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Conditional Moment Restricted Model

E [ρ(X ,g0)|W ] = 0

Single Index Model E(Y |W ) = E [h0(W T θ0)|W ]

Partially Linear Model

E(Y |W1,W2) = E [h0(W1) + W T
2 θ0|W1,W2]

Nonparametric IV E(Y − g0(X )|W ) = 0
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Identification

• Consider E [g0(X )|W ] = E(Y |W ),

g0 is identified iff X |W is complete. Newey and Powell

(2003)

• The completeness condition is easy to fail:

Severini and Tripathi (2006):

X = W + U: W and U are iid Uniform [−1
2 ,

1
2 ].

E [g(X )|W ] = 0 iff

g(x) = g(1 + x) ∀x ∈ [−1,0] and
∫ 0
−1 g(x)dx = 0.
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• Sometimes instead of g0, we are interested in linear

functional h(g0).

• Severini and Tripathi (2006): If ∃m(W ) s.t.

v(X ) = E [m(W )|X ], then

h(g0) = E [v(X )g0(X )] is identified.

• We do not assume g0 is identified.

ΘI = {g ∈ Θ : E(ρ(X ,g)|W ) = 0}

• Santos (2007, 2008a,b), Kovchegov and Yildiz (2010)
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Ill-Posed Inverse Problem (partial identification)

• Define T (g) = E [g(X )|W ], and µ(w) = E(Y |W = w).

Tg0 = µ

• For any g1 ∈ L2(X ), define [g1] = {g : Tg = Tg1}. Define A

on quotient space L2(X )/N (T ):

A[g] = Tg

But A−1 : L2(W )→ L2(X )/N (T ) is not continuous.
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Two Regularization Approaches

Approach I Assume g0 ∈ Θ, where Θ is compact

Θ = {g : ‖g‖ ≤ B} for some known ‖.‖ and B > 0.

• Result: If T : Θ→ L2, Θ is compact and T is compact, then

T−1 is continuous.

• Newey and Powell (2003), Ai and Chen (2003), etc.
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Approach II

• If Qn ⇒ Q ≥ 0 uniformly,

ĝ = arg min Qn(g) + an||g||2, an → 0

under regularity conditions, ĝ → g0 if arg min Q = {g0}.

• Hall and Horowitz (2005), Chen and Pouzo (2009), etc.
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Contributions

Bayesian • Obtain the posterior distribution of conditional

moment restricted model

• Construct the posterior in a way that is robust

to the distributional assumption

Consistency Show posterior consistency with partial

identification
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Traditional Nonparametric Bayesian Regression

y = g(X ) + ε,E(ε|X ) = 0

1. ε ∼ N(0, σ2)

2. approximate g ≈
∑q

j=1 βjφj(x)

3. priors: βj |σ, q ∼ N(0, vσ2), σ ∼ Inverse Gamma;

q: either→∞ or Uniform{1,2, ....,n}

Coram and Lalley (2006): posterior=
∫

Pgdπ(g).
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Proposed Bayesian Approach

• Assume W is supported on [0,1].

• E [ρ(X ,g0)|W ] = 0 implies

E
(
ρ(X ,g0)I(W ∈ [

i − 1
k

,
i
k

]

)
︸ ︷︷ ︸

mi (D,g0)

= 0, i = 1, ..., k

m = (m1, ...,mk )T .

• Em(D,g0) = 0
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Question: How to derive the posterior?

• p(g|Data) ∝ p(g)×likelihood.

Construct the likelihood first.

• In practice,

What is known: moment conditions. Em(D,g0) = 0

What is not known: the true likelihood function

• Derive from Em(D,g0) = 0.
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• Define m̄(g) = 1
n
∑n

i=1 m(Di ,g).

• CLT⇒
√

nm̄(g0)→d N(0,V )

L(g) ∝ exp
(
−n

2
m̄(g)T V−1m̄(g)

)
• QUESTION: Does it have a likelihood interpretation?

Likelihood= p(Data|θ).

Answer: It is Best Approximation to True Likelihood

subject to moment restrictions. Kim(2002) “limited

information likelihood”
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Limited Information Likelihood

L(g)→p P∗ Kim(2002)

L(g) is called the “limited information likelihood”.
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• V = Var(m(D,g0)), which depends on the unknown

distribution of D and g0, Kim(2002) suggested replace V by

a constant variance covariance matrix (may depend on n).

• It can be shown that Var(mi(D,g0)) = O(k−1), we set

V = k−1I. Such a choice of V will not affect the

consistency result.
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• Suppose g0(x) ≈
∑q

i=1 biφi(x), as q →∞

• Put priors on {b1, ...,bq}, fixing q. Let gq =
∑q

i=1 biφi

• p(gq|D) ∝ p(b) exp[−nm̄(gq)T Vm̄(gq)]

• Outline of the proof of consistency:

Ḡ(g) = m̄(gq)T Vm̄(gq), G(g) =
∫ E(ρ(Z ,g)|w)2

E(ρ(Z ,g0)|w) dFW (w)

sup
g∈Θq

|Ḡ(gq)−G(gq)| = op(1)

Jiang and Tanner (2008): for any δ > 0,

E(P(|G(gq)−inf
Θq

G(gq)| > δ|Data) ≤ P(sup
Θq

|Ḡ(g)−inf
Θq

G(g)| > δ

5
)

+
exp(−2

5nδ)

Prior(G(gq)− infΘq G(g) < δ)
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Assumptions

1. Θ is compact under some norm ‖.‖H .

2. (i) P(W ∈ [ j
k ,

j+1
k ]) = O(k−1), k = o(n2/5).

(ii) q = o(n).

3. prior p(gq) has support around ΘI .

4. EY 2 <∞, E‖m(D,g)‖4 < B uniformly on Θ.

5. maxj≤k
√

n|m̄j(g)−Emj(g,X )| is stochastic equicontinuous

on Θ.
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Assumptions

Define Kg(w) = E(ρ(Z ,g)|w).

Assumption 6:

• {Kg(w) : g ∈ Θ} is equicontinuous on w ∈ [0,1].

• E(ρ(Z ,g0)2|w) is continuous and bounded away from zero

on w ∈ [0,1]

• For any ε > 0, exists δ > 0,

sup
z

sup
||g1−g2||H<δ

|ρ(z,g1)− ρ(z,g2)| < ε
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We can obtain the sufficient conditions for Assumptions 5,6 for

single index model and nonparametric IV regression.

Single Index Model (1) fW (w) is bounded away from 0

(2) For any ε > 0, there exists δ > 0,

sup
y

sup
|w1−w2|<δ

|fw |y (w1|y)− fw |y (w2|y)| < ε

Nonparametric IV (1) fW (w) is bounded away from 0

(2) For any ε > 0, there exists δ > 0,

sup
x ,y

sup
|w1−w2|<δ

|fw |x ,y (w1|x , y)− fw |y (w2|x , y)| < ε
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Posterior Consistency

Define Uδ(ΘI) = {g ∈ Θ : infg∗∈ΘI ||g − g∗||H < δ}

Theorem 1

Let ΘI = {g ∈ Θ : E [ρ(X ,g)|W ]}. For any U(ΘI),

P(gq ∈ U(ΘI)|Data)→p 1

Corollary 1

If h(g0) is identified, h : Θ→ R is continuous, for any ε > 0,

P(|h(gq)− h(g0)| < ε|Data)→p 1
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Norm Specification

Single Index Model: g0 = (ψ0, θ0)

||ψ||s = sup
t
|ψ(t)|+ sup

t1 6=t2

|ψ(t1)− ψ(t2)|
|t1 − t2|

||g||H = ||ψ||s + ‖θ‖

Nonparametric IV: ||g||H = supx |g(x)|+ supx1 6=x2
|g(x1)−g(x2)|
|x1−x2|
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Relaxing the Compactness in NPIV

• Specify prior ∝ e−na2
n‖g‖2

,

limited Information Likelihood ∝ e−nQ̂(g)

log posterior = −n[Q̂(g) + a2
n‖g‖2]

• Require the prior variance na2
n →∞. Florens and Simoni

(2009).

• T (g)(w) = E(g(X )|W = w). To illustrate the posterior

consistency, we assume g0 is point identified.

• Let the eigenvalues of T be λ1, ..., ordered such that

|λ1| ≥ |λ2| ≥ ... > 0
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Assumptions

1. For some α > 0, and and c,

sup
‖g‖≤c

|Ḡ(g)−G(g)| = op(n−α)

2. a2
n → 0, and na2

n →∞

3. There exists {sn}∞n=1 ⊂ N, sn →∞, such that∑
j≥sn

g2
j = O(a2

n/λ
2
sn ) = o(1)

4. n � qn � max{n1−α,na2
n/λ

2
sn , λ

−2
qn }.
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Posterior Consistency

Theorem 2

Assume g0 is identified,

E [‖gq − g0‖2|Data]→p 0

• Prior variance na2
n →∞ for regularization.

Prior mean was set to zero.

• To incorporate prior knowledge of g0, e.g., convexity,

monotonicity, use prior

log p(gq) ∝ −na2
n||gq − g∗||2
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Bayesian Implementation

1. Fix q, k , construct likelihood L(gq) ∝ exp(−nḠ(gq)), where

gq =
∑q

j=1 bjφj(x)

2. Put prior (b1, ...,bq), bj ∼ N(0, j−α), for some α > 0

3. Obtain B = (5,000 ∼ 10,000) draws from posterior

∝ p(b1, ...,bq)L(gq) using MCMC algorithm. The first

1/4 ∼ 1/3 are dropped for the MCMC to "warm-up".

4. Compute the posterior mean E(bj |Data) ≈ 1
B
∑

i bi
j

5. ĝ(x) =
∑

j E(bj |Data)φj(x)
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Numerical Example

Y = sin(x)e
√
|x | + ε

x = w + v

w ⊥ ε, Cov(v , ε) = 0.6. w is supported on [−4,4].

Hermite series approximation:

H1(x) = 1,H2(x) = x , and Hj(x) = Hj−1(x)− (j − 1)Hj−2(x)

26 / 28



Introduction Indentification Ill-Posed Inverse Problem Proposed Bayesian Approach Simulation and Extension

Approach 2:
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• We have not derived the convergence rate of

E(||gq − g0||2|Data) yet.

• Choice of V : Suppose we are interested in functional

h(g0), V can be chosen to minimize the asymptotic

variance of E(h(gq)|Data).

• As this is among the first papers that consider moment

condition based likelihood, to choose V from p(h(g)|Data)

has not been considered yet.
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