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Abstract

This is a supplement material of Liao and Jiang (2008). We consider the case when the iden-

tified region has no interior. We show that the posterior distribution converges to zero on any δ-

contraction outside the identified region exponentially fast, and is bounded below by a polynomial

rate on any neighborhood of element in a dense subset, defined by both exact moment conditions

and strict moment inequalities. Hence the consistent estimation of the identified region can be

constructed based on the log-posterior pdf.
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1 Case When int(Ω) is Empty

When Ω has no interior, moment inequality models may contain exact moment conditions.

Em1j(X, θ0) ≥ 0, j = 1, ..., r

Em2j(X, θ0) = 0, j = 1, ..., p (1.1)

Moon and Schorfheide (2006) have considered the estimation problem assuming θ0 is point iden-

tified by the exact moment conditions. Let

m1(X, θ) = (m11(X, θ), ...,m1r(X, θ))T ,m2(X, θ) = (m21(X, θ), ...,m2p(X, θ))T

If p ≥ dim(θ0), and there doesn’t exist a pair of moment functions (m2i,m2j) such that {θ ∈

Θ : Em2i(X, θ) = 0} = {θ : Em2j(X, θ) = 0}, then θ0 is point identified by Em2(X, θ0) =

0. Moon and Schorfheide (2006) show that by using the overidentifying information provided by

Em1(X, θ0) ≥ 0, the empirical likelihood estimators reduce the asymptotic mean squared errors. In

this section, we will relax this point identifying restriction, and allow θ0 to be partially identified by

model (4.1).

The identified region is defined by

Ω = {θ : Em1(X, θ) ≥ 0, Em2(X, θ) = 0}

In our setting, Ω shrinks to a lower dimension sub-manifold of {θ : Em2(X, θ) = 0}with boundaries

defined by linear or nonlinear hyperplanes {θ : Em1(X, θ) = 0}. One of the problem one needs

to take into account when considering the asymptotic behaviors of the posterior distribution is that

Ω has zero Lebesgue measure, due to the loss of dimensionality. Thus integrating over Ω is always

zero. The limit of posterior density is known as Dirac function:

lim
n→∞

p(θ|Xn) =

+∞ θ ∈ Ω

0, θ /∈ Ω
a.s.

Thus limn→∞ p(θ|Xn) is not a real valued function of θ.

However, it’s still possible to study the large sample properties of the posterior distributions com-

pletely on Θ. Like in int(Ω) 6= φ case, a dense subset in Ω plays an important role in characterizing

such behaviors. Define

Ξ = {θ ∈ Ω : Em1(X, θ) > 0} (1.2)

We will assume Ξ is dense in Ω and will study the large sample properties of the posterior around Ξ.

2



1.1 Derivation for Limited Information Likelihood

SupposeXn = {X1, ..., Xn} is a stationary realization ofX . Define m̄j(θ) = 1
n

∑n
i=1mj(Xi, θ),

for j = 1, 2. Like before, we introduce auxiliary parameter λ to moment inequalities and define

G(θ, λ) =

m̄1(θ)− λ

m̄2(θ)

 , θ ∈ Θ, λ ∈ [0,∞)r

For any positive definite r × r matrix V not depending on θ, define limited information likelihood:

L(θ) =
∫

[0,∞)r

1√
det( 2πV

n )
e−

n
2G(θ,λ)TV −1G(θ,λ)p(λ)dλ

Write V −1 into subblocks

V −1 =

Σ1 Σ3

ΣT3 Σ2

 ,Σ1 : r × r,Σ2 : p× p

We still place an exponential prior on λ:

p(λ) = (
r∏
i=1

ψi)e−ψ
Tλ, ψ, λ ∈ [0,∞)r

then we have

L(θ) =
∫

[0,∞)r

1√
det( 2πV

n )
exp

−n
2

(m̄1(θ)− λ, m̄2(θ))

Σ1 Σ3

ΣT3 Σ2

m̄1(θ)− λ

m̄2(θ)

 p(λ)dλ

=
∏r
i=1 ψi√

det(V2)
P (Z ≥ 0)eτ

where:

• Z follows multivariate normal distribution with mean µ, variance covariance matrix Σ−1
1
n , µ =

m̄1(θ) + Σ−1
1 ΣT3 m̄2(θ)− 1

nΣ−1
1 ψ.

• V2 = (Σ2 − ΣT3 Σ−1
1 Σ3)−1. If V = V ar(m1,m2), then by the matrix inversion formula,

V2 = V ar(m2).

• τ = −n2 m̄2(θ)TV −1
2 m̄2(θ)− ψT (Σ−1

1 ΣT3 m̄2(θ) + m̄1(θ)) + 1
2nψ

TΣ−1
1 ψ

Roughly speaking, when θ /∈ Ω, eitherEm2(X, θ) 6= 0 or ∃Em1j(X, θ) < 0. WhenEm2(X, θ) 6=

0, since V −1
2 is also positive definite, eτ → 0; when Em2(X, θ) = 0 but Em1j(X, θ) < 0 for some

3



j, then for large n, the jth component of µ < 0. Since the covariance matrix of Z has order O(n−1),

P (Z ≥ 0)→ 0. Therefore, L(θ)→ 0 outside Ω.

When θ ∈ Ω, by central limit theorem, m̄2(θ) = Op(n−1/2), hence eτ = Op(1). In addition, for

large n, P (Z ≥ 0) ≈ 1. Thus L(θ) = Op(1).

1.2 Posterior Distribution

Let p(θ) denote the prior on θ, then p(θ|Xn) ∝ p(θ)L(θ). We will look at the posterior distribu-

tion, especially the convergence rate on the dense subset Ξ and (Ωc)−δ for small enough δ.

Assumption 1.1. Ξ defined in (1.2) is dense in Ω.

This assumption states that if θ0 satisfies Em2(X, θ0) = 0 and Em1j(X, θ0) = 0 for some j =

1, ..., r, then in any neighborhood of θ0 we can find θ1 such thatEm1(X, θ1) > 0 andEm2(X, θ1) =

0.

Suppose all the other components of Em1(X, θ0) except for j are positive. By continuity of

Em1(X, .), they remain to be positive in a small neighborhood of θ0. Suppose Assumption 4.1

doesn’t hold, then within some neighborhood U of θ0, Em1(X, θ) ≤ 0. Since Ω is connected,

we argue that Em1j(X, θ) ≡ 0 on U ∩ Ω. Hence intuitively, Assumption 4.1 says that for each i,

hyperplane {θ : Em1i(X, θ) = 0} has no part that overlaps with {θ : Em2(X, θ) = 0}.

Example 1.1. This example shows Assumption 1.1 is satisfied by the interval regression model. Sup-

pose we have moment inequalitiesE(Z1Y1) ≤ E(Z1X
T )θ ≤ E(Z1Y2) and exact moment condition

EZ2(Y3−XT θ) = 0, where Zi, i = 1, 2 are r1 and r2 dimensional vectors of instrumental variables

respectively, with each instrument being positive almost surely, and don’t share same components.

Yi is scalar i = 1, 2, 3, and θ ∈ Rd. Y2 > Y3 > Y1 a.s. Let W = (Z1, Z2, X, Y1, Y2, Y3), then

m1(W, θ) =

Z1(Y2 −XT θ)

Z1(XT θ − Y1)

 ,m2(W, θ) = Z2(Y3 −XT θ)

We assume r2 < d so that θ can not be point identified by Em2(W, θ) = 0. Let’s also assume ∃ a

unit vector δ such that EZ2X
T δ = 0 but EZ11X

T δ < 0, where Z11 denotes the first component of

Z1. In this interval instrumental variable regression model,

Ξ = {θ : E(Z1Y1) < E(Z1X
T )θ < E(Z1Y2);EZ2Y3 = EZ2X

T θ}

4



We now show Ξ is dense.

Pick up θ0 ∈ Ω\Ξ such that EZ2(Y3 − XT θ0) = 0, EZ11(Y2 − XT θ0) = 0. Let’s assume

Em1j(W, θ0) > 0 for j > 1 for simplicity. Then in a small neighborhood of θ0, Em1j(W, .) > 0

for j > 1. For small enough ε > 0, let θ1 = θ0 + εδ, then

Em2(W, θ1) = EZ2(Y3 −XT θ0)− εEZ2X
T δ = 0

Em11(W, θ1) = EZ11(Y2 −XT θ0)− εEZ11X
T δ = −εEZ11X

T δ > 0

Therefore θ1 ∈ B(θ0, 2ε) ∩ Ξ.

Assumption 1.2. (i) Em1j(X, θ) is continuous on Θ for each j.

(ii) Em2j(X, θ) is Lipschitz continuous on Θ for each j.

Assumption 1.3. w.p.a.1, for any βn →∞,

sup
θ∈Θ
||m̄2(θ)− Em2(X, θ)||2 ≤ lnβn

n

Assumption 1.4. p(θ) is continuous, and bounded away from zero and infinity on Ω.

Theorem 1.1. Under Assumption 2.1, 2.2 in Liao and Jiang (2008), and 1.1-1.4, then

1. ∀δ > 0, for some α > 0,

P (θ ∈ (Ωc)−δ|Xn) = op(e−αn)

2. ∀ω ∈ Ξ, ∃R > 0, ∀δ < R, for all βn →∞, we have in probability

P (θ ∈ B(ω, δ)|Xn) � 1
βn
n−d/2

where d = dim(ω)

Like the case when int(Ω) 6= φ, let g(.) be a continuous real-valued function on Θ, let F−1
g (y)

be the y−quantile of the posterior cdf of g(θ).
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Theorem 1.2. Under Assumption 2.1-2.3 in Liao and Jiang (2008) and 1.1-1.3, if {πn}∞n=1 is such

that e−αn ≺ πn ≺ n−β , for any α > 0 and some β > d
2 , then

dH([F−1
g (πn), F−1

g (1− πn)], g(Ω))→ 0 in probability.

2 Monte Carlo Experiments

We simulate an interval instrumental regression model with exact moment conditions.

Example 2.1 (Interval regression models with exact moment condition). We consider,

E(Z1Y1) ≤ E(Z1X
T )θ ≤ E(Z1Y2), E(Z2X

T )θ = E(Z2Y3)

We generate (X1, X2) ∼ N2((1, 1)T , I2), and Z1 = X1 + X2, Z2 = −2X1 + 2X2. (Y1, Y2)T ∼

N2((3, 6)T , 0.1I2), independent of X . Let Y3 = Z1 + 3. Then the identified region is given by

Ω = {(θ1, θ2) : θ1 = θ2, 2θ1 + θ2 ≤ 4}

To estimate Ω, we choose a positive definite weight matrix

V −1 =

 I2 Σ3

ΣT3 6


where Σ3 = (1, 2)T .

Figure 1 displays the identified region as well as 10,000 draws using Metropolis algorithm, with

two choices of ψ1 = (0.5, 0.5)T , and ψ2 = (0.01, 0.01)T respectively.

We also estimate the identified interval of θ1, which is [1, 2] theoretically. Table 3 reports

[F−1
e (πn), F−1

e (1 − πn)] based on the empirical cdf Fe of 5000 draws from the posterior distri-

bution.
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Figure 1: The identified set and MCMC draws

Table 1: Estimation of Ω1 = [1, 2] based on the empirical cdf

πn e−
√
n 1√

n
1

lnn

n = 500 [1.1384, 2.0295] [1.0068, 1.9331] [1.0904, 1.6207]

n = 1000 [1.0809, 1.9425] [0.9620, 1.8844] [1.1183, 1.8874]

n = 5000 [1.1045, 1.8551] [0.9944, 1.9575] [1.1878, 1.9729]
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3 Proofs

Define Aδ = {θ : Em2(X, θ)TV −1
2 Em2(X, θ) > δ}, and

A2 =
{
θ : Em2(X, θ) = 0,min

j
Em1j(X, θ) < 0

}
Lemma 3.1. ∀δ > 0, for some a > 0∫

Aδ∪A2

p(θ)L(θ)dθ = op(e−an)

Proof. Define Âδ = {θ : m̄2(θ)TV −1
2 m̄2(θ) > δ},∫

Aδ

p(θ)L(θ)dθ =
∫
Aδ∩Âδ

p(θ)L(θ)dθ +
∫
Aδ∩Âcδ

p(θ)L(θ)dθ

≤
∫
Âδ

p(θ)L(θ)dθ +
∫
Aδ∩Âcδ

p(θ)L(θ)dθ

Aδ ∩ Âcδ = {θ : Em2(X, θ)TV −1
2 Em2(X, θ) > δ} ∩ {θ : m̄2(θ)TV −1

2 m̄2(θ) ≤ δ} → φ w.p.a.1.

Hence for large n, µ(Aδ ∩ Âcδ) = 0. Then ∃N , when n > N , w.p.a.1,∫
Aδ

p(θ)L(θ)dθ ≤
∫
Âδ

p(θ)
∏
i ψi√

det(V2)
e−

n
2 m̄2(θ)TV −1

2 m̄2(θ)−ψT (Σ−1
1 ΣT3 m̄2(θ)+m̄1(θ))+ 1

2nψ
TΣ−1

1 ψdθ

For some ε > 0, for large n,

e−ψ
T (Σ−1

1 ΣT3 m̄2(θ)+m̄1(θ))+ 1
2nψ

TΣ−1
1 ψ ≤ e‖ψ‖(supθ∈Θ‖Σ

−1
1 ΣT3 Em2(X,θ)+Em1(X,θ)‖+ε)+ε <∞

Thus for some positive constant C, and large n,∫
Aδ

p(θ)L(θ)dθ ≤ C ·
∫
Âδ

p(θ)e−
n
2 m̄2(θ)TV −1

2 m̄2(θ)dθ ≤ C · e− δ2n

In addition, µ(A2) = 0 and p(θ)L(θ) is bounded on Θ, hence∫
Aδ∪A2

p(θ)L(θ)dθ ≤
∫
Aδ

p(θ)L(θ)dθ +
∫
A2

p(θ)L(θ)dθ = Op(e−
δ
2n)

�

Lemma 3.2. ∀δ > 0, for some a > 0,∫
(Ωc)−δ

p(θ)L(θ)dθ = op(e−an)
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Proof. : ∀θ ∈ (Ωc)−δ , then either ∃δ(θ) > 0, θ ∈ Aδ(θ), or θ ∈ A2, hence θ ∈ Aδ(θ) ∪ A2. Thus

(Ωc)−δ ⊂
⋃
θ∈(Ωc)−δ [Aδ(θ) ∪ A2]. Note that (Ωc)−δ = {θ : d(θ,Ω) ≥ δ} is compact, hence ∃

{Aδ1 ∪A2, ..., AδN ∪A2} ⊂ {Aδ(θ) ∪A2 : θ ∈ (Ωc)−δ} such that

(Ωc)−δ ⊂
N⋃
i=1

[Aδi ∪A2]

Let δ∗ = min{δi, i = 1, ..., N}. For a > b > 0, Aa ⊂ Ab, hence (Ωc)−δ ⊂ Aδ∗ ∪A2. Therefore∫
(Ωc)−δ

p(θ)L(θ)dθ ≤
∫
Aδ∗∪A2

p(θ)L(θ)dθ = op(a−an)

�

Lemma 3.3. If Zθ follows Nr(m̄1(θ) + Σ−1
1 ΣT3 m̄2(θ) − 1

nΣ−1
1 ψ, 1

nΣ−1
1 ), then ∀ω ∈ Ξ, ∃R > 0,

w.p.a.1,

lim inf
n→∞

inf
θ∈B(ω,R)

P (Zθ ≥ 0) > 0

Proof. Let ξn(θ) = m̄1(θ)+Σ−1
1 ΣT3 m̄2(θ)− 1

nΣ−1
1 ψ. ∀ω ∈ Ξ, Em1(X,ω) > 0. SinceEm1(X, θ)

is continuous on Θ, there exist ε > 0, and an open ballB(ω,R1), such that infθ∈B(ω,R1)Em1(X, θ) >

ε, where the inequality is taken coordinately. Moreover, Em2(X,ω) = 0; hence by the continuity of

Em2(X, .), ∃R < R1 such that supθ∈B(ω,R) |Σ−1
1 ΣT3 Em2(X, θ)| < ε, where |.| denotes the abso-

lute value, taken coordinately. Therefore, infθ∈B(ω,R)(Em1(X, θ) + Σ−1
1 ΣT3 Em2(X, θ)) > 0. ∃N ,

when n > N , w.p.a.1, coordinately.

inf
θ∈B(ω,R)

(m̄1(θ) + Σ−1
1 ΣT3 m̄2(θ)− 1

n
Σ−1

1 ψ) = inf
θ∈B(ω,R)

ξn(θ) > 0

Let σ2
1j denote the jth diagonal element in Σ−1

1 , and ξnj(θ) denote the jth element of ξn(θ). Then

inf
θ∈B(ω,R)

P (Zθ ≥ 0) ≥ 1− r · Φ

−√n inf
θ∈B(ω,R)

min
j

ξnj(θ)√
σ2

1j


≥ 1− r · Φ

−√nmin
j

infθ∈B(ω,R) ξnj(θ)√
σ2

1j


>n 0

�

Lemma 3.4. For any βn →∞, ∀ω ∈ Ξ, ∃R > 0, ∀δ < R, w.p.a.1,∫
B(ω,δ)

p(θ)L(θ)dθ � 1
βn
n−d/2

where d = dim(ω).
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Proof. ∀ω ∈ Ξ, it can be shown that (using lemma C.3), ∃R > 0, and a positive constant C, such

that ∫
B(ω,R)

p(θ)L(θ)dθ ≥ C
∫
B(ω,R)

p(θ)e−
n
2 m̄2(θ)TV −1

2 m̄2(θ)dθ

For deterministic V −1
2 , and a vector α, we write weighted norm ‖α‖2V = αTV −1

2 α. Then we have

1
2
‖m̄2(θ)‖2V ≤ ‖Em2(X, θ)‖2V + ‖m̄2(θ)− Em2(X, θ)‖2V

By assumption 4.3, for any βn →∞, choose β‖V
−1‖−1

n , so that

e−n‖m̄2(θ)−Em2(X,θ)‖2V ≥ e− ln β‖V
−1‖−1

n ‖V −1‖ = β−‖V
−1‖−1·‖V −1‖

n =
1
βn

For some constant α > 1, let U = {θ : ‖Em2(X, θ)‖2V < lnα
n }. By assumption 3.3, ∃R′ < R, such

that for any 0 < δ < R′, infθ∈B(ω,δ) p(θ) > 0. Then∫
B(ω,δ)

p(θ)L(θ)dθ ≥ C
∫
B(ω,δ)∩U

1
αβn

p(θ)dθ ≥ Const

βn
µ(B(ω, δ) ∩ U)

To derive a lower bound for the Lebesgue measure of B(ω, δ)∩U , note that Em2(X, θ) is Lipschitz

continuous, and Em2(X,ω) = 0, ∃ λ > 0, such that ∀θ ∈ B(ω, δ), ‖Em2(X, θ)‖2 ≤ λ‖θ − ω‖2.

Then

‖Em2(X, θ)‖2V ≤ ‖Em2(X, θ)‖2 · ‖V −1‖2

≤ λ‖V −1‖2 · ‖θ − ω‖2

≤ λ‖V −1‖2|θ − ω|2∞

where |θ − ω|∞ = maxj |θj − ωj |. Hence {θ : |θ − ω|2∞ < lnα
λ‖V −1‖2n} ⊂ U . Moreover, for large

enough n, {θ : |θ − ω|2∞ < lnα
λ‖V −1‖2n} ⊂ B(ω, δ), thus µ(B(ω, δ) ∩ U) ≥ µ({θ : |θ − ω|2∞ <

lnα
λ‖V −1‖2n}) = (2

√
lnα

λ‖V −1‖2 )dn−d/2. Hence
∫
B(ω,δ)

p(θ)L(θ)dθ � 1
βn
n−d/2.

Proof of Theorem 1.1

Proof. 1. Let βn = nd/2. Lemma C.4 implies that
∫

Θ
p(θ)L(θ)dθ � n−d. Thus by Lemma C.2,

for some α > 0,

P (θ ∈ (Ωc)−δ|Xn) =

∫
(Ωc)−δ

p(θ)L(θ)dθ∫
Θ
p(θ)L(θ)dθ

≺ op(e−αn)
n−d

= op(e−
α
2 n)

2. The result follows immediately from Lemma C.4 and that
∫

Θ
p(θ)L(θ)dθ is bounded. �
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