Bayesian Analysis in Moment Inequality Models Supplement Material

Yuan Liao Wenxin Jiang

November 14, 2008

Abstract

This is a supplement material of Liao and Jiang (2008). We consider the case when the identified region has no interior. We show that the posterior distribution converges to zero on any δ contraction outside the identified region exponentially fast, and is bounded below by a polynomial rate on any neighborhood of element in a dense subset, defined by both exact moment conditions and strict moment inequalities. Hence the consistent estimation of the identified region can be constructed based on the log-posterior pdf.

1 Case When $int(\Omega)$ is Empty

When Ω has no interior, moment inequality models may contain exact moment conditions.

$$
Em_{1j}(X, \theta_0) \ge 0, j = 1, ..., r
$$

\n
$$
Em_{2j}(X, \theta_0) = 0, j = 1, ..., p
$$
\n(1.1)

Moon and Schorfheide (2006) have considered the estimation problem assuming θ_0 is point identified by the exact moment conditions. Let

$$
m_1(X, \theta) = (m_{11}(X, \theta), ..., m_{1r}(X, \theta))^T, m_2(X, \theta) = (m_{21}(X, \theta), ..., m_{2p}(X, \theta))^T
$$

If $p \ge \dim(\theta_0)$, and there doesn't exist a pair of moment functions (m_{2i}, m_{2j}) such that $\{\theta \in$ $\Theta: Em_{2i}(X, \theta) = 0$ } = { $\theta: Em_{2j}(X, \theta) = 0$ }, then θ_0 is point identified by $Em_2(X, \theta_0)$ = 0. Moon and Schorfheide (2006) show that by using the overidentifying information provided by $Em_1(X, \theta_0) \geq 0$, the empirical likelihood estimators reduce the asymptotic mean squared errors. In this section, we will relax this point identifying restriction, and allow θ_0 to be partially identified by model (4.1).

The identified region is defined by

$$
\Omega = \{ \theta : Em_1(X, \theta) \ge 0, Em_2(X, \theta) = 0 \}
$$

In our setting, Ω shrinks to a lower dimension sub-manifold of $\{\theta : Em_2(X, \theta) = 0\}$ with boundaries defined by linear or nonlinear hyperplanes $\{\theta : Em_1(X, \theta) = 0\}$. One of the problem one needs to take into account when considering the asymptotic behaviors of the posterior distribution is that Ω has zero Lebesgue measure, due to the loss of dimensionality. Thus integrating over Ω is always zero. The limit of posterior density is known as Dirac function:

$$
\lim_{n \to \infty} p(\theta | X^n) = \begin{cases} +\infty & \theta \in \Omega \\ 0, & \theta \notin \Omega \end{cases} a.s.
$$

Thus $\lim_{n\to\infty} p(\theta|X^n)$ is not a real valued function of θ .

However, it's still possible to study the large sample properties of the posterior distributions completely on Θ. Like in $int(\Omega) \neq \phi$ case, a dense subset in Ω plays an important role in characterizing such behaviors. Define

$$
\Xi = \{ \theta \in \Omega : Em_1(X, \theta) > 0 \}
$$
\n
$$
(1.2)
$$

We will assume Ξ is dense in Ω and will study the large sample properties of the posterior around Ξ .

1.1 Derivation for Limited Information Likelihood

Suppose $X^n = \{X_1, ..., X_n\}$ is a stationary realization of X. Define $\bar{m}_j(\theta) = \frac{1}{n} \sum_{i=1}^n m_j(X_i, \theta)$, for $j = 1, 2$. Like before, we introduce auxiliary parameter λ to moment inequalities and define

$$
G(\theta,\lambda) = \begin{pmatrix} \bar{m}_1(\theta) - \lambda \\ \bar{m}_2(\theta) \end{pmatrix}, \theta \in \Theta, \lambda \in [0,\infty)^r
$$

For any positive definite $r \times r$ matrix V not depending on θ , define limited information likelihood:

$$
L(\theta) = \int_{[0,\infty)^r} \frac{1}{\sqrt{\det(\frac{2\pi V}{n})}} e^{-\frac{n}{2}G(\theta,\lambda)^T V^{-1}G(\theta,\lambda)} p(\lambda) d\lambda
$$

Write V^{-1} into subblocks

$$
V^{-1} = \begin{pmatrix} \Sigma_1 & \Sigma_3 \\ \Sigma_3^T & \Sigma_2 \end{pmatrix}, \Sigma_1 : r \times r, \Sigma_2 : p \times p
$$

We still place an exponential prior on λ :

$$
p(\lambda) = \left(\prod_{i=1}^r \psi_i\right) e^{-\psi^T \lambda}, \psi, \lambda \in [0, \infty)^r
$$

then we have

$$
L(\theta) = \int_{[0,\infty)^r} \frac{1}{\sqrt{\det(\frac{2\pi V}{n})}} \exp\left(-\frac{n}{2}(\bar{m}_1(\theta) - \lambda, \bar{m}_2(\theta)) \left(\sum_1 \sum_3 \sum_2\right) \begin{pmatrix} \bar{m}_1(\theta) - \lambda \\ \bar{m}_2(\theta) \end{pmatrix} \right) p(\lambda) d\lambda
$$

=
$$
\frac{\prod_{i=1}^r \psi_i}{\sqrt{\det(V_2)}} P(Z \ge 0) e^{\tau}
$$

where:

- Z follows multivariate normal distribution with mean μ , variance covariance matrix $\frac{\Sigma_1^{-1}}{n}$, $\mu =$ $\bar{m}_1(\theta) + \Sigma_1^{-1} \Sigma_3^T \bar{m}_2(\theta) - \frac{1}{n} \Sigma_1^{-1} \psi.$
- $V_2 = (\Sigma_2 \Sigma_3^T \Sigma_1^{-1} \Sigma_3)^{-1}$. If $V = Var(m_1, m_2)$, then by the matrix inversion formula, $V_2 = Var(m_2)$.

•
$$
\tau = -\frac{n}{2}\bar{m}_2(\theta)^T V_2^{-1} \bar{m}_2(\theta) - \psi^T (\Sigma_1^{-1} \Sigma_3^T \bar{m}_2(\theta) + \bar{m}_1(\theta)) + \frac{1}{2n} \psi^T \Sigma_1^{-1} \psi
$$

Roughly speaking, when $\theta \notin \Omega$, either $Em_2(X, \theta) \neq 0$ or $\exists Em_{1j}(X, \theta) < 0$. When $Em_2(X, \theta) \neq 0$ 0, since V_2^{-1} is also positive definite, $e^{\tau} \to 0$; when $Em_2(X, \theta) = 0$ but $Em_{1j}(X, \theta) < 0$ for some

j, then for large n, the jth component of $\mu < 0$. Since the covariance matrix of Z has order $O(n^{-1})$, $P(Z \ge 0) \rightarrow 0$. Therefore, $L(\theta) \rightarrow 0$ outside Ω .

When $\theta \in \Omega$, by central limit theorem, $\bar{m}_2(\theta) = O_p(n^{-1/2})$, hence $e^{\tau} = O_p(1)$. In addition, for large n, $P(Z \geq 0) \approx 1$. Thus $L(\theta) = O_p(1)$.

1.2 Posterior Distribution

Let $p(\theta)$ denote the prior on θ , then $p(\theta|X^n) \propto p(\theta)L(\theta)$. We will look at the posterior distribution, especially the convergence rate on the dense subset Ξ and $(\Omega^c)^{-\delta}$ for small enough δ .

Assumption 1.1. Ξ *defined in (1.2) is dense in* Ω *.*

This assumption states that if θ_0 satisfies $Em_2(X, \theta_0) = 0$ and $Em_{1i}(X, \theta_0) = 0$ for some $j =$ 1, ..., r, then in any neighborhood of θ_0 we can find θ_1 such that $Em_1(X, \theta_1) > 0$ and $Em_2(X, \theta_1) =$ 0.

Suppose all the other components of $Em_1(X, \theta_0)$ except for j are positive. By continuity of $Em₁(X, .)$, they remain to be positive in a small neighborhood of θ_0 . Suppose Assumption 4.1 doesn't hold, then within some neighborhood U of θ_0 , $Em_1(X, \theta) \leq 0$. Since Ω is connected, we argue that $Em_{1i}(X, \theta) \equiv 0$ on $U \cap \Omega$. Hence intuitively, Assumption 4.1 says that for each i, hyperplane $\{\theta : Em_{1i}(X, \theta) = 0\}$ has no part that overlaps with $\{\theta : Em_2(X, \theta) = 0\}$.

Example 1.1. This example shows Assumption 1.1 is satisfied by the interval regression model. Suppose we have moment inequalities $E(Z_1Y_1) \le E(Z_1X^T)\theta \le E(Z_1Y_2)$ and exact moment condition $EZ_2(Y_3 - X^T\theta) = 0$, where Z_i , $i = 1, 2$ are r_1 and r_2 dimensional vectors of instrumental variables respectively, with each instrument being positive almost surely, and don't share same components. Y_i is scalar $i = 1, 2, 3$, and $\theta \in \mathbb{R}^d$. $Y_2 > Y_3 > Y_1$ a.s. Let $W = (Z_1, Z_2, X, Y_1, Y_2, Y_3)$, then

$$
m_1(W, \theta) = \begin{pmatrix} Z_1(Y_2 - X^T \theta) \\ Z_1(X^T \theta - Y_1) \end{pmatrix}, m_2(W, \theta) = Z_2(Y_3 - X^T \theta)
$$

We assume $r_2 < d$ so that θ can not be point identified by $Em_2(W, \theta) = 0$. Let's also assume \exists a unit vector δ such that $EZ_2X^T\delta = 0$ but $EZ_{11}X^T\delta < 0$, where Z_{11} denotes the first component of Z_1 . In this interval instrumental variable regression model,

$$
\Xi = \{ \theta : E(Z_1 Y_1) < E(Z_1 X^T) \theta < E(Z_1 Y_2) ; E Z_2 Y_3 = E Z_2 X^T \theta \}
$$

We now show Ξ is dense.

Pick up $\theta_0 \in \Omega \backslash \Xi$ such that $EZ_2(Y_3 - X^T\theta_0) = 0$, $EZ_{11}(Y_2 - X^T\theta_0) = 0$. Let's assume $Em_{1j}(W, \theta_0) > 0$ for $j > 1$ for simplicity. Then in a small neighborhood of θ_0 , $Em_{1j}(W,.) > 0$ for $j > 1$. For small enough $\epsilon > 0$, let $\theta_1 = \theta_0 + \epsilon \delta$, then

$$
Em_2(W, \theta_1) = EZ_2(Y_3 - X^T \theta_0) - \epsilon EZ_2 X^T \delta = 0
$$

$$
Em_{11}(W, \theta_1) = EZ_{11}(Y_2 - X^T \theta_0) - \epsilon EZ_{11} X^T \delta = -\epsilon EZ_{11} X^T \delta >
$$

 $\overline{0}$

Therefore $\theta_1 \in B(\theta_0, 2\epsilon) \cap \Xi$.

Assumption 1.2. *(i)* $Em_{1j}(X, \theta)$ *is continuous on* Θ *for each j.*

(ii) $Em_{2i}(X, \theta)$ *is Lipschitz continuous on* Θ *for each j.*

Assumption 1.3. *w.p.a.1, for any* $\beta_n \to \infty$ *,*

$$
\sup_{\theta \in \Theta} ||\bar{m}_2(\theta) - Em_2(X, \theta)||^2 \le \frac{\ln \beta_n}{n}
$$

Assumption 1.4. $p(\theta)$ *is continuous, and bounded away from zero and infinity on* Ω *.*

Theorem 1.1. *Under Assumption 2.1, 2.2 in Liao and Jiang (2008), and 1.1-1.4, then*

1. $\forall \delta > 0$ *, for some* $\alpha > 0$ *,*

$$
P(\theta \in (\Omega^c)^{-\delta} | X^n) = o_p(e^{-\alpha n})
$$

2. $\forall \omega \in \Xi$, $\exists R > 0$, $\forall \delta < R$, for all $\beta_n \to \infty$, we have in probability

$$
P(\theta \in B(\omega,\delta) | X^n) \succ \frac{1}{\beta_n} n^{-d/2}
$$

where $d = \dim(\omega)$

Like the case when $int(\Omega) \neq \phi$, let $g(.)$ be a continuous real-valued function on Θ , let $F_g^{-1}(y)$ be the y–quantile of the posterior cdf of $g(\theta)$.

Theorem 1.2. *Under Assumption 2.1-2.3 in Liao and Jiang (2008) and 1.1-1.3, if* $\{\pi_n\}_{n=1}^{\infty}$ *is such that* $e^{-\alpha n} \prec \pi_n \prec n^{-\beta}$, for any $\alpha > 0$ and some $\beta > \frac{d}{2}$, then

$$
d_H([F_g^{-1}(\pi_n), F_g^{-1}(1-\pi_n)], g(\Omega)) \to 0
$$
 in probability.

2 Monte Carlo Experiments

We simulate an interval instrumental regression model with exact moment conditions.

Example 2.1 (Interval regression models with exact moment condition). We consider,

$$
E(Z_1Y_1) \le E(Z_1X^T)\theta \le E(Z_1Y_2), \qquad E(Z_2X^T)\theta = E(Z_2Y_3)
$$

We generate $(X_1, X_2) \sim N_2((1, 1)^T, I_2)$, and $Z_1 = X_1 + X_2, Z_2 = -2X_1 + 2X_2$. $(Y_1, Y_2)^T \sim$ $N_2((3,6)^T, 0.1I_2)$, independent of X. Let $Y_3 = Z_1 + 3$. Then the identified region is given by

$$
\Omega = \{(\theta_1, \theta_2) : \theta_1 = \theta_2, 2\theta_1 + \theta_2 \le 4\}
$$

To estimate Ω , we choose a positive definite weight matrix

$$
V^{-1} = \begin{pmatrix} I_2 & \Sigma_3 \\ \Sigma_3^T & 6 \end{pmatrix}
$$

where $\Sigma_3 = (1, 2)^T$.

Figure 1 displays the identified region as well as 10,000 draws using Metropolis algorithm, with two choices of $\psi^1 = (0.5, 0.5)^T$, and $\psi^2 = (0.01, 0.01)^T$ respectively.

We also estimate the identified interval of θ_1 , which is [1, 2] theoretically. Table 3 reports $[F_e^{-1}(\pi_n), F_e^{-1}(1-\pi_n)]$ based on the empirical cdf F_e of 5000 draws from the posterior distribution.

Figure 1: The identified set and MCMC draws

Table 1: Estimation of $\Omega_1 = [1, 2]$ based on the empirical cdf

π_n	$e^{-\sqrt{n}}$	$\frac{1}{\sqrt{n}}$	$\overline{\ln n}$
	$n = 500$ [1.1384, 2.0295] [1.0068, 1.9331] [1.0904, 1.6207]		
	$n = 1000$ [1.0809, 1.9425] [0.9620, 1.8844] [1.1183, 1.8874]		
	$n = 5000$ [1.1045, 1.8551] [0.9944, 1.9575] [1.1878, 1.9729]		

3 Proofs

Define $A_{\delta} = \{ \theta : Em_2(X, \theta)^T V_2^{-1} Em_2(X, \theta) > \delta \}$, and $A_2 = \left\{\theta: Em_2(X, \theta) = 0, \min_j Em_{1j}(X, \theta) < 0\right\}$

Lemma 3.1. $\forall \delta > 0$ *, for some* $a > 0$

$$
\int_{A_{\delta}\cup A_2} p(\theta)L(\theta)d\theta = o_p(e^{-an})
$$

Proof. Define $\hat{A}_{\delta} = {\theta : \bar{m}_2(\theta)^T V_2^{-1} \bar{m}_2(\theta) > \delta},$

$$
\int_{A_{\delta}} p(\theta) L(\theta) d\theta = \int_{A_{\delta} \cap \hat{A}_{\delta}} p(\theta) L(\theta) d\theta + \int_{A_{\delta} \cap \hat{A}_{\delta}^{c}} p(\theta) L(\theta) d\theta
$$
\n
$$
\leq \int_{\hat{A}_{\delta}} p(\theta) L(\theta) d\theta + \int_{A_{\delta} \cap \hat{A}_{\delta}^{c}} p(\theta) L(\theta) d\theta
$$

 $A_\delta \cap \hat{A}_\delta^c = \{ \theta : Em_2(X, \theta)^T V_2^{-1} Em_2(X, \theta) > \delta \} \cap \{ \theta : \bar{m}_2(\theta)^T V_2^{-1} \bar{m}_2(\theta) \leq \delta \} \rightarrow \phi$ w.p.a.1. Hence for large $n, \mu(A_\delta \cap \hat{A}_\delta^c) = 0$. Then $\exists N$, when $n > N$, w.p.a.1,

$$
\int_{A_{\delta}} p(\theta) L(\theta) d\theta \le \int_{\hat{A}_{\delta}} p(\theta) \frac{\prod_{i} \psi_{i}}{\sqrt{\det(V_{2})}} e^{-\frac{n}{2} \bar{m}_{2}(\theta)^{T} V_{2}^{-1} \bar{m}_{2}(\theta) - \psi^{T} (\Sigma_{1}^{-1} \Sigma_{3}^{T} \bar{m}_{2}(\theta) + \bar{m}_{1}(\theta)) + \frac{1}{2n} \psi^{T} \Sigma_{1}^{-1} \psi} d\theta
$$

For some $\epsilon > 0$, for large *n*,

$$
e^{-\psi^T \left(\Sigma_1^{-1} \Sigma_3^T \bar{m}_2(\theta) + \bar{m}_1(\theta)\right) + \frac{1}{2n} \psi^T \Sigma_1^{-1} \psi} \le e^{\|\psi\| (\sup_{\theta \in \Theta} \|\Sigma_1^{-1} \Sigma_3^T E m_2(X, \theta) + E m_1(X, \theta) \| + \epsilon) + \epsilon} < \infty
$$

Thus for some positive constant C , and large n ,

$$
\int_{A_{\delta}} p(\theta) L(\theta) d\theta \le C \cdot \int_{\hat{A}_{\delta}} p(\theta) e^{-\frac{n}{2} \bar{m}_2(\theta)^T V_2^{-1} \bar{m}_2(\theta)} d\theta \le C \cdot e^{-\frac{\delta}{2} n}
$$

In addition, $\mu(A_2) = 0$ and $p(\theta)L(\theta)$ is bounded on Θ , hence

$$
\int_{A_{\delta}\cup A_2} p(\theta)L(\theta)d\theta \le \int_{A_{\delta}} p(\theta)L(\theta)d\theta + \int_{A_2} p(\theta)L(\theta)d\theta = O_p(e^{-\frac{\delta}{2}n})
$$

 \Box

Lemma 3.2. $\forall \delta > 0$ *, for some* $a > 0$ *,*

$$
\int_{(\Omega^c)^{-\delta}} p(\theta) L(\theta) d\theta = o_p(e^{-an})
$$

Proof. : $\forall \theta \in (\Omega^c)^{-\delta}$, then either $\exists \delta(\theta) > 0, \theta \in A_{\delta(\theta)}$, or $\theta \in A_2$, hence $\theta \in A_{\delta(\theta)} \cup A_2$. Thus $(\Omega^c)^{-\delta} \subset \bigcup_{\theta \in (\Omega^c)^{-\delta}} [A_{\delta(\theta)} \cup A_2]$. Note that $(\Omega^c)^{-\delta} = \{\theta : d(\theta, \Omega) \geq \delta\}$ is compact, hence \exists $\{A_{\delta 1} \cup A_2, ..., A_{\delta N} \cup A_2\} \subset \{A_{\delta(\theta)} \cup A_2 : \theta \in (\Omega^c)^{-\delta}\}\$ such that

$$
(\Omega^c)^{-\delta} \subset \bigcup_{i=1}^N [A_{\delta i} \cup A_2]
$$

Let $\delta^* = \min\{\delta_i, i = 1, ..., N\}$. For $a > b > 0$, $A_a \subset A_b$, hence $(\Omega^c)^{-\delta} \subset A_{\delta^*} \cup A_2$. Therefore

$$
\int_{(\Omega^c)^{-\delta}} p(\theta) L(\theta) d\theta \le \int_{A_{\delta^*} \cup A_2} p(\theta) L(\theta) d\theta = o_p(a^{-an})
$$

 \Box

Lemma 3.3. *If* Z_{θ} *follows* $N_r(\bar{m}_1(\theta) + \Sigma_1^{-1} \Sigma_3^T \bar{m}_2(\theta) - \frac{1}{n} \Sigma_1^{-1} \psi, \frac{1}{n} \Sigma_1^{-1}$, then $\forall \omega \in \Xi$, $\exists R > 0$, *w.p.a.1,*

$$
\liminf_{n \to \infty} \inf_{\theta \in B(\omega, R)} P(Z_{\theta} \ge 0) > 0
$$

Proof. Let $\xi_n(\theta) = \overline{m}_1(\theta) + \Sigma_1^{-1} \Sigma_3^T \overline{m}_2(\theta) - \frac{1}{n} \Sigma_1^{-1} \psi$. $\forall \omega \in \Xi$, $Em_1(X, \omega) > 0$. Since $Em_1(X, \theta)$ is continuous on Θ , there exist $\epsilon > 0$, and an open ball $B(\omega, R_1)$, such that $\inf_{\theta \in B(\omega, R_1)} Em_1(X, \theta) >$ ϵ , where the inequality is taken coordinately. Moreover, $Em_2(X, \omega) = 0$; hence by the continuity of $Em_2(X,.)$, $\exists R < R_1$ such that $\sup_{\theta \in B(\omega,R)} |\Sigma_1^{-1} \Sigma_3^T Em_2(X,\theta)| < \epsilon$, where |.| denotes the absolute value, taken coordinately. Therefore, $\inf_{\theta \in B(\omega,R)} (Em_1(X,\theta) + \Sigma_1^{-1} \Sigma_3^T Em_2(X,\theta)) > 0$. $\exists N$, when $n > N$, w.p.a.1, coordinately.

$$
\inf_{\theta \in B(\omega,R)} (\bar{m}_1(\theta) + \Sigma_1^{-1} \Sigma_3^T \bar{m}_2(\theta) - \frac{1}{n} \Sigma_1^{-1} \psi) = \inf_{\theta \in B(\omega,R)} \xi_n(\theta) > 0
$$

Let σ_{1j}^2 denote the *j*th diagonal element in Σ_1^{-1} , and $\xi_{nj}(\theta)$ denote the *j*th element of $\xi_n(\theta)$. Then

$$
\inf_{\theta \in B(\omega, R)} P(Z_{\theta} \ge 0) \ge 1 - r \cdot \Phi \left(-\sqrt{n} \inf_{\theta \in B(\omega, R)} \min_{j} \frac{\xi_{nj}(\theta)}{\sqrt{\sigma_{1j}^2}} \right)
$$
\n
$$
\ge 1 - r \cdot \Phi \left(-\sqrt{n} \min_{j} \frac{\inf_{\theta \in B(\omega, R)} \xi_{nj}(\theta)}{\sqrt{\sigma_{1j}^2}} \right)
$$
\n
$$
>_{n} 0
$$

 \Box

Lemma 3.4. *For any* $\beta_n \to \infty$, $\forall \omega \in \Xi$, $\exists R > 0$, $\forall \delta < R$, w.p.a.1,

$$
\int_{B(\omega,\delta)} p(\theta)L(\theta)d\theta \succ \frac{1}{\beta_n} n^{-d/2}
$$

where $d = \dim(\omega)$ *.*

Proof. $\forall \omega \in \Xi$, it can be shown that (using lemma C.3), $\exists R > 0$, and a positive constant C, such that

$$
\int_{B(\omega,R)} p(\theta)L(\theta)d\theta \ge C \int_{B(\omega,R)} p(\theta)e^{-\frac{n}{2}\bar{m}_2(\theta)^T V_2^{-1}\bar{m}_2(\theta)}d\theta
$$

For deterministic V_2^{-1} , and a vector α , we write weighted norm $\|\alpha\|_V^2 = \alpha^T V_2^{-1} \alpha$. Then we have

$$
\frac{1}{2} \|\bar{m}_2(\theta)\|_V^2 \le \|E m_2(X,\theta)\|_V^2 + \|\bar{m}_2(\theta) - E m_2(X,\theta)\|_V^2
$$

By assumption 4.3, for any $\beta_n \to \infty$, choose $\beta_n^{\|V^{-1}\|^{-1}}$, so that

$$
e^{-n\|\bar{m}_2(\theta)-E{m}_2(X,\theta)\|^2_V}\geq e^{-\ln\beta_n^{\|\boldsymbol{V}^{-1}\|^{-1}}\|\boldsymbol{V}^{-1}\|}=\beta_n^{-\|\boldsymbol{V}^{-1}\|^{-1}\cdot\|\boldsymbol{V}^{-1}\|}=\frac{1}{\beta_n}
$$

For some constant $\alpha > 1$, let $U = \{ \theta : ||Em_2(X, \theta)||_V^2 < \frac{\ln \alpha}{n} \}$. By assumption 3.3, $\exists R' < R$, such that for any $0 < \delta < R'$, $\inf_{\theta \in B(\omega,\delta)} p(\theta) > 0$. Then

$$
\int_{B(\omega,\delta)} p(\theta)L(\theta)d\theta \ge C \int_{B(\omega,\delta)\cap U} \frac{1}{\alpha \beta_n} p(\theta)d\theta \ge \frac{Const}{\beta_n} \mu(B(\omega,\delta)\cap U)
$$

To derive a lower bound for the Lebesgue measure of $B(\omega, \delta) \cap U$, note that $Em_2(X, \theta)$ is Lipschitz continuous, and $Em_2(X, \omega) = 0, \exists \lambda > 0$, such that $\forall \theta \in B(\omega, \delta), ||Em_2(X, \theta)||^2 \le \lambda ||\theta - \omega||^2$. Then

$$
||Em_2(X, \theta)||_V^2 \leq ||Em_2(X, \theta)||^2 \cdot ||V^{-1}||^2
$$

\n
$$
\leq \lambda ||V^{-1}||^2 \cdot ||\theta - \omega||^2
$$

\n
$$
\leq \lambda ||V^{-1}||^2 |\theta - \omega|_{\infty}^2
$$

where $|\theta - \omega|_{\infty} = \max_j |\theta_j - \omega_j|$. Hence $\{\theta : |\theta - \omega|_{\infty}^2 < \frac{\ln \alpha}{\lambda \|V^{-1}\|^2 n}\}\subset U$. Moreover, for large enough $n, \{\theta : |\theta - \omega|_{\infty}^2 < \frac{\ln \alpha}{\lambda \|V^{-1}\|^2 n}\} \subset B(\omega, \delta)$, thus $\mu(B(\omega, \delta) \cap U) \ge \mu(\{\theta : |\theta - \omega|_{\infty}^2 < \frac{\ln \alpha}{\lambda}\})$ $\frac{\ln \alpha}{\lambda \|V^{-1}\|^2 n}\}) = (2\sqrt{\frac{\ln \alpha}{\lambda \|V^{-1}\|^2}})^d n^{-d/2}$. Hence $\int_{B(\omega,\delta)} p(\theta)L(\theta)d\theta \succ \frac{1}{\beta_n} n^{-d/2}$.

Proof of Theorem 1.1

Proof. 1. Let $\beta_n = n^{d/2}$. Lemma C.4 implies that $\int_{\Theta} p(\theta) L(\theta) d\theta \succ n^{-d}$. Thus by Lemma C.2, for some $\alpha > 0$,

$$
P(\theta \in (\Omega^c)^{-\delta} | X^n) = \frac{\int_{(\Omega^c)^{-\delta}} p(\theta) L(\theta) d\theta}{\int_{\Theta} p(\theta) L(\theta) d\theta} \prec \frac{o_p(e^{-\alpha n})}{n^{-d}} = o_p(e^{-\frac{\alpha}{2}n})
$$

2. The result follows immediately from Lemma C.4 and that $\int_{\Theta} p(\theta) L(\theta) d\theta$ is bounded. \Box

References

- [1] Liao, Y. and Jiang, W. (2008). Bayesian analysis in moment inequality models. *working paper*. Northwestern University.
- [2] Moon, H. and Schorfheide, F. (2006), Boosting Your Instruments: Estimation with Overidentifying Inequality Moment Conditions. CEPR Discussion Paper No. 5605 Simple Measure, *Review of Economics and Statistics*. LXXIX, 348-352.