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Conditional Moment Restricted Model

Efp(X, 90)|W] =0
Single Index Model E(Y|W) = E[hy(WT6,)| W]

Partially Linear Model
E( Y‘ wy, Wg) = E[ho(W1) + WQTH()‘ w;, Wg]

Nonparametric IV E(Y — go(X)|W) =0
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Indentification

Identification

e Consider E[go(X)|W] = E(Y|W),
Qo is identified iff X|W is complete. Newey and Powell
(2003)

e The completeness condition is easy to fail:
Severini and Tripathi (2006):
X =W + U: W and U are iid Uniform [, 1].
E[g(X)|W] = 0 iff
g(x) =g(1 + x) ¥x € [-1,0] and fﬂ g(x)dx = 0.



Indentification

Sometimes instead of gy, we are interested in linear

functional h(go).

Severini and Tripathi (2006): If Im(W) s.t.
v(X) = E[m(W)|X], then

h(go) = E[v(X)go(X)] is identified.
We do not assume gy is identified.
©,={g9€©:E(p(X,9)|W) =0}

Santos (2007, 2008a,b), Kovchegov and Yildiz (2010)
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lll-Posed Inverse Problem (partial identification)

e Define T(g) = E[g(X)|W], and u(w) = E(Y|W = w).

Tgo=p

e Forany g; € L?(X), define [g1] = {9 : Tg = Tgy}. Define A
on quotient space L2(X)/N(T):

Algl =Tg

But A= : L2(W) — L2(X)/N(T) is not continuous.
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Two Regularization Approaches

Approach | Assume gy € ©, where © is compact

© ={g:||g|| < B} for some known ||.|| and B > 0.

e Result: If T:© — L2, © is compact and T is compact, then

T-'is continuous.

e Newey and Powell (2003), Ai and Chen (2003), etc.



ll-Posed Inverse Problem

Approach I
e If Q, = Q > 0 uniformly,

g =argmin Qu(g) + anl|g||?>, an—0

under regularity conditions, g — go if argmin Q = {go}-

e Hall and Horowitz (2005), Chen and Pouzo (2009), etc.
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Proposed Bayesian Approach

Contributions

Bayesian e Obtain the posterior distribution of conditional
moment restricted model
e Construct the posterior in a way that is robust

to the distributional assumption

Consistency Show posterior consistency with partial

identification
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Traditional Nonparametric Bayesian Regression

y = 9(X) + €, E(e[X) = 0

1. e ~ N(0,0?)

2. approximate g ~ 21‘7:1 Bioi(x)
3. priors: Bjlo,q ~ N(0, vo?), o ~ Inverse Gamma;

q: either — oo or Uniform{1,2,....,n}

Coram and Lalley (2006): posterior= | Pydm(9).
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Proposed Bayesian Approach

e Assume W is supported on [0, 1].

 E[p(X,90)|W] = 0 implies

(p(Xgo)/(We[ - /I<> 0, i=1,..k

m;(D,go)

m=(my,..mg)".

e Em(D,gp) =0
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Proposed Bayesian Approach

Question: How to derive the posterior?

e p(g|Data) x p(g)xlikelihood.

Construct the likelihood first.

e In practice,
What is known: moment conditions. Em(D, gy) =0

What is not known: the true likelihood function

e Derive from Em(D, go) = 0.
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Proposed Bayesian Approach

o Define m(g) = 131, m(D;, g).
e CLT = v/nm(go) —9 N(0, V)

L(g) x exp (5 m(9) V' (9))

e QUESTION: Does it have a likelihood interpretation?
Likelihood= p(Datalf).
Answer: It is Best Approximation to True Likelihood
subject to moment restrictions. Kim(2002) “limited

information likelihood”
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Limited Information Likelihood

P: true likelihood

Space of all Q Kullback-Leibler
distribution satisfying ‘< distance
moment inequality /\./////

[ e

L(g) —P P*  Kim(2002)

L(g) is called the “limited information likelihood”.
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Proposed Bayesian Approach

e V = Var(m(D, gy)), which depends on the unknown
distribution of D and gy, Kim(2002) suggested replace V by

a constant variance covariance matrix (may depend on n).

o It can be shown that Var(m;(D, go)) = O(k™"), we set

V = k='1. Such a choice of V will not affect the

consistency result.

15/28



Proposed Bayesian Approach

Suppose go(x) ~ Y7 bji(x), as g — oo
Put priors on {by, ..., bg}, fixing q. Let gg = 37, bih;

P(gql D) o p(b) exp[—nim(gq) ™ Vm(gq)]
Outline of the proof of consistency'

— 2

G(9) = M(gq) ViT(gg), G(g) = | ELZIA dFw(w)
sup |G(9¢) — G(9q)| = 0p(1)
9gEBQq

Jiang and Tanner (2008): for any § > 0,

J

E(P(|G(gq)—inf G(gq)| > 3| Data) < P(sup|G(g)—inf G(g)| > ¢)
q Oq q

N exp(—2no)
Prior(G(9q) — infg, G(g) < 9)
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Proposed Bayesian Approach

Assumptions

. © is compact under some norm ||. || 4.

() P(W € [}, 5] = O(k™"), k = o).
(i) g = o(n).

. prior p(gq) has support around ©,.

. EY? < 00, E|m(D, g)||* < B uniformly on ©.

. max;<x v/n|m;j(g) — Em;(g, X)| is stochastic equicontinuous

on ©.
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Proposed Bayesian Approach

Assumptions

Define Ky(w) = E(p(Z, g)|w).
Assumption 6:
e {Ky(w) : g € ©} is equicontinuous on w € [0, 1].
o E(p(Z, go)?|w) is continuous and bounded away from zero
onw € [0,1]

e Forany e > 0, exists 6 > 0,

sup  sup  [p(z,91) — p(z,92)| <€
Z ||g1—galln<d
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Proposed Bayesian Approach

We can obtain the sufficient conditions for Assumptions 5,6 for
single index model and nonparametric IV regression.
Single Index Model (1) fy/(w) is bounded away from 0
(2) Forany € > 0, there exists § > 0,
Sljp|w1§ljfg|<6 fwy(Wily) = fwpy (w2ly) < e

Nonparametric IV (1) fy(w) is bounded away from 0

(2) For any € > 0, there exists § > 0,

sup  sup  [fyxy (WilX, y) — T, (W2|x, y)| < e
XY |wy—we|<é
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Posterior Consistency
Define Us(©)) = {g € © :infg-ce,||9 — 9*||n < 0}

Theorem 1
Let©,={g e ©: E[p(X,9)|W]}. Forany U(©)),

P(9q € U(©))|Data) —P 1
Corollary 1
If h(go) is identified, h : © — R is continuous, for any ¢ > 0,

P(1h(9q) — h(90)| < €|Data) —P 1
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Norm Specification

Single Index Model: gy = (v, 6p)

[v(tr) — (b))

|[1]|s = sup [¥(t)] + sup —
t |t — b

h#b

gl = [llls + 6]

Nonparametric IV: [|g][s = Sup, [g(x)] + Sty 2, 2-b5)
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Proposed Bayesian Approach

Relaxing the Compactness in NPIV

« Specify prior oc e~ "al917,

limited Information Likelihood « e—"@(9)
log posterior = —n[Q(g) + &2||9|1?]

« Require the prior variance na? — co. Florens and Simoni
(2009).

e T(g9)(w) = E(g9(X)|W = w). To illustrate the posterior
consistency, we assume gy is point identified.

e Let the eigenvalues of T be ), ..., ordered such that

‘)\1| > ‘)\2| >..>0
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Assumptions

1. For some a > 0, and and c,

sup |G(g) — G(9)| = op(n®)

llgll<e
2. & —0,and na — oo
n n

3. There exists {sp}7° 1 C N, s — 00, such that
Yjzsn 9 = O(a@n/A5,) = o(1)
-2

4. n> qp = max{n'=* na2/ 2 A;’}.

23/28



Proposed Bayesian Approach

Posterior Consistency

Theorem 2

Assume gy is identified,

ETllgq — gol|*|Data] —P 0

e Prior variance na? — oo for regularization.
Prior mean was set to zero.
¢ To incorporate prior knowledge of gy, €.9., convexity,

monotonicity, use prior

log p(gq) o< —nd5||gq — 9|7
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Proposed Bayesian Approach

Bayesian Implementation

. Fix g, k, construct likelihood L(gq) o exp(—nG(gq)), where
9q = 2?21 bjj(x)
. Put prior (by, ..., bg), bj ~ N(0, =), for some a > 0

. Obtain B = (5,000 ~ 10,000) draws from posterior
x p(by, ..., bg)L(gq) using MCMC algorithm. The first
1/4 ~ 1/3 are dropped for the MCMC to "warm-up".

. Compute the posterior mean E(bj|Data) ~ lBZ, bj’f

. 9(x) = >_j E(bj|Data);(x)
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Numerical Example

Y = sin(x)e\ere
X=WwW-+V

w L e, Cov(v,e) = 0.6. wis supported on [—4,4].

Hermite series approximation:

Hi(x) =1, Ha(x) = x, and H;(x) = Hi—1(x) — (j — 1)Hj—2(x)
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Approach 2:

q=4k=100,a =0.8

9=4,k=100,a =0.05 q=4,k=100,a =0.1 N




Simulation and Extension

e We have not derived the convergence rate of
E(|1gq — golI?|Data) yet.

e Choice of V: Suppose we are interested in functional
h(go), V can be chosen to minimize the asymptotic
variance of E(h(gq)|Data).

¢ As this is among the first papers that consider moment
condition based likelihood, to choose V from p(h(g)|Data)

has not been considered yet.
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