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This document contains the technical proofs of all the results developed
in the main paper Liao and Jiang (2011).

Throughout the proof, we denote by C' as a generic constant.

APPENDIX A: PROOFS FOR SECTION 2
A.l. Lemma 2.1. For any §,, > 0,

E{P(G(g) — glgf{ G(g) > 56,|X™)} < P( Sup 1G(9) — G(g)| > 6n)
e—2n5n

Al + -
( 7 (Clgs) — infyen Glg) < 0u N € Fo)

+ EP(gy € F5|X™).

In addition,

EP(gp € Fo| X") < P(sup G(9) — G(g)] > on)
gE n
n(Fg)en

A2 + - .
(A2 T (Glg) — inlyen G(g) < 00 N € F)

PROOF. With probability one, we have

P(G(gs) — inf Gl9) > 50,/ X™) < P(G(gs) — Inf Gl9) > 50, € Ful X")

+P(gy € Fp| X™)
< P(G(gp) — inf G(g) > 50nlgs € Fn, X") + Plgy € F1|X™),
g

which implies

P(G(gv) - Jnf, G(g) > 50| X™) < EP(G(gs) — Jnf G(g) > 50nlgs € Fn, X™)

+EP(gy € F5|X™).
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For the original prior 7(.), define a truncated version as:

n(b)1(g, € Fu)

(b) =
( ) ﬂ-(gb € F n)
Apply Proposition 6 of Jiang and Tanner (2008) to

EP(G(g) — ig,f[G(g) > 50n|gp € Fny X™)
g

using the truncated prior 7(.), and note that 7(F;;) = 0. Then we obtain

EP(G(gs) — inf G(g) > 50n| X™) < P Sup G(g) — Glav)| = dn)
9v n

e [7(Ggy) — inf Glg) < 6u) + EP(gy € FEIX™)
9
Note that 7(A) = 7(Algy € Fpn) > 7(A, gp € Fr). Then

EP(G(gp) — inf G(g) > 50,|X™) < P(sup |G(gs) — G(gs)| = 0n)
gEH ngJ:n

e (G gy) — glen?f{ G(9) < On, g € Fn) + EP(gp € F5|X™).

To prove (A.2), Let A = %supgbe]_-n |G(gp) — G(gp)], and M,, = {b € R4~ :

gy € Fn}. For any 6, > 0,

/R _exp(—5Gladb= [ exp(=5Glo)db

n

> exp(-ntd) [ I(Glar) < bu) exp(— 5 Glan) (D)

Z eXp(—’rLA - g(sn)ﬂ-(G(gb) < 5117 b S Mn)
Therefore

viom Jase exp(=5G(gp))m(db) (FC)enAinin/2
Pl € 7120 = Jan exp(—=5G(gp))m(db) = 7(G(g6) < 0ns gy € Fn)

Now EP(gy € F|X™) < E[I(A > 6,/2)] + E[P(gp € FE|X™) (A < 6,/2)]

r(Fg)ersn
7(Ggh) < Our g € Fu)

< P(S;:lp 1G(gs) — Glgn)| > 6n) +

Q.E.D.
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APPENDIX B: PROOFS FOR SECTION 3

B.1. Lemmas.

LEMMA B.1. Suppose ©(.) is continuous on F,. Suppose there exists a se-
quence 6, = O(1), and go € Oy with g; = Zz‘gqn b; ¢; being its sieve approx-
imation such that ||g; — golls = o(1) and G(g; ) = 0(0n). Then there exists a
constant C > 0, for any g, = Zig g 0i®i € Fn, and large enough n,

w(Fa 1 G(gy) < 60) > 7(B) (fj%) "

where 7y, is defined in equation (3.9) in the main paper, and b is some point satis-
fying [[b* = b]| < Cdy /yn.

PROOF. By the triangular inequality, and the fact that G(g;, ) = 0(dn), we have

{G(gp) < on} D {IG(g5) — Glgg,)| < On/2}.

for all large n. In addition, g, € F,. By Assumption 3.2, for all g, € Fy,

Glo) — Glgg )| < [ B2 )]~ (2, )lw)| dF )

<2 sup [E(p(Z,9)|W = w) /\E(P(Zgb) — p(Z,93,)IW = w)|dF (w)
gEFn,wel0,1]?

<C sup |E(p(Z,g)|W =w)|E|g(X) — gg,(X)|
gEFn,wel0,1]¢

<C sup |E(p(Z,g)|W =w)l[[b— b7,
g€Fn,wel0,1]4

where we used the fact that E|gy(X) — g5 (X)| < \/E(\gb(X) — g (X)) =

|lb — b*|| since the basis functions are orthonormal. Therefore,

{J:n N G(gb) < 571}

> { suwp |E(p(Z,9)[W = w)l[[b—b"|| < Cdp, max[b;| < By}
gEFn,we0,1]¢ iSqn

> {allb = bl < O3 max o] < B,

2 {mllb = b < Con}

for all large n. In the definition of ~,,, we add one to prevent it from being close to
zero. Therefore, for all large n and continuous 7 (.), we have, by the integral mean
value theorem,

T(FaNGlg) <8a) = w(llb—b*|l < Con/ym) = 7(B)u(llb = b*[| < Cby/n)
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_ o
> m(b)u(max |b; — bi| < ¢
1<qn TnA/An

= ) (75327)%’

where b belongs to the Iy ball {b : ||b — b*|| < C6,/7,}, and p(.) denotes the
Lebesgue measure.

)

LEMMA B.2.  For the thin tail prior defined in Section 3.2, if 6,, < C'BJ, /n for
a large enough constant C' > 0,

m(gy € FC) < e 4non
PROOF. By the definition of the thin prior, it is straightforward to verify that,
7(b ¢ Fu) < w(lbll > Ba) < PP < im0,

LEMMA B.3. For all large enough n, suppose for a large enough constant
C > 0:
(i) for the uniform prior and truncated normal prior,

Bn\/Gn
n  geFp,wel0,1]¢

(ii) for the truncated normal prior,

Vin G B (p(Z.g)W = w)| + 1)

On > qnl
1o = n 108 Con gEFn,we0,1]¢

(iii) for the thin-tail prior,

2
nanEinog ( sup ]E(p(Z,g)]W:w)\—i—l)—&—l
6” gEFn,wel0,1]¢

then
(b € Fn,G(gp) < On) > e~ 20n

PROOF. (i) For the uniform prior, 7(b;) = (2B,,) I(|b;| < B,). In addition,
b;| < |b¥| +O(1) < B, as B, — co. Hence m(b) = (2B,,)~%". Lemma B.1 then
immediately implies

Cid, an
gy € Fo. G g%z().
(9 (9v) ) B/
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The conclusion then follows.

(ii) For the truncated normal prior, w(b;) = I(|b;| < By)fz(bi)/P(|Z] < By),
where Z follows N (0, 02), for some 02 > 0, and f(.) denotes its density function.
Since

exp(—IBl[*/(20%)) > exp(—([Ib*||* + O(1))*/(20%)),
7(b) > C for some C' > 0. Hence

C(Sn dn
w(gbefn,G(gws&n)z( ! ) .

Tn/An

The conclusion then follows.
(iii) Suppose 7 is the density of the thin-tail prior defined in Section 3.2,

m(b) = r|pl|"~"pre PN/ S,

where Sy, is the area of the g, — 1 dimensional unit sphere in Euclidean norm.
Since ||b|| < ||b*]] + O(1) for all large n, then as ¢,, — oo,

m(b) = C1C5" /S,

for C1,Cy > 0. In addition, p(||b — b*|| < Con/vm) = Cq,, (Cp/vn)?", where
Cy,, 1s the volume of the ¢, dimensional unit ball in Euclidean norm.

Note that S, = ¢,Cy,, arelation between the area of the sphere and the volume
of the ball. Then by the proof of Lemma B.1,

T(FaNGlg) <8) = w(B)u(b—b*|| < Con /)

qn
- G
Qn 771

02 5n qn
29 '

B.2. Proofs of Theorems 3.1, 3.2, 3.3 and 3.4.

The conclusion then follows.

PROOF. Note that infyeyy G(g) = 0.

(i) When the truncated priors are used, for any sequence ¢, > ¢,/n, let 6 =
I Jog(can/qn), and pn, = L log(yun). If 6, > fin, then for any C' > 1, 6, >
i+ %” log C'. For the uniform prior, let ¢, = By ¢,y,/C for the truncated normal
prior, let ¢, = Cgy7yn/C. Then §,, > 5.

Let x = nd)/qn, y = cyn/qn, then z = logy. Note that if for all large n,
y > e. It follows that = > log(y/z), which is, nd} > gy log(c,/d;). Hence for
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all large n, when §,, > 0, then nd,, > ¢, log(c,/d,). Hence conditions (i)(ii) in
Lemma B.3 are satisfied. Note that ¢, = o(n) and B,, = o(n). Theorem 3.1 is then
a straightforward application of Theorems 2.1 and Lemmas B.2, B.3.

In addition, under (3.10) of the main paper, there exists 6,, = O(1) such that

Glgp,): Ansttn} < 60 < inf _ Glg).
max{G(gy, ), An, tin } gE’HInI?9¢®; )

Hence P(G(gp) < 0,|X™) = 0p(1) by Theorem 3.1, and d,, also satisfies condi-
tion (iv) in Theorem 2.2, which then implies the posterior consistency. This proves
Theorem 3.3.

(i) Consider d;; = O(1) that satisfies

(B.1) max{G(g; ), N(B}),v(By)e "B/} < 5% < B /n,

then VC' > 0, g, log(Cv(B;)/9;)) < n\, foralllarge n. Hence g, log(C(B})/d)) =

o(nd}). Hence by applying Theorems 2.1 and Lemma B.3, we have P(G(gy) >

95| X™) = 0p(1). Therefore P(G(gp) > 65| X™) = 0,(1) is proved if 4, satisfies
max{G(g;, ), A(By,), y(By)e P/} <6, < B /n.

n n

This is because we can set §;; = 0, and have just shown P(G(gy) > 6| X") =
op(1).

If 5, > B}"/n, as there always exists J;; such that (B.1) is satisfied. Thus
P(G > 6,|X™) < P(G > 65| X™) = op(1). This proves Theorem 3.2.

Now we prove Theorem 3.4: the theorem’s conditions imply that there exists
0} = o(1) such that

*T

* * *\ _—n * * . Bn :
(G, ) B, 2 (B /) <o <minf (P), it 6l
ns I

Hence by Theorem 3.2, P(G(gy) > 6;,|X™) = 0,(1). The theorem is proved since
oy, = o(inf ey, ggo: G(9)). The result follows also from Theorem 2.2.
Q.E.D.

B.3. Proof of Corollary 3.1. By uniform continuity, for any § > 0, exists
e > 0, when ||g1 — g2||s < €, |h(g1) — h(g2)| < J. By Theorems 3.3 and 3.4,

P(3g" €01, 1lgs — g"lls < €l X™) =P 1.
Hence P(3g* € Oy, |h(gp) — h(g*)| < §|X™) —P 1, which implies

P([h(gs) — h(go)| < 6]X™) = 1.
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APPENDIX C: PROOFS FOR SECTION 4

C.1. Uniform convergence of the risk functional. Define
(C.1) Gra(9) = Ema(g, 2)"V " Emy(g, Z)

where V' = diag{ P(W € RY),..., P(W € R} )}

Han and Phillips (2006) apphed the standard results in Newey and McFadden
(1994) to establish the uniform convergence of |G(g) — Gy, | over a compact set,
where they verified the equicontinuity conditions and the point-wise convergence
of |G(g) — Gj,, | respectively. In this subsection, we establish the uniform conver-
gence on the growing compact set 5, = {> i bi¢p;(z) € : max;<q, |bi| <
By}, by bounding |G — Gy, | and |Gy, (9) — ( )| dlrectly

LEMMA C.1. Ask,q — oo,
(i) maxj<pg |12 S50, Tw,enn) — POV € RY)| = Op(VIog ki *n1/2)
(it) max; < [(3 S50 Twierm) " = P(W € B 7Y = Op(vIog hnka/*n=1/?)
(iii) max; < | S0y Iw,ermYi — Elwern)Y | = Op(n=1/?)
(V) max; <pd 1<q, |5 Soim1 Lwierm O (Xi)—Elwerm di(X)| = Op(gn/*n=172).

PROOF. (i) By Bernstein’s inequality, for any j < k%, and ¢ > 0,

1< . —nt?/2
PAZ ,Z;IWGR?) ~PWeRj> 1) < exp (P(W € RY) +t/3>

Therefore, by the assumption that max; <« P(W € R?) = O(k,, 4y,

—nt?/2
P(max |~ Igy,epmy — P(W € RY)| > t) < k¢ ,
which implies the result. Here we used the fact that k¢ = o(n'/2), which is implied
by the assumption qQBQk:Sd/ 2 o(n) in Theorem 4.1.

(i) Write v; = P(W € R}), 0; = LS I(w,ery)- By the assumption that
kod = O(min;<pa P(W € R7)), and that k¢ = o(n'/?), we have

1

A1 s Sy
jniz}ji( ]vj — 05 | < min; ;0; mjax |05 — vy
< : : _ max |0; — vj
min; vj(min; v; — max; [0; — v;|) j

= Op(y/log ke k3420 =1/2),
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(iii) By Chebyshev inequality, for any j < k2, and ¢ > 0,

1 Var(I(WGRn)Y) EI(WeRﬂ)YQ
P(|ﬁ ZI(WZ-GR;P)Y;‘ - EI(WGR?)Y‘ > t) < J < J )
=1

nt? - nt?
Hence
ElwermY
- A R
_ 8Py (Y2]W = w) max; P(W € R?)k:n
- nt? ’
We obtain max;<ga |5y S0y Iwern)Yi — ElgwernY| = Op(n —1/2,

Finally, part (iv) follows from similar arguments as those in part (iii), with the
assumption that max; sup,, E(¢2|W = w) < oo, and the application of Cheby-
shev and Bonferroni inequalities. Q.E.D.

LEMMA C.2.  (i)supg, j<pa LS mnj(9, Xi)—Emap;(g, X)| = Op(q 3B an2),

) —d/2
(i) supz, j<pa |G Yoimy Mnj(9, Xi))2 = (Ema;(g, X))?| = Oplgn Bikn Pp1/2y
3B2 71)
g, Dbyn .

PROOF. (i) Forany g = > /", bj¢; € Fy,, by Lemma C.1,

1
T AP |* me 9, Xi) = Emnj(g, X)| < max|= > " Yiliw.enry — BE(Y Iwern)|
] n

Qn

+ sup b| max |- h1(X . o (X)), .
Jup 2l e | Z Tuvern — E@(X) el
= Opl(q;/*Bun™"?).
(ii) We have, by Cauchy-Schwarz inequality,

mﬁxsup]Emnj(g, X)| < sup max|E(Y g(X))I(WeR;_L)|

Fn gEFy <k
2 i) 2 n
< mas \/E(Y )PV € R) + maxsup \/E[g(X) [P(W € RY)
= Op(‘]rlsznk}:dm)'

Therefore, by part (i),

max sup \—me (9,X;)] < max sup |—me (9, Xi) — Emp;(g, X)|
J gEFn J geFn i=1
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+max sup |Emy;(g, X)|
J  geFn

= O0p(¢/?Bnky, ? + ¢3/2Byn~1/?).

The desired result then follow from the fact that
Zmn] ga (Emn](gaX))2‘

1 n
< 8300~ B0, 201 % 3 (0.0 + Bt )
i=1

Q.E.D.
LEMMA C.3. Under Assumptions 3.1, 4.1, 4.2,
(i)
sup |G(g) — G, (9)| = Op(q2 B2ks"*n~1/?).
gEFn
(ii)

sup |G(g) — G, (9)] = Ogz Brky, ).
9gEFn

PROOF. (i) For any g € L?(X),

kd
G(g) = mn(g)TV_l T Z Zmnj g9, X
j=1 i=1
kit
Gkn(g) = Emn(Xu g)TV_lEmTZ(X?g) = Z[Emnj(g7X)]2vj_1'
j=1

Hence G — G}, = Py + P,, where

kd
Z Zmn] ga (Emnj(g,X))2]@;1,
7j=1
kit
Py =) [Emyi(g, X)P(0;" — v h).
=1

By Lemmas C.1 C.2, and an;i‘/ 2 = o(y/n), which is implied by the assumption
q%Bflkid/Q = o(n) in Theorem 4.1,

1 — - _ _
sup P < max sup I(ﬁ Zmnj(g,Xi))Q — (Emu;(g, X))?| m?X(Ivi R e A )%
=1

gEFn J  geFn
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—  O.(2B2E34/2p~1/2
- p(qn n'vn n )

By Lemma C.1(ii),

sup P, < maxsup(Emj(g, X))? max 071 — v k2
ge€Fn J Fn v

= 0,(Vogk k3?0 V) k4 max  sup |EY Iwerm) — Zblw, Vwern)|

J<kg max |b;|<Bnp,
Op(\/1og ky k24 2n=1/2)
x(_sup [E(Y|W = w)|P(W € R}) + Bugn max | Bo(X) Lwern)))*.
J<kd w ’

IN

In addition,

max |Eg(X)Igvenn| <max sup [E(@(X)|W = w)| max P(W € RY).
ZSQHJSI‘% l<q" wG[O l]d <k

By Assumption 4.2(i) and Cauchy-Schwarz inequality, sup,,¢(o 1 |E(Y|W =
w) < oo, and max;<g,, SUP,efo1)¢ [E(A1(X)|W = w)| < oo. Hence it follows
from Assumption 4.1(ii) that

sup P, = Op(MkZd/2n_l/2) X Op((kr:d + Bn‘]nk;d)2)

9EFn
= 0,(\/log k k¥ ?n=12B2¢2).

Therefore,

sup |G(g9) — Gy, (9)] < sup Py + sup P»
gEFn gEFn gEFn

— OB )
(ii) By definition, Gy, (9) = Emy(g, X)TV~1Em, (g, X). Since V is diago-
nal, it is straightforward to show that

kd

WeR” WeR"))]2
Z WGR” _Z/n W € Ry)? dFiy (w)

=1

Also,

Glg) = /[Ovl]d[EW’g)'W:w 2 Py (w Z / B9 = w)PdFy (w)
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It follows that

IN

<

which implies

2
WER”))] 9
— < — |E(p(Z = F;
Gr () - Gl9)] < Z/n W S B 0W = w)| aF(w
[E(p(Z, 9)Lwerm)]?
< sup sup — —[E(p(Z,g)|W = w))?
< sup sup ElelZ g)I(WGR?)) + E(p(Z,g9)|W = w)
N 1<j<kd wER? P(W € R}) ’
E(p(Z, 9)(wern))
X sup sup ——— — E(p(Z,g)|W = w
1<j<kiweRrr | P(W € R}) (o(2,9) )
= A(g) x B(g), say.
[E(p(Z, 9)(wern)] N \E(o(Z, )W = w)]
sup - sup |E(p(Z, g)|W = w
1<j<kd (W € R} ) wel0,1]4
‘fRn p(Z, 9)IW = w)dFy (w)] BE(o(Z.9)|W )
sup - + sup pl4, g =w
1<j<kd P(W € Rj) wel0,1]¢
2 sup |E(p(Z,9)|W =w)]|,
wel0,1]4
sup A(g) = O(Qan)
9€Fn
Elp(Z, g)werm)]
< sup sup ——— —E(p(Z,9)|W =w
e I T (p(Z,9)| )
— sup sup POW € B [ E(o(Zg)W = aFw (o)~
1<j<kd weR? R?
/ E(p(Z,0)[W = w)dF (1)
< sup P(W € R})” / sup |Ky(t) — Kgy(w)|dFw(t)
j<kd R} weR}
< sup |Ky(t) — Kg(w)|,
lw—t|| <Vdky !

where

Kg(w)

= Elp(Z,9)|W = w]

= E[Y —g(X)|W = w],
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and we used the facts that F[p(Z, g)I(WeRn)] =/ . E(p(Z,g9)|W = t)dFwy(t),
and E(p(Z, 9)|W = w)P(W € R}) = fR” p(Z, g W = w)dFw(t).

By Assumption 4.2, E(Y|W = w) is LlpChltZ continuous and { E(¢;(X)|W =
w) : i < g} is Lipchitz equicontinuous with respect to w. Therefore,

sup sup  |Ky(t) — Ky(w)| = O(gnBnk, '),
9EFn ||w—t||<Vdky

which yields the result.
Proof of Theorem 4.1

PROOF. The theorem follows from Lemma C.3. Q.E.D.
C.2. Proof of Theorem 4.2-4.3.

LEMMA C4. (i) For any go € ©y, let g, be its sieve approximation, then
Glg;,) < llgs, — gollz-

PROOF. (i) The proof is simply a straightforward calculation:
Glg;.) = Ew{lE(g;, — 90lW)*} < Ew{El(g5, — 90)*]IW}
= Bl(g;, —90)’] = llgg, — 9oll3.
(ii) By definition,

Yo = sup  |E(p(Z,g)|W =w)|+1
g€Fn,wel0,1]¢

< \/supE(Y2\W—w)+1+ sup Z|b|\/supE(¢?|W:w)
|b; |<an<q w

= 0 (Qn B n) .
Proof of Theorem 4.2

PROOF. Write 3, = ki®/? /\/n + k!. Then 3, > n~1/(3d+2),
(i) For the truncated prior, note that for all large n, log ngn < logn, hence
@2 B2 Bn = 0(6y,) implies 4 logn = 0(dy,), which then implies 4= log(B,ynn) =
0(9y,). The theorem is thus a straightforward application of Lemma C.4 and Theo-
rem 3.1.

(ii) The assumption nQ/(H)qir/(“%ﬁ/(“?) = 0(8,,) implies (nd,)"" = of

and ¢2 3, = o(,). Hence there exists B} — oo such that

)
né,) " < B < n_
(nd) \| 425n

O,
4z 6n )




CONDITIONAL MOMENT RESTRICTED MODELS 13

Hence
B*’r‘
2 n — n )
(C2) dn = o . )
(C.3) B2¢2 B, = 0(dy).

Let v = ¢, B* and \,(B}) = B*2¢2f,. Since B,¢,3, > n~'/2, and \/ne V" =
o(1) we have yte " (Bi)/an = o(B*2¢23,). Hence (C.2) and (C.3) verify the
conditions in Theorem 3.2, and therefore imply the desired result. Q.E.D.

For any gg = Z;’il big; € O, let gy = > ., bid; denote the projection of
go onto the sieve space H,,. Then Vg, € H, ngqn gp—g0, 5)x|* = lgv—g;, [
as {¢1, ..., ¢4} are orthonormal.

LEMMA C.5. Under Assumption 4.3 and 4.5(i), for any ¢ > 0, there exists
N € N such that when n > N,

inf  G(g) > o(n? )Cée,
geg}l/@? (9) > ¢(n,,)Ce

where C' > 0 is a constant independent of n and e.

PROOF.
an
inf G g = 1nf g9 — 90 2 2 lnf Cl o n2 . go’gb' . )
9E€Hn,9¢O] (9) 9€EMn,9¢05 I [t 9€EHn,g¢ 05 ; ( ])|< J> |
an
> o(ng inf () 9— 00,6 x|?
( q")geHn,gée; ]Z; | i) x|
2 : o
= inf Cqllg —
<p(77qn)gem’ggé@i 1llg — g2 112
Z 2 T]2 Cl g— g* 2
U)ot omgi, et —solls O ™ Janls
(C.4) > 90(7]3”)01 [e — ”g;‘n _ 90”8]2.

Note that by Assumption 4.3, there exists NV € N such that whenn > N, [|g; —
golls < €/2, which guarantees that (C.4) holds, and that the right-hand-side of
(C.4) is no less than go(ngn)Clez/él.

Q.E.D.

LEMMA C.6. Under Assumptions 4.3 and 4.5, for any ¢ > 0, G(g;,) =
o(infyeqy, j0c G(9))-
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PROOF. Under Assumption 4.5(ii),

Glg;,) = llgg, — 9ol < Co D> () = 05>+ Co Y o(n)b;?

71<qn 7>aqn
Coo(nz Mgs, — gollz = Oz, )nz.).

VAN

VAN

But for any € > 0, inf e, /0c G(g) > Cp(n2 ). as proved in Lemma C.5.
Q.E.D.
Proof of Theorem 4.3

PROOF. The proof proceeds by verifying conditions in Theorem 3.3 and 3.4,
which is similar to the proof of Theorem 4.2, and is completed by Lemma C.5 and
C.6.

Q.E.D.

C.3. Proof of Posterior Consistency Using Gaussian Prior. It can be easily
shown that the posterior has a form

1

1 PN
TV?lE + ﬁIQn)il%

no?

[1]>

BX" ~ N(ETV 24 — 1, ) 2TV (n

where

n n
E=nt Z I(WieRy)mjgkgv V = diag[n™! Z I(WieRy)]jgk#
i1 i1

E=n""Y Iwiern (Xl j<hai<qn:
=1

and [, denotes the g, X g, identity matrix.

Define the population versions as

£ = [EI(W € Ry)Y) <y,

E = [EI(W € Rj)ou(X)]j<hdi<q,-

We proceed by checking the conditions in Theorems 2.1 and 2.2 as before. Note
that, for Condition (i) in Theorem 2.1, we check EP(g, € F¢|X™) = o(1) instead
of the tail condition on the prior.

LEMMA C.7. If max{q, log q,, ¢, logd,*, nG(g;,)} = o(ndn), gnlog By <
indy,, and 8, = o(1), then

T(G(gp) < O, gy € Fp) > e 2non,
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PROOF. By Lemma B.1,

~ cs qn
7T(C;(gb) < 5n7gb S fn) 2 7T(b) (3/22) ’

Adn n

where b lies in the ball {b € R%" : ||b—b*|| < C6,/(gnBn)} for some b* such that
9g, = Zig o b? ¢; is the sieve approximation of some gy € ©;. Hence

1 \®? s, \"
W(G(gb) < On, gy € ]:n) > <27T0’2> e 5 (lgolI2+1) <q3/2B

. Cuo, an
L\ 732
qn’ "By

—néy,
- e "o,

v

given the lemma conditions, where in the second inequality above, Co = C (27702)*1/ 2,
and C1 = exp(—3([lgoll3 +1)).

LEMMA C8.  If g/ *kl/v/m + qu/k = o(9(12,)) and \/GuB;" = o(p(n2,)).

then for F& = {31 bi¢; : max;<q, |bi| > By},
P(gy € Fp| X™) = 0p(1).
PROOF. We use the following inequality:

P(gy € FR|X™) < P(IB* > B X™) < — 5
n

We bound E(||b|?|X™) < 2E[||b— E(b|X™)||?|X™] +2||E(b| X™)]|? as following:
Denote by {\;(A)}{", as the eigenvalues of a g, X gy, square matrix A, and by
Amax(4), Amin(A) as the maximum and minimum eigenvalues of A.

Eflb— E(b|X™M)|*1X"] = tr(cov(b|X™))

i >
=1

= Op(qn>-

For the second term, it is bounded by:

|
7]
)
[
S
5
(1]

1
;IQn) < UQQTL

IEGIXMIP < Max(ETVTE+ (n0?) 7', ) HIETV
< ALL(E =TV ig)?
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< A ETVIEIEIEAL VIR,

where ||Z||% = tr(Z2"). We bound all the terms on the right hand side of the last
inequality separately. By Lemma C.1,

1213 < 2ué—au?+2uzu2:anz<qn/n+n;.a}x\Ef<WeR;>¢z<X>|2>

< ankl(an/n + max  E(Twerg) E(on(X)[W))P)
< gnkit(gn/n + H}%X[E(I(WeRy) E(¢u(X)?W))]?)
< Gnki(gn/n+ SJ}E)E(@( PIW = w) mjf.iX[EI(WeR;)]Z)
(€5 < aikplan/n+ Ok, ) = O(gn/k5)-

Since max; |9; — vj| = o(min; v;), we have

(C.6) A

(V) = Op(\G5 (V) = Op((min Elwern) %) = Op(k3?).
Again by Lemma C.1,
IEI1P < 201€ = &)* +201€]1* = Op(ksr/n) + ki, max |ElwernY
CH < Okl nt k) = Oyl
(C.8) IETVE — TV LS| = O,(¢2 *kén 1),
To bound A2 (ETV~'Z), define
A* = BIB(6i(X)[W)E(¢;(X)W)]ij<q, Ao =EV'E= (ay)ij<g-

Then a;j = 5| EI(W € RP)E(¢:(X)|W € RIE(¢;(X)|W € Rp).
Using the same technique as in the proof of Lemma C.3(ii), we can show that

E¢;I(W € R})E¢p;I1(W € R}})

r%?xlaij 5l < r{}?;(sg}p\ POW € Ry)? — E(¢i|w)E(¢;|w)|
E$I(W € BY) oo i [ESIOV € R |
< maxsup | =g ey~ By E@s )

< CumcP(W e B sup [ |(Boul) ~ (Boiuw)de
1, w R;‘l
= O(k;").
Hence ||A* — Ap||r = O(qn/kn), which then implies

(C.9) |27V 1

[I]>

— Ap = P TV? 4 g k.
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Now for any b7 = (b1, ..., by) € R%, let g(z) = Y1 bigy(z).
G(g+90) = llglli = El(Eg(X)|W)?] = b Ab.

Since go is point identified, Assumption 4.5(i) implies

qn

(C.10) lgllz, = C> emi){g, é;)x|* = Cep(na, )bT.
j=1
Thus Apmin(A*) > Co(n2,). By(C 9), when gy *kén =2+ g, [k = o(p(n?, ))
)

have Ay (2TV12) > ¢ @(n2 ). It then follows that | E(b|X™)||* < C— % (2 2

Hence
E(|[bI?[X™) < Cqn(1 + @(ng,) 7).

Therefore, as long as /g (12, )" = o(Bn),

E(||b]]2| X"
P(gs € FelX™) < PQBI? = B21x) < 2 )

Q.E.D.

LEMMA C.9.  Ifmax{qy,logn, ¢, log(e(nz,)~"),nG(gz ), ngpBup(ng,) 2} =
0p(ndn).and gy *kL /it + qu/k = o((n2,)), then
P(G(gs) < 6/ X™) =7 1.

PROOF. max{gy, logn, g, log ﬁg)} = o(ndy,) implies max{qy, log ¢, gn log(n/q,)} =
o(ndy), and

log — I O(L‘Sn)
w(n3,)?  2an
Hence W = o(exp(@)) which together with (q;) = of 55% ) implies
an
that there exists B — oo such that 20 — 7 = B*? < min{-{ 25 ,exp(gg")}
Qn n

Therefore
(C.1D) gn log B < nd, /2
(C.12) ap(ng,) " = o(B}?)
(C.13) Bi2q2 By = 0(6n).

In addition, let 6* = n~'q,log(n/q,), * = né*/q, and y = n/q,. Then x =
logy Hence y > e for all large n. It follows that = > log(y/x), which is no* >
qn log(1/56*). Hence when §,, = 0*, nd,, = né* > g, log(6,, 1), which is

(C.14) qnlog(6,1) = o(ndy).
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Hence all the conditions in Lemma C.7 and C.8 are satisfied. The lemma then
follows from Theorem 2.1. Q.E.D.

Proof of Theorem 4.4

We check the conditions in Lemma C.9. Since g,,3%* = o(e(nz ), and By >
n~!logn, we have (g, logn)/n = o(go(ngn)). It then implies g, log (¢ (ngn)_l) =

o(ncp(ngn)) In addition, qn/ kL) \/n+qn/kn = o(qnﬁrl/‘ ) as g2 B3, = o(1). Hence

3
TG Bn G dn 1 3/2k an 2
, —logn, —log .4 + -1 =0(e(ng,))
p(ng,)?" n no T elng,) " ot = O1PU))

It then implies the existence of 6* = o(1) such that

3
4nPn  Q4n Gn 1 3/2 k %

, — logn, — log .q 7+ }<5 < o(nz.).
2)° no 7 elng,) " /n an

Therefore, all the conditions in Lemma C.9 are checked. The theorem follows
from Lemmas C.5, C.6 C.9, and Theorem 2.2. Q.E.D.

C.4. Proof of Corollaries 4.1, 4.2, 4.3.

PROOF. When 7, ~ ¢, for some v > 0, then (2 ) = ¢(q;,*").

e In the mildly ill-posed case, gp(ngn) = g, 2.
e In the severely ill-posed case, gp(nqn) = exp( @2ve).

The corollaries then follows immediately from Theorems 4.3, 4.4 and straightfor-
ward calculations. Q.E.D.

APPENDIX D: PROOFS FOR SECTION 5
Proof of Theorem 5.1

PROOF. We will also apply Theorems 2.1 and 2.2 to prove the consistency re-
sults. Here the parameter is (g, b) instead of b. The prior proposes a parameter
(¢, b), which corresponds to a function g = 7, b;¢;(x). The dimension ¢ spec-
ifies that the vector b, if regarded as infinite dimensional, has all 0 components for
(b)j>q- We define F,, = {ZMQ" bi¢i(z) : b € F,}. The restriction b € F), can
take the form of either ||b|| < By, or ||b||cc < By, in Sections 3 and 4.

We will discuss the conditions of Theorems 2.1 and 2.2, with d,, chosen to be
the same as the one specified in a deterministic case of Sections 3 and 4.

Uniform Convergence Condition (iii):

The uniform convergence condition (iii) is the same as in the deterministic case

before, with a sieve dimension ¢ = Mg, which is satisfied under the conditions
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placed on ¢,, and Fn.

Tail Condition (i):
There are two versions of the tail Condition. For the version in the prior tail,

w(gp & Fn) S (g > Man)+ > w(b¢ Fulg)m(q)
q<Mgqn,

<m(q> Mg, + qrgnjz%cn (b ¢& Fn|q)

The first term is zero (one can allow it to have a very thin nonzero tail also). For
the second term, in all situations considered, one can easily verify that

max W(b ¢ Fn|Q) = W(b ¢ Fn|q = qu))

q<Mgn
which is the tail probability in the deterministic case with sieve dimension ¢ =
Mgy, which satisfies the required upperbound in the tail condition. Therefore,
7(gp & Fr) also satisfies the same upperbound of the tail condition.

For the version of the posterior tail condition, the posterior instead of the prior
will be used in the previous argument. For each ¢, an upperbound of P(b ¢
Fn|q, X™) can be derived using the Chebyshev inequality as in the proof Lemma
C.8, and the largest upperbound occurs at the largest sieve dimension q,,: ¢ = M g,.
The condition placed on ¢, in the deterministic case then ensures that the posterior
tail satisfies the tail condition (1).

Approximation Condition (ii):
Due to the uniform prior on ¢,

W(G(Qb) < 5n7gb S fn) Z (MQn)ilﬂ-(G(gb) < 5n7gb S Fn’q = MQn)

Therefore, if (*) 1/q, = e°(ndn) (this is implied by 8,, = (log gn)/n) and (**)
W(G%g) < Onyg € Fnlg = Mgq,) = e 199 then 7(G(g) < 6n,g € Fn) =
e~ 2non,

So the approximation condition (ii) is satisfied.

In the derivation of all but two theorem in Sections 3 and 4, neither of the re-
quirements (*) and (**) generate new conditions. (For example, 6,, = (logg,)/n
is implied by p,, = 0(d,,) in Theorem 3.1.)

The two exceptions are for analogs of Theorems 3.2 and 3.4, where by fol-
lowing the same ideas as in the proofs of Theorems 3.2 and 3.4, we can derive
consistency results by making the additional assumptions (log ¢,,)/n = 0(4,) and

(log gn)/n = o(infyexn, gzo: G(g)), respectively.
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Distinguishing Ability Condition (iv):

Regarding the quantity infge 7, geoc G(g), it is the same as in a deterministic

case with ¢ = Mgy, since F, = {>_1_, bj¢; : ¢ = Mq,,b € Fn}. Then the same
derivations for the results in Sections 3 and 4 imply that infye 7, geoc G (g9) > 6n.

Since all conditions (i) to (iv) are satisfied, we have verified the risk consistency

and estimation consistency of the posterior, for all situations considered in Sections
3 and 4.

(1]

(2]

(3]

(4]

(5]

(6]

Q.ED.
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