Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood

Yuan Liao Wenxin Jiang Northwestern University

Presented at: Department of Statistics and Biostatistics Rutgers University

November 3, 2010

・ロト ・ 同ト ・ ヨト ・ ヨト

1/29

Binary Classification Problem

- Y ∈ {0,1} is a target variable to be predicted, associated with covariates X.
- Classification rule: C(X, θ) ∈ {0, 1}. θ: action parameter
 Example: C(X, θ) = I(X^Tθ > 0)
- Classification risk: E(I(Y, C(X, θ))|θ). We consider absolute loss: I(Y, C(X, θ)) = |Y - C(X, θ)|.
- Let $r = E|Y C(X, \theta)|$: risk parameter.
- Observe i.i.d. data $D = (Y_1, X_1, ..., Y_n, X_n)$

In This Paper

- Classical parametric approach assumes that P(Y = 1|X) has a parametric form, i.e., logistic regression.
- This paper: does not specify a parametric form of P(Y = 1|X), to avoid mis-specification
- $C(X, \theta)$ is fixed.
- The only information we have is

$$|\mathbf{E}|\mathbf{Y} - \mathbf{C}(\mathbf{X}, \theta)| = r$$

We would like to control *r*, and answer questions like: In order for *r* ≤ 0.1, what action θ should be taken?

Our Bayesian Approach

- We construct the posterior $P(\theta, r | Data)$.
- Once the posterior is obtained, it allows us to look at:
 - $P(\theta | r \leq r_0, Data)$
 - *P*(*r*|*θ*, *Data*)
- When X is multi-dimensional: we can do model selection.
 - $M_1 = (X_1, X_2)$
 - $M_2 = (X_2, X_3, X_4)$
 - etc.
- We can look at $P(M|r \leq r_0, Data)$

Outline

Empirical likelihood posterior

Posterior Consistency

Numerical Example

More general loss functions

Application to Credit Card Issuing

Empirical Likelihood

• As the functional form of P(Y = 1|X) is not specified, we construct the likelihood nonparametrically, based on

$$E|Y-C(X,\theta)|=r$$

• Empirical likelihood (Owen (1990)):

$$L_{EL}(\theta, r) = \max_{p_1, \dots, p_n} \prod_{i=1}^n p_i$$

s.t.
$$p_i \ge 0, \sum_{i=1}^n p_i = 1, \sum_{i=1}^n p_i |Y_i - C(X_i, \theta)| = r$$

Empirical Likelihood Posterior

Using Lagrange's multiplier, we obtain (Qin and Lawless (1994)):

$$\log L_{EL}(\theta, r) = -\sum_{i=1}^{n} \log\{1 + \mu(\theta, r)[|Y_i - C(X_i, \theta)| - r]\} - n \log n$$

where $\mu(\theta, r)$ solves

$$\sum_{i=1}^{n} \frac{|Y_i - C(X_i, \theta)| - r}{1 + \mu(\theta, r)[|Y_i - C(X_i, \theta)| - r]} = 0$$

• EL-posterior:

$$P_{EL}(\theta, r | Data) \propto L_{EL}(\theta, r) \pi(\theta, r)$$

7/29

<ロ> <回> <回> <回> < 回> < 回> < 三</p>

Bayesian Interpretation of EL-posterior

EL has not formally been shown to have a well-defined probabilistic interpretation that would justify its use in Bayesian inference.

Informal justification:

- Monahan and Boos (1992) proposed a definition of validity of a "posterior" *P_a*(.|*Data*) resulting from alternative likelihood:
 - Recall that if Λ ~ P(λ|Data), with posterior cdf F, then
 F(Λ|Data) ~ Uniform[0, 1]
 - valid "posterior": $\int_{-\infty}^{\Lambda} P_a(\lambda | Data) d\lambda \sim Uniform[0, 1]$
- Lazar (2003)

Back to our framework: $E|Y - C(X, \theta)| = r$.

Define "empirical risk"

$$\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} |Y_i - C(X_i, \theta)|$$

Theorem 1

 $\log L_{EL}(\theta, r) = -nK(\hat{R}(\theta), r)$, where

$$\mathcal{K}(p,q) = \begin{cases} p \ln(p/q) + (1-p) \ln\{(1-p)/(1-q)\}, & \text{if } p, q \in (0,1) \\ +\infty, & \text{if } p \in (0,1], q = 0, \text{ or } p \in [0,1), q = 1 \\ 0 & \text{if } q \in [0,1), p = 0, \text{ or } q \in (0,1], p = 1. \end{cases}$$

Interpretation of $\pi(\theta, \mathbf{r})$

- (θ, r)
 θ is the action parameter in C(X, θ), which is NOT the model parameter in P(Y = 1|X). It can be ANY action that the decision makers can take.
 - *r* is the resulting risk after an action is taken.
- $\pi(\theta, r)$ Can assume $\pi(\theta, r) = \pi(\theta)\pi(r)$: (θ, r) are a priori independent: data can tell their relationship
 - π(θ): Distribution of All possible actions: decision makers'
 "prior preference" before looking at the data

Posterior Consistency under Partial Identification

 $E|Y - C(X, \theta)| = r$ does not point identify (θ, r) : $P_{EL}(\theta, r|Data)$ does not de-generate to any point mass. We can show the following "partially identified" version of posterior consistency:

Theorem 2

Let $R(\theta) = E|Y - C(X, \theta)|$, and $\eta(\theta, r) = \min\{R, 1 - R, r, 1 - r\}$. (*i*) $\pi(|R - r| \le \delta, \eta \ge \tau) > 0 \ \forall \delta > 0 \forall \tau \in (0, 1)$; (*ii*) $\sup_{\theta \in \Theta} |\hat{R}(\theta) - R(\theta)| \rightarrow^{p} 0$ Then $\forall \epsilon > 0$,

$$P_{EL}(R(\theta) - \epsilon \leq r \leq R(\theta) + \epsilon | D) \rightarrow^{p} 1.$$

Hence $P_{EL}(\theta, r | D)$ clusters around $\{(\theta, R(\theta)) : \theta \in \Theta\}$ as $n \to \infty$.

11/29

Corollary 2.1

Suppose that $P_{EL}(r \le r_0 | D) > \xi$ for some constant $\xi > 0$, then for any $\epsilon > 0$,

$$P_{EL}(R(\theta) \leq r_0 + \epsilon | r \leq r_0, Data) \rightarrow^{P} 1$$

This corollary implies: if $\theta \sim P_{EL}(\theta | r \leq r_0, Data)$, then the true risk $E|Y - C(X, \theta)| \leq r_0$ with very high posterior probability.

A Numerical Example

- Model: $Y = I(3X > \epsilon)$, $X \sim N(0, 1) \perp \epsilon \sim N(0, 3)$ Generated 2000 data points $(Y_1, X_1), ..., (Y_n, X_n)$.
- Classification rule: $C(X, \theta) = I(X > \theta)$
- $E|Y C(X,\theta)| = E_X\{[1 \Phi(\sqrt{3}X)]I_{(X>\theta)} + \Phi(\sqrt{3}X)I_{(X\le\theta)}\}$
- $\pi(\theta) \sim N(0, 1)$: my "prior preference" of taking action.
- $P(\theta, r | Data) \propto \pi(\theta)\pi(r) \exp(-nK(\hat{R}(\theta), r))$: $\hat{R}(\theta) = \frac{1}{n} \sum_{i=1}^{n} I(Y_i \neq I(X_i > \theta))$

Figure: Plot of $R(\theta) = E|Y - C(X, \theta)|$ and MCMC draws

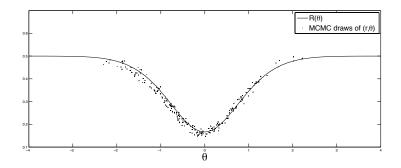
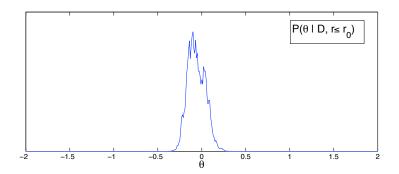
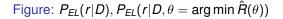
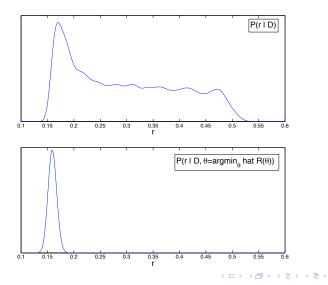


Figure: $P_{EL}(\theta|D, r \leq 5$ th percentile of MCMC draws)



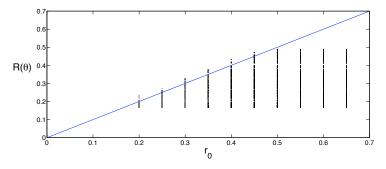




16/29

Figure: Scatter plot of $(R(\theta_i), r_0)$

$$R(\theta_i) = E|Y - C(X, \theta_i)|$$



The dots with the same horizontal coordinate r_0 represents $R(\theta_i)$ where $\theta_i \sim P_{EL}(\theta | r \leq r_0, D)$. When $r_0 \leq 0.5$, about 97.3% dots are below the identical line $R(\theta) = r_0$.

17/29

More general loss functions

Symmetric loss:

I(Y, C) = I(Y = 1, C = 0) + I(Y = 0, C = 1) = |Y - C|

• Asymmetric loss:

I(Y, C) = I(Y = 1, C = 0) + aI(Y = 0, C = 1), for $a \neq 1$.

Example: Y = 0: good/bad credit card user. C = 1: issue/not credit card

EL-posterior based on: *El*(*Y*, *C*(*X*, *θ*)) = *r*.
 For general *l*(*Y*, *C*), there is no explicit expression of *L_{EL}*(*θ*, *r*).

German credit data: an application

- Data set comes from Asuncion and Newman (2007), which consists of 1000 past applicants
- Y : credit rating (Good/ Bad); X : demographic data, etc.

•
$$C(X, \theta) = I(X_1 + \theta_1 + \sum_{i=2}^{24} X_i \theta_i > 0)$$

Table: Cost Matrix

Classification				
		GOOD	BAD	
Y	GOOD	0	1	
	BAD	5	0	

・ロン ・四 とくほど ・ほどう ほ

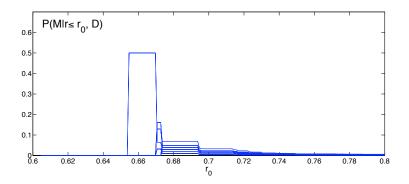
Variable Selection

• $C(X, \theta(\psi)) = I(X_1 + \theta_1 + \sum_{i=2}^{24} X_i \theta_i \psi_i > 0)$:

 $\psi_i = 1/0$ if θ_i is selected/not selected

- $L_{EL}(\theta, r, \psi)$ is based on: $E[I_{Y=G,C(X,\theta(\psi))=B} + 5I_{Y=B,C(X,\theta(\psi))=G}] = r$
- Priors: $\theta(\psi)|\psi \sim N(0, 10I), \quad \psi_i \sim Bino(1, 0.4)$ $r \sim Uniform[0, 5]$
- $P_{EL}(\theta, r, \psi | Data) \propto \pi(\theta, r, \psi) L_{EL}(\theta, r, \psi)$

Figure: Estimated $P(M|r \le r_0, D)$ versus r_0



4 ロ ト 4 部 ト 4 注 ト 4 注 ト 注 の Q (や 21/29

Table: The estimated posteriors of the sampled models when $\ensuremath{\textit{r}_0}\xspace \le 0.674$

Model	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	<i>M</i> 4	$M_5 \sim M_7$	Another five
<i>r</i> ₀ ∈ (.655, .670)	.50	.50	0	0	0	0
$r_0 \in (.670, .674)$.07	.07	.16	.16	.13	.03

Model Assessment

- To assess the performance of the predictive models: divide dataset into training (2/3) and validation (1/3).
- Generate a new set of MCMC $\{(\theta_i, r_i)\}_{i=1}^{8,000} \sim P_{EL}(\theta, r|M_i, \text{Training}).$
- Choose $r_0 = 1$ st, 3rd, 5th, and 10th percentiles of $P_{EL}(r|M_i, \text{Training})$.
- $S(r_0) = \{(\theta_i, r_i) \in \{(\theta_i, r_i)\}_{i=1}^{8,000} : r_i \le r_0\}$. Calculate $\hat{R} = \frac{1}{\#S(r_0)} \sum_{(\theta_j, r_j) \in S(r_0)} \frac{1}{n_v} \sum_{i=1}^{n_v} I(Y_i, C(X_i; \theta_j)),$

 $\approx E[\frac{1}{n_v}\sum_{i=1}^{n_v} I(Y_i, C(X_i; \theta))| r \leq r_0, M, \text{Training Data}]$

23/29

Model	<i>M</i> ₁	M ₂	M ₃	M_4	M_5	M_6	M 7
# variables	10	10	11	11	12	12	12
r ₀	0.674	0.685	0.692	0.687	0.686	0.619	0.677
Â	0.683	0.678	0.680	0.679	0.681	0.787	0.787
<u>J</u> 8,000	1.0%	1.2%	1.15%	1.1%	1.1%	1.0%	1.38%
<i>r</i> ₀	0.698	0.699	0.697	0.692	0.694	0.682	0.708
Â	0.683	0.680	0.681	0.679	0.680	0.793	0.781
J 8,000	2.9%	3.2%	3.7%	3.0%	3.0%	3.8%	3.3%
r ₀	0.700	0.706	0.702	0.701	0.697	0.688	0.711
Â	0.680	0.679	0.693	0.679	0.680	0.771	0.768
J 8,000	5.3%	5.3%	5.1%	5.3%	5.2%	5.3%	5.5%
<i>r</i> ₀	0.710	0.737	0.719	0.719	0.713	0.703	0.723
Â	0.681	0.678	0.696	0.687	0.681	0.742	0.770
<u>J</u> 8,000	10.0%	11.7%	10.2%	10.4%	10.0%	10.1%	10.5%
					• • • • • • •	▶ ▲ 圖 ▶ ▲ □	■ ● ■ ●

Model	Variables			
<i>M</i> ₁	Other Debtors/ Guarantors Duration of Cree			
	Real Estate Property	Credit Amount		
	Present Employment Since	Credit History		
	Num. of Existing Credits at Bank	Credit Purpose		
	Num. of People Being Liable	Age		
<i>M</i> ₂	<i>M</i> ₁ / Credit Purpose	Telephone		

Performance with symmetric loss

$$I(Y, C(X, \theta)) = |Y - C(X, \theta)|$$

- First run MCMC for model selection: the 1st percentile of $\{r_i\}_{i=1}^{B}$ is 0.275, achieved by only one model.
- Then split data into training and validation sets. Generate new {θ_i} from P_{EL}(θ|r ≤ 0.275, training, Model)
- · We can obtain the average of

$$\{\frac{1}{n_v}\sum_{i\in Validation} |Y_i - C(X_i, \theta_j)|\}, j = 1, ..., B.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Performance with symmetric loss

- It is more satisfactory to use θ_i such that
 P_{EL}(θ_i|r ≤ 0.275, training, Model) is high than to use all the generated θ_i's.
- Let $f(\theta) = P(\theta | r \le 0.275, training, M)$. Define $A(\alpha) = \{\theta : f(\theta) > \alpha \text{th percentile of } \{f(\theta_i)\}\}$
- Average $\{\frac{1}{n_v}\sum_{i \in Validation} |Y_i C(X_i, \theta_j)|\}$ over $\theta_i \in A(\alpha)$

(ロ) (部) (注) (注) (こ) (の)

Table: Comparison of \hat{R}_{α} and the risk of logistic regression

α	$\hat{\pmb{R}}_{lpha}$	logistic
5	0.2782	0.2733
30	0.2667	
50	0.2613	
95	0.2613	

- Our method is designed to provide a new language to make robust inference on the risk and the corresponding actions.
- It can still perform comparably with other well-established methods, when used for risk reduction.

Discussion

- We provide a new language for probabilistic inference on the relationship between risk-action.
 - $P_{EL}(\theta | r \leq r_0, Data)$
 - $P_{EL}(r|\theta, Data)$
- *P_{EL}*(.|*Data*) is based on EL ← *El*(*Y*, *C*(*X*, θ)) = *r*.
 P_{EL}(.|*Data*) does not degenerate to a point, but clusters around the curve {(θ, r) : *El*(*Y*, *C*) = *r*}
- No need to specify a full probability model on P(Y = 1|X).
- Need to be more rigorous on the relationship between
 EL-posterior and exact posterior: not fully understood yet.