Bayesian Analysis in Partially Identified Models

Yuan Liao

Presented at:

CentER for Research in Economics and Business

Tilburg University

March 4, 2010

< ロ > < 回 > < 回 > < 回 > < 回 > -

э

1/39

Examples of Loss of Identification Moment Inequality Models: Bayesian Approach Moment and Model Selection Conclusions and

Outline

(日)

2/39

Examples of Loss of Identification

Moment Inequality Models: Bayesian Approach

Moment and Model Selection

Conclusions and Future Works

Examples of Loss of Identification

Missing Data Problem.

 $Y \in \{0, 1\}$, whether the treatment is successful.

 $Z \in \{0, 1\}$, indicator of missing data. Y is observed iff Z = 1.

 $\theta_0 = P(Y = 1)$: the parameter of interest.

$$\theta_0 = P(Y = 1 | Z = 1)P(Z = 1) + P(Y = 1 | Z = 0)P(Z = 0)$$

3/39

"Missing at random" assumes that

$$P(Y = 1 | Z = 0) = P(Y = 1 | Z = 1).$$

Partial identification approach: P(Y = 1|Z = 0) ∈ [0, 1].
 Therefore θ₀ is not point identified, but satisfies

$$P(Y=1|Z=1)P(Z=1) \le \theta_0$$

$$\leq P(Y = 1 | Z = 1)P(Z = 1) + P(Z = 0)$$

Interval censored data

Let $Y \in [Y_1, Y_2]$. Y_1 and Y_2 are observed, but not Y. Then $EY_1 \leq EY \leq EY_2$. If $\theta_0 = EY$, moment inequalities:

$$E(Y_2 - \theta_0) \geq 0, E(\theta_0 - Y_1) \geq 0$$

Interval regression $Y = X^T \theta_0 + \epsilon$, $E(Z\epsilon) = 0$. $Y \in [Y_1, Y_2]$ *Z* is instrumental variable. $Z_s \ge 0 \Rightarrow$

$$E(Z_sY_1) \leq E(Z_sX)^T heta_0 \leq E(Z_sY_2)$$

<ロト < 回 ト < 巨 ト < 巨 ト 三 の Q () 5/39

Without further assumptions, the parameter is not identified.

 \Rightarrow Moment Inequalities:

 $E_X m(X, \theta_0) \geq 0$

- m(.,.) : $\mathcal{X} \times \Theta \to \mathbb{R}^p$, is a known function of (x, θ) .
- $\theta_0 \in \Theta \subset \mathbb{R}^d$.
- X is observable random variable.

Recall the interval censored example:

$$E(Y_1) \le heta_0 \le E(Y_2)$$
. Data= (Y_1, Y_2)
 $E_X m(X, heta_0) = E \begin{pmatrix} heta_0 - Y_1 \\ Y_2 - heta_0 \end{pmatrix} \ge 0$

Interval regression example:

$$egin{aligned} & E(ZY_1) \leq E(ZX)^T heta_0 \leq E(ZY_2), \, \textit{Data} = (Z, X, \, Y_{12}) \ & E_X \textit{m}(\textit{Data}, heta_0) = E egin{pmatrix} ZX^T heta_0 - ZY_1 \ ZY_2 - ZX^T heta_0 \end{pmatrix} \geq 0 \end{aligned}$$

• Missing data problem:

$$E_X m(X, \theta_0) = E \begin{pmatrix} \theta_0 - I(Y = 1, Z = 1) \\ I(Y = 1, Z = 1) + I(Z = 0) - \theta_0 \end{pmatrix} \ge 0$$

• Loss of identification due to:

if define

$$\Omega = \{\theta \in \Theta : E_X m(X, \theta) \ge 0\}.$$

 $\Omega \neq \{\theta_0\}$

• θ_0 : partially identified on Ω ;

 Ω : *identified region*.

Literature

Frequentist

- Consistent set estimator of Ω:
 Horowitz and Manski (2000), Chernozhukov, Hong and Tamer (2007), Beresteanu and Molinari (2008).
- Confidence region of θ₀: Imbens and Manski (2004),
 Manski and Tamer (2002), Rosen (2008), etc.
- Hypothesis tests: Bugni (2008), Canay (2008), etc.
- Model selection: Andrews and Soares (2007), Shi (2010).

Bayesian approach

Moon and Schorfheid (2009)

- Prior placed on nuisance parameter, related to θ_0
- assume the true likelihood function

Our approach:

- Study general $E_X m(X, \theta) \ge 0$, prior on θ_0 directly
- Assume less: derive likelihood from moment inequalities
- Make inference on the moments and model

In This Paper:

1. Assume less on incomplete data: Identification

Hayesian Moment Inequalities

- 2. Assume less on distribution: likelihood
 - Hayesian Moment inequalities
- 3. Incorporate prior information
 - Bayesian moment inequalities

Proposed Bayesian Approach

Key Questions:

- 1. How to derive the posterior of θ_0 from $E_X m(X, \theta_0) \ge 0$?
- 2. Is the derived posterior reliable in some sense?
- 3. What can we say about θ_0 and the ID region?
- 4. What if some moment inequalities are mis-specified? How likely?

(Moment and Model Selection)

Question 1: How to derived the posterior?

• $p(\theta|Data) \propto p(\theta) \times likelihood.$

Construct the likelihood first.

• In practice,

What is known: moment inequalities.

What is not known: the true likelihood function

• Derive from $E_X m(X, \theta) \ge 0$.

• Define $\lambda_0 = E_X m(X, \theta_0)$, and $\overline{m}(\theta) = \frac{1}{n} \sum_{i=1}^n m(X_i, \theta)$.

•
$$\operatorname{CLT} \Rightarrow \sqrt{n}(\bar{m}(\theta_0) - \lambda_0) \rightarrow^d N(0, V)$$

$$L(\theta,\lambda) \propto \exp\left(-\frac{n}{2}(\bar{m}(\theta)-\lambda)^T V^{-1}(\bar{m}(\theta)-\lambda)\right)$$

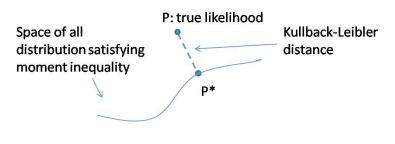
QUESTION: Does it have a likelihood interpretation?
 Likelihood= p(Data|θ).

ANSWER: Yes We Can! Best approximation to the true

likelihood subject to moment conditions (Kim 2002).

"limited information likelihood"

Limited Information Likelihood



 $L(\theta, \lambda) \rightarrow^{p} P^{*}$

 $L(\theta, \lambda)$ is called the "limited information likelihood".

- $\lambda = E_X m(X, \theta)$. Put prior $p(\lambda) = \psi e^{-\lambda^T \psi}, \lambda \ge 0$.
- Integrate out λ :

$$p(\theta|Data) \propto p(\theta) \int_{[0,\infty)^p} L(\theta,\lambda) p(\lambda) d\lambda$$

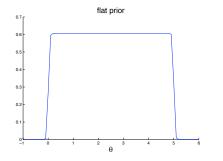
Question 2: Is the derived posterior reliable?

Answer: show posterior consistency.

What do I mean by "Posterior Consistency"?

ID region: $\Omega = \{ \theta \in \Theta : E_X m(X, \theta) \ge 0 \}.$

For example, when $\Omega = [EY_1, EY_2] = [0, 5]$,



Technical Assumptions

- 1. The parameter space is compact.
- 2. The identified region has nonempty interior $int(\Omega)$.
- 3. $Em_j(X,.): \Theta \to \mathbb{R}$ is continuous for each component *j*.
- The prior p(θ) is continuous and bounded away from zero on Ω.

Posterior Consistency

Theorem 1 (Posterior Consistency)

Under regularity conditions:

1. For any small neighborhood of Ω , for some a > 0,

$${\it P}(heta
otin \Omega^{\delta} | {\it Data}) = {\it o}_{\it p}({\it e}^{-{\it an}})$$

2. \forall open set $A \subset int(\Omega)$,

$$\liminf_{n\to\infty} P(\theta \in A|Data) > 0$$

Heuristic Proof:

$$p(heta|D) \propto p(heta) \int_{\lambda \geq 0} \exp(-rac{n}{2} ||ar{m}(heta) - \lambda||_V^2) p(\lambda) d\lambda$$

where

$$||\bar{m}(\theta) - \lambda||_{V}^{2} = (\bar{m}(\theta) - \lambda)^{T} V^{-1}(\bar{m}(\theta) - \lambda)$$

V > 0. ID region: $\Omega = \{\theta \in \Theta : E_X m(X, \theta) \ge 0\}$

Question 3: What can we say about θ_0 and the ID region?

Numerical Example: Missing Data.

- *Y* = *I*(*employment*)
- Z = I(Nonmissing)
- P(Z = 0) = 0.33,

•
$$P(Y = 1 | missing) = 0.1, P(Y = 1 | Nonmissing) = 0.7.$$

$$\theta = P(Y=1) = 0.5$$

• Simulated 5000 data, where 1622 were missing.

$$\hat{P}(Y=1|Nonmissing)=rac{2355}{5000-1622}=0.69$$

• "Missing at random" estimates $\hat{\theta} = 0.69$ 95% confidence interval [0.68, 0.71].

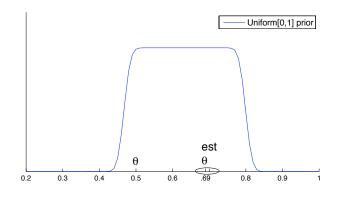
21/39

Moment inequality approach

lower =
$$P(Y = 1 | Z = 1)P(Z = 1)$$

upper =
$$P(Y = 1 | Z = 1)P(Z = 1) + P(Z = 0)$$

True ID region: [0.47, 0.80]. If $p(\theta) \sim Uniform[0, 1]$



22/39

Previous study (with additional effort or by a different method):

25 Y's are observed both for people with Z = 1 and Z = 0. $\hat{p} = 0.45$, $se = \sqrt{\frac{\hat{p}(1-\hat{p})}{25}} = .1$ prior of θ : $N(.45, 0.1^2)$.

Figure: posterior density

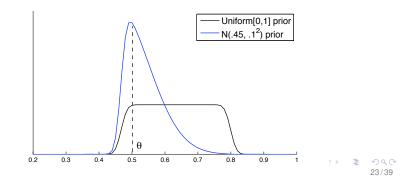


Table: 95% Confidence v.s. 95% Credible Interval

Method	C.I.	Length
Freq. Confidence	[0.465, 0.801]	0.336
Imbens & Manski (2004)		
Bayes. Credible	[0.477, 0.772]	0.295
Uniform[0, 1] prior		
Bayes. Credible	[0.465, 0.679]	0.214
N(.45, 0.1 ²) prior		

Key Questions:

- 1. How to derive the posterior of θ_0 from $E_X m(X, \theta_0) \ge 0$?
- 2. Is the derived posterior reliable in some sense?
- 3. What can we say about θ_0 and the ID region?
- 4. What if some moment inequalities are mis-specified? How likely?

(Moment and Model Selection)

Moment and Model Selection

• Suppose we have *p* moment inequalities:

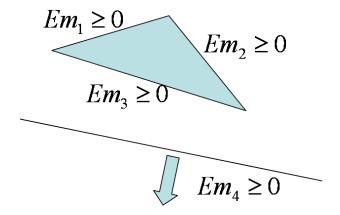
$$Em_i(X, \theta) \geq 0, \quad i = 1, ..., p$$

where
$$\theta = (\theta_1, ..., \theta_k) \in \Theta_1 \times \Theta_k$$

• If incorrectly specified,

$$\Omega = \{\theta \in \Theta : Em_i(X, \theta) \ge 0, i = 1, ..., p\} = \emptyset$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □



4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (や 27/39)

Example

Linear regression model: $Y = X^T \theta + \epsilon$.

Z: candidate instrumental variables.

• Fix Z_s such that $E(Z_s \epsilon) = 0$, then

$$E(Z_{s}(Y-X^{T}\theta))=0$$

Model selection: select covariates in *X* to model *Y*.

Set $\Theta = \Theta_1 \times \{0\} \times \{0\}, ...$

• Fix Θ , if $E(Z_{s}\epsilon) \neq 0$, it is possible that

$$\{\theta \in \Theta : E(Z_s(Y - X^T \theta)) = 0\} = \emptyset$$

Moment selection: select valid IV.

28/39

Interval regression model: $Y = X^T \theta + \epsilon$, Y is censored in

 $[Y_1, Y_2]$. Z : candidate instrumental variables.

• Fix $Z_s \ge 0$ such that $E(Z_s \epsilon) = 0$, then

$$EZ_{s}\begin{pmatrix} Y_{2} - X^{T}\theta \\ X^{T}\theta - Y_{1} \end{pmatrix} \ge 0$$
(3.1)

Model selection: Select parameter space, e.g.,

 $\Theta = \Theta_1 \times \{0\} \times \{0\}, ...$

Fix Θ: if *E*(*Z_sε*) ≠ 0, then it is possible that (??) does not hold for any θ ∈ Θ.

Moment selection: Select valid IV.

Problem: choose suitable combination (Z_s, Θ) , such that ID region is not empty.

- $C_s(M_s, \Theta_s)$: selected combination
- A combination C_s is called compatible, if

$$\Omega = \{\theta_s \in \Theta_s : EM_s(X, \theta_s) \ge 0\}$$

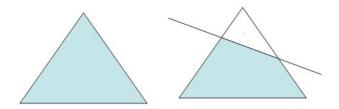
(日) (四) (E) (E) (E)

30/39

is not empty.

Goals of Moment/Model Selection

- 1. Select compatible combinations: define non-empty identified regions.
- 2. Among compatible, select the optimal one:
 - (i) Simpler models are favored.
 - (ii) Contains as many moment inequalities as possible.



• Let
$$\lambda = EM(X, \theta_s), M = (M_s, M_s^c)^T$$
.

Limited Information Likelihood:

$$L(\theta_{s},\lambda_{s},\lambda_{s}^{c}) = \exp(-\frac{n}{2}G(\theta_{s},\lambda_{s},\lambda_{s}^{c}))$$

where

$$G(\theta_s, \lambda_s, \lambda_s^c) = \left\{ \begin{pmatrix} \bar{M}_s(\theta_s) - \lambda_s \\ \bar{M}_s^c(\theta_s) - \lambda_s^c \end{pmatrix}^T V^{-1} \begin{pmatrix} \bar{M}_s(\theta_s) - \lambda_s \\ \bar{M}_s^c(\theta_s) - \lambda_s^c \end{pmatrix} \right\}$$

• marginal posterior of C_s.

 $\begin{aligned} & P(C_s | Data) \propto \int L(\theta_s, \lambda, C_s) p(\theta_s | C_s) p(\lambda_s | C_s) p(\lambda_s^c | C_s) \\ & d\theta_s d\lambda_s d\lambda_s^c \times p(C_s) \end{aligned}$

Goal 1: Selecting Compatible C_s

Theorem 2

Under some regularity conditions,

1. If C_s is compatible $(\Omega \neq \emptyset)$,

 $\liminf_{n\to\infty} p(C_s|\textit{Data}) > 0$

2. If C_s is not compatible ($\Omega = \emptyset$), then for some $\alpha > 0$,

$$p(C_s|Data) = o_p(e^{-\alpha n})p(C_s)$$

Goal 2: Selecting Optimal C_s

Theorem 3

Put equal priors on all C_s , $p(\lambda_s) = \psi \exp(-\psi^T \lambda_s)$.

 $p(\lambda_s^c|C_s) \sim MVN(0, \sigma_n^2 I), \quad p(\theta_s|C_s) \sim MVN(0, n\sigma_n^2 I).$

 $\sigma_n^2 \rightarrow \infty$, but slower than exponential rate. Define

$$C^* = \arg \max_{C_s} p(C_s | Data)$$

Asymptotically, C* is compatible, and with the largest

 $\dim(M_s) - \dim(\Theta_s).$

Conclusions

- Loss of Identification exists commonly in statistical models incomplete data: missing, censored.
- Our approach
 - 1. Assume less on incomplete data: vs Identification
 - Hayesian Moment Inequalities
 - Assume less on distribution: vs Moon & Schorfheid (2009)
 ⇐ Bayesian Moment Inequalities
 - 3. Incorporate prior information: vs Frequentist
 - **Bayesian** Moment Inequalities

・ロ・・ (日・・ ヨ・・

36/39

Can select moment and models with posterior probability. Max posterior:

- · compatible model
- smallest ID
- simplest model

Future Works

Survival Analysis

We observe i.i.d. observations of :

- *Y*^{*} = min(*Y*, *C*): censored survival time.
- d = I(Y < C): indicator of censoring.

Model:
$$Y = X^T \theta + \epsilon$$
. Med $(\epsilon | X) = 0$.

Traditional app. Assume $C \perp Y | X$

Moment Ineq app. Khan and Tamer (2009):

For any
$$h(X) \ge 0$$
,
 $E[\frac{1}{2}h(X) - I(Y^* \ge X^T\theta)h(X)] \ge 0$
 $E[dI(Y^* \le X^T\theta)h(X) - \frac{1}{2}h(X)] \ge 0$

Theoretical Directions

· Limited Information Likelihood: derived directly from

 $E_X m(X, \theta) \geq 0$

Other moment condition-based likelihood: empirical

likelihood (EL, Owen 1990), generalized empirical

likelihood (GEL, Newey and Smith 2001).

	LIL	EL	GEL
point identi.	Kim (2002)	Lazar(2003)	CH(2003)
partial identi.	this talk	working paper	not yet

- High dimensional variable selection
- Nonparametric IV regression

$$Y = g(X) + \epsilon$$

・ロト ・四ト ・ヨト ・ヨト

39/39

$$E(\epsilon|W) = 0 \Rightarrow E(Y|W) = E(g(X)|W).$$

$$g = \sum_{i=1}^{\infty} b_i \phi_i, \ g_b = \sum_{i=1}^{q} b_i \phi_i.$$