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Examples of Loss of Identification

Missing Data Problem.

Y ∈ {0,1}, whether the treatment is successful.

Z ∈ {0,1}, indicator of missing data. Y is observed iff Z = 1.

θ0 = P(Y = 1): the parameter of interest.

θ0 = P(Y = 1|Z = 1)P(Z = 1) + P(Y = 1|Z = 0) P(Z = 0)
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• “Missing at random” assumes that

P(Y = 1|Z = 0) = P(Y = 1|Z = 1).

• Partial identification approach: P(Y = 1|Z = 0) ∈ [0,1].

Therefore θ0 is not point identified, but satisfies

P(Y = 1|Z = 1)P(Z = 1) ≤ θ0

≤ P(Y = 1|Z = 1)P(Z = 1) + P(Z = 0)
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Interval censored data

Let Y ∈ [Y1,Y2]. Y1 and Y2 are observed, but not Y . Then

EY1 ≤ EY ≤ EY2. If θ0 = EY , moment inequalities:

E(Y2 − θ0) ≥ 0,E(θ0 − Y1) ≥ 0

Interval regression Y = X T θ0 + ε, E(Z ε) = 0. Y ∈ [Y1,Y2]

Z is instrumental variable. Zs ≥ 0⇒

E(ZsY1) ≤ E(ZsX )T θ0 ≤ E(ZsY2)
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Without further assumptions, the parameter is not identified.

⇒ Moment Inequalities:

EX m(X , θ0) ≥ 0

• m(., .) : X ×Θ→ Rp, is a known function of (x , θ).

• θ0 ∈ Θ ⊂ Rd .

• X is observable random variable.
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• Recall the interval censored example:

E(Y1) ≤ θ0 ≤ E(Y2). Data= (Y1,Y2)

EX m(X , θ0) = E

θ0 − Y1

Y2 − θ0

 ≥ 0

• Interval regression example:

E(ZY1) ≤ E(ZX )T θ0 ≤ E(ZY2), Data = (Z ,X ,Y12)

EX m(Data, θ0) = E

ZX T θ0 − ZY1

ZY2 − ZX T θ0

 ≥ 0

• Missing data problem:

EX m(X , θ0) = E

 θ0 − I(Y = 1,Z = 1)

I(Y = 1,Z = 1) + I(Z = 0)− θ0

 ≥ 0
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• Loss of identification due to:

if define

Ω = {θ ∈ Θ : EX m(X , θ) ≥ 0}.

Ω 6= {θ0}

• θ0: partially identified on Ω;

Ω: identified region.
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Literature

Frequentist

• Consistent set estimator of Ω:

Horowitz and Manski (2000), Chernozhukov, Hong and

Tamer (2007), Beresteanu and Molinari (2008).

• Confidence region of θ0: Imbens and Manski (2004),

Manski and Tamer (2002), Rosen (2008), etc.

• Hypothesis tests: Bugni (2008), Canay (2008), etc.

• Model selection: Andrews and Soares (2007), Shi (2010).
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Bayesian approach

Moon and Schorfheid (2009)

• Prior placed on nuisance parameter, related to θ0

• assume the true likelihood function

Our approach:

• Study general EX m(X , θ) ≥ 0, prior on θ0 directly

• Assume less: derive likelihood from moment inequalities

• Make inference on the moments and model
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In This Paper:

1. Assume less on incomplete data: Identification

⇐ Bayesian Moment Inequalities

2. Assume less on distribution: likelihood

⇐ Bayesian Moment inequalities

3. Incorporate prior information

⇐ Bayesian moment inequalities
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Proposed Bayesian Approach

Key Questions:

1. How to derive the posterior of θ0 from EX m(X , θ0) ≥ 0?

2. Is the derived posterior reliable in some sense?

3. What can we say about θ0 and the ID region?

4. What if some moment inequalities are mis-specified?

How likely?

(Moment and Model Selection)
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Question 1: How to derived the posterior?

• p(θ|Data) ∝ p(θ)×likelihood.

Construct the likelihood first.

• In practice,

What is known: moment inequalities.

What is not known: the true likelihood function

• Derive from EX m(X , θ) ≥ 0.
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• Define λ0 = EX m(X , θ0), and m̄(θ) = 1
n
∑n

i=1 m(Xi , θ).

• CLT⇒
√

n(m̄(θ0)− λ0)→d N(0,V )

L(θ, λ) ∝ exp
(
−n

2
(m̄(θ)− λ)T V−1(m̄(θ)− λ)

)
• QUESTION: Does it have a likelihood interpretation?

Likelihood= p(Data|θ).

ANSWER: Yes We Can! Best approximation to the true

likelihood subject to moment conditions (Kim 2002).

“limited information likelihood”
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Limited Information Likelihood

L(θ, λ)→p P∗

L(θ, λ) is called the “limited information likelihood”.
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• λ = EX m(X , θ).

Put prior p(λ) = ψe−λ
Tψ, λ ≥ 0.

• Integrate out λ:

p(θ|Data) ∝ p(θ)

∫
[0,∞)p

L(θ, λ)p(λ)dλ
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Question 2: Is the derived posterior reliable?

Answer: show posterior consistency.

What do I mean by “Posterior Consistency”?

ID region: Ω = {θ ∈ Θ : EX m(X , θ) ≥ 0}.

For example, when Ω = [EY1,EY2] = [0,5],
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Technical Assumptions

1. The parameter space is compact.

2. The identified region has nonempty interior int(Ω).

3. Emj(X , .) : Θ→ R is continuous for each component j .

4. The prior p(θ) is continuous and bounded away from zero

on Ω.
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Posterior Consistency

Theorem 1 (Posterior Consistency)

Under regularity conditions:

1. For any small neighborhood of Ω, for some a > 0,

P(θ /∈ Ωδ|Data) = op(e−an)

2. ∀ open set A ⊂ int(Ω),

lim inf
n→∞

P(θ ∈ A|Data) > 0
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Heuristic Proof:

p(θ|D) ∝ p(θ)

∫
λ≥0

exp(−n
2
||m̄(θ)− λ||2V )p(λ)dλ

where

||m̄(θ)− λ||2V = (m̄(θ)− λ)T V−1(m̄(θ)− λ)

V > 0.

ID region: Ω = {θ ∈ Θ : EX m(X , θ) ≥ 0}
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Question 3: What can we say about θ0 and the ID region?

Numerical Example: Missing Data.

• Y = I(employment)

• Z = I(Nonmissing)

• P(Z = 0) = 0.33,

• P(Y = 1|missing) = 0.1, P(Y = 1|Nonmissing) = 0.7.

• θ = P(Y = 1) = 0.5

• Simulated 5000 data, where 1622 were missing.

P̂(Y = 1|Nonmissing) =
2355

5000− 1622
= 0.69

• “Missing at random” estimates θ̂ = 0.69

95% confidence interval [0.68,0.71].
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Moment inequality approach

lower = P(Y = 1|Z = 1)P(Z = 1)

upper = P(Y = 1|Z = 1)P(Z = 1) + P(Z = 0)

True ID region: [0.47,0.80]. If p(θ) ∼ Uniform[0,1]

0.2 0.3 0.4 0.5 0.6 0.8 0.9 1.69
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Uniform[0,1] prior
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!
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Previous study (with additional effort or by a different method):

25 Y’s are observed both for people with Z = 1 and Z = 0.

p̂ = 0.45, se =
√

p̂(1−p̂)
25 = .1

prior of θ: N(.45,0.12).

Figure: posterior density
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Table: 95% Confidence v.s. 95% Credible Interval

Method C.I. Length

Freq. Confidence [0.465,0.801] 0.336

Imbens & Manski (2004)

Bayes. Credible [0.477,0.772] 0.295

Uniform[0,1] prior

Bayes. Credible [0.465,0.679] 0.214

N(.45,0.12) prior
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Key Questions:

1. How to derive the posterior of θ0 from EX m(X , θ0) ≥ 0?

2. Is the derived posterior reliable in some sense?

3. What can we say about θ0 and the ID region?

4. What if some moment inequalities are mis-specified?

How likely?

(Moment and Model Selection)
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Moment and Model Selection

• Suppose we have p moment inequalities:

Emi(X , θ) ≥ 0, i = 1, ...,p

where θ = (θ1, ..., θk ) ∈ Θ1 ×Θk

• If incorrectly specified,

Ω = {θ ∈ Θ : Emi(X , θ) ≥ 0, i = 1, ...,p} = ∅
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Example

Linear regression model: Y = X T θ + ε.

Z : candidate instrumental variables.

• Fix Zs such that E(Zsε) = 0, then

E(Zs(Y − X T θ)) = 0

Model selection: select covariates in X to model Y .

Set Θ = Θ1 × {0} × {0}, ...

• Fix Θ, if E(Zsε) 6= 0, it is possible that

{θ ∈ Θ : E(Zs(Y − X T θ)) = 0} = ∅

Moment selection: select valid IV.
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Interval regression model: Y = X T θ + ε, Y is censored in

[Y1,Y2]. Z : candidate instrumental variables.

• Fix Zs ≥ 0 such that E(Zsε) = 0, then

EZs

Y2 − X T θ

X T θ − Y1

 ≥ 0 (3.1)

Model selection: Select parameter space, e.g.,

Θ = Θ1 × {0} × {0}, ...

• Fix Θ: if E(Zsε) 6= 0, then it is possible that (??) does not

hold for any θ ∈ Θ.

Moment selection: Select valid IV.

Problem: choose suitable combination (Zs,Θ), such that ID

region is not empty.
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• Cs(Ms,Θs): selected combination

• A combination Cs is called compatible, if

Ω = {θs ∈ Θs : EMs(X , θs) ≥ 0}

is not empty.
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Goals of Moment/Model Selection

1. Select compatible combinations: define non-empty

identified regions.

2. Among compatible, select the optimal one:

(i) Simpler models are favored.

(ii) Contains as many moment inequalities as possible.
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• Let λ = EM(X , θs), M = (Ms,Mc
s )T .

• Limited Information Likelihood:

L(θs, λs, λ
c
s) = exp(−n

2
G(θs, λs, λ

c
s))

where

G(θs, λs, λ
c
s) =


M̄s(θs)− λs

M̄c
s (θs)− λc

s

T

V−1

M̄s(θs)− λs

M̄c
s (θs)− λc

s




• marginal posterior of Cs.

P(Cs|Data) ∝
∫

L(θs, λ,Cs)p(θs|Cs)p(λs|Cs)p(λc
s |Cs)

dθsdλsdλc
s × p(Cs)

32 / 39



Examples of Loss of Identification Moment Inequality Models: Bayesian Approach Moment and Model Selection Conclusions and Future Works

Goal 1: Selecting Compatible Cs

Theorem 2

Under some regularity conditions,

1. If Cs is compatible (Ω 6= ∅),

lim inf
n→∞

p(Cs|Data) > 0

2. If Cs is not compatible (Ω = ∅), then for some α > 0,

p(Cs|Data) = op(e−αn)p(Cs)
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Goal 2: Selecting Optimal Cs

Theorem 3

Put equal priors on all Cs, p(λs) = ψ exp(−ψTλs).

p(λc
s |Cs) ∼ MVN(0, σ2

nI), p(θs|Cs) ∼ MVN(0,nσ2
nI).

σ2
n →∞, but slower than exponential rate. Define

C∗ = arg max
Cs

p(Cs|Data)

Asymptotically, C∗ is compatible, and with the largest

dim(Ms)− dim(Θs).
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Conclusions

• Loss of Identification exists commonly in statistical models

incomplete data: missing, censored.

• Our approach

1. Assume less on incomplete data: vs Identification

⇐ Bayesian Moment Inequalities

2. Assume less on distribution: vs Moon & Schorfheid (2009)

⇐ Bayesian Moment Inequalities

3. Incorporate prior information: vs Frequentist

⇐ Bayesian Moment Inequalities
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Can select moment and models with posterior probability.

Max posterior:

• compatible model

• smallest ID

• simplest model
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Future Works

Survival Analysis

We observe i.i.d. observations of :

• Y ∗ = min(Y ,C): censored survival time.

• d = I(Y < C): indicator of censoring.

Model: Y = X T θ + ε. Med(ε|X ) = 0.

Traditional app. Assume C ⊥ Y |X

Moment Ineq app. Khan and Tamer (2009):

For any h(X ) ≥ 0,

E [
1
2

h(X )− I(Y ∗ ≥ X T θ)h(X )] ≥ 0

E [dI(Y ∗ ≤ X T θ)h(X )− 1
2

h(X )] ≥ 0
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Theoretical Directions

• Limited Information Likelihood: derived directly from

EX m(X , θ) ≥ 0

Other moment condition-based likelihood: empirical

likelihood (EL, Owen 1990), generalized empirical

likelihood (GEL, Newey and Smith 2001).

LIL EL GEL

point identi. Kim (2002) Lazar(2003) CH(2003)

partial identi. this talk working paper not yet
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• High dimensional variable selection

• Nonparametric IV regression

Y = g(X ) + ε

E(ε|W ) = 0⇒ E(Y |W ) = E(g(X )|W ).

g =
∑∞

i=1 biφi , gb =
∑q

i=1 biφi .
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