.91 0.85 0.90
0.3 0.91 0.91 0.90 0.88 0.87 0.87 0.87 0.83
1.0 0.90 0.90 0.97 0.85 0.86 0.86 0.95 0.82

MixN
0.01 0.96 0.96 0.92 0.94 0.94 0.94 0.91 0.92
0.3 0.94 0.94 0.93 0.93 0.91 0.91 0.91 0.90
1.0 0.93 0.93 0.98 0.89 0.91 0.91 0.96 0.88

2t3

0.01 0.57 0.37 0.29 0.34 0.58 0.36 0.27 0.33
0.3 0.55 0.35 0.30 0.32 0.56 0.35 0.28 0.32
1.0 0.54 0.34 0.32 0.32 0.53 0.33 0.31 0.31

LogN
0.01 0.68 0.33 0.26 0.30 0.67 0.34 0.25 0.31
0.3 0.66 0.31 0.26 0.27 0.65 0.33 0.26 0.30
1.0 0.63 0.30 0.28 0.28 0.62 0.29 0.27 0.28

Both RPR and Sieve-LS are the proposed characteristic-based methods. RPR uses robust estimator
for Σ while Sieve-LS uses non-robust least squares covariance estimator.

where εt is drawn from i.i.d. standard normal distribution. For each simulation, the unknown

coefficients in β are independently drawn from U [0.5, 1.5] to cover a variety of model settings.

We conduct one-step ahead rolling window forecast using the linear model by estimating

β and ft. The factors are estimated by RPR, Sieve-LS, PCA or INT. In each simulation, we
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Table 3: Median of 5 canonical correlations between estimated factors and true ones when
N = 50, T = 100: the larger the better

Model (I) Model (II)
ut σ RPR Sieve-LS PCA INT RPR Sieve-LS PCA INT

N(0, 8)
0.01 0.94 0.94 0.77 0.84 0.95 0.95 0.85 0.92
0.3 0.86 0.86 0.83 0.82 0.89 0.89 0.87 0.88
1.0 0.85 0.85 0.95 0.81 0.88 0.88 0.95 0.86

MixN
0.01 0.96 0.96 0.86 0.92 0.97 0.97 0.97 0.97
0.3 0.91 0.91 0.89 0.90 0.93 0.93 0.92 0.92
1.0 0.89 0.90 0.96 0.86 0.92 0.92 0.96 0.91

2t3

0.01 0.68 0.43 0.27 0.37 0.64 0.40 0.27 0.36
0.3 0.66 0.40 0.29 0.36 0.61 0.37 0.27 0.33
1.0 0.63 0.37 0.33 0.34 0.58 0.34 0.29 0.30

LogN
0.01 0.66 0.43 0.30 0.40 0.65 0.38 0.27 0.34
0.3 0.64 0.41 0.33 0.38 0.60 0.36 0.29 0.32
1.0 0.60 0.37 0.36 0.36 0.57 0.34 0.31 0.31

generate T + 50 observations in total. For s = 1, · · · , 50, we use the T observations right

before time T + s to forecast yT+s. We use PCA as a benchmark and define the relative

mean squared error (RMSE) as:

RMSE =

50∑
s=1

(ŷT+s|T+s−1 − yT+s)
2

50∑
s=1

(ỹPCAT+s|T+s−1 − yT+s)2

,

where ŷT+s|T+s−1 is the forecast yT+s based on RPR, Sieve-LS or INT while ỹPCAT+s|T+s−1 is the

forecast based on PCA. For RPR and PCA, they are both based on model (5.3) except the

factors there are estimated by two different method. For the INT method, the factors are

estimated by using RPR. For each scenario, we conduct 200 simulations and calculate the

averaged RMSE as a measurement of the one-step ahead out-of-sample forecast performance.

The results are presented in Table 4. Again, when the tails of error distributions are

light, RPR and Sieve-LS perform comparably. But RPR outperforms Sieve-LS when the

errors have heavy tails. On the other hand, Sieve-LS outperforms PCA when the correlation

between wt and ft is strong. The INT model has worse forecast performance than Sieve-LS.

In general, the RPR method performs best under heavy-tailed cases. This suggests that in

light-tailed scenarios, the sieve-LS is a good choice for the proposed proxy-regressed method
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when wt has explanatory powers about the factors. In more general scenarios, the RPR is

more robust to the tail distribution and does not pay much the price even for the light tailed

distributions.

Table 4: Mean relative mean squared error of forecast when N = 50, T = 100: the smaller
the better (with PCA as the benchmark)

Model (I) Model (II) Model (III)
ut σ RPR Sieve-LS INT RPR Sieve-LS INT RPR Sieve-LS INT

N(0, 8)
0.01 0.89 0.89 0.95 0.91 0.90 0.96
0.3 0.94 0.93 0.98 0.93 0.93 1.00
1.0 1.04 1.03 1.06 1.04 1.03 1.10 1.45 1.44 1.42

MixN
0.01 0.74 0.74 0.90 0.79 0.78 0.92
0.3 0.83 0.81 0.95 0.86 0.85 0.97
1.0 1.10 1.07 1.12 1.11 1.07 1.15 1.55 1.52 1.50

2t3

0.01 0.18 0.31 0.53 0.44 0.63 0.75
0.3 0.18 0.32 0.60 0.44 0.64 0.82
1.0 0.20 0.37 0.74 0.46 0.65 0.89 1.28 1.26 1.29

LogN
0.01 0.51 0.57 0.70 0.58 0.70 0.81
0.3 0.50 0.57 0.75 0.60 0.72 0.86
1.0 0.48 0.59 0.79 0.62 0.75 0.91 1.19 1.18 1.20

7 Empirical Study of US Bond Risk Premia

7.1 Econometric Motivation

In this section, we study the risk premia of U.S. government bonds. The bond risk premia is

defined through the one year excess bond return with n year maturity, which means we buy

an n year bond, sell it as an n− 1 year bond in the next year and excess the one-year bond

yield. Let p
(n)
t be the log price of an n-year discount bond at time t. Denote ζ

(n)
t ≡ − 1

n
p

(n)
t as

the log yield with n year maturity, and r
(n)
t+1 ≡ p

(n−1)
t+1 − p(n)

t as the log holding period return.

Then, we denote the one year excess return with maturity of n years in period t+ 1 as

y
(n)
t+1 = r

(n)
t+1 − ζ

(1)
t , t = 1, · · · , T.

For a long time, the literature has found a significant predictive variation of the excess

returns of U.S. government bonds. Theoretical and empirical researches show the linkage

between the excess bond returns and a few macroeconomic variables, see Fama and Bliss
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(1987); Campbell and Cochrane (1999); Brandt and Wang (2003); Wachter (2006); Campbell

and Shiller (1991); Piazzesi and Swanson (2008), among others. Recently, Ludvigson and

Ng (2009, 2010) use diffusion index model (Stock and Watson, 2002b) to predict the bond

risk premia with observable variables plus a few common factors estimated from a large

macroeconomic panel data. Their study showed a best subset of the estimated factors

together with the single index in Cochrane and Piazzaesi (2005) can explain about 21% of

one year excess bond return with maturity of two years, in terms of out-of-sample multiple

R2. By incorporating the observed characteristics in estimating the factors, our method

achieve 38.1% out-of-sample R2 using linear forecast model, and 44.8% using the nonlinear

multi-index forecast model.

This empirical application develops a new way of incorporating the explanatory power

of the observed characteristics, and investigates the robustness of the conclusions. First,

we find that the observed characteristics have a strong explanatory power of the factors.

Incorporating them in factor estimation leads to a significantly better forecast rather than

using them in forecast directly. Second, the factors are robustly estimated by the proposed

method as we find many series in the macroeconomic panel dataset are heavy-tailed. Finally,

our forecast is based on the multi-index regression introduced in Section 5. This method not

only allows a nonlinear modeling but also serves as a further dimension reduction tool.

We analyze monthly data spanned from January 1964 to December 2003. The excess bond

returns are calculated based on the one- through five-year zero coupon U.S. Treasure bond

prices (Cochrane and Piazzaesi, 2005), which is available from the Center for Research in

Securities Prices (CRSP). The factors are estimated from a macroeconomic dataset consisting

of 131 series. A detailed description and transformation code of this panel data can be found

in the Appendix A of Ludvigson and Ng (2010). The observed characteristics wt are chosen

to be the single index in Cochrane and Piazzaesi (2005) and seven aggregate macroeconomic

series that calculated from particular sub-panels, see Table 5 for detailed description. These

aggregate series are widely used to describe the co-movement of the macroeconomic activities,

e.g. (NBER, 2008; Stock and Watson, 2010).

Throughout this study, the sieve basis of wt is chosen as the additive Fourier basis with

J = 5. We set the tuning parameter αT = C
√

T
log(NJ)

with constant C been selected by the

5 fold cross validation.
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7.2 Heavy-tailed data and robust estimations

We studied the excess kurtosis for the time series to assess the tail distributions. Figure 1

shows 43 among the 131 series have an excess kurtosis greater than 6. This indicates the tails

of their distributions are fatter than the t-distribution with degrees of freedom 5. Figure 2

plots the estimated idiosyncratic error ût = xt− Ê(xt|wt), which preserves the heavy-tailed

behavior. On the other hand, Figure 2 reports the histograms of excess kurtosis of the “fitted

data” Ê(xt|wt) (the robust estimator of E(xt|wt) using Huber loss, which demonstrates that

most series in the fitted data are no longer severely heavy-tailed. In comparison with the

raw data (Figure 1), the excess kurtosis of the fitted variables dramatically decreases.
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Figure 1: Excess kurtosis of the macroeconomic panel data

7.3 Forecast with factors

We first study the forecast power of the estimated factors. We apply the one-month ahead

out-of-sample forecast of the bond risk premia with maturity of two to five years. The

forecast uses the information in the past 240 months, starting from January 1984 and rolling

forward to December 2003. The number of factors is determined by the information criteria

developed in Bai and Ng (2002), which suggests eight common factors. We consider and
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Figure 2: Excess kurtosis of the fitted data and idiosyncratic error

The fitted data x̂t after regressing on wt are no longer severely heavy-tailed. The

estimated idiosyncratic errors preserve the heavy-tailed behavior with 36 series have

tails fatter than t-distribution with degrees of freedom 5 and the largest excess

kurtosis is greater than 160.

Table 5: Components of wt

w1,t Linear combination of five forward rates
w2,t Real gross domestic product (GDP)
w3,t Real category development index (CDI)
w4,t Non-agriculture employment
w5,t Real industrial production
w6,t Real manufacturing and trade sales
w7,t Real personal income less transfer
w8,t Consumer price index (CPI)

compare four approaches to estimating the factors: RPR, Sieve Least Squares (Sieve-LS),

PCA and PCA2 based on an enlarged panel data that includes both 131 series and wt

(PCA2). Also we consider two forecast models as follows:

Linear model: yt+1 = α + β′ft + εt, (7.1)

Multi-index model: yt+1 = α + h(ψ′1ft, · · · , ψ′Lft) + εt, (7.2)
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where α is the intercept and h is a nonparametric function. The number of sufficient indices

L is estimated by the ratio-based method used in Lam and Yao (2012) and Fan et al. (2015)

and should be no larger than the number of factors. The estimated L is usually 2 or 3.

Given the estimated indices, (7.2) is fitted by the “gam” package in R which approximates

h by an additive function, resulting in the projection pursuit model h(ψ′1ft, · · · , ψ′Lft) =∑L
l=1 gl(ψ

′
lft). Each individual nonparametric function gl(·) is smoothed by the local linear

approximation. We use the default kernel function in the package and the bandwidth is

selected by the cross validation. The parametric part (weights and intercept) is fitted by a

backfitting method which iteratively minimizes the partial residuals.

Let ŷT+t+1|T+t be the forecast yT+t+1 using the data of the previous T months: 1+t, ..., T+

t for T = 240 and t = 0, ..., 239. The forecast performance is assessed by the out-of-sample

R2 defined as

R2 = 1−

239∑
t=0

(yT+t+1 − ŷT+t+1|T+t)
2

239∑
t=0

(yT+t+1 − ȳt)2

,

where ȳt is the sample mean of yt over the sample period [1+t, T +t]. The R2 of all scenarios

are reported in Table 6. Furthermore, we present the plots of forecast results of RPR and

PCA based on the linear model and the multi-index model in Appendix B.

Table 6: Forecast performance in out-of-sample R2 (%): the larger the better

Maturity Linear model Multi-index model
RPR Sieve-LS PCA PCA2 RPR Sieve-LS PCA PCA2

2 Year 38.1 37.4 32.6 34.2 44.8 41.2 34.5 40.3
3 Year 32.9 32.4 28.2 28.5 43.2 39.1 32.1 37.9
4 Year 25.7 25.4 23.3 23.9 38.9 35.2 27.3 34.6
5 Year 23.0 22.6 19.7 19.8 37.6 34.1 23.7 31.9

Our results justify the conclusions in Ludvigson and Ng (2009) by showing the bond

risk premia is forecastable by the common factors of macroeconomic data. The multi-index

model with factors estimated by the Robust Projected PCA has an 44.8% out-of-sample R2

for forecasting the bond risk premia with two year maturity, which is much higher than the

best out-of-sample predictor found in Ludvigson and Ng (2009).

From Table 6, we notice the factors estimated by RPR and Sieve-LS can explain more

variation in bond risk premia with all maturities than the ones estimated by PCA. We
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interpret the observed results from this table in the following aspects:

1. Both RPR and Sieve-LS outperform PCA and PCA2.

The effect of estimating factors using PCA is negligible in forecasts only if
√
T/N → 0

(Bai and Ng, 2008). However, the panel data studied here has a relatively small number

of series (N = 131) compared with the length of the time span (T = 240). On the

contrary, using the characteristics, the proposed methods (RPR and Sieve-LS) can

improve the estimation of factors even if N is relatively mild.

2. RPR outperforms Sieve-LS.

Many series in this panel data are heavy-tailed. The RPR method can robustly estimate

the factors and result in better forecasts.

3. PCA2 slightly outperforms PCA.

Furthermore, the factors estimated by PCA2 has better forecast performance than the

ones estimated by PCA as the former method includes a larger panel.

4. Multi-index models outperform linear models

According to Table 6, the proposed multi-index model always has higher R2 than linear

model with the same estimated factors.

7.4 Forecast using wt

Previously, the observed characteristics wt were only used in the proposed estimators for the

common factors, and were not used directly in the forecasting model (7.1) or (7.2). Now we

study the effect of wt in forecasting bond risk premia and consider the following models

Factor-augmented linear model: yt+1 = α + β′zt + εt, (7.3)

Factor-augmented multi-index model: yt+1 = α + h(ψ′1zt, · · · , ψ′Lzt) + εt, (7.4)

where zt is one of the following three forms: (i) wt; (ii) (f ′t,w
′
t)
′; (iii) (f ′t, wi,t)

′, i = 1, · · · , 8.

The data-driven method for choosing L often picks L̂ = 5 when zt = (f ′t,w
′
t)
′ and L̂ = 3

when zt takes the other two forms.

The selected forecast results are reported in Tables 7 and 8 respectively. The full results

are deferred to Appendix B. The results show the forecast based on the factor-augmented
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multi-index model performs better than the factor-augmented linear model. While compar-

ing with model (7.1) or (7.2), the stories are similar.

Table 7: Forecast out-of-sample R2 (%) for factor-augmented linear model: the larger the
better. The bold figures represent larger R2 than forecast with factors alone under the same
scenario.

zt RPR Sieve-LS PCA
Maturity(Year) Maturity(Year) Maturity(Year)

2 3 4 5 2 3 4 5 2 3 4 5
(f ′t, w′t)

′ 37.9 32.6 25.6 22.8 37.1 31.9 25.3 22.1 23.9 21.4 17.4 17.5
(f ′t, w1,t)

′ 38.0 32.8 25.5 22.9 37.1 29.2 24.3 21.9 33.3 27.9 22.9 19.4
(f ′t, w4,t)

′ 38.1 32.8 25.7 22.9 36.1 29.1 24.7 22.3 33.6 27.7 22.3 20.0
(f ′t, w8,t)

′ 38.1 32.9 25.6 22.9 37.3 32.4 25.3 22.5 34.8 32.0 27.1 24.3
wt 6.1 5.5 4.7 4.5 NA NA

Table 8: Forecast out-of-sample R2 (%) for factor-augmented multi-index model: the larger
the better. The bold figures represent larger R2 than forecast with factors alone under the
same scenario.

zt RPR Sieve-LS PCA
Maturity(Year) Maturity(Year) Maturity(Year)

2 3 4 5 2 3 4 5 2 3 4 5
(f ′t, w′t)

′ 41.7 39.0 35.6 34.1 41.1 35.7 32.2 30.0 30.8 26.3 24.6 22.0
(f ′t, w1,t)

′ 43.4 38.2 34.5 30.9 39.5 37.3 32.2 28.8 39.4 36.9 31.7 28.5
(f ′t, w4,t)

′ 41.5 39.8 35.4 33.2 38.3 35.6 32.0 29.1 36.2 34.4 30.7 28.2
(f ′t, w8,t)

′ 41.1 38.9 34.6 30.2 39.0 36.3 31.6 26.8 35.0 33.2 28.6 24.2
wt 13.6 10.8 10.0 6.8 NA NA

For the factor-augmented multi-index model, wt itself gives an out-of-sample R2 of 13.6%

in predicting the bond risk premia with two year maturity and its forecast power decreases

as the maturity increases. The factors and wt together (zt = (f ′t,w
′
t)
′) have slightly worse

forecast performance than the factors alone.

Adding each covariate in wt to augmenting the prediction leads to some interesting

findings. The forecast performance based on PCA method gets sizable improvement when

adding w1,t (Linear combination of five forward rates), w4,t (Non-agriculture employment)

or w8,t (CPI). This coincides with the findings in existing literature that forward rates, em-

ployment and inflation have predictive power in bond risk premia (Cochrane and Piazzaesi,
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2005; Campbell and Cochrane, 1999; Wachter, 2006; Brandt and Wang, 2003). However, the

forecast performance based on either RPR or Sieve-LS cannot be improved by adding any

covariate in wt. We argue that, in this application, the information of wt should be mainly

used as the explanatory power for the factors. And our proposed (RPR and Sieve-LS) have

efficiently exploited this information.

Therefore, we conclude:

1. The observed macroeconomic characteristics wt (e.g. forward rates, employment and

inflation) contain strong explanatory powers of the latent factors. The gain of forecast-

ing bond risk premia is more substantial when these characteristics are incorporated

to estimate the common factors (using the proposed procedure) than directly used for

forecasts.

2. The multi-index models yield significantly larger out-of-sample R2’s than those of the

linear forecast models.

3. The factors estimated by RPR lead to significantly improved out-of-sample forecast on

the US bond risk premia compared to the ones estimated by PCA.

4. As many series in the panel data are heavy-tailed, the proposed method can robustly

estimate the factors and result in improved out-of-sample forecasts.

8 Conclusions

We provide an econometric analysis for the factor models when the factors depend on several

observed explanatory characteristics. In financial factor pricing models for instance, the

factors are approximated by a few observable proxies, such as the Fama-French factors. In

diffusion index forecasts, identified factors are strongly related to several directly measurable

economic variables such as consumption-wealth variable, financial ratios, and term spread.

To incorporate the explanatory power of these observed characteristics, we propose a new

two-step estimation procedure: (i) regress the data onto the observables, and (ii) take the

principal components of the fitted data to estimate the loadings and factors. The proposed

estimator is robust to possibly heavy-tailed distributions, which is found to be the case for

many macroeconomic time series. The factors can be estimated accurately even if the cross-

sectional dimension is mild. Empirically, we apply the model to forecasting US bond risk

premia, and find that the observed macroeconomic characteristics contain strong explanatory
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powers of the factors. The gain of forecast is more substantial when these characteristics are

incorporated to estimate the common factors than directly used for forecasts.
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