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Throughout the proof, we denote by C as a generic constant.

APPENDIX A: PROOFS FOR SECTION 2

A.1. Lemma 2.1. For any δn > 0,

E{P (G(gb)− inf
g∈H

G(g) > 5δn|Xn)} ≤ P ( sup
g∈Fn

|Ḡ(g)−G(g)| ≥ δn)

+
e−2nδn

π(G(gb)− infg∈HG(g) < δn ∩ gb ∈ Fn)
+ EP (gb ∈ Fcn|Xn).(A.1)

In addition,

EP (gb ∈ Fcn|Xn) ≤ P ( sup
g∈Fn

|Ḡ(g)−G(g)| ≥ δn)

+
π(Fcn)e2nδn

π(G(gb)− infg∈HG(g) < δn ∩ gb ∈ Fn)
.(A.2)

PROOF. With probability one, we have

P (G(gb)− inf
g∈H

G(g) > 5δn|Xn) ≤ P (G(gb)− inf
g∈H

G(g) > 5δn, gb ∈ Fn|Xn)

+P (gb ∈ Fcn|Xn)
≤ P (G(gb)− inf

g∈H
G(g) > 5δn|gb ∈ Fn, Xn) + P (gb ∈ Fcn|Xn),

which implies

P (G(gb)− inf
g∈H

G(g) > 5δn|Xn) ≤ EP (G(gb)− inf
g∈H

G(g) > 5δn|gb ∈ Fn, Xn)

+EP (gb ∈ Fcn|Xn).
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For the original prior π(.), define a truncated version as:

π̃(b) =
π(b)I(gb ∈ Fn)

π(gb ∈ Fn)
.

Apply Proposition 6 of Jiang and Tanner (2008) to

EP (G(gb)− inf
g∈H

G(g) > 5δn|gb ∈ Fn, Xn)

using the truncated prior π̃(.), and note that π̃(Fcn) = 0. Then we obtain

EP (G(gb)− inf
g∈H

G(g) > 5δn|Xn) ≤ P ( sup
gb∈Fn

|Ḡ(gb)−G(gb)| ≥ δn)

+e−2nδn/π̃(G(gb)− inf
g∈H

G(g) < δn) + EP (gb ∈ Fcn|Xn).

Note that π̃(A) = π(A|gb ∈ Fn) ≥ π(A, gb ∈ Fn). Then

EP (G(gb)− inf
g∈H

G(g) > 5δn|Xn) ≤ P ( sup
gb∈Fn

|Ḡ(gb)−G(gb)| ≥ δn)

+e−2nδn/π(G(gb)− inf
g∈H

G(g) < δn, gb ∈ Fn) + EP (gb ∈ Fcn|Xn).

To prove (A.2), Let ∆ = 1
2 supgb∈Fn |Ḡ(gb) − G(gb)|, and Mn = {b ∈ Rqn :

gb ∈ Fn}. For any δn > 0,∫
Rqn

exp(−n
2
Ḡ(gb))db ≥

∫
Mn

exp(−n
2
Ḡ(gb))db

≥ exp(−n∆)

∫
Mn

I(G(gb) < δn) exp(−n
2
G(gb))π(db)

≥ exp(−n∆− n

2
δn)π(G(gb) < δn, b ∈Mn)

Therefore

P (gb ∈ Fcn|Xn) =

∫
Mc
n

exp(−n
2 Ḡ(gb))π(db)∫

Rqn exp(−n
2 Ḡ(gb))π(db)

≤ π(Fcn)en∆+nδn/2

π(G(gb) < δn, gb ∈ Fn)

Now EP (gb ∈ Fcn|Xn) ≤ E[I(∆ > δn/2)] + E[P (gb ∈ Fcn|Xn)I(∆ < δn/2)]

≤ P (sup
Fn
|Ḡ(gb)−G(gb)| > δn) +

π(Fcn)e2nδn

π(G(gb) < δn, gb ∈ Fn)
.

Q.E.D.
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APPENDIX B: PROOFS FOR SECTION 3

B.1. Lemmas.

LEMMA B.1. Suppose π(.) is continuous on Fn. Suppose there exists a se-
quence δn = O(1), and g0 ∈ ΘI with g∗qn =

∑
i≤qn b

∗
iφi being its sieve approx-

imation such that ‖g∗qn − g0‖s = o(1) and G(g∗qn) = o(δn). Then there exists a
constant C > 0, for any gb =

∑
i≤qn biφi ∈ Fn, and large enough n,

π(Fn ∩G(gb) < δn) ≥ π(b̃)

(
Cδn
γn
√
qn

)qn
,

where γn is defined in equation (3.9) in the main paper, and b̃ is some point satis-
fying ‖b∗ − b̃‖ ≤ Cδn/γn.

PROOF. By the triangular inequality, and the fact thatG(g∗qn) = o(δn), we have

{G(gb) < δn} ⊃ {|G(gb)−G(g∗qn)| < δn/2}.

for all large n. In addition, g∗qn ∈ Fn. By Assumption 3.2, for all gb ∈ Fn,

|G(gb)−G(g∗qn)| ≤
∫ ∣∣[E(ρ(Z, gb)|w)]2 − [E(ρ(Z, g∗qn)|w)]2

∣∣ dF (w)

≤ 2 sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|
∫
|E(ρ(Z, gb)− ρ(Z, g∗qn)|W = w)|dF (w)

≤ C sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|E|gb(X)− g∗qn(X)|

≤ C sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|‖b− b∗‖,

where we used the fact that E|gb(X) − g∗qn(X)| ≤
√
E(|gb(X)− g∗qn(X)|2) =

‖b− b∗‖ since the basis functions are orthonormal. Therefore,

{Fn ∩G(gb) < δn}
⊃ { sup

g∈Fn,w∈[0,1]d
|E(ρ(Z, g)|W = w)|‖b− b∗‖ < Cδn,max

i≤qn
|bi| ≤ Bn}.

⊃ {γn‖b− b∗‖ < Cδn,max
i≤qn
|bi| ≤ Bn}

⊃ {γn‖b− b∗‖ < Cδn}

for all large n. In the definition of γn, we add one to prevent it from being close to
zero. Therefore, for all large n and continuous π(.), we have, by the integral mean
value theorem,

π(Fn ∩G(gb) < δn) ≥ π(‖b− b∗‖ < Cδn/γn) = π(b̃)µ(‖b− b∗‖ < Cδn/γn)
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≥ π(b̃)µ(max
i≤qn
|bi − b∗i | <

Cδn
γn
√
qn

)

= π(b̃)

(
Cδn
γn
√
qn

)qn
,

where b̃ belongs to the l2 ball {b : ‖b − b∗‖ ≤ Cδn/γn}, and µ(.) denotes the
Lebesgue measure.

LEMMA B.2. For the thin tail prior defined in Section 3.2, if δn ≤ CBr
n/n for

a large enough constant C > 0,

π(gb ∈ Fcn) ≤ e−4nδn

PROOF. By the definition of the thin prior, it is straightforward to verify that,

π(b /∈ Fn) ≤ π(‖b‖ > Bn) ≤ e−βrBrn ≤ e−4nδn .

LEMMA B.3. For all large enough n, suppose for a large enough constant
C > 0:
(i) for the uniform prior and truncated normal prior,

nδn ≥ qn log

[
Bn
√
qn

Cδn
( sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|+ 1)

]
,

(ii) for the truncated normal prior,

nδn ≥ qn log

[√
qn

Cδn
( sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|+ 1)

]
,

(iii) for the thin-tail prior,

nδn ≥ qn log

[
2

Cδn
( sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|+ 1) + 1

]
,

then
π(b ∈ Fn, G(gb) < δn) � e−2nδn .

PROOF. (i) For the uniform prior, π(bi) = (2Bn)−1I(|bi| ≤ Bn). In addition,
|b̃i| ≤ |b∗i |+O(1) ≤ Bn as Bn →∞. Hence π(b̃) = (2Bn)−qn . Lemma B.1 then
immediately implies

π(gb ∈ Fn, G(gb) ≤ δn) ≥
(

C1δn
Bnγn

√
qn

)qn
.
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The conclusion then follows.
(ii) For the truncated normal prior, π(bi) = I(|bi| ≤ Bn)fZ(bi)/P (|Z| ≤ Bn),

whereZ followsN(0, σ2), for some σ2 > 0, and fZ(.) denotes its density function.
Since

exp(−‖b̃‖2/(2σ2)) ≥ exp(−(‖b∗‖2 +O(1))2/(2σ2)),

π(b̃) ≥ Cqn for some C > 0. Hence

π(gb ∈ Fn, G(gb) ≤ δn) ≥
(
C1δn
γn
√
qn

)qn
.

The conclusion then follows.
(iii) Suppose π is the density of the thin-tail prior defined in Section 3.2,

π(b) = r‖b‖r−qnβre−βr‖b‖r/Sqn ,

where Sqn is the area of the qn − 1 dimensional unit sphere in Euclidean norm.
Since ‖b̃‖ ≤ ‖b∗‖+O(1) for all large n, then as qn →∞,

π(b̃) ≥ C1C
qn
2 /Sqn

for C1, C2 > 0. In addition, µ(‖b − b∗‖ < Cδn/γn) = Cqn(Cδn/γn)qn , where
Cqn is the volume of the qn dimensional unit ball in Euclidean norm.

Note that Sqn = qnCqn , a relation between the area of the sphere and the volume
of the ball. Then by the proof of Lemma B.1,

π(Fn ∩G(gb) < δn) ≥ π(b̃)µ(‖b− b∗‖ < Cδn/γn)

≥ C1

qn

(
C2δn
γn

)qn
≥

(
C2δn
2γn

)qn
.

The conclusion then follows.

B.2. Proofs of Theorems 3.1, 3.2, 3.3 and 3.4.

PROOF. Note that infg∈HG(g) = 0.
(i) When the truncated priors are used, for any sequence cn � qn/n, let δ∗n =

qn
n log(cnn/qn), and µn = qn

n log(γnn). If δn � µn, then for any C > 1, δn �
µn+ qn

n logC. For the uniform prior, let cn = Bnqnγn/C; for the truncated normal
prior, let cn = Cqnγn/C. Then δn � δ∗n.

Let x = nδ∗n/qn, y = cnn/qn, then x = log y. Note that if for all large n,
y > e. It follows that x > log(y/x), which is, nδ∗n > qn log(cn/δ

∗
n). Hence for
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all large n, when δn � δ∗n then nδn > qn log(cn/δn). Hence conditions (i)(ii) in
Lemma B.3 are satisfied. Note that qn = o(n) andBn = o(n). Theorem 3.1 is then
a straightforward application of Theorems 2.1 and Lemmas B.2, B.3.

In addition, under (3.10) of the main paper, there exists δn = O(1) such that

max{G(g∗qn), λn, µn} ≺ δn ≺ inf
g∈Hn,g /∈ΘεI

G(g).

Hence P (G(gb) < δn|Xn) = op(1) by Theorem 3.1, and δn also satisfies condi-
tion (iv) in Theorem 2.2, which then implies the posterior consistency. This proves
Theorem 3.3.

(ii) Consider δ∗n = O(1) that satisfies

(B.1) max{G(g∗qn), λ(B∗n), γ(B∗n)e−nλ(B∗
n)/qn} ≺ δ∗n ≺ B∗rn /n,

then ∀C > 0, qn log(Cγ(B∗n)/δ∗n) ≤ nλn for all large n. Hence qn log(Cγ(B∗n)/δ∗n) =
o(nδ∗n). Hence by applying Theorems 2.1 and Lemma B.3, we have P (G(gb) >
δ∗n|Xn) = op(1). Therefore P (G(gb) > δn|Xn) = op(1) is proved if δn satisfies

max{G(g∗qn), λ(B∗n), γ(B∗n)e−nλ(B∗
n)/qn} ≺ δn ≺ B∗rn /n.

This is because we can set δ∗n = δn, and have just shown P (G(gb) > δ∗n|Xn) =
op(1).

If δn � B∗rn /n, as there always exists δ∗n such that (B.1) is satisfied. Thus
P (G > δn|Xn) ≤ P (G > δ∗n|Xn) = op(1). This proves Theorem 3.2.

Now we prove Theorem 3.4: the theorem’s conditions imply that there exists
δ∗n = o(1) such that

max{G(g∗qn), λ(B∗n), γ(B∗n)e−nλ(B∗
n)/qn} ≺ δ∗n ≺ min{

(
B∗rn
n

)
, inf
g∈Hn,g /∈ΘεI

G(g)}.

Hence by Theorem 3.2, P (G(gb) > δ∗n|Xn) = op(1). The theorem is proved since
δ∗n = o(infg∈Hn,g /∈ΘεI

G(g)). The result follows also from Theorem 2.2.
Q.E.D.

B.3. Proof of Corollary 3.1. By uniform continuity, for any δ > 0, exists
ε > 0, when ‖g1 − g2‖s < ε, |h(g1)− h(g2)| < δ. By Theorems 3.3 and 3.4,

P (∃g∗ ∈ ΘI , ‖gb − g∗‖s < ε|Xn)→p 1.

Hence P (∃g∗ ∈ ΘI , |h(gb)− h(g∗)| < δ|Xn)→p 1, which implies

P (|h(gb)− h(g0)| < δ|Xn)→p 1.
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APPENDIX C: PROOFS FOR SECTION 4

C.1. Uniform convergence of the risk functional. Define

(C.1) Gkn(g) ≡ Emn(g, Z)TV −1Emn(g, Z)

where V = diag{P (W ∈ Rn1 ), ..., P (W ∈ Rn
kdn

)}.
Han and Phillips (2006) applied the standard results in Newey and McFadden

(1994) to establish the uniform convergence of |Ḡ(g) − Gkn | over a compact set,
where they verified the equicontinuity conditions and the point-wise convergence
of |Ḡ(g)−Gkn | respectively. In this subsection, we establish the uniform conver-
gence on the growing compact set Fn = {

∑qn
i=1 biφi(x) ∈ Hn : maxi≤qn |bi| ≤

Bn}, by bounding |Ḡ−Gkn | and |Gkn(g)−G(g)| directly.

LEMMA C.1. As k, q →∞,
(i) maxj≤kdn |

1
n

∑n
i=1 I(Wi∈Rnj ) − P (W ∈ Rnj )| = Op(

√
log knk

−d/2
n n−1/2)

(ii) maxj≤kdn |(
1
n

∑n
i=1 I(Wi∈Rnj ))

−1−P (W ∈ Rnj )−1| = Op(
√

log knk
3d/2
n n−1/2)

(iii) maxj≤kdn |
1
n

∑n
i=1 I(Wi∈Rnj )Yi − EI(W∈Rnj )Y | = Op(n

−1/2)

(iv) maxj≤kdn,l≤qn |
1
n

∑n
i=1 I(Wi∈Rnj )φl(Xi)−EI(W∈Rnj )φl(X)| = Op(q

1/2
n n−1/2).

PROOF. (i) By Bernstein’s inequality, for any j ≤ kdn, and t > 0,

P (| 1
n

n∑
i=1

I(Wi∈Rnj ) − P (W ∈ Rnj )| > t) ≤ exp

(
−nt2/2

P (W ∈ Rnj ) + t/3

)

Therefore, by the assumption that maxj≤kdn P (W ∈ Rnj ) = O(k−dn ),

P (max
j≤kdn

| 1
n

n∑
i=1

I(Wi∈Rnj ) − P (W ∈ Rnj )| ≥ t) ≤ kdn exp

(
−nt2/2

P (W ∈ Rnj ) + t/3

)
,

which implies the result. Here we used the fact that kdn = o(n1/2), which is implied
by the assumption q2

nB
2
nk

3d/2
n = o(n) in Theorem 4.1.

(ii) Write vj = P (W ∈ Rnj ), v̂j = 1
n

∑n
i=1 I(Wi∈Rnj ). By the assumption that

k−dn = O(minj≤kdn P (W ∈ Rnj )), and that kdn = o(n1/2), we have

max
j≤kdn

|v−1
j − v̂

−1
j | ≤

1

minj v̂jvj
max
j
|v̂j − vj |

≤ 1

minj vj(minj vj −maxj |v̂j − vj |)
max
j
|v̂j − vj |

= Op(
√

log knk
3d/2
n n−1/2).
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(iii) By Chebyshev inequality, for any j ≤ kdn, and t > 0,

P (| 1
n

n∑
i=1

I(Wi∈Rnj )Yi − EI(W∈Rnj )Y | > t) ≤
var(I(W∈Rnj )Y )

nt2
≤
EI(W∈Rnj )Y

2

nt2
.

Hence

P (max
j≤kdn

| 1
n

n∑
i=1

I(Wi∈Rnj )Yi − EI(W∈Rnj )Y | > t) ≤ kdn max
j≤kdn

EI(W∈Rnj )Y
2

nt2

≤
supw E(Y 2|W = w) maxj P (W ∈ Rnj )kdn

nt2
.

We obtain maxj≤kdn |
1
n

∑n
i=1 I(Wi∈Rnj )Yi − EI(W∈Rnj )Y | = Op(n

−1/2).
Finally, part (iv) follows from similar arguments as those in part (iii), with the

assumption that maxi supw E(φ2
i |W = w) < ∞, and the application of Cheby-

shev and Bonferroni inequalities. Q.E.D.

LEMMA C.2. (i) supFn,j≤kdn |
1
n

∑n
i=1mnj(g,Xi)−Emnj(g,X)| = Op(q

3/2
n Bnn

−1/2).

(ii) supFn,j≤kdn |(
1
n

∑n
i=1mnj(g,Xi))

2−(Emnj(g,X))2| = Op(q
2
nB

2
nk
−d/2
n n−1/2+

q3
nB

2
nn
−1).

PROOF. (i) For any g =
∑qn

l=1 blφl ∈ Fn, by Lemma C.1,

max
j≤kdn

sup
Fn
| 1
n

n∑
i=1

mnj(g,Xi)− Emnj(g,X)| ≤ max
j≤kdn

| 1
n

n∑
i=1

YiI(Wi∈Rnj ) − E(Y I(W∈Rnj ))|

+ sup
|bl|≤Bn

qn∑
l=1

|bl| max
j≤kdn,l≤qn

| 1
n

n∑
i=1

φl(Xi)I(Wi∈Rnj ) − E(φl(X)I(W∈Rnj ))|

= Op(q
3/2
n Bnn

−1/2).

(ii) We have, by Cauchy-Schwarz inequality,

max
j

sup
Fn
|Emnj(g,X)| ≤ sup

g∈Fn
max
j≤kdn

|E(Y − g(X))I(W∈Rnj )|

≤ max
j≤kdn

√
E(Y 2)P (W ∈ Rnj ) + max

j≤kdn
sup
Fn

√
E[g(X)2]P (W ∈ Rnj )

= Op(q
1/2
n Bnk

−d/2
n ).

Therefore, by part (i),

max
j

sup
g∈Fn

| 1
n

n∑
i=1

mnj(g,Xi)| ≤ max
j

sup
g∈Fn

| 1
n

n∑
i=1

mnj(g,Xi)− Emnj(g,X)|
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+ max
j

sup
g∈Fn

|Emnj(g,X)|

= Op(q
1/2
n Bnk

−d/2
n + q3/2

n Bnn
−1/2).

The desired result then follow from the fact that

|( 1

n

n∑
i=1

mnj(g,Xi))
2 − (Emnj(g,X))2|

≤ | 1
n

n∑
i=1

mnj(g,Xi)− Emnj(g,X)| × | 1
n

n∑
i=1

mnj(g,Xi) + Emnj(g,X)|.

Q.E.D.

LEMMA C.3. Under Assumptions 3.1, 4.1, 4.2,
(i)

sup
g∈Fn

|Ḡ(g)−Gkn(g)| = Op(q
2
nB

2
nk

3d/2
n n−1/2).

(ii)
sup
g∈Fn

|G(g)−Gkn(g)| = O(q2
nB

2
nk
−1
n ).

PROOF. (i) For any g ∈ L2(X),

Ḡ(g) = m̄n(g)T V̂ −1m̄n(g) =

kdn∑
j=1

(
1

n

n∑
i=1

mnj(g,Xi))
2v̂−1
j ,

Gkn(g) = Emn(X, g)TV −1Emn(X, g) =

kdn∑
j=1

[Emnj(g,X)]2v−1
j .

Hence Ḡ−Gkn = P1 + P2, where

P1 =

kdn∑
j=1

[(
1

n

n∑
i=1

mnj(g,Xi))
2 − (Emnj(g,X))2]v̂−1

j ,

P2 =

kdn∑
j=1

[Emnj(g,X)]2(v̂−1
j − v

−1
j ).

By Lemmas C.1 C.2, and qnk
d/2
n = o(

√
n), which is implied by the assumption

q2
nB

2
nk

3d/2
n = o(n) in Theorem 4.1,

sup
g∈Fn

P1 ≤ max
j

sup
g∈Fn

|( 1

n

n∑
i=1

mnj(g,Xi))
2 − (Emnj(g,X))2|max

i
(|v̂−1

i − v
−1
i |+ |v

−1
i |)k

d
n,
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= Op(q
2
nB

2
nk

3d/2
n n−1/2).

By Lemma C.1(ii),

sup
g∈Fn

P2 ≤ max
j

sup
Fn

(Emnj(g,X))2 max
i
|v̂−1
i − v

−1
i |k

d
n

= Op(
√

log knk
3d/2
n n−1/2)kdn max

j≤kdn
sup

max |bl|≤Bn
|EY I(W∈Rnj ) −

qn∑
l=1

blEφl(X)I(W∈Rnj )|2

≤ Op(
√

log knk
5d/2
n n−1/2)

×( sup
j≤kdn,w

|E(Y |W = w)|P (W ∈ Rnj ) +Bnqn max
l,j
|Eφl(X)I(W∈Rnj )|)2.

In addition,

max
l≤qn,j≤kdn

|Eφl(X)I(W∈Rnj )| ≤ max
l≤qn

sup
w∈[0,1]d

|E(φl(X)|W = w)|max
j≤kdn

P (W ∈ Rnj ).

By Assumption 4.2(i) and Cauchy-Schwarz inequality, supw∈[0,1]d |E(Y |W =
w) < ∞, and maxl≤qn supw∈[0,1]d |E(φl(X)|W = w)| < ∞. Hence it follows
from Assumption 4.1(ii) that

sup
g∈Fn

P2 = Op(
√

log knk
5d/2
n n−1/2)×Op((k−dn +Bnqnk

−d
n )2)

= Op(
√

log knk
d/2
n n−1/2B2

nq
2
n).

Therefore,

sup
g∈Fn

|Ḡ(g)−Gkn(g)| ≤ sup
g∈Fn

P1 + sup
g∈Fn

P2

= Op(q
2
nB

2
nk

3d/2
n n−1/2).

(ii) By definition, Gkn(g) = Emn(g,X)TV −1Emn(g,X). Since V is diago-
nal, it is straightforward to show that

Gkn(g) =

kdn∑
j=1

[E(ρ(Z, g)I(W∈Rnj ))]
2

P (W ∈ Rnj )
=

kdn∑
j=1

∫
Rnj

[E(ρ(Z, g)I(W∈Rnj ))]
2

P (W ∈ Rnj )2
dFW (w)

Also,

G(g) =

∫
[0,1]d

[E(ρ(Z, g)|W = w)]2dFW (w) =

kdn∑
j=1

∫
Rnj

[E(ρ(Z, g)|W = w)]2dFW (w)
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It follows that

|Gkn(g)−G(g)| ≤
kdn∑
j=1

∫
Rnj

∣∣∣∣∣ [E(ρ(Z, g)I(W∈Rnj ))]
2

P (W ∈ Rnj )2
− [E(ρ(Z, g)|W = w)]2

∣∣∣∣∣ dFW (w)

≤ sup
1≤j≤kdn

sup
w∈Rnj

∣∣∣∣∣ [E(ρ(Z, g)I(W∈Rnj ))]
2

P (W ∈ Rnj )2
− [E(ρ(Z, g)|W = w)]2

∣∣∣∣∣
≤ sup

1≤j≤kdn
sup
w∈Rnj

∣∣∣∣∣E(ρ(Z, g)I(W∈Rnj ))

P (W ∈ Rnj )
+ E(ρ(Z, g)|W = w)

∣∣∣∣∣
× sup

1≤j≤kdn
sup
w∈Rnj

∣∣∣∣∣E(ρ(Z, g)I(W∈Rnj ))

P (W ∈ Rnj )
− E(ρ(Z, g)|W = w)

∣∣∣∣∣
= A(g)×B(g), say.

A(g) ≤ sup
1≤j≤kdn

|E(ρ(Z, g)I(W∈Rnj ))|
P (W ∈ Rnj )

+ sup
w∈[0,1]d

|E(ρ(Z, g)|W = w)|

≤ sup
1≤j≤kdn

|
∫
Rnj
E(ρ(Z, g)|W = w)dFW (w)|

P (W ∈ Rnj )
+ sup
w∈[0,1]d

|E(ρ(Z, g)|W = w)|

≤ 2 sup
w∈[0,1]d

|E(ρ(Z, g)|W = w)|,

which implies
sup
g∈Fn

A(g) = O(qnBn).

B(g) ≤ sup
1≤j≤kdn

sup
w∈Rnj

∣∣∣∣∣E[ρ(Z, g)I(W∈Rnj )]

P (W ∈ Rnj )
− E(ρ(Z, g)|W = w)

∣∣∣∣∣
= sup

1≤j≤kdn
sup
w∈Rnj

P (W ∈ Rnj )−1|
∫
Rnj

E(ρ(Z, g)|W = t)dFW (t)−∫
Rnj

E(ρ(Z, g)|W = w)dFW (t)|

≤ sup
j≤kdn

P (W ∈ Rnj )−1

∫
Rnj

sup
w∈Rnj

|Kg(t)−Kg(w)|dFW (t)

≤ sup
‖w−t‖≤

√
dk−1
n

|Kg(t)−Kg(w)|,

where
Kg(w) ≡ E[ρ(Z, g)|W = w] = E[Y − g(X)|W = w],
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and we used the facts that E[ρ(Z, g)I(W∈Rnj )] =
∫
Rnj
E(ρ(Z, g)|W = t)dFW (t),

and E(ρ(Z, g)|W = w)P (W ∈ Rnj ) =
∫
Rnj
E(ρ(Z, g)|W = w)dFW (t).

By Assumption 4.2, E(Y |W = w) is Lipchitz continuous and {E(φi(X)|W =
w) : i ≤ qn} is Lipchitz equicontinuous with respect to w. Therefore,

sup
g∈Fn

sup
‖w−t‖≤

√
dk−1
n

|Kg(t)−Kg(w)| = O(qnBnk
−1
n ),

which yields the result.
Proof of Theorem 4.1

PROOF. The theorem follows from Lemma C.3. Q.E.D.

C.2. Proof of Theorem 4.2-4.3.

LEMMA C.4. (i) For any g0 ∈ ΘI , let g∗qn be its sieve approximation, then
G(g∗qn) ≤ ‖g∗qn − g0‖2s.
(ii) γn = O(qnBn).

PROOF. (i) The proof is simply a straightforward calculation:

G(g∗qn) = EW {[E(g∗qn − g0|W )]2} ≤ EW {E[(g∗qn − g0)2]|W}
= E[(g∗qn − g0)2] = ‖g∗qn − g0‖2s.

(ii) By definition,

γn = sup
g∈Fn,w∈[0,1]d

|E(ρ(Z, g)|W = w)|+ 1

≤
√

sup
w
E(Y 2|W = w) + 1 + sup

|bi|≤Bn

∑
i≤qn

|bi|
√

sup
w
E(φ2

i |W = w)

= O(qnBn).

Proof of Theorem 4.2

PROOF. Write βn = k
3d/2
n /

√
n+ k−1

n . Then βn ≥ n−1/(3d+2).
(i) For the truncated prior, note that for all large n, logB2

nqn ≤ log n, hence
q2
nB

2
nβn = o(δn) implies qn

n log n = o(δn), which then implies qn
n log(Bnγnn) =

o(δn). The theorem is thus a straightforward application of Lemma C.4 and Theo-
rem 3.1.
(ii) The assumption n2/(r−2)q

2r/(r−2)
n β

r/(r−2)
n = o(δn) implies (nδn)1/r = o(

√
δn
q2nβn

)

and q2
nβn = o(δn). Hence there exists B∗n →∞ such that

(nδn)1/r ≺ B∗n ≺

√
δn
q2
nβn

.
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Hence

δn = o(
B∗rn
n

),(C.2)

B∗2n q
2
nβn = o(δn).(C.3)

Let γ∗n = qnB
∗
n and λn(B∗n) = B∗2n q

2
nβn. SinceBnqnβn ≥ n−1/2, and

√
ne−

√
n =

o(1) we have γ∗ne
−nλn(B∗

n)/qn = o(B∗2n q
2
nβn). Hence (C.2) and (C.3) verify the

conditions in Theorem 3.2, and therefore imply the desired result. Q.E.D.
For any g0 =

∑∞
j=1 b

∗
jφj ∈ ΘI , let g∗qn =

∑
j≤qn b

∗
jφj denote the projection of

g0 onto the sieve spaceHn. Then ∀gb ∈ Hn,
∑

j≤qn |〈gb−g0, φj〉X |2 = ‖gb−g∗qn‖
2
s

as {φ1, ..., φq} are orthonormal.

LEMMA C.5. Under Assumption 4.3 and 4.5(i), for any ε > 0, there exists
N ∈ N such that when n > N ,

inf
g∈Hn/ΘεI

G(g) ≥ ϕ(η2
qn)Cε2,

where C > 0 is a constant independent of n and ε.

PROOF.

inf
g∈Hn,g /∈ΘεI

G(g) = inf
g∈Hn,g /∈ΘεI

‖g − g0‖2w ≥ inf
g∈Hn,g /∈ΘεI

C1

qn∑
j=1

ϕ(η2
j )|〈g − g0, φj〉X |2

≥ ϕ(η2
qn) inf

g∈Hn,g /∈ΘεI

C1

qn∑
j=1

|〈g − g0, φj〉X |2

= ϕ(η2
qn) inf

g∈Hn,g /∈ΘεI

C1‖g − g∗qn‖
2
s

≥ ϕ(η2
qn) inf

g∈Hn,‖g−g∗qn‖s≥ε−‖g∗qn−g0‖s
C1‖g − g∗qn‖

2
s

≥ ϕ(η2
qn)C1[ε− ‖g∗qn − g0‖s]2.(C.4)

Note that by Assumption 4.3, there exists N ∈ N such that when n > N , ‖g∗qn −
g0‖s < ε/2, which guarantees that (C.4) holds, and that the right-hand-side of
(C.4) is no less than ϕ(η2

qn)C1ε
2/4.

Q.E.D.

LEMMA C.6. Under Assumptions 4.3 and 4.5, for any ε > 0, G(g∗qn) =
o(infg∈Hn/ΘεI G(g)).
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PROOF. Under Assumption 4.5(ii),

G(g∗qn) = ‖g∗qn − g0‖2w ≤ C2

∑
j≤qn

ϕ(η2
j )(b

∗
j − b∗j )2 + C2

∑
j>qn

ϕ(η2
j )b
∗2
j

≤ C2ϕ(η2
qn)‖g∗qn − g0‖2s = O(ϕ(η2

qn)η2
qn).

But for any ε > 0, infg∈Hn/ΘεI G(g) ≥ Cϕ(η2
qn), as proved in Lemma C.5.

Q.E.D.
Proof of Theorem 4.3

PROOF. The proof proceeds by verifying conditions in Theorem 3.3 and 3.4,
which is similar to the proof of Theorem 4.2, and is completed by Lemma C.5 and
C.6.

Q.E.D.

C.3. Proof of Posterior Consistency Using Gaussian Prior. It can be easily
shown that the posterior has a form

b|Xn ∼ N((Ξ̂T V̂ −1Ξ̂ +
1

nσ2
Iqn)−1Ξ̂T V̂ −1ξ̂, (nΞ̂T V̂ −1Ξ̂ +

1

σ2
Iqn)−1),

where

ξ̂ = [n−1
n∑
i=1

I(Wi∈Rnj )Yi]j≤kdn , V̂ = diag[n−1
n∑
i=1

I(Wi∈Rnj )]j≤kdn ,

Ξ̂ = [n−1
n∑
i=1

I(Wi∈Rnj )φl(Xi)]j≤kdn;l≤qn ,

and Iqn denotes the qn × qn identity matrix.
Define the population versions as
ξ = [EI(W ∈ Rj)Y ]j≤kdn ,
V = diag[EI(W ∈ Rj)]j≤kdn = diag(v1, ..., vkdn),
Ξ = [EI(W ∈ Rj)φl(X)]j≤kdn;l≤qn .
We proceed by checking the conditions in Theorems 2.1 and 2.2 as before. Note

that, for Condition (i) in Theorem 2.1, we check EP (gb ∈ Fcn|Xn) = o(1) instead
of the tail condition on the prior.

LEMMA C.7. If max{qn log qn, qn log δ−1
n , nG(g∗qn)} = o(nδn), qn logBn <

1
2nδn, and δn = o(1), then

π(G(gb) < δn, gb ∈ Fn) � e−2nδn .
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PROOF. By Lemma B.1,

π(G(gb) < δn, gb ∈ Fn) ≥ π(b̃)

(
Cδn

q
3/2
n Bn

)qn
,

where b̃ lies in the ball {b ∈ Rqn : ‖b− b∗‖ ≤ Cδn/(qnBn)} for some b∗ such that
g∗qn =

∑
i≤qn b

∗
iφi is the sieve approximation of some g0 ∈ ΘI . Hence

π(G(gb) < δn, gb ∈ Fn) ≥
(

1

2πσ2

)qn/2
e−

1
2

(‖g0‖2s+1)

(
Cδn

q
3/2
n Bn

)qn
≥ C1

(
C2δn

q
3/2
n Bn

)qn
� e−nδn ,

given the lemma conditions, where in the second inequality above,C2 = C(2πσ2)−1/2,
and C1 = exp(−1

2(‖g0‖2s + 1)).

LEMMA C.8. If q3/2
n kdn/

√
n+ qn/k = o(ϕ(η2

qn)) and
√
qnB

−1
n = o(ϕ(η2

qn)),
then for Fcn = {

∑qn
i=1 biφi : maxi≤qn |bi| > Bn},

P (gb ∈ Fcn|Xn) = op(1).

PROOF. We use the following inequality:

P (gb ∈ Fcn|Xn) ≤ P (‖b‖2 ≥ B2
n|Xn) ≤ E(‖b‖2|Xn)

B2
n

.

We boundE(‖b‖2|Xn) ≤ 2E[‖b−E(b|Xn)‖2|Xn]+2‖E(b|Xn)‖2 as following:
Denote by {λi(A)}qni=1 as the eigenvalues of a qn × qn square matrix A, and by
λmax(A), λmin(A) as the maximum and minimum eigenvalues of A.

E[‖b− E(b|Xn)‖2|Xn] = tr(cov(b|Xn))

=

qn∑
i=1

λ−1
i (nΞ̂T V̂ −1Ξ̂ +

1

σ2
Iqn) ≤ σ2qn

= Op(qn).

For the second term, it is bounded by:

‖E(b|Xn)‖2 ≤ λ2
max((Ξ̂T V̂ −1Ξ̂ + (nσ2)−1Iqn)−1)‖Ξ̂T V̂ −1ξ̂‖2

≤ λ2
max((Ξ̂T V̂ −1Ξ̂)−1)‖Ξ̂T V̂ −1ξ̂‖2

= λ−2
min(Ξ̂T V̂ −1Ξ̂)‖Ξ̂T V̂ −1ξ̂‖2



16 Y. LIAO AND W. JIANG

≤ λ−2
min(Ξ̂T V̂ −1Ξ̂)‖Ξ̂‖2Fλ−2

min(V̂ )‖ξ̂‖2,

where ‖Ξ̂‖2F = tr(Ξ̂Ξ̂T ). We bound all the terms on the right hand side of the last
inequality separately. By Lemma C.1,

‖Ξ̂‖2F ≤ 2‖Ξ̂− Ξ‖2 + 2‖Ξ‖2 = qnk
d
n(qn/n+ max

j,l
|EI(W∈Rnj )φl(X)|2)

≤ qnk
d
n(qn/n+ max

j,l
[E(I(W∈Rnj )E(|φl(X)||W ))]2)

≤ qnk
d
n(qn/n+ max

j,l
[E(I(W∈Rnj )

√
E(φl(X)2|W ))]2)

≤ qnk
d
n(qn/n+ sup

w,l
E(φl(X)2|W = w) max

j
[EI(W∈Rnj )]

2)

≤ qnk
d
n(qn/n+O(k−2d

n )) = O(qn/k
d
n).(C.5)

Since maxj |v̂j − vj | = o(minj vj), we have

(C.6) λ−2
min(V̂ ) = Op(λ

−2
min(V )) = Op((min

j
EI(W∈Rnj ))

−2) = Op(k
2d
n ).

Again by Lemma C.1,

‖ξ̂‖2 ≤ 2‖ξ̂ − ξ‖2 + 2‖ξ‖2 = Op(k
d
n/n) + kdn max

j
|EI(W∈Rnj )Y |2

≤ Op(k
d
n/n+ k−dn ) = Op(k

−d
n ).(C.7)

(C.8) ‖Ξ̂T V̂ −1Ξ̂− ΞTV −1Ξ‖F = Op(q
3/2
n kdnn

−1/2).

To bound λ−2
min(Ξ̂T V̂ −1Ξ̂), define

A∗ = E[E(φi(X)|W )E(φj(X)|W )]i,j≤qn , A0 = ΞTV −1Ξ = (aij)i,j≤qn .

Then aij =
∑kdn

l=1EI(W ∈ Rnl )E(φi(X)|W ∈ Rnl )E(φj(X)|W ∈ Rnl ).
Using the same technique as in the proof of Lemma C.3(ii), we can show that

max
ij
|aij −A∗ij | ≤ max

l,i,j
sup
w
|
EφiI(W ∈ Rnl )EφjI(W ∈ Rnl )

P (W ∈ Rnl )2
− E(φi|w)E(φj |w)|

≤ max
l,i,j

sup
w
|
EφiI(W ∈ Rnl )

P (W ∈ Rnl )
− E(φi|w)|(

|EφjI(W ∈ Rnl )|
P (W ∈ Rnl )

+ |E(φj |w)|)

≤ C max
i,l

P (W ∈ Rnl )−1 sup
w

∫
Rnl

|(Eφi|t)− (Eφi|w)|dt

= O(k−1
n ).

Hence ‖A∗ −A0‖F = O(qn/kn), which then implies

(C.9) ‖Ξ̂T V̂ −1Ξ̂−A∗‖F = q3/2
n kdnn

−1/2 + qn/kn.
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Now for any bT = (b1, ..., bq) ∈ Rqn , let g(x) =
∑qn

l=1 blφl(x).

G(g + g0) = ‖g‖2w = E[(Eg(X)|W )2] = bTA∗b.

Since g0 is point identified, Assumption 4.5(i) implies

(C.10) ‖g‖2w ≥ C
qn∑
j=1

ϕ(η2
j )|〈g, φj〉X |2 ≥ Cϕ(η2

qn)bT b.

Thus λmin(A∗) ≥ Cϕ(η2
qn). By (C.9), when q3/2

n kdnn
−1/2+qn/k = o(ϕ(η2

qn)), we
have λmin(Ξ̂T V̂ −1Ξ̂) ≥ C ′ϕ(η2

qn). It then follows that ‖E(b|Xn)‖2 ≤ C qn
ϕ(η2qn )2

.

Hence
E(‖b‖2|Xn) ≤ Cqn(1 + ϕ(η2

qn)−2).

Therefore, as long as
√
qnϕ(η2

qn)−1 = o(Bn),

P (gb ∈ Fcn|Xn) ≤ P (‖b‖2 ≥ B2
n|Xn) ≤ E(‖b‖2|Xn)

B2
n

= op(1).

Q.E.D.

LEMMA C.9. If max{qn log n, qn log(ϕ(η2
qn)−1), nG(g∗qn), nq3

nβnϕ(η2
qn)−2} =

op(nδn),and q3/2
n kdn/

√
n+ qn/k = o(ϕ(η2

qn)), then

P (G(gb) < δn|Xn)→p 1.

PROOF. max{qn log n, qn log 1
ϕ(η2qn )

} = o(nδn) implies max{qn log qn, qn log(n/qn)} =

o(nδn), and

log
qn

ϕ(η2
qn)2

= o(
nδn
2qn

).

Hence qn
ϕ(η2qn )2

= o(exp(nδn2qn
)), which together with qn

ϕ(η2qn )2
= o( δn

q2nβn
) implies

that there exists B∗n → ∞ such that qn
ϕ(η2qn )2

≺ B∗2n ≺ min{ δn
q2nβn

, exp(nδn2qn
)}.

Therefore

qn logB∗n < nδn/2(C.11)

qϕ(η2
qn)−2 = o(B∗2n )(C.12)

B∗2n q
2
nβn = o(δn).(C.13)

In addition, let δ∗ = n−1qn log(n/qn), x = nδ∗/qn and y = n/qn. Then x =
log y Hence y > e for all large n. It follows that x > log(y/x), which is nδ∗ >
qn log(1/δ∗). Hence when δn � δ∗, nδn � nδ∗ > qn log(δ−1

n ), which is

(C.14) qn log(δ−1
n ) = o(nδn).
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Hence all the conditions in Lemma C.7 and C.8 are satisfied. The lemma then
follows from Theorem 2.1. Q.E.D.

Proof of Theorem 4.4
We check the conditions in Lemma C.9. Since qnβ

1/3
n = o(ϕ(η2

qn)), and β1/3
n >

n−1 log n, we have (qn log n)/n = o(ϕ(η2
qn)). It then implies qn log(ϕ(η2

qn)−1) =

o(nϕ(η2
qn)). In addition, q3/2

n kdn/
√
n+qn/kn = o(qnβ

1/3
n ) as q2

nβn = o(1). Hence

max{ q3
nβn

ϕ(η2
qn)2

,
qn
n

log n,
qn
n

log
1

ϕ(η2
qn)

, q3/2
n

kdn√
n

+
qn
kn
} = O(ϕ(η2

qn)).

It then implies the existence of δ∗ = o(1) such that

max{ q3
nβn

ϕ(η2
qn)2

,
qn
n

log n,
qn
n

log
1

ϕ(η2
qn)

, q3/2
n

kdn√
n

+
qn
kn
} ≺ δ∗ ≺ ϕ(η2

qn).

Therefore, all the conditions in Lemma C.9 are checked. The theorem follows
from Lemmas C.5, C.6 C.9, and Theorem 2.2. Q.E.D.

C.4. Proof of Corollaries 4.1, 4.2, 4.3.

PROOF. When ηqn ∼ q−vn for some v > 0, then ϕ(η2
qn) = ϕ(q−2v

n ).

• In the mildly ill-posed case, ϕ(η2
qn) = q−2vα

n .
• In the severely ill-posed case, ϕ(η2

qn) = exp(−q2vα
n ).

The corollaries then follows immediately from Theorems 4.3, 4.4 and straightfor-
ward calculations. Q.E.D.

APPENDIX D: PROOFS FOR SECTION 5

Proof of Theorem 5.1

PROOF. We will also apply Theorems 2.1 and 2.2 to prove the consistency re-
sults. Here the parameter is (q, b) instead of b. The prior proposes a parameter
(q, b), which corresponds to a function g =

∑q
i=1 biφi(x). The dimension q spec-

ifies that the vector b, if regarded as infinite dimensional, has all 0 components for
(bj)j>q. We define Fn = {

∑Mqn
i=1 biφi(x) : b ∈ F̃n}. The restriction b ∈ F̃n can

take the form of either ‖b‖ ≤ Bn, or ‖b‖∞ ≤ Bn, in Sections 3 and 4.
We will discuss the conditions of Theorems 2.1 and 2.2, with δn chosen to be

the same as the one specified in a deterministic case of Sections 3 and 4.
Uniform Convergence Condition (iii):

The uniform convergence condition (iii) is the same as in the deterministic case
before, with a sieve dimension q = Mqn, which is satisfied under the conditions
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placed on qn and F̃n.

Tail Condition (i):
There are two versions of the tail Condition. For the version in the prior tail,

π(gb 6∈ Fn) ≤ π(q > Mqn) +
∑

q≤Mqn

π(b 6∈ F̃n|q)π(q)

≤ π(q > Mqn) + max
q≤Mqn

π(b 6∈ F̃n|q).

The first term is zero (one can allow it to have a very thin nonzero tail also). For
the second term, in all situations considered, one can easily verify that

max
q≤Mqn

π(b 6∈ F̃n|q) = π(b 6∈ F̃n|q = Mqn),

which is the tail probability in the deterministic case with sieve dimension q =
Mqn, which satisfies the required upperbound in the tail condition. Therefore,
π(gb 6∈ Fn) also satisfies the same upperbound of the tail condition.

For the version of the posterior tail condition, the posterior instead of the prior
will be used in the previous argument. For each qn, an upperbound of P (b 6∈
F̃n|q,Xn) can be derived using the Chebyshev inequality as in the proof Lemma
C.8, and the largest upperbound occurs at the largest sieve dimension qn: q = Mqn.
The condition placed on qn in the deterministic case then ensures that the posterior
tail satisfies the tail condition (i).

Approximation Condition (ii):
Due to the uniform prior on qn,

π(G(gb) < δn, gb ∈ Fn) ≥ (Mqn)−1π(G(gb) < δn, gb ∈ Fn|q = Mqn).

Therefore, if (*) 1/qn = e−o(nδn) (this is implied by δn � (log qn)/n) and (**)
π(G(g) < δn, g ∈ Fn|q = Mqn) � e−1.9nδn , then π(G(g) < δn, g ∈ Fn) �
e−2nδn .

So the approximation condition (ii) is satisfied.
In the derivation of all but two theorem in Sections 3 and 4, neither of the re-

quirements (*) and (**) generate new conditions. (For example, δn � (log qn)/n
is implied by µn = o(δn) in Theorem 3.1.)

The two exceptions are for analogs of Theorems 3.2 and 3.4, where by fol-
lowing the same ideas as in the proofs of Theorems 3.2 and 3.4, we can derive
consistency results by making the additional assumptions (log qn)/n = o(δn) and
(log qn)/n = o(infg∈Hn,g 6∈ΘεI

G(g)), respectively.
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Distinguishing Ability Condition (iv):
Regarding the quantity infg∈Fn,g 6∈ΘεI

G(g), it is the same as in a deterministic
case with q = Mqn, since Fn = {

∑q
1=1 bjφj : q = Mqn, b ∈ F̃n}. Then the same

derivations for the results in Sections 3 and 4 imply that infg∈Fn,g 6∈ΘεI
G(g) � δn.

Since all conditions (i) to (iv) are satisfied, we have verified the risk consistency
and estimation consistency of the posterior, for all situations considered in Sections
3 and 4.

Q.E.D.
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