
Submitted to the Annals of Statistics

FACTOR-DRIVEN TWO-REGIME REGRESSION∗

By Sokbae Lee, Yuan Liao, Myung Hwan Seo
and Youngki Shin

Columbia University, Rutgers University, Seoul National University
and McMaster University

We propose a novel two-regime regression model where regime
switching is driven by a vector of possibly unobservable factors. When
the factors are latent, we estimate them by the principal component
analysis of a panel data set. We show that the optimization problem
can be reformulated as mixed integer optimization, and we present
two alternative computational algorithms. We derive the asymptotic
distribution of the resulting estimator under the scheme that the
threshold effect shrinks to zero. In particular, we establish a phase
transition that describes the effect of first-stage factor estimation as
the cross-sectional dimension of panel data increases relative to the
time-series dimension. Moreover, we develop bootstrap inference and
illustrate our methods via numerical studies.

1. Introduction. Suppose that yt is generated from

yt = x′tβ0 + x′tδ01{f ′tγ0 > 0}+ εt,(1.1)

E (εt|Ft−1) = 0, t = 1, . . . , T,(1.2)

where xt and ft are adapted to the filtration Ft−1, (β0, δ0, γ0) is a vector
of unknown parameters, and the unobserved random variable εt satisfies
the conditional mean restriction in (1.2). We interpret ft to be a vector
of factors determining regime switching. When f ′tγ0 > 0, the regression
function becomes x′t(β0 + δ0); if f ′tγ0 ≤ 0, it reduces to x′tβ0. We allow for
either observable or unobservable factors. For the latter, we assume that
they can be recovered from a panel data set. In light of this feature, we call
the model in (1.1) and (1.2) a factor-driven two-regime regression model.
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Our paper is closely related to the literature on threshold models with
unknown change points (see, e.g., [9], [16], [20], [25], [26], and [28], among
many others). In the conventional threshold regression model, an intercept
term and a scalar observed random variable constitute ft. For instance,
Chan [9] and Hansen [16] studied the model in which 1{f ′tγ0 > 0} in (1.1)
is replaced by 1{qt > γ̃0} for some observable scalar variable qt with a
scalar unknown parameter γ̃0. In practice, it might be controversial to choose
which observed variable plays the role of qt. For example, if the two different
regimes represent the status of two environments of the population, arguably
it is difficult to assume that the change of the environment is governed by
just a single variable. On the contrary, our proposed model introduces a
regime change due to a single index of factors that can be “learned” from a
potentially much larger dataset. Specifically, we consider the framework of
latent approximate factor models in order to model a regime switch based
on a potentially large number of covariates.

In view of the conditional mean restriction in (1.2), a natural strategy
to estimate (β0, δ0, γ0) is to rely on least squares. A least-squares estima-
tor for our model brings new challenges in terms of both computation and
asymptotic theory. First of all, when the dimension of ft is larger than 2,
it is computationally demanding to estimate (β0, δ0, γ0). We overcome this
difficulty by developing new computational algorithms based on the method
of mixed integer optimization (MIO). See, for example, section 2.1 in Bert-
simas et al. [8] for a discussion on computational advances in solving the
MIO problems.

Second, we establish asymptotic properties of our proposed estimator by
adopting a diminishing thresholding effect. That is, we assume that δ0 =
T−ϕd0 for some unknown ϕ ∈ (0, 1/2) and unknown non-diminishing vector
d0. The diminishing threshold has been one of the standard frameworks
in the change point literature (e.g., [2, 17, 18]). The unknown parameter
ϕ reflects the difficulty of estimating γ0 and affects the identification and
estimation of the change-point γ0. Both the rate of convergence and the
asymptotic distribution depend on ϕ. This is a widely employed tool to
allow for flexible signal strengths of the parameters in the nonlinear model.
For instance, McKeague and Sen [22] studied a “point impact” linear model,
where the identification and estimation of γ0 are affected by an unknown
slope δ0. While specifically assuming δ0 6= 0, they encountered a similar
parameter ϕ, reflecting the difficulty of estimating γ0. The asymptotic theory
for the estimated δ0 under the diminishing jump setting is fundamentally
different from the fixed jump setting: the former is determined by a Gaussian
process (e.g., [16]), and the latter by a compound poison process (e.g., [9]).
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While both settings lead to important asymptotic implications, we focus on
the diminishing setting because when the factors are estimated, there is a
new and interesting phase transition phenomenon that smoothly appears in
the “bias” term of the Gaussian process. The phase transition characterizes
the continuous change of the asymptotic distribution as the precision of the
estimated factors increases relative to the size of the jump, which we shall
detail below.

When the factor ft is latent, we estimate it using principal component
analysis (PCA) from a potentially much larger dataset, whose dimension
is N . It turns out that the asymptotic distribution for the estimator of
α0 ≡ (β′0, δ

′
0)′ is identical to that when γ0 were known, regardless of whether

factors are directly observable or not; therefore, the estimator of α0 enjoys
an oracle property.

The issue is more sophisticated for the distribution of the estimator of γ0.
When factors are directly observable, we prove that

T 1−2ϕ (γ̂ − γ0)
d−→ argmin

g∈G
B(g) + 2W (g) ,

where B(g) represents a “drift function” of the criterion function, which
is linear with a kink at zero, W (g) is a mean-zero Gaussian process and
G is a rescaled parameter space. However, when factors are not directly
observable, the estimation error from the PCA plays an essential role and
may slow down the rates of convergence, depending on the relation between
N and T . Specifically, we show that((

NT 1−2ϕ
)1/3 ∧ T 1−2ϕ

)
(γ̂ − γ0)

d−→ argmin
g∈G

A (ω, g) + 2W (g) ,

with a new drift function A (ω, g) that depends on ω = lim
√
NT−(1−2ϕ) ∈

[0,∞]. On one hand, when ω = ∞, we find that A(ω, g) = B(g), so the
limiting distribution becomes the same as if the factors were observable.
This case corresponds to the super-consistency rate (e.g., [16]). On the other
hand, when ω = 0, it turns out that A (ω, g) is quadratic in g, corresponding
to a cube root rate similar to the maximum score estimator (e.g., [19, 27]).
Furthermore, both the drift function and the resulting rates of convergence
have continuous transitions as ω changes between 0 and ∞. Therefore, one
of our key findings for the estimator of γ0 is the occurrence of a phase
transition from a weak-oracle limiting distribution to a semi-strong oracle
one, and then to a strong oracle one as ω increases.

As the asymptotic distribution of γ̂ is non-pivotal, we propose a wild
bootstrap for inference of γ0. Importantly, we construct bootstrap confi-
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dence intervals for γ0 that do not require knowledge of ϕ. This facilitates
applications in which the jump diminishing speed is not known in advance.

The remainder of the paper is organized as follows. In Section 2, we pro-
pose the least-squares estimator and algorithms to compute the proposed
estimator. In Section 3, we establish asymptotic theory when ft is directly
observed. In Section 4, we consider estimation when ft is a vector of la-
tent factors, we propose a two-step estimator via PCA, and we analyze
asymptotic properties of our proposed estimator. In Section 5, we develop
bootstrap inference, and in Section 6 we give the results of Monte Carlo
experiments. In Section 7, we illustrate our methods by applying them to
threshold autoregressive models of unemployment. We conclude in Section
8. The online appendices provides details that are omitted from the main
text.

The notation used in the paper is as follows. The sample size is denoted by
T and the transpose of a matrix is denoted by a prime. The true parameter
is denoted by the subscript 0, whereas a generic element has no subscript.
The Euclidean norm is denoted by | · |2, the Frobenius norm of a matrix is
| · |F , the spectral norm of a matrix is | · |2, and the `0-norm is | · |0. For a
generic random variable or vector zt, let its density function be denoted by
pzt . Similarly, let pyt|xt(y) denote the conditional density of yt given xt for
the random vectors yt and xt. The abbreviation a.s. means almost surely.

2. Least-Squares Estimator via Mixed Integer Optimization.

2.1. Identifiability. We use the convention that the constant 1 is the
first element of xt and −1 is the last element of ft. Define α := (β′, δ′)′ and
Zt(γ) := (x′t, x

′
t1{f ′tγ > 0})′. Then, we can rewrite the model as

yt = Zt (γ0)′ α0 + εt.

Because only the sign of the index f ′tγ0 determines the regime switching, the
scale of γ0 is not identifiable. We assume that the first element of γ0 equals
1. Let dx and df denote the dimensions of xt and ft, respectively.

Assumption 2.1. α0 ∈ R2dx and γ0 ∈ Γ := {(1, γ′2)′ : γ2 ∈ Γ2}, where
Γ2 ⊂ Rdf−1 is a compact set.

We decompose ft into a scalar random variable f1t and other variables
f2t, so that f ′tγ ≡ f1t+f

′
2tγ2. In view of the conditional mean zero restriction

in (1.2), it is natural to impose conditions under which both α0 and γ0 are
identified by the L2-loss. Introduce the excess loss

R(α, γ) := E(yt − x′tβ − x′tδ1{f ′tγ > 0})2 − E(ε2
t ).(2.1)
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In order to establish that R (α, γ) > R (α0, γ0) = 0 whenever (α, γ) 6=
(α0, γ0), we make the following regularity conditions.

Assumption 2.2. For any ε > 0, (α0, γ0) satisfies

inf
{(α′,γ′)′∈R2dx×Γ:|(α′,γ′)−(α′0,γ

′
0)|2>ε}

R (α, γ) > 0.

Online Appendix A provides sufficient conditions for Assumption 2.2.

2.2. Estimator. We now propose the least-squares estimator and two al-
ternative algorithms to compute the proposed estimator. For computational
purposes, we assume that α ∈ A ⊂ R2dx for some known compact set A.
In practice, we can take a large 2dx-dimensional hyper-rectangle so that the
resulting estimator is not on the boundary of A. The unknown parameters
can be estimated by least squares: (α̂, γ̂) solves

min
(α′,γ′)′∈A×Γ

ST (α, γ) ≡ 1

T

T∑
t=1

(yt − x′tβ − x′tδ1{f ′tγ > 0})2(2.2)

subject to: τ1 ≤
1

T

T∑
t=1

1{f ′tγ > 0} ≤ τ2.(2.3)

We assume that the restriction (2.3) is satisfied when γ = γ0 a.s. Here,
0 < τ1 < τ2 < 1 for some predetermined τ1 and τ2 (e.g., τ1 = 0.05 and
τ2 = 0.95). In the special case that 1{f ′tγ0 > 0} = 1{qt > γ̃0} with a
scalar variable qt and a parameter γ̃0, it is standard to assume that the
parameter space for γ̃0 is between the τ and (1− τ) quantiles of qt for some
known 0 < τ < 1. We can interpret (2.3) as a natural generalization of this
restriction so that the proportion of one regime is never too close to 0 or 1.

When γ is of high dimension, the naive grid search would not work well.
Dynamic programming (e.g., [7]) or smooth global optimization (e.g., [24])
might be considered but are not readily available. We overcome this compu-
tational difficulty by replacing the naive grid search with MIO. We present
two alternative algorithms based on MIO below.

2.3. Mixed Integer Quadratic Programming. Our first algorithm is based
on mixed integer quadratic programming (MIQP), which jointly estimates
(α, γ). It is guaranteed to obtain a global solution once it is found. To write
the original least-squares problem in MIQP, we introduce dt := 1{f ′tγ > 0}
and `t := δdt for t = 1, . . . , T . Then, rewrite the objective function as

(2.4)
1

T

T∑
t=1

(yt − x′tβ − x′t`t)2,
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which is a quadratic function of β and `t. The goal is to introduce only
linear constraints with respect to variables of optimization, and to construct
an MIQP that is equivalent to the original least-squares problem. Then,
we can apply modern MIO packages (e.g., Gurobi) to solve MIQP. The
assumption α ∈ A implies that there exist known upper and lower bounds
for δj : Lj ≤ δj ≤ Uj , where δj denotes the jth element of δ for j = 1, . . . , dx.
In addition, to make sure that `j,t = δjdt for each j and t, we impose two
additional restrictions:

dtLj ≤ `j,t ≤ dtUj and Lj(1− dt) ≤ δj − `j,t ≤ Uj(1− dt).(2.5)

It is then straightforward to check that these constraints imply `j,t = δjdt.
To introduce another key constraint, we define Mt ≡ maxγ∈Γ |f ′tγ| for each
t = 1, . . . , T , where Γ is the parameter space for γ0. We can compute Mt

easily for each t using linear programming. We store them as inputs to our
algorithm. The following new constraints along with (2.3) and (2.5) ensure
that the reformulated problem (2.4) is the same as the original problem:

(dt − 1)(Mt + ε) < f ′tγ ≤ dtMt,

where ε > 0 is a small predetermined constant (e.g., ε = 10−6). The following
defines an algorithm for the MIQP algorithm.

Algorithm 1: Mixed Integer Quadratic Programming (MIQP)

Input: {(yt, xt, ft,Mt) : t = 1, . . . , T}
Output: (α̂, γ̂)

1 Let d = (d1, . . . , dT )′ and ` = {`j,t : j = 1, . . . , dx, t = 1, . . . , T}, where `j,t is a
real-valued variable. Solve the following problem:

min
β,δ,γ,d,`

QT (β, `) ≡ 1

T

T∑
t=1

(yt − x′tβ −
dx∑
j=1

xj,t`j,t)
2(2.6)

subject to

(β, δ) ∈ A, γ ∈ Γ, dt ∈ {0, 1}, Lj ≤ δj ≤ Uj ,
(dt − 1)(Mt + ε) < f ′tγ ≤ dtMt,

dtLj ≤ `j,t ≤ dtUj ,
Lj(1− dt) ≤ δj − `j,t ≤ Uj(1− dt),

τ1 ≤ T−1
T∑
t=1

dt ≤ τ2

(2.7)

for each t = 1, . . . , T and each j = 1, . . . , dx, where 0 < τ1 < τ2 < 1.
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Our proposed algorithm is mathematically equivalent to the original least-
squares problem (2.2) subject to (2.3) in terms of values of objective func-
tions. Formally, we state it as the following theorem.

Theorem 2.1. Let (ᾱ, γ̄) denote a solution using MIQP as described
above. Then, ST (α̂, γ̂) = ST (ᾱ, γ̄), where (α̂, γ̂) is defined in (2.2).

The proposed algorithm in Section 2.3 may run slowly when the dimension
dx of xt is large. To mitigate this problem, we reformulate MIQP in Appendix
B.2 and use the alternative formulation in our numerical work; however, we
present a simpler form here to help readers follow our basic ideas more easily.

2.4. Block Coordinate Descent. While the MIQP jointly estimates (α, γ)
and aims at obtaining a global solution, it might not compute as fast as
necessary in large-scale problems. To mitigate the issue of scalability, we
introduce a faster alternative approach based on mixed integer linear pro-
gramming (MILP), whose objective function is linear in dt. The algorithm
solves for α and γ iteratively, which we call a block coordinate descent (BCD)
algorithm, starting with an initial value that can be obtained through MIQP
with an early stopping rule. At step k, given α̂k−1, which is obtained in the
previous step, we estimate γ by solving

(2.10) min
γ∈Γ,d1,...,dT

1

T

T∑
t=1

(
yt − x′tβ̂k−1 − x′tδ̂k−1dt

)2

subject to similar constraints as in MIQP. Note that the least-squares prob-
lem (2.10) is linear in dt as d2

t = dt. The BCD algorithm is defined in Algo-
rithm 2. Intuitively speaking, it runs the MIQP algorithm for the amount
of time MaxTime 1, then switches to the MILP for the amount of time
MaxTime 2. The BCD approach is a descent algorithm in the sense that the
least-squares objective function is a non-increasing function of k. In other
words, BCD in Steps 2 and 3 can provide a higher-quality solution than
MIQP with an early stopping rule MaxTime 1. The time limit MaxTime 2

in Step 2 can be smaller than MaxTime 1 as it is easier to solve an MILP
problem than to solve an MIQP problem. Furthermore, the alternative mini-
mization approach efficiently solves for α̂k because it has an explicit solution.

Figure 1 illustrates the performance of MIQP and BCD in one simula-
tion draw. After spending MaxTime 1 (600 seconds) in Step 1, BCD switches
into Step 2 and it converges to the solution quickly just in one iteration.
Meanwhile, MIQP achieves a similar objective function value after spend-
ing the whole time budget of 1800 seconds. In Monte Carlo experiments,
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Algorithm 2: Block Coordinate Descent (BCD)

Input: {(yt, xt, ft,Mt) : t = 1, . . . , T}, MaxTime 1, MaxTime 2

Output: (α̂, γ̂)
1 Set k = 1;
2 Step 1. Obtain an initial estimate

(
α̂0, γ̂0

)
using MIQP with the pre-specified time

limit MaxTime 1;
3 if a solution is found before reaching MaxTime 1, then
4 set the initial estimate as the final estimate and terminate;
5 end
6 while elapsed time is no greater than MaxTime 2 do

7 Step 2. For the given α̂k−1, obtain an estimate γ̂k via MILP:

min
γ∈Γ,d1,...,dT

1

T

T∑
t=1

{
(x′tδ̂

k−1)2 − 2(yt − x′tβ̂k−1)x′tδ̂
k−1
}
dt(2.8)

subject to

(dt − 1)(Mt + ε) < f ′tγ ≤ dtMt,

dt ∈ {0, 1} for each t = 1, . . . , T ,

τ1 ≤
1

T

T∑
t=1

dt ≤ τ2;

(2.9)

8 if ST
(
α̂k−1, γ̂k

)
≥ ST

(
α̂k−1, γ̂k−1

)
, then

9 terminate;
10 end

11 Step 3. For the given γ̂k, obtain

α̂k =

[
1

T

T∑
t=1

Zt
(
γ̂k
)
Zt
(
γ̂k
)′]−1

1

T

T∑
t=1

Zt
(
γ̂k
)
yt;

12 Let k = k + 1;

13 end

we compare MIQP with BCD more thoroughly, subject to the same total
computing time restrictions, and we demonstrate the efficiency of BCD.

3. Asymptotic Properties with Known Factors. We split the asymp-
totic properties of the estimator into two cases: known and unknown factors.
In this section, we consider the former.

Assumption 3.1. (i) {xt, ft, εt} is a sequence of strictly stationary,

ergodic, and ρ-mixing random vectors with
∑∞

m=1 ρ
1/2
m <∞, E |xt|42 <

∞, and there exists a constant C <∞ such that E(|xt|82
∣∣f ′tγ = 0) < C

and E(ε8
t

∣∣f ′tγ = 0) < C for all γ ∈ Γ.
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Fig 1. Computation Example of MIQP and BCD
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(ii) {εt} is a martingale difference sequence, that is, E (εt|Ft−1) = 0, where
xt and ft are adapted to the filtration Ft−1.

(iii) The smallest eigenvalue of E[Zt (γ)Zt (γ)′] is bounded away from zero
for all γ ∈ Γ.

We decompose ft into a scalar random variable f1t and the other variables
f2t, so that f ′tγ ≡ f1t + f ′2tγ2. Define ut := f ′tγ0.

Assumption 3.2. (i) For some 0 < ϕ < 1/2 and d0 6= 0, δ0 = d0T
−ϕ.

(ii) put|f2t
(u), E[(x′td0)2|f2t, ut = u] and E[(εtx

′
td0)2|f2t, ut = u] are con-

tinuous and bounded away from zero at u = 0 a.s.
(iii) For some M <∞, inf |r|2=1 E (|f ′2tr| 1 {|f2t|2 ≤M}) > 0.

Most of the conditions in Assumptions 3.1 and 3.2 are a natural extension
of the scalar case in the literature, when ft = (qt,−1)′ for a scalar random
variable (e.g., [16]). Assumption 3.2(iii) is a rank condition on f2t due to
the vector of threshold parameter to be estimated and it is in terms of the
first moment because of the asymptotic linear approximation of criterion
function near γ0. It also allows for discrete variables in f2t. Assumption
3.2(ii) ensures the presence of a jump, not just a kink at the change point.

Theorem 3.1. Let G := {g ∈ Rdf : g1 = 0}. Let Assumptions 2.1, 2.2,
3.1, and 3.2 hold. Assume further that α0 is in the interior of A and that
γ0 is in the interior of Γ. In addition, let W denote a mean-zero Gaussian
process whose covariance kernel is given by

(3.1) H (s, g) :=
1

2
E
[(
εtx
′
td0

)2 (∣∣f ′tg∣∣+
∣∣f ′ts∣∣− ∣∣f ′t (g − s)

∣∣) put|f2t
(0)
]
.
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Then, as T →∞, we have

√
T (α̂− α0)

d−→ N (0, (EZt(γ0)Zt(γ0)′)−1var(Zt(γ0)εt)(EZt(γ0)Zt(γ0)′)−1),

T 1−2ϕ (γ̂ − γ0)
d−→ argmin

g∈G

{
E
[(
x′td0

)2 ∣∣f ′tg∣∣ put|f2t
(0)
]

+ 2W (g)
}
,

where
√
T (α̂− α0) and T 1−2ϕ (γ̂ − γ0) are asymptotically independent.

The normalization scheme is embedded in the asymptotic distribution.
Because γ1 = 1, the minimum in the limit is taken after fixing the first
element of g at zero (recall that G = {g ∈ Rdf : g1 = 0}). Also note that, in
the scalar threshold case, ft = (qt,−1)′ and γ0 = (1, γ̃0)′,

H(s, g) =
1

2
E
[(
εtx
′
td0

)2
(2 min (|g2| , |s2|) 1 {sgn (g2) = sgn (s2)}) put|f2t

(0)
]
,

which becomes the two-sided Brownian motion, as in Hansen [16].

4. Estimation with Unobserved Factors. In this section, we con-
sider the case in which the factors are estimated.

4.1. The Model. Consider the following factor model,

Yt = Λg1t + et, t = 1, . . . , T,(4.1)

where Yt is an N × 1 vector of time series, Λ is an N ×K matrix of factor
loadings, g1t is a K × 1 vector of common factors, and et is an N × 1 vector
of idiosyncratic components. Throughout this section, we make it explicit
that there is a constant term in the factors, and we replace the regression
model in (1.1) with

yt = x′tβ0 + x′tδ01{g′tφ0 > 0}+ εt,(4.2)

where gt = (g′1t,−1)′ is a vector of unknown factors in (4.1) plus a con-
stant term (−1), and φ0 is a vector of unknown parameters. In addition, we
allow g1t to contain lagged (dynamic) factors, but we treat them as static
factors and estimate them using the PCA without losing the validity of the
estimated factors.

It is well known that gt is identifiable and estimable by the PCA up to an
invertible matrix transformation (i.e., H ′T gt), whose exact form will be given
in Section 4.5. Therefore, it is customary in the literature (see, e.g., [3, 4])
to treat H ′T gt as a centering object in the limiting distribution of estimated
factors. Following this convention, in this section, let

ft := H ′T gt and γ0 := H−1
T φ0.(4.3)
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Using the fact that g′tφ0 = f ′tγ0, we can rewrite (4.2) as the original formu-
lation in (1.1):

yt = x′tβ0 + x′tδ01{f ′tγ0 > 0}+ εt.

Hence, γ0 depends on the sample in this section but we suppress dependence
on T for the sake of notational simplicity.

Our estimation procedure now consists of two steps. In the first step,
a (K + 1) × 1 vector of estimated factors and the constant term (i.e.,
f̃t := (f̃ ′1t, 1)′) are obtained by the method of principal components. To
describe estimated factors, let Y be the T × N matrix whose t-th row is
Y ′t. Let (f̃11, . . . , f̃1T ) be the K × T matrix, whose rows are K eigenvectors
(multiplied by

√
T ) associated with the largest K eigenvalues of YY ′/NT

in decreasing order. In the second step, unknown parameters (α0, γ0) are
estimated by the same algorithm in Section 2 with f̃t as inputs.

4.2. Regularity Conditions. We introduce assumptions needed for asymp-
totic results with estimated factors. We first replace Assumptions 2.1–3.2
with the following assumption. Define

ΦT := {φ : φ = HTγ for some γ ∈ Γε},(4.4)

where Γε is an ε-enlargement of Γ. Note that φ cannot be a vector whose first
K elements are zeros due to the normalization on γ and the block diagonal
structure of HT that will be defined in (4.7). The space ΦT for φ is defined
through HT and excludes the case that g′tφ is degenerate. The ε-enlargement
of Γ is needed because the factors are latent.

Assumption 4.1. (i) Assumptions 2.1, 2.2, and 3.2(i) hold after re-
placing ft and γ0 with gt and φ0, respectively.

(ii) {xt, gt, et, εt} is a sequence of strictly stationary, ergodic, and ρ -mixing

random vectors with
∑∞

m=1 ρ
1/2
m <∞, and there exists a constant C <

∞ such that E(|xt|82 |gt, et) < C, E(ε8
t |gt, et) < C a.s., and g′tφ has a

density that is continuous and bounded by C for all φ ∈ ΦT .

Recall that by the normalization in Assumption 2.1, the first element of
γ is fixed at 1. One caveat of this normalization scheme is that the sign of
the first element of ft might not be the same as that of the first element
of gt due to random rotation HT ; however, if we assume that δ0 6= 0 and
we also know the sign of one of the non-zero coefficients of δ0, then we can
determine the sign of the first element of ft after estimating the model. This
is a “labeling” problem that is common in models with hidden regimes. For
simplicity, we assume that the first element of γ0 is 1.
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The following assumption is standard in the literature. In particular, we
allow weak serial correlation among et.

Assumption 4.2. (i) limN→∞
1
NΛ′Λ = ΣΛ for some K × K matrix

ΣΛ, whose eigenvalues are bounded away from both zero and infinity.

(ii) The eigenvalues of Σ
1/2
Λ E(g1tg

′
1t)Σ

1/2
Λ are distinct.

(iii) All the eigenvalues of the N ×N covariance var(et) are bounded away
from both zero and infinity.

(iv) For any t, 1
N

∑T
s=1

∑N
i=1 |Eeiteis| < C for some C > 0.

Define λ′i to be the ith row of Λ, so that Λ = (λ1, . . . , λN )′. Further, let

ξs,t := N−1/2
N∑
i=1

(eiseit − Eeiseit), ψ := (TN)−1/2
T∑
t=1

N∑
i=1

gteitλ
′
i,

ηt := (TN)−1/2
T∑
s=1

N∑
i=1

g1s(eiseit − Eeiseit), ζt := N−1/2
N∑
i=1

λiteit.

We require the following additional exponential-tail conditions.

Assumption 4.3. There exist finite, positive constants C,C1 and c1 such
that for any x > 0 and for any $ ∈ Ξ := {eit, g1t, ξs,t, ζt, vec(ψ), ηt},

P(|$|2 > x) ≤ C exp(−C1x
c1).

These conditions impose exponential tail conditions on various terms.
First, it requires weak cross-sectional correlations among eit. This assump-
tion can be verified under some low-level conditions such as the α-mixing
condition of the type of Merlevède et al. [23] across both (i, t) and individual
exponential-tailed distributions on {eit, gt}. While the quantities in Ξ are of-
ten assumed to have finite moments in the high-dimensional factor model
literature, these moment bounds would no longer be sufficient in the current
context. Instead, exponential-type probability bounds are more useful for
us to characterize the effect of the estimated factors. To see the point, note
that we have the following asymptotic expansion:

f̃t = f̂t + rt, f̂t := H ′T (gt +N−1/2ht).(4.5)

Here, rt is a remainder term,

H ′T :=

(
H̃ ′T 0
0 1

)
, ht :=

(
h1t

0

)
, h1t := (

1

N
Λ′Λ)−1 1√

N
Λ′et,(4.6)
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and the exact form of H̃T is given in (4.7). The diagonality in HT and the
zero element in ht reflect the inclusion of the constant in gt. We establish
the following uniform approximation result: uniformly for γ over a compact
set,

max
t≤T

∣∣∣P(f̃ ′tγ > 0)− P(f̂ ′tγ > 0)
∣∣∣ ≤ O((log T )c

T

)
+max

t≤T
P
(
|rt| > C

(log T )c

T

)
for some constants C, c > 0. The above exponential-tail assumption then
enables us to derive a sharp bound so that maxt≤T P(|rt| > C(log T )cT−1)
is asymptotically negligible.

Next, we state important technical conditions to facilitate the local asymp-
totic expansion of the least-squares criterion function. A technical challenge
in the analysis is that even the expected criterion function is non-smooth
with respect to the factors. As such, we introduce some conditional density
conditions to study the effect of estimating factors H ′Tht =

√
N(f̂t − ft).

Assumption 4.4. (i) supxt,gt |P(h′tφ0 < 0|xt, gt)− (1/2)| = O(N−1/2).
(ii) Let σ2

h,xt,gt
:= plimN→∞ E[(h′tφ0)2|xt, gt] and let Zt be a sequence of

Gaussian random variables whose conditional distribution, given xt
and gt, is N (0, σ2

h,xt,gt
). Then, there are positive constants c, c0, and

C such that σ2
h,xt,gt

> c0 a.s., supxt,gt sup|z|<c ph′tφ0|gt,xt(z) < C, and

sup
xt,gt

sup
|z|<c
|ph′tφ0|gt,xt(z)− pZt|gt,xt(z)| = o(1).

Assumption 4.4 is concerned with the asymptotic behavior of the distribu-
tion of ht as N →∞. The rate N−1/2 in Assumption 4.4(i) is a reminiscent
of the Berry–Essen theorem. The Edgeworth expansion of the sample means
at zero implies that the approximation error is CN−1/2, where the universal
constant C depends on the moments of the summand up to the third order
[14]. Thus, condition (i) holds for a broad range of setups including het-
eroskedastic errors eit. For instance, if the idiosyncratic error has the form
eit = σ (gt) ξit, where gt and ξit are two independent sequences and {ξit}
is an independent and identically distributed (i.i.d.) sequence across i, then
the condition is satisfied as long as both σ (gt)

3 and E |ξit|3 are bounded.
Furthermore, it holds trivially if the conditional distribution of h′tφ0 given
xt and gt is symmetric around zero or more generally if its median is zero.
Assumption 4.4 ensures, among other things, that for some function Ψ(·)
such that E|Ψ(xt, gt)| <∞,

E
[
Ψ(xt, gt)

(
1{h′tφ0 ≤ 0} − 1{Zt ≤ 0}

) ∣∣∣∣xt, gt] = O(N−1/2).
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Above all, because ht is a cross-sectional average multiplied by
√
N , this

assumption can be verified by a cross-sectional central limit theorem (CLT),
if {eit : i ≤ N} satisfies some cross-sectional mixing condition.

In the next assumption, recall that, by the identification condition, we
can write γ = (1, γ2), where 1 is the first element of γ. Correspondingly,
let f2t and f̂2t be the subvectors of ft and f̂t, excluding their first elements.
Also, let ut := g′tφ0 = f ′tγ0 and ğt := gt + ht/

√
N .

Assumption 4.5. There exist positive constants c, c0, M0, and M such
that the following hold a.s..

(i) inf |u|<c pf̂ ′tγ0|f̂2t,xt
(u) ≥ c0 and sup|f |2<M0

pf2t|ht(f) < M .

(ii) inf |u|<c put|f2t,ht,xt(u) ≥ c0. For all |u1| < c, |u2| < c,

|put|h′tφ0,f2t,xt(u1)− put|h′tφ0,f2t,xt(u2)| ≤M |u1 − u2|.

(iii) inf |r|2=1 E
[
|f ′2tr|k1{|f2t|2 < M0}

]
≥ c0 for k = 1, 2.

(iv) sup|r|2=1 sup|u|<c pg′tr|ht(u) ≤M .
(v) Each of infφ∈ΦT |g′tφ|, infφ∈ΦT |ğ′tφ|, supφ∈ΦT |h

′
tφ|, and ğ′tφ0 has a den-

sity function bounded and continuous at zero, with ΦT given in (4.4).
(vi) E[(x′td0)2|gt, ht] is bounded above by M0 and below by c0.

(vii) For any s and w that are linearly independent of φ0, pğ′tφ0|ğ′ts,ğ′tw(u) and

E((εtx
′
td0)2|ğ′tφ0 = u, ğ′ts, ğ

′
tw) are continuously differentiable at u = 0

with bounded derivatives. Furthermore, E((εtx
′
td0)4 |ğt|22 |ğ′tφ0) ≤M .

These conditions control the local characteristics of the centered least-
squares criterion function near the true parameter value. As the model is
perturbed by the error in the estimated factors, the centered criterion is a
drifting sequence f̂t. Its leading term changes depending on whether N =
O(T 2−4ϕ) or not. The lower bounds in the above assumption are part of
rank conditions that ensure that the leading terms are well defined. As a
result, it entails a phase transition on the distribution of γ̂. Because they
are rather technical, we provide a more detailed discussion on Assumption
4.5 in Online Appendix G.2.

4.3. Rates of Convergence. The following theorem presents the rates of
convergence for the estimators.

Theorem 4.1. Let Assumptions 4.1–4.5 hold. Suppose T = O(N). Then

|α̂− α0|2 = OP

(
1√
T

)
and |γ̂ − γ0|2 = OP

(
1

T 1−2ϕ
+

1

(NT 1−2ϕ)1/3

)
.
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While the convergence rate for α̂ is standard, the convergence rate of γ̂
merits further explanation. First of all, when N is relatively large so that
T 2−4ϕ = o (N), γ̂−γ0 converges at a super-consistent rate of T−(1−2ϕ). Con-
trary to this case, when N = o(T 2−4ϕ), the estimated threshold parameter
has a cube root rate, which is similar to that of the maximum score type
estimators [19]. Therefore, as

√
N/T 1−2ϕ varies in [0,∞], the rate of con-

vergence varies between the super-consistency rate of the usual threshold
models to the cube root rate of the maximum score type estimators.

The convergence rates exhibit a continuous transition from one to the
other. To explain this transition phenomenon, we can show that uniformly in
(α, γ), the objective function has the following expansion: there are functions
R1(·) and R2(·, ·) such that

ST (α, γ)− ST (α0, γ0) = R1(γ) +R2(α, γ),

where γ 7→ R1(γ) is a non-stochastic function, representing the “mean”
of the loss function, but is also highly non-smooth with respect to γ, and
R2(α, γ) is the remaining stochastic part. A key step is to derive a sharp
lower bound for R1(γ). When N is relatively large, the effect of estimating
latent factors is negligible, and R1(γ) has a high degree of non-smoothness.
Similar to the usual threshold model, we have

R1(γ) ≥ CT−2ϕ|γ − γ0|2 −OP (T−1).

This lower bound leads to a super-consistency rate. On the other hand,
when N is relatively small, there are extra noises arising from the cross-
sectional idiosyncratic errors when estimating the latent factors, which we
call “cross-sectional noises.” A remarkable feature of our model is that the
cross-sectional noises help smooth the objective function in this case. As a
result, the behavior of R1(γ) is similar to that of the maximum score type
estimators, where a quadratic lower bound can be derived:

R1(γ) ≥ CT−2ϕ
√
N |γ − γ0|22 −OP (T−2ϕN−5/6).

The quadratic lower bound, together with a larger error rate, then leads to a
cube root rate type of convergence. See Online Appendix G.1 for a detailed
description of the roadmap of the proof.

4.4. Consistency of Regime-Classification. We introduce an error rate in
(in-sample) regime-classification,

R̂T =
1

T

T∑
t=1

∣∣∣1{f̃ ′t γ̂ > 0
}
− 1

{
f ′tγ0 > 0

}∣∣∣ .
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The uncertainty about the regime classification comes from either f̃t or γ̂ or
both. We establish its convergence rate in the following theorem.

Theorem 4.2. Let Assumptions 4.1–4.5 hold. Suppose T = O(N). Then

R̂T = OP

((
NT 1−2ϕ

)−1/3
+ T−1+2ϕ +N−1/2

)
.

This is a useful corollary of the derivation of the rates of convergence
for the threshold estimator. We expect a good performance of our regime
classification rule even with a moderate size of T .

4.5. Asymptotic Distribution. To describe the asymptotic distribution,
we introduce additional notation. Let VT denote the K×K diagonal matrix
whose elements are the K largest eigenvalues of YY ′/NT . Define

H̃ ′T := V −1
T

1

T

T∑
t=1

f̃1tg
′
1t

1

N
Λ′Λ, HT := diag(H̃T , 1),(4.7)

and H := plimT,N→∞HT , which is well defined, following Bai [3]. Let

ω := lim
N,T→∞

√
N

T 1−2ϕ
∈ [0,∞], ζω := max{ω, ω1/3}, and Mω := max{1, ω−1/3}.

Define, for ut = f ′tγ0,

A(ω, g) := MωE
[
(xtd0)2

(∣∣f ′tg + ζ−1
ω Zt

∣∣− ∣∣ζ−1
ω Zt

∣∣) ∣∣∣∣ut = 0

]
put(0)

for ω ∈ (0,∞], with the convention that 1/ω = 0 for ω =∞, and

A(0, g) := E
[
(x′td0)2(f ′tg)2

∣∣∣∣ut = 0,Zt = 0

]
put,Zt(0, 0)

for ω = 0. Recall Zt(γ) := (x′t, x
′
t1{f ′tγ > 0})′.

Theorem 4.3. Let Assumptions 4.1–4.5 hold. Suppose T = O(N). Let
G := {0} × RK . In addition, let W denote the same Gaussian process as in
Theorem 3.1. Then, as N,T →∞, we have
√
T (α̂− α0)

d−→ N
(

0,
(
EZt(γ0)Zt(γ0)′

)−1 E
(
Zt(γ0)Zt(γ0)′ε2

t

) (
EZt(γ0)Zt(γ0)′

)−1
)
,((

NT 1−2ϕ
)1/3 ∧ T 1−2ϕ

)
(γ̂ − γ0)

d−→ argmin
g∈G

A (ω, g) + 2W (g) ,

and
√
T (α̂− α0) and ((NT 1−2ϕ)1/3 ∧ T 1−2ϕ)(γ̂ − γ0) are asymptotically in-

dependent. Moreover, A(0, g) = limw→0A(w, g).
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It is worth noting that A (ω, g) is continuous everywhere, which implies
that the distribution of the argmin of the limit processes A (ω, g) + 2W (g)
is also continuous in ω in virtue of the argmax continuous mapping theorem
[see e.g.,[29]]. Furthermore, the asymptotic distribution of γ̂ is well defined
for any ω due to Lemma 2.6 of Kim and Pollard [19]. Specifically, the argmin
of the limit Gaussian process is OP (1) since A (ω, g) is a deterministic func-
tion of order at least |g| for any ω while the variance of W (g) grows at the
rate of |g| as g →∞. It also possesses a unique minimizer almost surely.

In the literature, Bai and Ng [4, 5] have shown that the oracle property
(with regard to the estimation of the factors) holds for the linear regression
if T 1/2 = o (N) and for the extremum estimation if T 5/8 = o (N), in the
presence of estimated factors. Thus, it appears that the oracle property
demands a larger N as the nonlinearity of the estimating equation rises.
In view of this, we regard our condition, T = O(N), as not too stringent
because we need to deal with estimated factors inside the indicator functions.

4.6. Phase Transition. To demonstrate that our asymptotic results are
sharp, we consider a special case that N = T κ for κ ≥ 1. In this case, the
asymptotic results can be depicted on the (κ, ϕ)-space.

We categorize the results of Theorem 4.3 into three groups. In all three
cases, the estimators enjoy certain oracle properties.

• Strong oracle: T 2−4ϕ = o (N) or ω = ∞. This is equivalent to κ >
2 − 4ϕ. The drift function A(∞, g) has a kink at g = 0. Intuitively,
a bigger N makes the estimated factors more precise. This yields the
oracle result for both γ̂ and α̂, and the same asymptotic distribution
as in the known factor case.
• Weak oracle: N = o

(
T 2−4ϕ

)
or ω = 0. This is equivalent to κ < 2−4ϕ.

The drift function A(0, g) is approximately quadratic in g near the ori-
gin. Because it is harder to identify the minimum when the function is
smooth than when it has a kink at the minimum, this results in a non-
oracle asymptotic distribution as well as a slower rate of convergence

for γ̂ to
(
NT 1−2ϕ

)−1/3
. However, the asymptotic distribution for α̂ are

still the same as those when the unknown factors are observed. So the
oracle property for α̂ is preserved.
• Semi-strong oracle: N � T 2−4ϕ or ω ∈ (0,∞). This is equivalent to
κ = 2− 4ϕ. In this case, A(ω, g) has a continuous transition between
the two polar cases discussed above. The effect of estimating factors
is non-negligible for γ̂ and yet the estimator enjoys the same rate of
convergence. The estimator α̂ continues to achieve the oracle efficiency.

The phase transition occurs when κ = 2 − 4ϕ, which is the semi-strong
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oracle case and the critical boundary of the phase transition. Changes in
the convergence rates and asymptotic distributions are continuous along the
critical boundary.

Fig 2. Phase Diagram

κ

ϕ
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1
0

2

Strong Oracle
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Figure 2 depicts a phase transition from the strong oracle phase to the
weak oracle phase. The critical boundary κ = 2 − 4ϕ is shown by closely
dotted points in the figure. On one hand, as ϕ moves from 0 to 1/2, the
strong oracle region for κ increases. That is, as the convergence rate for γ̂
becomes slower, the requirement for the minimal sample size N for factor
estimation becomes less stringent. On the other hand, as κ becomes larger,
the strong oracle region for ϕ increases. In other words, as N becomes larger,
the range of attainable oracle rates of convergence for γ̂ becomes wider. In
this way, we provide a thorough characterization of the effect of estimated
factors.

Fig 3. An Example of A (ω, g)
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4.7. Graphical Representation of A (ω, g). To plot A (ω, g), we consider
the simple case that gt = (qt,−1)′, g = (0, g2)′ , xt = 1, d0 = 1, and ht and qt
are independent of each other. We write g2 = g for simplicity. The left panel
of Figure 3 shows the three-dimensional graph of A (ω, g), the middle panel
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depicts the profile of A (ω, g) as a function of ω for several values of g, and
the right panel exhibits that of A (ω, g) as a function of g for given values
of ω. First of all, it can be seen that A (ω, g) is continuous everywhere but
has a kink at ω = 1. As ω approaches zero, the shape of A (ω, g) is clearly
quadratic in g; whereas, as ω becomes larger, it becomes almost linear in g.
Also, A (ω, g) is quite flat around its minimum at g = 0 when ω is close to
zero; however, A (ω, g) has a sharp minimum at zero for a larger value of ω.
This reflects the fact that the rate of convergence increases as ω becomes
larger.

5. Inference. In this section, we consider inference. Regarding α0, The-
orems 3.1 and 4.3 imply that inference for α0 can be carried out as if γ0 were
known. Therefore, the standard inference method based on the asymptotic
normality can be carried out for α0 for both observed and estimated ft.

We now focus on the inference issue regarding γ0. Let θ0 = h(γ0) denote
the parameter of interest for some known linear transformation h(·). For
instance, this can be a particular element of γ0 or a linear combination of
the elements of γ0. We use a quasi-likelihood ratio statistic:

LR(θ) :=
ST (α̂h, γ̂h)− ST (α̂, γ̂)

ST (α̂, γ̂)
,

(α̂h, γ̂h) := arg min
α,h(γ)=θ

ST (α, γ) , (α̂, γ̂) := arg min
α,γ

ST (α, γ) ,

where ST denotes the least-squares loss function, using ft when factors are
observable, and f̃t when factors are estimated. Then, the 100(1− a)%-level
confidence set for θ0 is {θ : LR(θ) ≤ cva}, where cva denotes a critical
value. As Theorem 5.1 shows, the asymptotic distribution is non-pivotal, so
the critical value is computed based on the bootstrap.

5.1. The Bootstrap with Estimated Factors. We focus on the case of esti-
mated factors, where we use f̃t as the “true” factors, and denote by f∗t as the
estimated factors in the bootstrap world. To preserve the phase transition
brought by the effect of PCA factor estimators, f∗t should be a “perturbed”
version of f̃t. Specifically, let f∗t be re-estimated factors in the bootstrap
sample via PCA. This is given by Gonçalves and Perron [13]. To maintain
the cross-sectional dependence among the idiosyncratic components in the
bootstrap factor models, we generate bootstrap data by

Y∗t := Λ̂f̃t + v̂ar(et)
1/2W∗t ,

where {W∗t : t ≤ T} is a sequence of independent N × 1 multivariate stan-
dard normal random vectors and v̂ar(et) is the estimated covariance matrix
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of et. If the covariance is a sparse matrix, we apply the thresholding co-
variance estimator of Fan, Liao, and Mincheva [11]. Then, we apply PCA
to estimate factors to obtain F̃ ∗t . However, F̃ ∗t estimates f̃t, the “true fac-
tors” in the bootstrap sample, up to a new rotation matrix H∗T . Fortunately,
such a rotation indeterminacy can be removed because H∗T is known in the
bootstrap world. Following Gonçalves and Perron [12, 13], we define

f∗t := H∗
′−1
T F̃ ∗t(5.1)

as the final “estimated factors” in the bootstrap sample. The bootstrap
distribution of f∗t − f̃t mimics well the asymptotic sampling distribution
of f̃t − H ′T gt, that is N (0,Σh). We give more details of this method, the
definition of H∗T , and an alternative method based on Gaussian perturbation
in Online Appendix H.2.

5.2. The k-Step Bootstrap Algorithm. We now describe the bootstrap
algorithm in detail. Define

Z̃t(γ) := (x′t, x
′
t1{f̃ ′tγ > 0})′ and Z∗t (γ) := (x′t, x

′
t1{f∗

′
t γ > 0})′.(5.2)

For each t = 1, . . . , T , construct {y∗t }t≤T by

y∗t := Z̃t (γ̂)′ α̂+ ηtε̂t with ε̂t := yt − Z̃t (γ̂)′ α̂,(5.3)

where ηt is an i.i.d. sequence whose mean is zero and whose variance is one.
For example, ηt ∼ N (0, 1) or it can be simulated from a discrete distribution
(e.g., the Rademacher distribution). The bootstrap least-squares loss is given
by

(5.4) S∗T (α, γ) :=
1

T

T∑
t=1

[y∗t − Z∗t (γ)′ α]2.

In principle, the bootstrap analog of the original constraint is h(γ) = h(γ̂)
and the bootstrap analogous LR is defined as

L̃R
∗

:=
minα,h(γ)=h(γ̂) S∗T (α, γ)−minα,γ S∗T (α, γ)

minα,γ S∗T (α, γ)
.

A potential computational problem for L̃R
∗

is that it is necessary to fully
solve two joint MIO problems: minα,γ S∗T (α, γ) and minα,h(γ)=h(γ̂) S∗T (α, γ)
in each of the bootstrap repetitions. To circumvent this problem, we adopt
the approach of Andrews [1]. Because a solution based on the original data
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should be close to a solution based on the bootstrapped data, within each
bootstrap replication, we can employ the MILP algorithm, with (α̂, γ̂) as the
initial value, and iteratively update the algorithm for k steps rather than
computing the full bootstrap solutions. A computationally convenient k-step
LR statistic (LR∗k) and its computational details are given in Algorithm 3.

Algorithm 3: Bootstrap for Estimated Factors

Input: {(yt, xt, f̃t,Mt, ε̂t) : t = 1, . . . , T}, v̂ar(et), Λ̂, α̂, γ̂, γ̂h, B
Output: bootstrap critical value cv∗a

1 Set b = 1;
2 while b ≤ B do
3 Generate an i.i.d. sequence {ηt}t≤T whose mean is zero and variance is one and

an i.i.d. sequence of multivariate vectors {W∗t }t≤T from N (0, I);

4 Generate Y∗t = Λ̂f̃t + v̂ar(et)
1/2W∗t , t = 1, ..., T ;

5 Apply PCA to {Y∗t } and obtain F̃ ∗t as the PCA factor estimates;

6 Compute H∗T and f∗t = H∗
′−1
T F̃t, t = 1, ..., T ;

7 Construct y∗t = Z̃t (γ̂)′ α̂+ ηtε̂t, t = 1, ..., T , where Z̃t(γ) = (x′t, x
′
t1{f̃ ′tγ > 0})′;

8 Initialize at γ̂∗,0 = γ̂, γ̂∗,0h = γ̂h;
9 Set l = 1;

10 while l ≤ k do

11 Compute α̂∗,l = α∗(γ̂∗,l−1) and α̂∗,lh = α∗(γ̂∗,l−1
h ), where

α∗(γ) =

[
1

T

T∑
t=1

Z∗t (γ)Z∗t (γ)′
]−1

1

T

T∑
t=1

Z∗t (γ) y∗t ;

12 For the given (α̂∗l, α̂∗lh ), compute the following by MILP:

γ̂∗,l = arg min
γ

S∗T (α̂∗,l, γ),

γ̂∗,lh = arg min
h(γ)=h(γ̂)

S∗T (α̂∗,lh , γ);

13 Let l = l + 1;

14 end
15 Compute

LR∗k :=
S∗T
(
α̂∗,kh , γ̂∗,kh

)
− S∗T (α̂∗, γ̂∗)

S∗T (α̂∗, γ̂∗)
;

16 Let b = b+ 1;

17 end
18 Obtain cv∗a by the (1− a) th quantile of the empirical distribution of LR∗k.

5.3. Asymptotic Distribution. To describe the asymptotic distribution of
the quasi-likelihood ratio statistic, let σ2

ε be the variance of εt. In addition,
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recall the asymptotic distributions of γ̂, the minimizer of

Q(ω, g) := A(ω, g) + 2W (g) ,

and, as we discussed for Theorem 4.3, ω = ∞ also corresponds to the case
of known factors.

Note that A(ω, g) depends on the true value φ0, the rotation matrix H,
and the covariance matrix Σh. For the bootstrap sampling distribution, we
consider drifting sequences around these values. For this, define

A(ω, g,Σ, H̄, φ)

:= MωE
[
(xtd0)2

(∣∣∣g′tHg + ζ−1
ω W∗

′
t Σ1/2H̄−1φ

∣∣∣− ∣∣∣ζ−1
ω W∗

′
t Σ1/2H̄−1φ

∣∣∣) ∣∣∣∣g′tφ = 0

]
pg′tφ(0)

for ω ∈ (0,∞], and

A(0, g,Σ, H̄, φ)

:= E
[
(x′td0)2(g′tHg)2

∣∣∣∣g′tφ = 0,W∗′t Σ1/2H̄−1φ = 0

]
p
g′tφ,W∗

′
t Σ1/2H̄−1φ

(0, 0).

Note that A(ω, g) = A(ω, g,H ′ΣhH,H, φ0).

Assumption 5.1. (i) Uniformly for φ inside a neighborhood of φ0,
supxt,f2t

|pğ′tφ|xt,f2t
(0)− pg′tφ1|xt,f2t

(0)| = o(1).
(ii) For each fixed ω ∈ [0,∞] and g, A(ω, g, S) is continuous with respect

to S = (Σ, H̄, φ).
(iii) The factor idiosyncratic component et is independent of (xt, gt), and

|v̂ar(et)− var(et)|2 = oP (1) under the matrix spectral norm.
(iv) infγ |f̂∗

′
t γ| has a density (jointly with respect to (et, gt,W∗t )) bounded

and continuous at zero, where f̂∗t = f̂t +N−1/2Σ̂
1/2
h W

∗
t .

Fan, Liao, and Mincheva [11] showed that under mild sparsity assump-
tions, for the matrix spectral norm, |v̂ar(et)− var(et)|2 = oP (1), given that
logN does not grow too fast relative to T . The following theorem presents
the asymptotic distribution of LR, and the validity of the k-step bootstrap
procedure.

Theorem 5.1. Suppose that assumptions of Theorem 3.1 (for the known
factor case) or assumptions of Theorem 4.3 (for the estimated factor case)
and Assumption 5.1 hold. Let h(·) be a Rm-valued linear function with a
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fixed m and let rNT :=
(
NT 1−2ϕ

)1/3 ∧ T 1−2ϕ, where we set N = T 2 in case
of the known factor. Then, under H0 : h(γ0) = θ, we have√

rNTT 1+2ϕ · LR→d σ−2
ε min

g′h∇h=0
Q(ω, gh)− σ−2

ε min
g

Q(ω, g),

and for any k ≥ 1 as the number of iterations in the k-step bootstrap,√
rNTT 1+2ϕ · LR∗k →d∗ σ−2

ε min
g′h∇h=0

Q(ω, gh)− σ−2
ε min

g
Q(ω, g).

In the above, →d∗ represents the convergence in distribution with respect to
the conditional distribution of {ηt,W∗t }t≤T given the original data. Also, ∇h
denotes the gradient of h(·), which is independent of γ0 as h is linear.

6. Monte Carlo Experiments. In this section, we study the finite
sample properties of the proposed method via Monte Carlo experiments.
The data are generated from the following design:

yt = x′tβ0 + x′tδ01{g′tφ0 > 0}+ εt for t = 1, . . . , T,

where εt ∼ N(0, 0.52), xt ≡ (1, x′2,t)
′, and gt ≡ (g′1,t,−1)′. Both x2,t and

g1,t follow the vector autoregressive model of order 1: x2,t = ρxx2,t−1 +
νt, g1,t = ρgg1,t−1 + ut, where νt ∼ N(0, Idx−1) and ut ∼ N(0, IK). When
the factor gt is not observable, we instead observe Yt that is generated from
Yt = Λg1,t +

√
Ket, et = ρeet−1 + ωt, where Yt is an N × 1 vector and ωt

is an i.i.d. innovation generated from N(0, IN ). The terms εt, νt, ut, and ωt
are mutually independent.

In the baseline model, we set T = N = 200, dx = 2, and K = 3,
and apply the MIQP algorithm. The additional parameter values are set
as follows: β0 = δ0 = (1, 1); φ0 = (1, 2/3, 0, 2/3); ρx = diag(0.5, . . . , 0.5);
ρg = diag(ρg,1, . . . , ρg,K), where ρg,k ∼ U(0.2, 0.8) for k = 1, . . . ,K, the
ith row of Λ, λ′i ∼ N(0′,K · IK); and ρe = diag(ρe,1, . . . , ρe,N ), where
ρe,i ∼ U(0.3, 0.5) for i = 1, . . . , N . The values of ρg and ρe are drawn
only once and kept for the whole replications. The factor model design is
similar to Bai and Ng [6] and Cheng and Hansen [10]. All simulation re-
sults are based on 1,000 replications unless otherwise mentioned. We use
a desktop computer equipped with an AMD RYZEN Threadripper 1950X
CPU (16 cores with 3.4 GHz) and 64 GB RAM. The replication R codes for
both the Monte Carlo experiments and empirical applications are available
at https://github.com/yshin12/fadtwo. Also, the full simulation results
can be found in Tables A-2–A-8 in Online Appendix J.

https://github.com/yshin12/fadtwo
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Fig 4. Simulation Results: Baseline Model
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First, we study the baseline model under four scenarios: (i) when we
know the correct regime, i.e. φ0, (Oracle); (ii) when we observe gt and
know that the third factor is irrelevant (Observed Factors/No Selection);
(iii) when we observe gt and have to select the relevant factors (Observed
Factors/Selection); and (iv) when we do not observe gt but estimate factors
from Yt by PCA. We set the dimension of γ to be 4 in (iv). Figure 4 reports
the relative size of the root-mean-square errors (RMSEs) for β, δ as well
as the coverage rate for the 95% confidence intervals. As predicted by the
asymptotic theory in the previous sections, the relative RMSEs over Oracle
are close to 1 in all scenarios. The coverage rates for the 95% confidence
intervals are also close to the nominal value. Not surprisingly, these results
on α are based on the good estimation performance of φ (or γ).

Fig 5. Unobserved Factors with Different N
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Note. The whisker plot in the panel on the right denotes one standard deviation computed
over replication draws.

Second, we focus on the unobserved factor model and investigate the
performance as N increases. For each simulated sample of {yt, xt, gt}, we
generate Yt with N = 100, 200, 400, 1600. We use the same baseline design
with T = 200, dx = 2, but K = 1 to speed up computations. Figure 5 sum-
marizes the results. The regimes are predicted more precisely as N increases
and the performance of the estimator improves. We observe relatively more
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Table 1
Size of Bootstrap Test

Null hypothesis Scenarios
Significance level
5% 1%

H0 : γ02 = 0 Estimated factor 3.8% 0.7%
H0 : φ02 = 0 Known factor 4.3% 0.5%
H0 : φ02 = 0 and φ03 = 0 Many known factors 7.5% 1.1%

Fig 6. Computation Time over T , dx, and dg
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improvements in γ rather than α. This is because α̂ already enjoys the oracle
property, provided that T = O(N).

Third, we investigate the performance of the bootstrap test under three
scenarios: (i) an estimated factor; (ii) a known factor; (iii) many known
factors. The parameters are set as follows: T = 200, N = 400, B = 499,
εt ∼ N(0, 1), ηt ∼ N(0, 1), β0 = (1, 1), δ0 = (0.5, 0.5), γ0(or φ0) = (1, 0) in
(i) and (ii), and φ0 = (1, 0, 0, 0) in (iii). We test a simple null hypothesis of
H0 : γ02(or φ02) = 0 in (i) and (ii) and a joint hypothesis of H0 : φ02 = φ03 =
0 in (iii). There is no serial correlation in the model (ρx = ρg = ρe = 0).
Table 1 reports the size of the bootstrap test in each scenario and it is
satisfactory but we observe over-rejection in the joint hypothesis case.

We next investigate the computation time. We start from a set of simple
models and extend to large dimensional models. We simplify the baseline
model by considering scenario (ii) (i.e., Observed/No Selection), and by
setting ρx = ρg = 0. The results are based on 100 replications. We set
T = 200, dx = 1, and dg = 2, initially and increase each dimension as
follows: T = {200, 300, 400, 500}, dx = {1, 2, 3, 4} while keeping T = 200 and
dg = 2; dg = {2, 3, 4, 5} while keeping T = 200 and dx = 1. Figure 6 reports
the computation time of MIQP. The results indicate that the computation
time stays in a reasonable bound and increases linearly as T and dx increase.
However, it increases exponentially as dg increases.

We now consider large dimensional models and handle the computational
challenge by implementing the BCD algorithm in addition to MIQP. We
extend the dimension of the models as T = {500, 1000}, dx = {6, 8, 10},
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Fig 7. Large Dimensional Models (T = 500)

dx = 6 dx = 10

● ● ●

0.00

0.25

0.50

0.75

1.00

 6  8 10

Dimension of gt (dg)

R
el

at
iv

e 
M

ed
ia

n 
C

om
pu

ta
tio

n 
T

im
e

● ● ●

0.00

0.25

0.50

0.75

1.00

 6  8 10

Dimension of gt (dg)

R
el

at
iv

e 
M

ed
ia

n 
C

om
pu

ta
tio

n 
T

im
e

0.00

0.25

0.50

0.75

1.00

 6  8 10

Dimension of gt (dg)

R
el

at
iv

e 
M

ed
ia

n 
O

bj
ec

tiv
e 

F
un

ct
io

n

0.00

0.25

0.50

0.75

1.00

 6  8 10

Dimension of gt (dg)
R

el
at

iv
e 

M
ed

ia
n 

O
bj

ec
tiv

e 
F

un
ct

io
n

Note. The relative measures are calculated by dividing the outcome of BCD by that of MIQP.

Fig 8. Larger Dimensional Models using BCD (T = 1000 and dx = 6)
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and dg = {6, 8, 10}. Note that dg = 10 would be quite challenging and
the standard grid search method would be infeasible in practice with T =
1,000. The results are based on 10 iterations of each model. We set the
total time budget as 1,800 seconds for both MIQP and BCD so that each
estimation terminates after that even if it does not converge. In BCD, we
set MaxTime 1=600 (seconds) and MaxTime 2=60 (seconds). Figure 7 reports
the ratio of the median computation time and median objective function
values between BCD and MIQP when T = 500. BCD spends a third of
the computation time, whereas MIQP spends the total time budget. BCD
achieves better objective function values in all cases and the performance of
MIQP deteriorates quickly as dg increases when dx = 10. Figure 8 reports the
summary statistics of computation time and the median objective function
values of BCD when T = 1,000. As the computation is more challenging, we
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observe that the maximum computation time is higher for all dg. However,
the median computation time is still around 600 seconds and the achieved
objective function values are quite stable.

Based on our simulation studies, we propose to use the BCD algorithm by
assigning 1/3 of the total time budget into the maximum time (MaxTime 1)
for Step 1 (MIQP). When the global solution is not attainable within MaxTime 1,
the BCD algorithm would switch into Steps 2–3 (MILP) automatically. We
recommend assigning 1/30 of the total time budget into the maximum time
(MaxTime 2) for each cycle of Step 2.

In summary, the simulation studies reveal that the proposed method
achieves the properties predicted by the asymptotic theory, especially the
oracle property of α and the inference based on the bootstrap method. The
BCD algorithm also shows quite satisfactory results in a large dimensional
change-point model whose computation is infeasible with grid search.

7. Classifying the Regimes of US Unemployment. We revisit the
empirical application of Hansen [15], who considered threshold autoregres-
sive models for the US unemployment rate. Specifically, Hansen [15] used
monthly unemployment rates (i.e., ut) for males age 20 and over, and set
yt = ∆ut in (1.1). The lag length in the autoregressive model was p = 12
and the preferred threshold variable was qt−1 = ut−1 − ut−12. In this sec-
tion, we investigate the usefulness of using unknown but estimated factors.
We use the first principal component (i.e., Ft) of Ludvigson and Ng [21]
that is estimated from 132 macroeconomic variables. This factor not only
explains the largest fraction of the total variation in their panel data set
but also loads heavily on employment, production, and so on. Ludvigson
and Ng call it a real factor and thus it is a legitimate candidate for explain-
ing the unemployment rate. We consider three different specifications for ft:
(1) f1t = (qt−1,−1), (2) f2t = (Ft−1,−1), and (3) f3t = (qt−1, Ft−1,−1).
We combined the updated estimates of the real factor, which are avail-
able on Ludvigson’s web page at https://www.sydneyludvigson.com, with
Hansen’s data, yielding a monthly sample from March 1960 to July 1996.

Table 2 reports estimation results that are obtained by the MIQP algo-
rithm. We show the goodness of fit by reporting the average squared resid-
uals and also the results of regime misclassification relative to the NBER
business cycle dates. The latter is obtained by

1

T

T∑
t=1

∣∣∣1{f ′jtγ̂j > 0
}
− 1NBER,t

∣∣∣ for each j = 1, 2, 3,(7.1)

where 1NBER,t is the indicator function that has value 1 if and only if the

https://www.sydneyludvigson.com
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Table 2
Estimation Results

Specification (1) f1t = (qt−1,−1) (2) f2t = (Ft−1,−1) (3) f3t = (qt−1, Ft−1,−1)

Regime 1 (“Expansion”) qt−1 ≤ 0.302 Ft−1 ≤ −0.28 qt−1 + 3.55Ft−1 ≤ −1.60

Prediction error 0.0264 0.0272 0.0252

Classification error 0.193 0.106 0.104

Note. See Table A-1 in the Online Appendix for estimated coefficients and their heteroskedasticity-
robust standard errors. Regime 2 (“Contraction”) is the complement of regime 1. “Prediction Error”
refers to the average of squared residuals (T−1∑T

i=1 ε̂
2
t ). “Classification Error” corresponds to the

proportion of misclassification defined in (7.1).

Fig 9. Regime Classification
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Note. The leftmost panel shows NBER recession dates in the shaded area, and the other
three panels display those with specifications (1), (2) and (3), respectively.

economy is in contraction according to the NBER dates. Accordingly, we
label regime 1 “expansion” and regime 2 “contraction”, respectively. Figure
9 gives the graphical representation of regime classification. Specification (1)
suffers from the highest level of misclassification and tends to classify reces-
sions more often than NBER. Specification (2) mitigates the misclassification
risk but at the expense of a worse goodness of fit. On one hand, the thresh-
old autoregressive model solely by qt−1 fittingly explains the unemployment
rate but is short of classifying the overall economic conditions satisfactorily.
On the other hand, the model based only on Ft−1 is adequate at describing
the underlying overall economy but does not explain the unemployment rate
well. It turns out that specification (3) has the lowest misclassification error
and best explains unemployment. Thus, we have shown the real benefits of
using a vector of possibly unobserved factors to explain the unemployment
dynamics.

As an additional check, we tested the null hypothesis of no threshold
effect. The resulting p-value is 0.002 based on 500 bootstrap replications,
thus providing strong evidence for the existence of two regimes. See Table
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A-1 in the Online Appendix for details and additional results.

8. Conclusions. We have proposed a new method for estimating a two-
regime regression model where regime switching is driven by a vector of
possibly unobservable factors. We show that our optimization problem can
be reformulated as MIO and have presented two alternative computational
algorithms. We have also derived the asymptotic distribution of the result-
ing estimator under the scheme that the threshold effect shrinks to zero as
the sample size tends to infinity. As a possible interesting extension, we can
consider nonparametric regime switching, where the switching indicator is
replaced by 1{F (wt) > 0} with a vector of observables wt and a nonpara-
metric function F (·). We intend to study this in the future.

SUPPLEMENTARY MATERIAL

Factor-Driven Two-Regime Regression: Online Appendix:
(). The online appendix contains additional results and all the proofs. We
also propose an `0-penalized factor selection procedure to select the active
factors, as well as testing the linearity of the model in (1.1), H0 : δ0 = 0.
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