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Binary Classification Problem

• Y ∈ {0,1} is a target variable to be predicted, associated

with covariates X .

• Classification rule: C(X , θ) ∈ {0,1}. θ: action parameter

Example: C(X , θ) = I(X T θ > 0)

• Classification risk: E(l(Y ,C(X , θ))|θ). We consider

absolute loss: l(Y ,C(X , θ)) = |Y − C(X , θ)|.

• Let r = E |Y − C(X , θ)|: risk parameter.

• Observe i.i.d. data D = (Y1,X1, ....,Yn,Xn)
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In This Paper

• Classical parametric approach assumes that P(Y = 1|X )

has a parametric form, i.e., logistic regression.

• This paper: does not specify a parametric form of

P(Y = 1|X ), to avoid mis-specification

• C(X , θ) is fixed.

• The only information we have is

E |Y − C(X , θ)| = r

• We would like to control r , and answer questions like: In

order for r ≤ 0.1, what action θ should be taken?
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Our Bayesian Approach

• We construct the posterior P(θ, r |Data).

• Once the posterior is obtained, it allows us to look at:

• P(θ|r ≤ r0,Data)

• P(r |θ,Data)

• When X is multi-dimensional: we can do model selection.

• M1 = (X1,X2)

• M2 = (X2,X3,X4)

• etc.

• We can look at P(M|r ≤ r0,Data)
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Empirical Likelihood

• As the functional form of P(Y = 1|X ) is not specified, we

construct the likelihood nonparametrically, based on

E |Y − C(X , θ)| = r

• Empirical likelihood (Owen (1990) ):

LEL(θ, r) = max
p1,...,pn

n∏
i=1

pi

s.t . pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi |Yi − C(Xi , θ)| = r
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Empirical Likelihood Posterior

• Using Lagrange’s multiplier, we obtain (Qin and Lawless

(1994)):

log LEL(θ, r) = −
n∑

i=1

log{1+µ(θ, r)[|Yi−C(Xi , θ)|−r ]}−n log n

where µ(θ, r) solves

n∑
i=1

|Yi − C(Xi , θ)| − r
1 + µ(θ, r)[|Yi − C(Xi , θ)| − r ]

= 0

• EL-posterior:

PEL(θ, r |Data) ∝ LEL(θ, r)π(θ, r)

7 / 29



Empirical likelihood posterior Posterior Consistency Numerical Example More general loss functions Application to Credit Card Issuing

Bayesian Interpretation of EL-posterior

EL has not formally been shown to have a well-defined

probabilistic interpretation that would justify its use in Bayesian

inference.

Informal justification:

• Monahan and Boos (1992) proposed a definition of validity

of a “posterior” Pa(.|Data) resulting from alternative

likelihood:

• Recall that if Λ ∼ P(λ|Data), with posterior cdf F , then

F (Λ|Data) ∼ Uniform[0,1]

• valid ”posterior”:
∫ Λ

−∞ Pa(λ|Data)dλ ∼ Uniform[0,1]

• Lazar (2003)
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Back to our framework: E |Y − C(X , θ)| = r .

Define “empirical risk”

R̂(θ) =
1
n

n∑
i=1

|Yi − C(Xi , θ)|

Theorem 1

log LEL(θ, r) = −nK (R̂(θ), r), where

K (p,q) =


p ln(p/q) + (1− p) ln{(1− p)/(1− q)}, if p,q ∈ (0,1)

+∞, if p ∈ (0,1],q = 0, or p ∈ [0,1),q = 1

0 if q ∈ [0,1),p = 0, or q ∈ (0,1],p = 1.
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Interpretation of π(θ, r)

(θ, r) • θ is the action parameter in C(X , θ), which is NOT the

model parameter in P(Y = 1|X ). It can be ANY action that

the decision makers can take.

• r is the resulting risk after an action is taken.

π(θ, r) • Can assume π(θ, r) = π(θ)π(r): (θ, r) are a priori

independent: data can tell their relationship

• π(θ): Distribution of All possible actions: decision makers’

“prior preference” before looking at the data
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Posterior Consistency under Partial Identification
E |Y − C(X , θ)| = r does not point identify (θ, r): PEL(θ, r |Data) does

not de-generate to any point mass. We can show the folllowing

“partially identified” version of posterior consistency:

Theorem 2
Let R(θ) = E |Y − C(X , θ)|, and η(θ, r) = min{R,1− R, r ,1− r}.

(i) π(|R − r | ≤ δ, η ≥ τ) > 0 ∀δ > 0∀τ ∈ (0,1);

(ii) supθ∈Θ |R̂(θ)− R(θ)| →p 0

Then ∀ε > 0,

PEL(R(θ)− ε ≤ r ≤ R(θ) + ε|D)→p 1.

Hence PEL(θ, r |D) clusters around {(θ,R(θ)) : θ ∈ Θ} as n→∞.
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Corollary 2.1

Suppose that PEL(r ≤ r0|D) > ξ for some constant ξ > 0, then

for any ε > 0,

PEL(R(θ) ≤ r0 + ε|r ≤ r0,Data)→P1

This corollary implies: if θ ∼ PEL(θ|r ≤ r0,Data), then the true

risk E |Y − C(X , θ)| ≤ r0 with very high posterior probability.
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A Numerical Example

• Model: Y = I(3X > ε), X ∼ N(0,1) ⊥ ε ∼ N(0,3)

Generated 2000 data points (Y1,X1), ..., (Yn,Xn).

• Classification rule: C(X , θ) = I(X > θ)

• E |Y −C(X , θ)| = EX{[1−Φ(
√

3X )]I(X>θ) + Φ(
√

3X )I(X≤θ)}

• π(θ) ∼ N(0,1): my “prior preference” of taking action.

• P(θ, r |Data) ∝ π(θ)π(r) exp(−nK (R̂(θ), r)):

R̂(θ) = 1
n

∑n
i=1 I(Yi 6= I(Xi > θ))
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Figure: Plot of R(θ) = E |Y − C(X , θ)| and MCMC draws
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Figure: PEL(θ|D, r ≤ 5th percentile of MCMC draws)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
!

P(! | D, r" r0)

15 / 29



Empirical likelihood posterior Posterior Consistency Numerical Example More general loss functions Application to Credit Card Issuing

Figure: PEL(r |D),PEL(r |D, θ = arg min R̂(θ))
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Figure: Scatter plot of (R(θi ), r0)

R(θi) = E |Y − C(X , θi)|
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The dots with the same horizontal coordinate r0 represents

R(θi) where θi ∼ PEL(θ|r ≤ r0,D). When r0 ≤ 0.5, about 97.3%

dots are below the identical line R(θ) = r0.
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More general loss functions

• Symmetric loss:

l(Y ,C) = I(Y = 1,C = 0) + I(Y = 0,C = 1) = |Y − C|

• Asymmetric loss:

l(Y ,C) = I(Y = 1,C = 0) + aI(Y = 0,C = 1), for a 6= 1.

Example: Y = 0 : good/bad credit card user. C = 1 :

issue/not credit card

• EL-posterior based on: El(Y ,C(X , θ)) = r .

For general l(Y ,C), there is no explicit expression of

LEL(θ, r).
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German credit data: an application

• Data set comes from Asuncion and Newman (2007), which

consists of 1000 past applicants

• Y : credit rating (Good/ Bad); X : demographic data, etc.

• C(X , θ) = I(X1 + θ1 +
∑24

i=2 Xiθi > 0)

Table: Cost Matrix

Classification

GOOD BAD

Y GOOD 0 1

BAD 5 0
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Variable Selection

• C(X , θ(ψ)) = I(X1 + θ1 +
∑24

i=2 Xiθiψi > 0) :

ψi = 1/0 if θi is selected/not selected

• LEL(θ, r , ψ) is based on:

E [IY =G,C(X ,θ(ψ))=B + 5IY =B,C(X ,θ(ψ))=G] = r

• Priors: θ(ψ)|ψ ∼ N(0,10I), ψi ∼ Bino(1,0.4)

r ∼ Uniform[0,5]

• PEL(θ, r , ψ|Data) ∝ π(θ, r , ψ)LEL(θ, r , ψ)

20 / 29



Empirical likelihood posterior Posterior Consistency Numerical Example More general loss functions Application to Credit Card Issuing

Figure: Estimated P(M|r ≤ r0,D) versus r0
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Table: The estimated posteriors of the sampled models when

r0 ≤ 0.674

Model M1 M2 M3 M4 M5 ∼ M7 Another five

r0 ∈ (.655, .670) .50 .50 0 0 0 0

r0 ∈ (.670, .674) .07 .07 .16 .16 .13 .03
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Model Assessment

• To assess the performance of the predictive models: divide

dataset into training (2/3) and validation (1/3).

• Generate a new set of MCMC

{(θi , ri)}8,000
i=1 ∼ PEL(θ, r |Mi ,Training).

• Choose r0 = 1st, 3rd, 5th, and 10th percentiles of

PEL(r |Mi ,Training).

• S(r0) = {(θi , ri) ∈ {(θi , ri)}8,000
i=1 : ri ≤ r0}. Calculate

R̂ =
1

#S(r0)

∑
(θj ,rj )∈S(r0)

1
nv

nv∑
i=1

l(Yi ,C(Xi ; θj)),

≈ E [ 1
nv

∑nv
i=1 l(Yi ,C(Xi ; θ))|r ≤ r0,M,Training Data]
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Model M1 M2 M3 M4 M5 M6 M7

# variables 10 10 11 11 12 12 12

r0 0.674 0.685 0.692 0.687 0.686 0.619 0.677

R̂ 0.683 0.678 0.680 0.679 0.681 0.787 0.787
J

8,000 1.0% 1.2% 1.15% 1.1% 1.1% 1.0% 1.38%

r0 0.698 0.699 0.697 0.692 0.694 0.682 0.708

R̂ 0.683 0.680 0.681 0.679 0.680 0.793 0.781
J

8,000 2.9% 3.2% 3.7% 3.0% 3.0% 3.8% 3.3%

r0 0.700 0.706 0.702 0.701 0.697 0.688 0.711

R̂ 0.680 0.679 0.693 0.679 0.680 0.771 0.768
J

8,000 5.3% 5.3% 5.1% 5.3% 5.2% 5.3% 5.5%

r0 0.710 0.737 0.719 0.719 0.713 0.703 0.723

R̂ 0.681 0.678 0.696 0.687 0.681 0.742 0.770
J

8,000 10.0% 11.7% 10.2% 10.4% 10.0% 10.1% 10.5%
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Model Variables

M1 Other Debtors/ Guarantors Duration of Credit

Real Estate Property Credit Amount

Present Employment Since Credit History

Num. of Existing Credits at Bank Credit Purpose

Num. of People Being Liable Age

M2 M1/ Credit Purpose Telephone
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Performance with symmetric loss

l(Y ,C(X , θ)) = |Y − C(X , θ)|

• First run MCMC for model selection: the 1st percentile of

{ri}Bi=1 is 0.275, achieved by only one model.

• Then split data into training and validation sets. Generate

new {θi} from PEL(θ|r ≤ 0.275, training,Model)

• We can obtain the average of

{ 1
nv

∑
i∈Validation |Yi − C(Xi , θj)|}, j = 1, ...,B.
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Performance with symmetric loss

• It is more satisfactory to use θi such that

PEL(θi |r ≤ 0.275, training,Model) is high than to use all the

generated θi ’s.

• Let f (θ) = P(θ|r ≤ 0.275, training,M). Define

A(α) = {θ : f (θ) > αth percentile of {f (θi)}}

• Average { 1
nv

∑
i∈Validation |Yi − C(Xi , θj)|} over θi ∈ A(α)
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Table: Comparison of R̂α and the risk of logistic regression

α R̂α logistic

5 0.2782 0.2733

30 0.2667

50 0.2613

95 0.2613

• Our method is designed to provide a new language to

make robust inference on the risk and the corresponding

actions.

• It can still perform comparably with other well-established

methods, when used for risk reduction.
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Discussion

• We provide a new language for probabilistic inference on

the relationship between risk-action.

• PEL(θ|r ≤ r0,Data)

• PEL(r |θ,Data)

• PEL(.|Data) is based on EL⇐ El(Y ,C(X , θ)) = r .

PEL(.|Data) does not degenerate to a point, but clusters

around the curve {(θ, r) : El(Y ,C) = r}

• No need to specify a full probability model on P(Y = 1|X ).

• Need to be more rigorous on the relationship between

EL-posterior and exact posterior: not fully understood yet.
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