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Examples of Loss of Identification

Examples of Loss of Identification

Missing Data Problem.
Y € {0, 1}, whether the treatment is successful.

Z € {0, 1}, indicator of missing data. Y is observed iff Z = 1.

0o = P(Y = 1): the parameter of interest.

fo=P(Y =1Z=1)P(Z=1)+|P(Y =1|Z=0)|P(Z =0)




Examples of Loss of Identification

e “Missing at random” assumes that
P(Y=1|Z=0)=P(Y =1|Z=1).

e Partial identification approach: P(Y = 1|Z =0) € [0,1].
Therefore 6 is not point identified, but satisfies

P(Y=11Z=1)P(Z=1) <6

<P(Y=11Z=1)P(Z=1)+P(Z=0)



Examples of Loss of Identification

Interval censored data
Let Y € [Y;, Y2]. Y7 and Y- are observed, but not Y. Then
EY; < EY < EY5. If 65 = EY, moment inequalities:

E(Ys—00) > 0,E(6 — Y1) >0

Interval regression Y = X760y 4 ¢, E(Ze) = 0. Y € [Y;, Yo

Z is instrumental variable. Zs > 0 =

E(ZsY:) < E(ZsX)T0y < E(ZsY>)
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Moment Inequality Models: Bayesian Approach

Without further assumptions, the parameter is not identified.

= Moment Inequalities:

Exm(X,6p) >0

e m(.,.): X x © — RP is a known function of (x, 6).
e 0y c©CRY.

e X is observable random variable.
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Moment Inequality Models: Bayesian Approach

e Recall the interval censored example:
E(Y1) <6y < E(Y>). Data= (Y3, Y2)

e Interval regression example:
E(ZYy) < E(ZX)T0y < E(ZY>), Data= (Z, X, Y12)
ZXT0y — ZY4
Exm(Data, 6y) = E >0
ZYs — ZX T,
e Missing data problem:

>0

EXm(Xyeo)E< bo—I(Y =1,Z=1) )

(Y =1,Z=1)+ I(Z =0)— 6



Moment Inequality Models: Bayesian Approach

e Loss of identification due to:
if define
Q={0ec©:Exm(X,0)>0}.

Q # {60}
e Og: partially identified on Q;

Q: identified region.
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Moment Inequality Models: Bayesian Approach

Literature

Frequentist

o Consistent set estimator of Q:
Horowitz and Manski (2000), Chernozhukov, Hong and
Tamer (2007), Beresteanu and Molinari (2008).

e Confidence region of 6p: Imbens and Manski (2004),

Manski and Tamer (2002), Rosen (2008), etc.
e Hypothesis tests: Bugni (2008), Canay (2008), etc.

e Model selection: Andrews and Soares (2007), Shi (2010).

39



Moment Inequality Models: Bayesian Approach

Bayesian approach
Moon and Schorfheid (2009)

e Prior placed on nuisance parameter, related to 6y
e assume the true likelihood function
Our approach:
o Study general Exm(X, ) > 0, prior on 6 directly
e Assume less: derive likelihood from moment inequalities

e Make inference on the moments and model
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Moment Inequality Models: Bayesian Approach

In This Paper:

1. Assume less on incomplete data: Identification

< Bayesian Moment Inequalities

2. Assume less on distribution: likelihood

<« Bayesian Moment inequalities

3. Incorporate prior information

< Bayesian moment inequalities
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Moment Inequality Models: Bayesian Approach

Proposed Bayesian Approach

Key Questions:

1.

2.

How to derive the posterior of 6, from Exm(X,6y) > 07?
Is the derived posterior reliable in some sense?
What can we say about 6y and the ID region?

What if some moment inequalities are mis-specified?
How likely?

(Moment and Model Selection)
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Moment Inequality Models: Bayesian Approach

Question 1: How to derived the posterior?
e p(f|Data) x p(6)xlikelihood.
Construct the likelihood first.

e In practice,
What is known: moment inequalities.

What is not known: the true likelihood function

e Derive from Exm(X,60) > 0.
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Moment Inequality Models: Bayesian Approach

o Define A\g = Exm(X, ), and m(0) = L S°7 . m(X;,6).
o CLT = v/n(M(fo) — Ao) —¢ N(O, V)

L(6, ) x exp (—g(m(e) — NV (m(e) - A))

e QUESTION: Does it have a likelihood interpretation?
Likelihood= p(Datal0).
ANSWER: Yes We Can! Best approximation to the true
likelihood subject to moment conditions (Kim 2002).

“limited information likelihood”
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Limited Information Likelihood

P: true likelihood

Space of all Q Kullback-Leibler
distribution satisfying ‘< distance
moment inequality /\.////"

[ e

Lo, ) =P P*
L(6, \) is called the “limited information likelihood”.
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o )\ = Exm(X, 9)
Put prior p(\) = ve=>"¥, X > 0.

e Integrate out A:

p(6|Data) « p(d) / Lo p(3)0x

)
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Moment Inequality Models: Bayesian Approach

Question 2: Is the derived posterior reliable?
Answer: show posterior consistency.

What do | mean by “Posterior Consistency”?
ID region: Q = {6 € © : Exm(X,0) > 0}.

For example, when Q = [EY7, EY2] = [0, 5],

flat prior
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Moment Inequality Models: Bayesian Approach

Technical Assumptions

. The parameter space is compact.
. The identified region has nonempty interior int(2).
. Emi(X,.) : © — R is continuous for each component j.

. The prior p(#) is continuous and bounded away from zero

on €.
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Posterior Consistency

Theorem 1 (Posterior Consistency)
Under regularity conditions:

1. For any small neighborhood of 2, for some a > 0,
P(6 ¢ Q°|Data) = op(e~2")
2. V open set A C int(Q),

Iinm inf P(6 € AlData) > 0
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Moment Inequality Models: Bayesian Approach

Heuristic Proof:
p(OID) = p(6) | _exp(-Jm(e) ~ AlF)p(r)dx
A>0
where
1m(8) — Alf§ = (M(6) — X)TV1(M(6) — \)

vV >0.
ID region: Q = {# € © : Exm(X,6) > 0}
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Moment Inequality Models: Bayesian Approach

Question 3: What can we say about 47 and the ID region?
Numerical Example: Missing Data.
e Y = I(employment)
e Z = I(Nonmissing)
P(Z =0) =0.33,
P(Y = 1|missing) = 0.1, P(Y = 1|Nonmissing) = 0.7.
[ 0=P(Y=1)=05

Simulated 5000 data, where 1622 were missing.

. 2
P(Y = 1|Nonmissing) = ﬁ =0.69

“Missing at random” estimates = 0.69

95% confidence interval [0.68,0.71].
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Moment Inequality Models: Bayesian Approach

Moment inequality approach
lower = P(Y =1|Z =1)P(Z = 1)

upper = P(Y =1|1Z =1)P(Z=1)+ P(Z =0)

True ID region: [0.47,0.80]. If p(#) ~ Uniform[0, 1]

Uniform[0,1] prior‘
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Moment Inequality Models: Bayesian Approach

Previous study (with additional effort or by a different method):

25 Y’s are observed both for people with Z =1 and Z = 0.

p=0.45 se=/P0R _ 1

prior of #: N(.45,0.12).

Figure: posterior density

—— Uniform([0,1] prior
—— N(.45, .1?) prior

1 1 I | 1 .
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Moment Inequality Models: Bayesian Approach

Table: 95% Confidence v.s. 95% Credible Interval

Method C.l Length
Freq. Confidence [0.465,0.801] | 0.336
Imbens & Manski (2004)
Bayes. Credible [0.477,0.772] | 0.295
Uniform([0, 1] prior
Bayes. Credible [0.465,0.679] | 0.214

N(.45,0.12) prior
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Moment Inequality Models: Bayesian Approach

Key Questions:
1. How to derive the posterior of 6y from Exm(X, 6y) > 0?
2. Is the derived posterior reliable in some sense?
3. What can we say about 6y and the ID region?

4. What if some moment inequalities are mis-specified?
How likely?

(Moment and Model Selection)

25/39



Examples of Loss of Identification Moment Inequality Models: Bayesian Approach Moment and Model Selection Conclusions anc

Moment and Model Selection

e Suppose we have p moment inequalities:
Emi(X,0)>0, i=1,...p

where 0 = (91,...,(9k) € 01 x O

e If incorrectly specified,

Q={0cO:Em(X,0)>0,i=1,..pt=0
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Moment and Model Selection

Example

Linear regression model: Y = X760 + .

Z: candidate instrumental variables.

¢ Fix Zs such that E(Zse) = 0, then
E(Zs(Y -XT6)=0

Model selection: select covariates in X to model Y.
Set© =04 x {0} x {0}, ...
o Fix ©, if E(Zse) # 0, it is possible that

{0 €0 E(Z(Y - XT0))=0} =0

Moment selection: select valid IV.
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Moment and Model Selection

Interval regression model: Y = X760 +¢, Y is censored in
[Y1, Y2]. Z : candidate instrumental variables.

e Fix Zs > 0 such that E(Zse) = 0, then

Y, — X760
EZ; >0 (3.1)
XT0-Y,

Model selection: Select parameter space, e.g.,
© =01 x {0} x {0}, ...
e Fix ©:if E(Zse) # 0, then it is possible that (??) does not
hold for any 6 € ©.
Moment selection: Select valid IV.
Problem: choose suitable combination (Zs, ©), such that ID

region is not empty.
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Moment and Model Selection

e Cs(Ms, ©5): selected combination

e A combination Cs is called compatible, if
Q={6s € ©s: EMs(X,05) > 0}

is not empty.
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Moment and Model Selection

Goals of Moment/Model Selection
1. Select compatible combinations: define non-empty

identified regions.

2. Among compatible, select the optimal one:
(i) Simpler models are favored.

(if) Contains as many moment inequalities as possible.
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Moment and Model Selection

o Let A = EM(X, 05), M = (Ms, MS)T.

e Limited Information Likelihood:

n
L(es, As, )\g) = eXp(—éG(Qs, )\s, Ag))

where

;
Ms(0s) — Ms(0s) — A
G(QS’ )\57 )\g) _ ) S( S) S V_1 : S( S) S
Mg(0s) — A¢ Mg(0s) — A¢
e marginal posterior of C..

P(Cs|Data) o [ L(0s, A, Cs)p(0s|Cs)p(As| Cs)P(AS] Cs)
dOsdAsd\§ x p(Cs)
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Goal 1: Selecting Compatible Cs

Theorem 2

Under some regularity conditions,

1. If Cs is compatible (2 # (),
Iinm inf p(Cs|Data) > 0
2. If Cg is not compatible (2 = (), then for some o > 0,

p(Cs|Data) = op(e™*")p(Cs)
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Moment and Model Selection

Goal 2: Selecting Optimal Cg

Theorem 3

Put equal priors on all Cs, p(\s) = ¢ exp(—1 T \s).

P(AE[Cs) ~ MYN(O, 021),  p(6s|Cs) ~ MVN(0, no2l).

02 — oo, but slower than exponential rate. Define
C"=arg max p(Cs|Data)
Asympitotically, C* is compatible, and with the largest

dim(Ms) — dim(9s).
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Conclusions anc

Conclusions

¢ Loss of Identification exists commonly in statistical models

incomplete data: missing, censored.

e Our approach

1.

Assume less on incomplete data: vs Identification

< Bayesian Moment Inequalities

. Assume less on distribution: vs Moon & Schorfheid (2009)

< Bayesian Moment Inequalities

. Incorporate prior information: vs Frequentist

< Bayesian Moment Inequalities
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Can select moment and models with posterior probability.

Max posterior:
e compatible model
e smallest ID

e simplest model
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Future Works

Survival Analysis
We observe i.i.d. observations of :
e Y* =min(Y, C): censored survival time.
e d = I(Y < C): indicator of censoring.
Model: Y = X760 + ¢. Med(¢|X) = 0.
Traditional app. Assume
Moment Ineq app. Khan and Tamer (2009):
For any h(X) > 0,
E[%h(X) —I(Y* > XTo)h(X)] >0
EldI(Y* < XTO)h(X) — %h(X)] >0
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Theoretical Directions

e Limited Information Likelihood: derived directly from
Exm(X,0) >0

Other moment condition-based likelihood: empirical
likelihood (EL, Owen 1990), generalized empirical
likelihood (GEL, Newey and Smith 2001).

LIL EL GEL
point identi. | Kim (2002) Lazar(2003) CH(2003)

partial identi. thistalk  working paper  not yet
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e High dimensional variable selection

e Nonparametric IV regression
Y=09(X)+e¢

E(e|W) = 0= E(Y|W) = E(g(X)|W).
9 =271 bivi, gp = 374 bihi.
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