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Abstract

Recent research on macroeconomic �uctuations in emerging economies has advo-

cated introducing a stochastic productivity trend, in addition to temporary productiv-

ity shocks, or allowing for foreign interest rate shocks coupled with �nancial frictions.

This paper develops a model that encompasses both approaches and estimates it via

Bayesian methods. This exercise sheds light on the relative merit of the two approaches

and on how �nancial frictions a¤ect the transmission of shocks. The estimated model

accounts for aggregate �uctuations by assigning a dominant role to �nancial frictions

in amplifying conventional productivity shocks and, less markedly, interest rate shocks;

trend shocks, in contrast, play a very minor role. Of the two �nancial frictions we con-

sider, working capital versus spreads linked to expected future productivity, the latter

emerges as essential for a reasonable approximation to the data.
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1. Introduction

Recent research on macroeconomic �uctuations in emerging economies has resulted in two

leading approaches, both of which can be seen as extensions of Mendoza�s (1991) basic

dynamic stochastic model. The �rst one, due to Aguiar and Gopinath (2007), introduces

a stochastic productivity trend, in addition to the temporary productivity shocks already

present in Mendoza�s model. This seemingly small addition, Aguiar and Gopinath argue,

goes a long way towards addressing well known failures of the model when taken to data

from emerging market economies, including the strong counter cyclical behavior of the trade

surplus and the higher volatility of consumption relative to output�s. A second approach,

exempli�ed by Neumeyer and Perri (2005) and Uribe and Yue (2006), relies instead on the

introduction of foreign interest rate shocks coupled with �nancial frictions. This approach

is motivated by the observation that the cost of foreign credit appears to be countercyclical

in emerging economies data. Accordingly, both Neumeyer and Perri (2005) and Uribe and

Yue (2006) develop models in which country risk spreads are stochastic and interact with

�nancial imperfections. Then they argue that those models are consistent with the empirical

regularities of emerging economies.

This paper develops and estimates a model that encompasses both approaches, combining

stochastic trends with interest rate shocks and �nancial frictions. We push the exercise in

several directions intended to cast light on the relative merits of the two approaches and on

the role of �nancial frictions in amplifying shocks to arrive to a reasonable characterization

of the data.

We exploit recent advances in Bayesian methods to estimate the posterior distributions

of the parameters of the encompassing model, and of functions of those parameters such

as variance decompositions. We can then measure the relative importance of temporary

productivity shocks, trend shocks, and interest rate shocks when all of them can contribute

to �uctuations. In addition, we estimate separately the stochastic trend and the random

interest rates/�nancial frictions models, regarded as restricted versions of the encompassing

model; this allows for the analysis of the marginal contribution of each approach to the overall

model. We employ the Mexican dataset of Aguiar and Gopinath (2007), thus ensuring that
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our results can be compared with the �ndings of that paper. We also use interest rate and

spreads data from Uribe and Yue (2006).

In the benchmark estimation of the encompassing model, the posterior distribution of

the estimated parameters is characterized by strong �nancial frictions, volatile shocks to the

processes for interest rates and transient technology, and small trend shocks. The random

walk component, a measure of the relative importance of trend shocks, is less than a �fth

of what Aguiar and Gopinath (2007) obtained using a model with no �nancial frictions.

We �nd that temporary productivity shocks are responsible for the bulk of the variance of

aggregates, although interest rate shocks have a sizeable role as well. In contrast, the share

of the variances due to trend shocks is three percent or less.

We �nd that the encompassing model does a good job in matching the data moments that

have been emphasized in existing studies. Success in this regard is largely due to the interac-

tion between conventional productivity shocks and �nancial frictions. Indeed, the �nancial

frictions model yields virtually the same values for the data moments as the encompassing

model, while the stochastic trend model delivers notable counterfactual implications.

The results, therefore, support the view that explaining �uctuations in emerging economies

requires �nancial imperfections to amplify conventional productivity shocks and, perhaps less

crucially, interest rate shocks. Trend shocks add relatively little, and become quantitatively

relevant only if �nancial frictions are assumed away.1

To further understand the transmission mechanism, we investigate the role of the two

�nancial frictions assumed in the encompassing model: a working capital requirement and

an endogenous spread. Our estimations strongly indicate that it is the latter, not the former,

that is crucial for a �nancial frictions view to be a reasonably good approximation to the

data. Notably, this con�rms previous analysis by Oviedo (2005).

Finally, to check for the robustness of the previous results and for additional detail,

we estimate the contribution of temporary productivity shocks, trend shocks, interest rate

1Boz, Daude, and Durdu (2012) estimate a model similar to Aguiar and Gopinath�s and, like us, �nd
that the volatility of the temporary technology shock is larger than the volatility of trend shocks. But their
explanation relies not on �nancial frictions but on learning e¤ects. In their model, agents observe directly
innovations to total factor productivity but not whether they are temporary or permanent in nature. The
economy may then respond to temporary shocks as if they were permanent; interestingly, this can be the
case even if productivity innovations are dominated by the temporary component.
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shocks and �nancial frictions in explaining the dynamics of the Mexican 1995 Tequila crisis.

We �nd that temporary productivity shocks appear to have dominated the episode but,

again, that �nancial frictions were crucial to amplify their e¤ects.

Our study is closely related to García-Cicco, Pancrazi, and Uribe (2010), who examined

1900-2005 data from Mexico and Argentina to probe the stochastic trend hypothesis. They

�nd that an estimated dynamic stochastic model with trend shocks performs poorly along

several dimensions, most markedly the behavior of the trade balance to GDP ratio. For

Argentina, they also estimated a version of the model augmented with stochastic shocks

to the cost of foreign credit, and found that version to be much more satisfactory; in that

extension, the role of trend shocks turned out to be negligible. Hence Garcia-Cicco et.al.�s

�ndings and ours have much in common. However, there are signi�cant di¤erences as well.

One di¤erence is that Garcia-Cicco et al.�s �ndings appear strongly driven by their use of

very long run data. In contrast, we use the same data as in Aguiar and Gopinath (2007), and

are still able to argue in favor of the role of �nancial frictions and against that of stochastic

trends. More importantly, we study deeper speci�cations of �nancial frictions (working

capital requirements and endogenous spreads), as opposed to the exogenously stochastic

spreads and high debt elastic interest rate premia that represent the main �nancial frictions

in Garcia-Cicco et al.

Our work is related to a long standing debate of whether �uctuations in emerging

economies are dominated by domestic shocks or foreign shocks. Several years ago now,

Calvo, Leiderman, and Reinhart (1993) challenged the then conventional wisdom by show-

ing that foreign interest rate shocks were a major source of �uctuations in Latin America.

Our results are clearly complementary to theirs.

Likewise, emphasizing the role of �nancial frictions is of course not new. In addition

to the papers by Neumeyer-Perri and Uribe-Yue, �nancial imperfections in open economies

have been stressed by the literature on balance sheet e¤ects (Cespedes, Chang and Velasco

2004) and sudden stops (Calvo 1998, Mendoza 2010). A main contribution of this paper is

to provide a quantitative perspective on the empirical accuracy of �nancial frictions models

relative to their main alternative, the stochastic trend hypothesis.
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Our focus on estimating the macroeconomic implications of �nancial frictions is similar

to that of a recent literature on the importance of agency costs and net worth e¤ects in

developed country �uctuations. Most of that literature (which includes De Graeve (2008),

Nolan and Thoenissen (2009), Gilchrist, Ortiz, and Zakrajsek (2009), Christiano, Motto,

and Rostagno (2010), and Fuentes-Albero (2012)) studies empirical implementations of the

in�uential Bernanke, Gertler, and Gilchrist (1999) framework, and generally �nds that �nan-

cial frictions signi�cantly improve the empirical plausibility of standard models. Our study�s

empirical likelihood-based approach as well as its results have the same �avor, although its

details are quite di¤erent. Speci�cally, our model does not include a �nancial accelerator,

which is crucial in the Bernanke et al. framework. Instead, our model�s �nancial channels

are those emphasized in previous emerging countries studies.2

The rest of the paper is organized as follows. Section 2 presents the models under study.

Section 3 discusses the details of our empirical approach. Section 4 presents and discusses

our baseline results. Section 5 presents several robustness exercises. Section 6 concludes.

2. Models

2.1. The Standard Small Open Economy Model

The standard model of a small open economy, �rst developed by Mendoza (1991) and dis-

cussed by Schmitt-Grohe and Uribe (2003), is well known. Time is discrete and indexed by

t = 0; 1; 2; ::: There is only one �nal good in each period, which can be produced with the

technology

Yt = atF (Kt;�tht)

where Yt denotes output, Kt capital available in period t, ht labor input, and F is a neo-

classical production function. We use upper case letters to denote variables that trend in

equilibrium, and lower case letters to denote variables that do not3. Also, at is a shock to

2Likelihood based methods are also being becoming more frequent in open economy macroeconomics.
Leading studies include Lubik and Schorfheide (2005), Rabanal and Tuesta (2006), and Adolfson, Laséen,
Lindé, and Villani (2008).

3The only exceptions will be the spread, St, and the world and domestic gross interest rates, R�t and Rt,
all de�ned later and which do not trend in equilibrium.
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total factor productivity, assumed to follow

log at = �a log at�1 + "at (2.1)

where j�aj < 1; and "at is an i.i.d. shock with mean zero and variance �
2
a. In the standard

model, the shock "at is the only source of uncertainty. Also, and importantly for our purposes,

total factor productivity is a stationary process.

Finally, �t is a term allowing for labor augmenting productivity growth. In the standard

model, �t is assumed to follow a deterministic path:

�t = ��t�1 (2.2)

Capital accumulation is given by a conventional equation:

Kt+1 = (1� �)Kt + It � � (Kt+1; Kt) (2.3)

where It denotes investment, � the rate of depreciation, and � costs of installing capital.

The economy is inhabited by a representative household with preferences of the form:

E
1X
t=0

�tU(Ct; ht;�t�1) (2.4)

where � is a discount factor between zero and one, Ct denotes consumption, U(:) a period

utility function, and E(:) the expectation operator. We include �t�1 in the period utility

function U to allow for balanced growth.

The representative agent has access to a world capital market for noncontingent debt.

Her budget constraint is, therefore,

Wtht + utKt + qtDt+1 = Ct + It +Dt

Wt denotes the wage rate and ut the rental rate of capital, so the �rst two terms in the LHS

are factor receipts in period t: In addition, qt is the price at which the household can sell a
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promise to a unit of goods to be delivered at t+1; while Dt+1 is the number of such promises

issued. The RHS describes expenditures in period t, given by consumption, investment, and

debt payments.

Residents of this country face an interest rate on foreign borrowing given by the inverse

of qt; and assumed to be given by

1=qt = R� + �( ~Dt+1=�t) (2.5)

where R� is the world interest rate, ~Dt+1 denotes the country�s aggregate debt (which is equal

to the household�s debt Dt+1 in equilibrium) and �(:) is an increasing, convex function. We

assume that the interest rate faced by the household is sensitive to the country�s debt to

ensure that there is a well de�ned nonstochastic steady state. 4

The standard model is completed by the equality of factor payments and marginal pro-

ductivities: ut = atF1(Kt;�tht) and

Wt = atF2(Kt;�tht)�t (2.6)

2.2. The Stochastic Trend Model

Aguiar and Gopinath (2007) emphasized that the empirical failures of the standard model

can be remedied, by and large, by allowing labor augmenting growth to be not constant but

random. Formally, the assumption (2.2) is replaced by

�t = gt�t�1 (2.7)

where

ln (gt=�) = �g ln (gt�1=�) + "gt (2.8)

j�gj < 1, "gt is an i.i.d. process with mean zero and variance �2g, and � represents the

mean value of labor productivity growth: A positive realization of "gt implies that the growth

4As shown by Schmitt-Grohe and Uribe (2003), this device is one of several possible ones to ensure a well
de�ne steady state and can be chosen to have negligible e¤ects on the business cycle properties of the model.
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of labor productivity is temporarily above its long run mean. Such a shock, however, is

incorporated in �t and, hence, results in a permanent productivity improvement.

That the addition of permanent productivity shocks has the potential to eliminate the

departures between the model and the data is intuitive and explained by a permanent income

view of consumption. After a favorable realization of "gt , productivity increases permanently.

Accordingly, permanent income, and therefore consumption, can increase more than cur-

rent income; this explains why consumption may be more volatile than income in emerging

economies. By the same reasoning, the representative household may want to issue debt in

the world market to �nance consumption in excess of current income, leading to a counter-

cyclical current account.

2.3. The Financial Frictions Model

Neumeyer and Perri (2005) and Uribe and Yue (2006) have argued for a theoretical framework

where business cycles in emerging economies are driven by random world interest rates that

interact with �nancial frictions. An empirical motivation for this view is what Calvo (1998)

termed "sudden stops", de�ned by abrupt and exogenous halts to the �ow of international

credit to the economy, which force violent current account reversals.

To develop this view, one can modify the standard model along the lines suggested by

Neumeyer and Perri (2005). First, instead of (2.5), the price of the household�s debt is

assumed to be given by

1=qt = Rt + �( ~Dt+1=�t) (2.9)

where Rt is a country speci�c rate,

Rt = StR
�
t (2.10)

R�t is the world interest rate and St a country speci�c spread. Second, the world interest

rate is assumed to be random, �uctuating around its long run value R� according to

ln (R�t =R
�) = �R ln

�
R�t�1=R

��+ "Rt (2.11)
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where j�Rj < 1 and "Rt is an i.i.d. innovation with mean zero and variance �2R:

Third, deviations of the country spread from its long-run level are assumed to depend on

expected future productivity as follows

log(St=S) = ��Et log at+1 (2.12)

Adding shocks to the world interest rate to the basic model has, in fact, been considered

in the literature, with little success 5. But random interest rates become a more compelling

addition when coupled with �nancial frictions. So, for example, one can argue that country

risk must depend inversely on expected productivity, as high productivity in the future

should reduce the risk of default. Neumeyer and Perri (2005) advocated (2.12) as a shortcut

to capture this idea.6

An additional friction, developed by Neumeyer and Perri (2005) and Uribe and Yue

(2006), is to assume that �rms must �nance a fraction of their wage bill in advance. Again,

we follow Neumeyer and Perri�s formulation, the net result of which is that equilibrium in

the labor market requires

Wt [1 + � (Rt�1 � 1)] = atF2(Kt;�tht)�t (2.13)

instead of (2.6). This says that the typical �rm hires workers to the point at which the

marginal product of labor equals the wage rate inclusive of �nancing costs. Firms are assumed

to borrow from households and forced to pay a fraction � of the wage bill in advance of

production.

As discussed by Oviedo (2005), the working capital assumption (2.13) and the assump-

tions of a spread linked to expected productivity (2.12) are two separate alternatives, in

spite of Neumeyer and Perri�s and Uribe and Yue�s imposing both. Indeed, they emphasize

di¤erent avenues for improving the performance of the basic model. With the working cap-

5See, for instance, Mendoza (1991) and Aguiar and Gopinath (2008).
6To be precise, our formulation is motivated by Neumeyer and Perri�s "induced country risk" case. In a

related fashion Uribe and Yue (2006) e¤ectively assumed that the spread depended on world interest rates,
output, investment, and the trade balance/GDP ratio. Uribe and Yue also provided supporting evidence
from an identi�ed VAR.
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ital assumption, a fall in the world interest rate reduces the cost of labor, which stimulates

output. At the same time, it stimulates demand, as the cost of borrowing for consumption

and investment falls. Hence the trade balance may in principle deteriorate at the same time

as output is expanding, which can explain an acyclical or countercyclical trade balance.

With a spread process determined by expected productivity, as in (2.12), a favorable

productivity shock not only increases output via the usual channels but also, and because

the shock is persistent, reduces the interest rate applicable to the representative household�s

debts, thus boosting consumption and investment further. A countercyclical trade balance

may then emerge, as with working capital, but due to a di¤erent mechanism.

2.4. An Encompassing Model

While the literature has naturally considered stochastic trends and �nancial frictions sepa-

rately, it is straightforward to specify a model that includes both extensions of the standard

model. In this subsection we describe our preferred version of such an encompassing model,

which will be a focus of our empirical analysis below.

Our encompassing model follows the spirit of Aguiar and Gopinath (2008), which ex-

tended the stochastic trend model to allow for shocks to the consumption and investment

Euler equations that operate through the interest rate. But we di¤er from Aguiar and

Gopinath (2008) along three key dimensions. First, our encompassing model includes the

two aforementioned �nancial frictions, spreads linked to fundamentals and working capi-

tal requirements, embedded in the parameters � and �, respectively. Aguiar and Gopinath

(2008) considered the �rst friction but not the second. Second, Aguiar and Gopinath (2008)

allowed the spread to be a¤ected only by transient technology shocks. Instead, our encom-

passing model allows for permanent shocks to also a¤ect the spread. This is natural, since

the logic behind an endogenous spread is often based on the idea that default risk falls with

expected productivity, regardless of whether shocks to the latter are permanent or transitory.

To implement this idea, however, we need to modify the assumption (2.12) on country risk.

So, our encompassing model assumes a country spread given by

log(St=S) = ��1Et log at+1 � �2Et log(gt+1=�) (2.14)
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One particular version of this, which we will adopt for most of the paper, assumes that

the spread is given by (2.12), except that the temporary productivity shock at+1 is replaced

by total factor productivity (i.e. the normalized Solow residual):

log(St=S) = ��Et log(SRt+1=SR) (2.15)

where SRt = atg
a
t and SR = �� according to the Cobb-Douglas technology speci�ed below.

To check for robustness, nonetheless, we explore later the more general case where the two

elasticities, �1 and �2, di¤er.

Third, Aguiar and Gopinath (2008) restricted their focus to Cobb-Douglas preferences,

which have been shown to reduce the extent to which business cycles can be driven by interest

rate shocks (Neumeyer and Perri, 2005). We instead assume preferences of the Greenwood,

Hercowitz and Hu¤man (1988, GHH henceforth) type. As discussed by Neumeyer and Perri

(2005) and others, GHH preferences help reproducing emerging economies�business cycles

facts by allowing the labor supply to be independent of consumption levels7.

Our encompassing model is then given by the spread process in (2.15) together with the

assumptions of stochastic interest rates (2.9-2.11), the working capital requirement (2.13),

and trend shocks (2.8), in addition to temporary productivity shocks (2.1).

3. Empirical Approach

Given our formulation, we conduct several empirical exercises intended to evaluate the rel-

ative merits of the hypotheses of stochastic trends and �nancial frictions as well as the

nature of the transmission mechanism. To implement these exercises, we adopt a Bayesian

framework because of its conceptual simplicity and because it allows for a logically coherent

comparison between models that are not necessarily nested, as is the case of the stochastic

7While Aguiar and Gopinath (2007) restricted discussion to the case with Cobb Douglas preferences,
in the working paper version Aguiar and Gopinath also estimated their model assuming GHH preferences
and found very little di¤erence. It is also worth mentioning that we explored a more �exible preference
speci�cation, due to Jaimovich and Rebelo (2009), which embeds both GHH and Cobb Douglas as special
cases. The results, reported in the working paper versions of this paper and others available on request,
overwhelmingly favor GHH preferences. Schmitt Grohe and Uribe (2012) report very similar results for the
case of the U.S.
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trend model and the �nancial frictions model. We draw on recent theoretical and computa-

tional advances, usefully summarized by An and Schorfheide (2007), Canova (2007), DeJong

and Dave (2007), Fernandez-Villaverde (2010), Geweke (2005), and others.

3.1. Functional Forms, Calibrated and Estimated Parameters

As mentioned, our baseline preferences come from GHH:

u(Ct; ht;�t�1) =
(Ct � ��t�1h

!
t )
1��

1� �

The production function is assumed to be Cobb Douglas:

F (Kt; Xtht) = K1��
t (�tht)

�

where � is the labor�s share of income.

The capital adjustment cost function is assumed to be quadratic:

� (Kt+1; Kt) =
�

2
Kt

�
Kt+1

Kt

� �

�2

In turn, the function � determining the interest rate elasticity to the country�s debt has

the form:

� (Dt+1=�t) =  

�
exp(

Dt+1

�t
� d)� 1

�
where d is the normalized steady state value of debt.

For each model, we estimate some parameters and calibrate the rest. The choice of which

parameters to estimate or calibrate is guided by the objectives of our investigation. Since the

relative importance of the various sources of �uctuations is a key question, in each case we

estimate the parameters of the exogenous shocks. Hence, the parameters of the transitory

productivity process (2.1), namely the AR coe¢ cient �a and the standard deviation of the

innovations �a; are always estimated. Where shocks to the trend are allowed, we also estimate

�g and �g; the corresponding parameters of the permanent productivity process (2.8). And
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if the world interest rate is allowed to be stochastic, as in the �nancial frictions models and

the encompassing model, we estimate �R and �R in (2.11).

While the addition of the permanent productivity process is the only departure of the

stochastic trend model from the standard, Mendoza-type model, allowing for �nancial fric-

tions introduces two other parameters: the elasticity of the spread with respect to expected

productivity (�) and the working capital requirement parameter �: Accordingly, we estimate

those parameters in models that allow for �nancial frictions. Finally, in all cases we estimate

the parameter � governing the capital adjustment function.

We calibrate the remaining parameters of each model. A period is taken to be one quarter.

The calibrated parameters are given in Table 1 and set at conventional values: the coe¢ cient

of relative risk aversion is set at 2, and ! and � are set so as to imply, respectively, a labor

supply elasticity of 1:66 and a third of time spent working in the long run. The labor�s share

of income, �, is set to be 68 percent 8. We calibrate the debt-to-GDP ratio to 0:1, the value

used in Aguiar and Gopinath (2007).

Our calibration of the steady state interest rate and spread is based on Uribe and Yue

(2006), who made their data publicly available. Uribe and Yue measured foreign real interest

rates by dividing the 3-month gross U.S. Treasury Bill rate by the gross US in�ation over

the previous four quarters. They also provide the J.P. Morgan�s EMBI+ stripped spread for

Mexico. Given the Uribe-Yue sample means, we set the long run values of the (annualized)

foreign interest rate, R�, and of the country speci�c gross real interest rate, R, to 1:01 and

1:06, respectively. For the stochastic trend model we set the spread to zero, and kept R at

1:069.

The quarterly depreciation rate is assumed to be 5 percent as in Aguiar and Gopinath

(2007). Following the literature on small open economy models, we set the parameter  ;

which pins down the elasticity of interest rates to debt, to a very small value that guarantees

the equilibrium solution to be stationary (Schmitt-Grohe and Uribe, 2003).

8Note that in the models with �nancial frictions, � is not exactly equal to labor share in but it is rather
calibrated as the labor share times [1 + (R� 1) �]. Thus, � will have an entire distribution determined by
the posterior distribution of �.

9This implies a lower level of the steady state interest rate relative to that used by Aguiar and Gopinath
(2007). Results using the same interest rate as in that paper are very similar to the ones reported here and
are available upon request.
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3.2. Data and Implementation

For comparability, we used the Mexican data from Aguiar and Gopinath (2007) as our

observed data. We retrieved their series for aggregate consumption (C), investment (I),

output (Y ), and the trade balance to output ratio (TB=Y ). The data are quarterly for the

period 1980:I to 2003:II.10

Our empirical implementation requires a number of other decisions. The �rst one is how

to deal with trends. We decided to estimate the model using log di¤erences of C; I; and

Y; and di¤erences of TB=Y:11 One reason for this choice is that the mapping from model

variables to observables, needed for Kalman �ltering, is then straightforward12.

A second issue is the treatment of measurement errors: Neither the encompassing model

nor its restrictions exhibit more structural shocks than the number of time series we observe.

The resulting stochastic singularity can be dealt with by either basing estimation on as

many observed variables as shocks, or adding measurement error shocks, thus completing

the probability space of each model so as to render the theoretical covariance matrix of

observed variables no longer singular13. We chose to add measurement errors to all the

variables we observe. This is warranted given well-known measurement issues surrounding

macroeconomic data from emerging economies, and the fact that the restricted models have

fewer structural shocks than the encompassing model14.

To sample from the posterior distribution, we implemented a Random Walk Metropolis

10The sample period is the same as in Aguiar and Gopinath (2007), hence it has the advantage of com-
parability. But the period includes the Mexican default in 1982, which can be seen as problematic as the
theoretical framework we use does not explicitly model sovereign default. However, note that our speci�-
cation of endogenous spreads does accommodate (admittedly in an imperfect way) the impact of sovereign
default on the cost of capital. Also, in a later section we show that our main results remain when the "lost
decade " is excluded from the sample period.
11While TB=Y has no trend, we chose to work with �rst di¤erences of TB=Y instead of levels, because

small open economy models typically and counterfactually deliver a quasi-random walk process in the trade
balance level, inherited by the nature of the endowment process (see Garcia-Cicco, Pancrazi, and Uribe
2010).
12See our working paper version, Chang and Fernandez (2010), for details.
13A third option, known as the multiple-shock approach, is to include additional structural shocks. This

option, however, would take us further away from the scope of this paper, so we discard it. But see Fernandez
(2010) for an e¤ort in this direction.
14It should be noted that the choice of which variables to use in the estimation and the use or not of

measurement errors is indeed not a trivial one. Guerron (2009) has shown that, in the estimation of DSGE
models by Bayesian methods, posterior distributions may signi�cantly vary across various sets of observables
used. In the working paper version of this work, Chang and Fernandez (2010), we assess the robustness of
our results to cases where no measurement errors are used.
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algorithm, described in An and Schorfheide (2007) and elsewhere, to generate draws from

the posterior distribution. This procedure constructs a Gaussian approximation around the

posterior mode, which we found via a numerical optimization, and uses a scaled version of

the inverse of the Hessian computed at the posterior mode to e¢ ciently explore the posterior

distribution in the neighborhood of the mode. We found it useful to repeat the maximization

algorithm using random starting values for the parameters drawn from their prior support

in order to gauge the possible presence of multiple modes in the posterior distribution15.

Once this step was completed, we used the algorithm to make one million draws from the

posterior distribution in each case. The initial two hundred thousand draws were burned.

To overcome the high serial correlation of the draws, we used every hundredth draw to form

a set to compute posterior distributions16.

The last issue is whether or not to include interest rate data in the set of observables.

One can argue that including such data may yield valuable information, particularly in terms

of the parameters that govern the strength of �nancial frictions. However, in the benchmark

case we decided against this option. One reason is that, as discussed in more detail later,

satisfactory series on Mexico�s interest rates start only in 1994. Including interest rate data,

therefore, would reduce comparability with Aguiar and Gopinath�s work, which was based

on series dating to the early 1980s. Also, given that one of the objectives in our investigation

is to compare the restricted models, including interest rates data would automatically put

the stochastic trend models at a disadvantage since that model implies zero �uctuations of

interest rates (other than those implied by the debt elastic interest rate). Thus any likelihood

based comparison would reject such model against any alternative. This being said, to check

for robustness later we explore the implications of including the Uribe-Yue interest rate data

in estimation.
15The MATLAB codes that solve all the model�s extensions as well as the ones that carry out the estimation

are available upon request.
16In the working paper version, Chang and Fernandez (2010), we assess the convergence of the Markov

chains by recursively computing means from multiple chains, as illustrated in An and Schorfheide (2007).
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4. Results

This section discusses our benchmark �ndings. After summarizing our priors, we describe the

posterior distributions of the parameters of the encompassing model and the two restricted

versions of interest, the stochastic trend model and the �nancial frictions model. We analyze

the relative �t of these models, both in terms of likelihood based measures and of their ability

to account for data moments of interest. We conclude the section with a discussion of the

role of �nancial frictions in amplifying exogenous shocks.

4.1. Priors

Our priors over the estimated parameters are described in Table 2. They were based, to the

extent possible, on earlier studies on emerging markets�business cycles.

Key parameters are those governing the temporary and permanent technology processes:

�a; �g; �a; �g. Unfortunately, existing evidence on the relative importance of each of these

parameters is ambiguous. While Aguiar and Gopinath (2004)17 estimated a ratio �a=�g =

0:41=1:09 = 0:4 for Mexico, Garcia-Cicco et.al. (2010) found higher ratios for Mexico

(�a=�g = 1:9=1:7 = 1:1) and Argentina (�a=�g = 3:3=0:71 = 4:6). Given this, we chose

our priors for �a and �g both to be Gamma distributions with mean of 0:74 and standard

deviation 0.56. The common mean lies between the point estimates of �a and �g in Aguiar

and Gopinath (2004).

Our prior for �a, the autoregressive coe¢ cient of the temporary productivity shock, was

a Beta distribution with mean 0:95 and standard deviation 1:1 percent. The mean is close

to the point estimate of Aguiar and Gopinath (2004), and equals the value calibrated by

Neumeyer and Perri (2005). Our prior for the autoregressive coe¢ cient of permanent pro-

ductivity shocks, �g; was also a Beta, with mean 0:72, and standard deviation 2:3 percent.

This follows the point estimate found by Aguiar and Gopinath (2004).

Similarly, our priors over the parameters of the world interest rate process and the

strength of the �nancial frictions followed earlier studies. Our prior for �R was Beta with

17When forming priors we used the working paper version of Aguiar and Gopinath�s study (Aguiar and
Gopinath 2004) instead of the published version (Aguiar and Gopinath 2007). This is because only the
former presents results with GHH preferences,which we assume here.
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a mean value of 0:83, the point estimate found by Uribe and Yue (2006), and a standard

deviation of 5:1 percent. For �R we speci�ed as prior a Gamma centered at 0:72 percent,

the value reported by Uribe and Yue (2006), and a standard deviation of 0:31 percent.

Previous studies provide little statistical information on the size of the elasticity of the

spread to the country�s fundamentals, �, and the fraction of the wage bill held as working

capital, �. For � we used a Gamma prior with mean of 1:0 and a standard deviation of 10

percent. The mean is close to the value calibrated by Neumeyer and Perri (2005) to match the

volatility of the interest rate faced by Argentina�s residents in international capital markets.

As for �; we decided to specify a fairly di¤use prior, with the only restriction that it must

lie between zero and one. Accordingly, we used a Beta distribution with mean 0:5; and a

considerable standard deviation (22:4 percent) re�ecting our little a priori information on

this parameter.

Our prior on � was a Gamma with parameters (3,2). This is a considerably di¤use prior,

as given by the large 90 percent con�dence interval, re�ecting that previous studies have

found di¤erent values for this parameter when trying to mimic the investment volatility. For

the standard errors of the four measurement errors we chose a Gamma prior centered at 2:0

percent and a 90 percent con�dence interval between 0:67 and 3:86. This relatively di¤use

prior re�ected our lack of information about the size of measurement errors and our belief

that measurement issues may be quite large in emerging economies.

Lastly, our priors over the long-run productivity growth, �; were based upon estimates

reported by Aguiar and Gopinath (2004). Our prior over net yearly growth, �, was a Gamma

distribution re�ecting beliefs that long-run yearly net growth has a mean equal to 2:5 percent

but allowing for substantial uncertainty, a standard deviation of 50 percent 18.

4.2. Parameter Posteriors

Estimated posterior distributions of the parameters of the encompassing model and its two

restricted versions, the stochastic trend version and the �nancial frictions version, are sum-

marized in Table 3. The �rst three number columns report priors and posterior modes,

means, and 90 percent con�dence intervals of the parameters in the encompassing model,
18The link between the gross quarterly growth rate, �, and � is thus: � = 100 �

�
�4 � 1

�
:
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while the next four columns report posterior statistics for the two restricted models. For

comparison purposes, the last column reports the GMM estimates of Aguiar and Gopinath

(2004). Figure 1 plots priors and posterior distributions for the encompassing model19.

Several results deserve mention:

� The data are fairly informative, in particular with respect to the volatilities of the

shocks, in the sense that the estimated posteriors appear much more precise than the

priors, as measured by the width of the 90 percent highest posterior density intervals.

This is also the case for �a and �R, the parameters that govern the persistence of

stationary technology and foreign interest rate processes. On the other hand, the data

has little to say about �g, the persistence of the permanent technology process, so

that the posterior for �g basically reproduces the prior. The latter �nding is in line

with Garcia-Cicco et.al. (2010) who also weakly identi�ed the persistence of the trend

shock to productivity in an estimated real business cycle model with trend shocks and

�nancial frictions using data for Argentina in the twentieth century.

� The role of permanent shocks in the encompassing model does not appear to be as

dominant as implied by our prior. The estimated posterior mode ratio of volatilities,

�a=�g = 0:66=0:12 = 5:5, is clearly at odds with Aguiar and Gopinath�s (2007) �nding

that the volatility of innovations is much stronger in the permanent technology process

than in the transient one. More to the point, an overall assessment can be based on

the random walk component (RWC) of the Solow residual de�ned as in Aguiar and

Gopinath (2007):

RWC =
�2�2g=

�
1� �g

�2
[2= (1 + �a)]�

2
a +

�
�2�2g=

�
1� �2g

��
The mode and mean of the posterior distribution of the RWC for the encompassing

model are given at the bottom row of Table 3. The posterior of the RWC falls steeply

19Following An and Schorfheide (2007), we checked for convergence of the MCMC algorithm by recursively
computing means from multiple chains. For this purpose we chose six vectors of initial parameters by drawing
randomly from their prior support, and then used each vector to run independent Markov chains. The
results are reported in Chang and Fernandez (2010). Despite di¤erent initializations, the parameters�means
converge in the long-run.
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relative to the prior and its mode, 0:18, is far below the value estimated by Aguiar and

Gopinath (2004).

� In contrast with the minor role of trend shocks, interest rate shocks and the �nancial

frictions amplifying them appear quite signi�cant. The posterior distributions of the

parameters that govern the degree of �nancial frictions are far away from zero. The

posterior mode for � is 0:69; signaling that a little less than three quarters of the wage

bill is kept as working-capital needs. This value is in line with those calibrated for

other emerging economies20. The tight posterior distribution for �, with a mode and

mean of 0:73; reveals a signi�cant elasticity of the spread to expected movements in the

Solow residual. While the mode and mean are lower than our prior ones, which were

centered around Neumeyer and Perri�s calibrated value of 1:0, it is still remarkable to

obtain high values since Neumeyer and Perri�s calibration was based on the observed

process of the country interest rate, which we do not use in this estimation exercise.

� That trend shocks add very little to the encompassing model can also be seen by

comparing that model�s parameter estimates against those of the �nancial frictions

restriction (number columns 2/3 and 6/7 in Table 3): they are virtually the same.

� Conversely, the relative importance of trend shocks increases when we estimate the

stochastic trend model, shutting o¤ both interest rate shocks and �nancial frictions

(number columns 4 and 5).

� The posterior distribution over the long run productivity growth parameter � indicates

a posterior mode of 2:53 percent, slightly higher than the prior mode. Uncertainty

around � is greatly reduced, as judged by the signi�cantly tighter posterior distribution

relative to the prior.

� Finally, the estimated values of � di¤er substantially between the stochastic trend

model and the others. The di¤erence re�ects the alternative propagation mechanisms

of the models. In particular, in the encompassing and �nancial frictions models pro-

20For instance, using data on net aggregate interest payments to GDP in Korea, Benjamin and Meza
(2009) calibrate working capital requirements in a multi sector model between 0:50 and 0:82.
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ductivity shocks a¤ect investment not only directly through the marginal product of

capital but also indirectly their e¤ect on interest rates. The latter e¤ect is absent in

the stochastic trend model. Hence capturing investment dynamics in the presence of

�nancial frictions requires higher capital adjustment costs.21

4.3. Model Evaluation

4.3.1. Marginal Data Densities

For each model, Table 4 reports standard measures of predictive accuracy: log values of the

likelihood and the posterior, both computed at the posterior mode, as well as the marginal

data density. Overall, the results do not single out a clear winner. Values for the log-

likelihood are highest for the �nancial frictions model. However, when judging by the log-

marginal likelihood the ranking is reversed, and the stochastic trend model outperforms the

other models in terms of its forecasting performance22.

To understand these results, note �rst that the two restricted models, the stochastic

trend and �nancial frictions models, can attain higher likelihood and marginal likelihood

levels than the less restricted encompassing model. This can, in principle, be explained by

the di¤erent priors used implicitly when estimating the two restricted models. Consider the

case of �R, the AR(1) parameter in the R
� process. When estimating the encompassing

model, the 90 percent prior distribution over this parameter lies in the interval [0:71; 0:89],

so that values close to zero are highly penalized by the prior. Yet, when estimating the

stochastic trend model as a restricted version of the encompassing model, �R is set to zero,

or, more precisely, a unit mass prior is de�ned over zero. This occurs with all the other

parameters that are set to zero in the restricted models. These di¤erences in the priors

imply that areas of the posterior distribution that were not explored in the estimation of

the encompassing model were explored in the two restricted models. Hence it is possible

that the relative inferiority of the �nancial frictions model comes from the likelihood of this

21Thus, for example, Neumeyer and Perri (2005) reported that matching Argentina�s investment volatility
required values of � as low as 8 and as large as 40: The macro literature has employed many di¤erent
speci�cations and parametrizations of investment adjustment costs, and so it does not provide much guidance
about the plausibility of di¤erent values of �:
22The log-marginal data density can be interpreted as a predictive score in terms of the relative one-step-

ahead predictive performance. See An and Schorfheide (2007) for further details.
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model peaking at a value that is at odds with the information used to construct the prior

distribution (An and Schorfheide, 2007).

A second factor is that the inclusion of �nancial frictions requires estimating at least

two additional parameters. This is relevant because marginal likelihood comparisons are

known to generally favor models with fewer parameters.23 In our case, this means that the

stochastic trend model has an automatic advantage in terms of its marginal likelihood.

Hence, we take the results of Table 4 as inconclusive. In the next section we attempt to

cast some more light on these results, by exploring the role of alternative priors.

Finally, for comparison purposes, Table 4 reports the log-likelihood value of the stochastic

trend model evaluated at the GMM parameter estimates of Aguiar and Gopinath (2004)24.

That value is far below the levels we obtain for the other estimates.

4.3.2. Matching Moments

It can be argued that, for macroeconomists, predictive performance is not the only relevant

metric to evaluate the relative merits of alternative models. As mentioned above, the litera-

ture on emerging market business cycle has emphasized some moments in model evaluation,

especially: (i) the marked countercyclicality of the trade balance; (ii) the high volatility of

consumption and investment relative to output; and (iii) the countercyclicality of interest

rates. In this vein, this section evaluates the models under study along a particular subset

of moments, including the three just mentioned.

Results are gathered in Table 5, where the sample moments of the data, in terms of

standard deviations, correlations with output and the trade balance, and serial correlations,

are compared to the theoretical moments from the encompassing model and its two restric-

tions. For comparison purposes, the moments associated with Aguiar and Gopinath (2004)�s

estimation are also reported.25 Consistent with our estimation, the table uses data in log

23This is captured e.g. by the fact that a large sample approximation to the Bayes factor of a model, say
model 1; relative to model 2 is the Bayes Information Criterion or Schwartz criterion, which is proportional
to n(k2�k1)=2, where n is the sample size and k1; k2 the number of parameters estimated for models 1 and 2:
See, for instance, Lancaster (2004, p. 100).
24The parameters are reported in Table 3. When computing the log-likelihood value at this vector, we use

the posterior mode of the four measurement errors in the stochastic trend model.
25To be precise, Aguiar and Gopinath (2004) conduct the GMM estimation based upon 11 moments of

which only two, the standard deviation and serial correlations of gY , are reported in Table 6. The other 9
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di¤erences except for the trade balance share where level di¤erences are used. Model-based

moments are computed at posterior mode estimates26. Note that the table summarizes the

Uribe-Yue interest rate data in addition to the Aguiar-Gopinath data.

Table 5 shows that the encompassing model delivers a reasonably close match to the

facts emphasized in the literature. It delivers more volatility in consumption and investment

than in output and also a strongly countercyclical trade balance share, as in the data. Also,

while the encompassing model delivers a real interest rate that is less volatile relative to its

empirical counterpart, its dynamics reproduce surprisingly well the strong countercyclicality

observed in practice. The correlation between �ltered output and interest rates in the data

is -0.61, and its model counterpart is -0.63. Likewise, the model delivers an almost zero �rst

autocorrelation of interest rate changes, as in the data. This is remarkable given that this

version of the encompassing model is not estimated using real interest rates.

To explore this issue further, we used the Kalman �lter to back out the smoothed time

series for the gross Mexican interest rates implied by the state space representation of the

encompassing model. Then we compared the simulated series to the empirical time series.

The results are displayed in Figure 2. The plot reveals that the encompassing model tracks

closely the evolution of the Mexican interest rate, particularly around the beginning of the

empirical sample, which coincides with the Tequila crisis episode.27

Table 5 also reveals that the moments implied by the �nancial frictions model are virtually

the same as those of the encompassing model. This is a re�ection of the fact that the

estimated parameters of two models are almost indistinguishable. More importantly, it

indicates that �nancial frictions can amplify interest rate and transient technology shocks

enough so as to match the stylized facts, echoing Neumeyer and Perri�s (2005) and Uribe

and Yue�s (2006) results. 28 Notably, again, �nancial frictions can achieve this without help

moments used in that work refer to Hodrick-Prescott �ltered moments which we don�t present here given
that we don�t use this �ltering technique.
26Standard errors are omitted for brevity but are available upon request.
27While sovereign default is not model explicitly, note that our speci�cation can replicate the �nancial

turbulence associated with default. This is captured by the large spike displayed by the model-based interest
rate in Figure 4 around 1982, the year of Mexico�s public default. The spike can only be compared in size
to the large increase in interest rates experienced during the Tequila crisis.
28As suggested by our discussion, the key parameter in helping the encompassing model account for the

dynamics in the data is the high elasticity of the spread to fundamentals, �. This can be seen by examining
model moments under the assumption that � or � are zero. The results of such experiment are reported in
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from trend shocks.

The converse is not true: trend shocks alone lead to a much less satisfactory charac-

terization of the data. Indeed, Table 5 says that the stochastic trend model has at least

two salient failures: it is unable to reproduce a signi�cantly more volatile consumption with

respect to output; and it delivers counterfactual dynamics for the interest rate process. The

latter follows since the interest rate process inherits the dynamics of the debt elastic pre-

mium, which is procyclical, too smooth, and highly persistent. In contrast, observed interest

rates in Mexico and other emerging economies are countercyclical, volatile, and moderately

persistent.

4.4. The Role of Financial Frictions

For a complementary perspective on the relative role of each shock, we computed the pos-

terior distribution of the variance decompositions implied by the encompassing model. The

results over a time horizon of 40 quarters are reported in the top panel of Table 6.29

The most noteworthy �nding is the small role played by trend shocks. The largest share

of permanent shocks is 2:1 percent, when accounting for the variance of consumption. In

contrast, world interest rate shocks play a nontrivial role, particularly when explaining the

variance of the trade balance-to-GDP ratio (41:2 percent), of investment (22:2 percent), and

to a lesser extent of consumption (9:2 percent). Their role in accounting for the variance of

output (5:1 percent) falls within the estimates from other studies.30 The variance of all four

aggregates is, however, mostly explained by transitory shocks to technology.

Altogether, our results favor the view that the estimated encompassing model provides

an adequate approximation to the Mexican data. Fluctuations are chie�y generated by

transitory technology shocks, and to a smaller extent interest rate shocks, which are ampli�ed

by �nancial frictions. Trend shocks appear to play a minor role.

In view of these �ndings, it is of interest to investigate which of the two �nancial frictions,

the working paper version (Chang and Fernandez, 2010).
29For brevity, Table 4 reports only the means of the distributions. Standard errors are available on request.
30Neumeyer and Perri (2005) found that the percentage standard deviation of Argentina�s GDP in a model

with �nancial frictions but no shocks to international rates is 3 percent smaller than in a model with interest
rate shocks. Uribe and Yue (2006) found that US interest rate shocks explain about 20 percent of movements
in aggregate activity in a pool of emerging market economies.
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spreads that react to fundamentals or working-capital needs, is responsible for these results.

We address this question in the three lower panels in Table 6 which present the variance

decompositions of three counterfactual experiments of shutting o¤ each or both of the fric-

tions, i.e. setting � = 0 (no endogenous spread), � = 0 (no working capital requirements),

or � = � = 0.

The results indicate that the large role of transient technology shocks in accounting for

�uctuations in investment and the trade balance, and to a lesser extent in consumption, is

driven by their impact on spreads: the results are virtually unaltered when the working-

capital assumption is dropped (� = 0): In contrast, when � is set to zero, interest rate shocks

have a much greater role in accounting for the variance of C; I and TB=Y: Notably, the

variability of output continues to be dominated by "pure" technology shocks even if � = 0.

Further illustration is given by impulse response analysis. Figure 3 displays responses of

the estimated encompassing model to a one standard deviation shock to each of its driving

processes. Figure 4 depicts how the responses of the main macro aggregates to a transitory

technology shock, the main driving force, depend on whether the �nancial friction embedded

in � is included or not. Two aspects of Figure 4 are especially revealing. First, transitory

technology shocks are ampli�ed more strongly in the estimated model than if � were set to

zero. Hence, if the link between spreads and productivity is turned o¤, some other shock

must pick up some of the macro variance; Table 6 tells that that shock is the one to interest

rates 31. Second, the �gure clearly illustrates the mechanisms at work. Without �nancial

frictions, a positive but transitory productivity shock increases current consumption less than

current output, essentially along the lines of the permanent income theory of consumption.

This also leads to a positive trade balance at impact. When � is positive, however, the

relevant interest rate falls with the shock. This leads to a steeper consumption response,

which allows consumption to be more volatile than income. Also, it enhances the response

of investment. Finally, since both consumption and investment respond more strongly, the

trade balance becomes negative, which helps matching the countercyclicality of the TB=Y

31In Chang and Fernandez (2010) we undertake a complementary experiment to this one where we estimate
three versions of the encompassing model where � = 0, � = 0, and � = � = 0. Summing up, the results of
such longer experiments continue to show the relevance of � for the dynamics of the model. Interestingly,
the case when the model is estimated with � = 0 has a much more important role of growth shocks.
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ratio.

These results are in line with Oviedo (2005) and Aguiar and Gopinath (2008), who argue

that a link between domestic productivity and the interest rate is a necessary ingredient when

building models that aim at replicating emerging market business cycles. Conversely, Oviedo

(2005) emphasizes that the presence of working capital requirements is not essential. Also,

our counterfactual exercises and results agree with similar ones in Uribe and Yue (2006). 32

5. Robustness

5.1. Less Informative Priors

Tables 7, 8, and 9 examine the implications of less informative priors. To do this, for almost

all parameters we chose priors given by Uniform distributions. The exceptions were the

autocorrelation coe¢ cients of the shock processes, for which we chose a quasi �at prior given

by a Beta distribution with mean 0:5 and a large standard deviation of 22:4 percent.

The �rst result of interest is the presence of two local modes in the posterior distribution.

Interestingly, each mode favors one of the two leading approaches to business cycles in

emerging economies. The "higher" mode, with a likelihood and posterior values of 1004:7

and 1013:3, respectively, is characterized by the virtual disappearance of trend shocks - the

posterior mode for the random walk component is negligible. The "lower" mode, with a

likelihood and posterior values of 1002:4 and 1009:9 respectively, is characterized by the

predominance of trend shocks, and implies a RWC equal to 4:69.

A challenge for the Bayesian estimation is, therefore, to �ne tune the Metropolis-Hasting

algorithm so as to properly sample from the regions surrounding each of the two modes. For

the results reported in the last column of Table 7 we were able to make the Markov chain

cross over the two modes with enough regularity. The Markov chain explored more often the

posterior around the high mode, and hence the mean values are closer to those of the high

posterior mode. Interestingly, for most of the parameters, although not for all, the mean

32In the context of their model, Uribe and Yue (2006) studied the impact of turning o¤ the e¤ect on spreads
of, in turn, world interest rates and domestic variables. From the second exercise, in particular, they found
that the fact that spreads respond to business conditions signi�cantly accentuates aggregate instability, a
result that clearly agrees with ours.
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posteriors are not too far from the mode reported for the encompassing model under the

initial priors. This explains why the results from the variance decomposition exercise under

the less informative priors, reported in the top panel of Table 8, are quantitatively similar

to the ones presented earlier (top panel of Table 6).

Table 9 presents the corresponding model comparison likelihood based statistics. Now

the encompassing and �nancial frictions models both attain a higher likelihood and posterior

mode values. But the marginal likelihood of the stochastic trend model is still higher than

that of the other two models. Since table 9 is based on �atter priors, it is less likely that the

last result comes from the congruence between the likelihood and the prior, which was one

of our conjectures before. Instead, the relative dominance of the stochastic trend model in

terms of marginal likelihood seems to re�ect the fact that two fewer parameters are estimated,

which gives that model a forecasting advantage in that comparison.

5.2. Observing Interest Rate Processes and Simulating the Tequila Crisis

Our estimations so far have been based on the dataset of Aguiar and Gopinath (2007) and,

accordingly, did not use observable data on interest rates. As argued earlier, we proceeded

in that way in order to maximize comparability with Aguiar and Gopinath�s work, and also

because of data availability. In spite of these considerations, it may be of interest to check

how our results change if we use interest rate data. This subsection does so, and in addition

it discusses if and how the encompassing model can reproduce Mexican dynamics around

the Tequila Crisis.33

To this end, we used the series for interest rates and spreads from Uribe and Yue (2006),

which we described earlier. As mentioned, those series start in 1994. This is as good as

one can obtain since data on sovereign spreads, like the J.P. Morgan EMBI for Mexico, are

available only after 1994. Figure 5 plots the Uribe-Yue series for the foreign interest rate

(R�) and the spread (S), as well as the implied process for the country speci�c interest rate,

R, that results from these two variables. As it is evident from the plot, most of the variation

in R comes from variation in S, particularly during the turbulent episodes of the Tequila

33One more reason for this exercise is to assess how our benchmark results change when the period around
Mexico�s 1982 default is excluded from the sample.
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Crisis in the mid 1990s and the Russian and Asian crises of the late 1990s.

We added the two Uribe-Yue series for R� and S to the four observables in the Aguiar-

Gopinath dataset, and reestimated the encompassing model for the subsample after 1994. In

addition to this, and given that several studies show that a signi�cant amount of variation

in country spreads is not driven by fundamentals, to better account for the spreads data we

also considered an alternative to the spread equation (2.15) obtained by adding shocks to

country spreads:

log(St=S) = ��Et log(SRt+1=SR) + "St

where "St is an i.i.d. process with mean zero and variance �
2
S that is assumed to capture

movements in the spread that emanate from reasons other than changes in fundamentals

(the Solow residual). This follows, among others, Neumeyer and Perri (2005) and Uribe

and Yue (2006). For this reason, our prior for �S was a Gamma distribution with a mean

of 2:4 percent, the average of the point estimates for the standard deviation of the spread

shocks found in those two works. Last, we added a measurement error to each of the two new

observables and set the priors over these errors as the other priors over the other measurement

errors34.

Posterior distribution results, with and without spread shocks, are presented in Table 10,

while the variance decomposition for the case with spread shocks is reported in the second

panel of Table 8. Overall, the results continue to indicate that transitory shocks to technology

account for most of the variability in the Mexican macro variables, and that the importance

of growth shocks is low. The RWC in each of the two Table 10 cases is almost identical to

that of the estimated encompassing model. In addition, foreign interest rate shocks become

less relevant, while spread shocks contribute to about 6% of output variability.

As argued before, these results do not mean that �nancial frictions are unimportant, since

�nancial frictions may be amplifying the impact of any of the exogenous shocks. To examine

this, we attempted to quantify the accuracy of the encompassing model in reproducing the

34Here we treat interest rates like the other variables in assuming errors in the corresponding observation
equation. Our main justi�cation is twofold: �rst, there are well known problems associated with computing
real rates; second, it is not clear to us that the Uribe-Yue interest rates map perfectly into the corresponding
variables in the model. In case, we have checked that our results remain qualitatively when interest rate
data is assumed to be free of measurement errors. These results are available upon request.
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Mexican dynamics during the 1994-5 Tequila Crisis. We obtained a historical decomposition

of the structural shocks via Kalman �ltering. We then backed out the state variables and

innovations using the information contained in the entire sample. Finally, we used each of

the structural shocks separately to simulate the evolution of the Mexican macro aggregates

during the 1995 Tequila Crisis and its aftermath.

Figure 6 shows the results. Each row tracks, for each kind of shock, the simulated time

series of the Mexican aggregates against the observed series between 1994 and 1997. The

�gure reveals that the only shock that comes close to reproducing by itself the deep fall

in economic activity and the sharp reversal of the trade balance during the crisis is the

temporary one to productivity.

Here again, we recall that these shocks must have been ampli�ed by the �nancial frictions

embedded in the model. To evaluate this, Figure 7 recomputes the simulation of the Tequila

Crisis using only the smoothed transitory technology shocks, but varying the severity of

the two �nancial frictions. The plots indicate that the success of transitory technology

shocks in reproducing the Tequila crisis is only possible because of the presence of �nancial

frictions, particularly embedded in �, the parameter that governs the elasticity of the spread

to expected future productivity. 35

The results in this subsection can be related to those in Fernandez-Villaverde, Guerron-

Quintana, Rubio-Ramírez, and Uribe (2011). They estimated interest rate processes using

data on interest rates and spreads for Argentina, Brazil, Ecuador, and Venezuela. Allowing

for time varying volatility, they concluded that the variability of interest rates was dominated

by innovations to spreads and also that stochastic volatility was strong. Then they fed the

estimated interest rate processes into an otherwise standard calibrated small open economy

model and showed, in particular, that stochastic volatility shocks could help accounting for

some features of the data, especially the volatility of consumption and investment relative to

output. While these �ndings are similar to ours, the mechanisms are di¤erent. Our model

does not allow for time varying volatility. But, in contrast with Fernandez-Villaverde et al.,

35A similar experiment was conducted by Fernandez (2010) using data for other developing countries and a
wider spectrum of shocks. His results point also to the need for �nancial frictions in closing the gap between
observed and simulated dynamics.
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who take the process for spreads as exogenous, our model postulates that spreads may be

endogenous, responding to expected productivity.36 Thus we see Fernandez-Villaverde et al.�s

study and ours as complementary at this point. Clearly, it may be of interest to investigate

whether stochastic volatility or endogenous spreads gives a better approximation, but this

would raise substantial technical issues (as discussed in Fernandez-Villaverde et al.�s paper)

and best left for future research.

5.3. Two Elasticities

Thus far we imposed equal elasticities of the spread with respect to temporary and permanent

productivity shocks, i.e. �1 = �2 = � in (2.14). It could be argued, however, that this

restriction may have a signi�cant impact on the dynamics of the model. Also, while Neumeyer

and Perri (2005) stressed the relevance of temporary shocks on spreads (�1), little is known

about the e¤ect of trend shocks on spreads.

To address these issues, we reestimated the encompassing model allowing for the two

elasticities to di¤er in (2.14). Moreover, because we wanted to assess speci�cally the contri-

bution of each shock to the spread, we included data on Mexican spreads and foreign interest

rates in the estimation.

The spread equation we estimated was

log(St=S) = ��1Et log at+1 � �2Et log(gt+1=�) + "St

The results are reported in Table 11. We assumed uninformative Uniform priors (on

[0; 5]) over �1 and �2. For the other parameters, the left hand side of the table was based

on the same priors as in the benchmark estimation. Notably, the posterior distribution over

�2 collapses over zero, indicating that trend shocks do not have a signi�cant e¤ect on the

spread at business cycle frequencies. Also, trend shocks continue to play a minor role in

the overall dynamics of the model, which is con�rmed by the low level of the RWC and the

variance decomposition in the bottom panel of Table 8. The last three columns of Table

36It bears mentioning that an online extension of Fernandez-Villaverde et al. (2011) features a working
capital requirement and �nds that it does not make substantial di¤erence to their results.
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11 display results based on less informative priors. Here the RWC is still small, but the

posterior distribution for �2 is now much more disperse: the posterior mode for �2 is still

zero but its distribution, with a 90 percent con�dence interval between zero and 2:68; allows

for some more room for growth shocks to a¤ect the cyclical component of the spread process.

Overall, it seems fair to conclude that the e¤ect of productivity shocks on spreads is

mostly due to their temporary component. Notably, this is consistent with Neumeyer and

Perri (2005).

6. Concluding Remarks

Observed aggregate �uctuations in emerging economies di¤er from those in developed economies.

The search for a model that can account for such di¤erences has led to two approaches, one

based on stochastic trend shocks and another relying on foreign interest rate shocks and

�nancial frictions. In this paper we have incorporated the two approaches into an encom-

passing model embedding both stochastic trends, interest rate shocks and �nancial frictions.

Our �ndings support the view that explaining �uctuations in emerging economies requires �-

nancial imperfections that amplify conventional productivity shocks and interest rate shocks.

Trend shocks add relatively little except perhaps increase the out-of-sample forecasting per-

formance of models; they become quantitatively relevant only if �nancial frictions are as-

sumed away. Our analysis also sheds light on the mechanisms by which shocks, especially

conventional ones to technology, are ampli�ed by �nancial frictions to account for major

macro regularities, not only in normal times but also in crisis periods such as the Tequila

episode.

Some may question the relevance of our analysis on the basis that deeper distortions in

an economy may well manifest themselves in the Solow residual, so that the stochastic trend

approach could be seen as relying on market imperfections as well, blurring the distinction

with �nancial frictions models. We do not believe, however, that the argument is compelling.

The stochastic trend may be a shortcut to model frictions in an economy, but it is silent

as to what form do these frictions take and how they operate. In contrast, the �nancial

frictions approach is speci�c as to what kind of frictions matter and how they modify the
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propagation of shocks. Hence a comparison between the two alternative approaches does

provide useful information as to whether and how a certain type of frictions, �nancial in

nature, can enhance the performance of business cycle models in emerging economies or,

instead, one needs to resort to other kind of frictions.

At least two areas emerge for future research. First, we have followed the �nancial

frictions literature in our modeling of endogenous spreads and working capital requirements.

The precise speci�cations are, however, ultimately suggested by but not derived from �rst

principles. This indicates a need for more work seeking true microfoundations. Second, in

terms of policy, our results lend support to the idea that attempts to ameliorate �nancial

imperfections may reduce aggregate volatility. They are likely too to lead to increases in

welfare, but that inference is not obvious and remains to be con�rmed.
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TABLES AND FIGURES 
 

Table 1. Calibrated Parameters and Steady State Levels 
 

Parameter Description 
Encompassing 

Model 

σ  
Intertemporal 
Elasticity of 

Substitution 1 /σ    
2.000 

ω  
Labor Supply 

Elasticity 
1

1ω
 
 − 

 1.600 

α  Labor Share of 
Income 0.6868 

*R  
Gross Foreign 
Interest Rate 1.0025 

τ  Labor Parameter so 
that 1 /3SSh =  1.7168 

ψ  Debt Elastic Interest 
Rate Parameter 0.001 

β  Discount Factor 0.9976 

S  
Long-run Gross 
Country Interest 
Rate Premium 

1.0120 

δ  Depreciation Rate of 
Capital 0.050 

d  Debt-to-GDP Ratio 
(D/Y) 0.100 

R  
Gross Country-
specific Interest 

Rate 
1.0145 

 
Notes: A period is taken to be a quarter. Note that in the encompassing and 
financial friction models α is not equal to labor share ( -h Share ) but it is 

rather ( )- * 1 1h Share Rα θ = + −  . Table values are computed using the 

posterior mode of θ . These parameters pin down the steady state of the 
encompassing model that is the same for the two restricted models (Stochastic 
Trend and Financial Frictions models). 

 



Table 2. Prior Distributions 
 

Parameter Range Density Mean S.D (%) 90% Conf. Interval 
Parameters Common to All Models 

aρ  
AR(1) Coeff. Transitory 

Tech. Process. [0,1) Beta      [ 356.2 ; 18.753] 0.95 1.12 [ 0.92 ; 0.97] 

aσ  
S.D. of Transitory Tech. 

Shock (%) R+ Gamma [ 2.060 ; 0.0036] 0.74 0.56 [ 0.12 ; 1.67] 

φ  
Capital Adjustment Cost 

Fct. Parameter R+ Gamma [ 3.000 ; 2.0000] 6.00 346 [ 1.62 ; 12.6] 

ζ Gross Annual Growth Rate 
of Productivity R+ Gamma [ 25.00 ; 0.1000] 2.50 50 [ 1.72 ; 3.35] 

Xσ  
S.D. (%) of Measurement 
Error in X = Y,C,I,TB/Y R+ Gamma [ 4.000 ; 0.0050] 2.00 1.00 [ 0.67 ; 3.86] 

Parameters Specific to the Stochastic Trend Model 

gρ  
AR(1) Coeff. Permanent 

Tech. Process. [0,1) Beta      [ 285.1 ; 110.88] 0.72 2.25 [ 0.68 ; 0.76] 

gσ  
S.D. of Permanent Tech. 

Shock (%) R+ Gamma [ 2.060 ; 0.0036] 0.74 0.56 [ 0.12 ; 1.67] 

Parameters Specific to the Financial Frictions Model 

Rρ  
AR(1) Coeff. Foreign 
Interest Rate Process. [0,1) Beta      [ 44.26 ; 9.0655] 0.83 5.10 [ 0.74 ; 0.91] 

Rσ  
S.D. of Foreign Interest 

Rate Shock (%) R+ Gamma [ 5.552 ; 0.0013] 0.72 0.31 [ 0.30 ; 1.29] 

θ  Working Capital Parameter [0,1] Beta      [ 2.000 ; 2.0000] 0.50 22.4 [ 0.13 ; 0.87] 

η  Spread Elasticity  R+ Gamma [ 99.22 ; 0.0101] 1.00 10.1 [ 0.84 ; 1.17] 
 
 



 
Table 3. Posterior Distributions, Encompassing and Restricted Models 

 
Parameter Prior 

Encompassing Model Restricted Models: Posterior Modes, Mean 
and 90% C.I. AG-

GMM 
Estimates Mode Mean & 

90% C.I Stochastic Trend M.    Fin. Frictions M. 

aρ  
0.95    

[0.93, 0.97] 0.89 0.90    
[0.87, 0.92] 0.94 0.94    

[0.92, 0.96] 0.89 0.89    
[0.87, 0.92] 0.94 

100 aσ  
0.75    

[0.14, 1.76] 0.66 0.66    
[0.51, 0.81] 0.72 0.72    

[0.59, 0.86] 0.66 0.67    
[0.52, 0.82] 0.41 

gρ  
0.72    

[0.68, 0.76] 0.72 0.72    
[0.68, 0.75] 0.73 0.73    

[0.69, 0.76]   0.72 

100 gσ  
0.74    

[0.14, 1.71] 0.12 0.11    
[0.01, 0.29] 0.69 0.70    

[0.52, 0.88]   1.09 

Rρ  
0.83    

[0.74, 0.91] 0.81 0.81    
[0.71, 0.89]   0.81 0.81    

[0.71, 0.89]  

100 Rσ  
0.72    

[0.30, 1.29] 0.42 0.41    
[0.25, 0.57]   0.42 0.41    

[0.26, 0.58]  

φ  
6.00    

[1.71, 12.6] 14.76 14.97    
[11.89, 18.60] 3.45 3.55    

[2.62, 4.71] 14.76 14.97    
[11.89, 18.54] 3.79 

θ  
0.50    

[0.14, 0.87] 0.69 0.69    
[0.26, 0.97]   0.69 0.68    

[0.25, 0.97]  

η  1.00    
[0.84, 1.18] 0.73 0.73    

[0.61, 0.86]   0.73 0.73    
[0.61, 0.86]  

ζ 2.51      
[1.72, 3.42] 2.53 2.50    

[1.96, 3.07] 2.33 2.32    
[1.66, 3.06] 2.53 2.51    

[2.00, 3.05]  

100 Yσ  
2.01    

[0.67, 3.90] 0.64 0.64    
[0.37, 0.89] 0.41 0.40    

[0.16, 0.65] 0.64 0.63    
[0.36, 0.88]  

100 Cσ  
2.01    

[0.67, 3.90] 1.13 1.15    
[0.98, 1.35] 1.15 1.16    

[1.00, 1.34] 1.14 1.16    
[0.99, 1.34]  

100 Iσ  
2.01    

[0.67, 3.90] 3.04 3.09    
[2.57, 3.64] 3.13 3.17    

[2.73, 3.66] 3.04 3.08    
[2.57, 3.63]  

/100 TB Yσ
 

2.01    
[0.67, 3.90] 0.78 0.78    

[0.53, 1.00] 0.86 0.87    
[0.67, 1.07] 0.78 0.77    

[0.53, 1.00]  

RWC 3.06    
[0.15, 3.21] 0.18 0.88    

[0.12, 3.43] 2.93 2.96    
[2.02, 3.93] 0.00  5.33 

Note: Results are posterior modes, means and 90 percent confidence intervals for posterior distributions. Estimates obtained using four 
observables, {gY, gC, gI, dTB/Y} from the Mexican Data, 1980.1-2003.2. All estimations were done using measurement errors in all four 
variables. AG-GMM Estimates refer to the generalized method of moment estimates reported by Aguiar and Gopinath (2004). RWC refers to 
the random walk component, see text for details. 

 
 
 



 
 
 

Table 4. Model Comparison 
 

Models Likelihood Posterior Marginal Likelihood 
Encompassing Model 991.6 1009.9 957.2 

Stochastic Trend Model 991.1 1015.6 974.3 
Financial Frictions Model 992.0 1003.3 960.4 

AG – GMM 966.0   
Note: Results are in logs. Log-Likelihood levels computed in the posterior mode. Results on marginal data densities are 
approximated by Geweke's harmonic mean estimator with truncation parameter 0.5. Results are computed observing the time 
series for output, consumption, investment and the trade balance-to-GDP ratio, and i.i.d. measurement errors were added to the 
observation of all variables. AG-GMM stands for the log-likelihood value evaluated using the estimated parameters in Aguiar and 
Gopinath (2004) and the measurement errors from the posterior mode of the stochastic trend model. 

 
 
 

 

Table 5. Second Moments, Encompassing and Restricted Models 
 

Variable Mexican 
Data Encompassing M. Stochastic 

Trend M. 
Financial 

Frictions M. 
Aguiar-

Gopinath 
Standard Deviations (%) 

gY 1.53 1.23 1.55 1.23 1.58 
gC 1.94 1.68 1.59 1.66 2.07 
gI 5.66 4.61 4.26 4.60 5.16 

dTB/Y 1.38 1.45 1.08 1.44 1.57 
gR 1.81 0.63 0.00 0.63 0.00 

S.D. (X) / S.D. (gY) 
gC 1.27 1.36 1.03 1.35 1.31 
gI 3.71 3.75 2.75 3.75 3.27 

dTB/Y 0.91 1.18 0.70 1.18 1.00 
gR 1.04 0.51 0.00 0.51 0.00 

Correlation with gY 
gC 0.76 0.95 0.93 0.96 0.95 
gI 0.75 0.80 0.90 0.80 0.89 

dTB/Y -0.44 -0.65 -0.54 -0.65 -0.72 
gR -0.61 -0.63 0.47 -0.63 0.65 

Correlation with dTB/Y 
gC -0.50 -0.83 -0.80 -0.83 -0.89 
gI -0.67 -0.97 -0.85 -0.97 -0.95 
gR 0.53 0.99 -0.18 1.00 -0.19 

Serial Correlation 
gY 0.27 0.19 0.13 0.19 0.25 
gC 0.20 0.18 0.08 0.18 0.10 
gI 0.44 -0.06 -0.02 -0.06 -0.01 

dTB/Y 0.33 -0.08 -0.05 -0.08 -0.06 
gR -0.05 -0.08 0.92 -0.08 0.91 

Note: gX denotes log-differences, dX denotes first differences. Model-based moments using observables {gY, gC, gI, dTB/Y} from 
the Mexican Data, 1980.1-2003.2 provided by Aguiar and Gopinath (2007). Data for the growth rate of Mexican interest rates, gR, 
starts from 1994.1 and is taken from Uribe and Yue (2006). Moments are computed using posterior mode. All estimations were 
done using measurement errors in all four variables.  

 
  



 
Table 6. Forecast Error Variance Decompositions, Encompassing Model 

 

Structural 
Shock gY gC gI dTB/Y 

Benchmark, Encompassing Model 
aε  93.5 88.7 76.9 57.6 

gε  1.5 2.1 0.8 1.2 

*Rε  5.1 9.2 22.2 41.2 

Counterfactual, No Endogenous Spread: 0η =  
aε  93.5 68.0 6.3 18.2 

gε  1.4 4.6 1.4 0.8 

*Rε  5.1 27.3 92.3 81.1 

Counterfactual, No Working Capital:  
aε  97.8 91.2 77.1 57.1 

gε  1.5 2.2 0.8 1.2 

*Rε  0.7 6.6 22.0 41.7 

Counterfactual, No Endogenous Spread and No Working Capital:  
aε  97.9 75.0 6.8 18.8 

gε  1.4 5.1 1.4 0.8 

*Rε  0.7 19.9 91.8 80.4 

Note: gX denotes log-differences, dX denotes first differences. Variance decompositions computed from the estimation using four 
observables and measurement errors in all variables. Numbers reported using posterior modes. In the variance decomposition 
computations only the role of the structural shocks was taken into account. In the counterfactual exercise, all parameters are set 
equal to their posterior mean levels except for the parameters governing the elasticity of the spread and/or the working capital 
needs. A time horizon of 40 quarters was used for the variance decomposition. 

 
 
 
 
 
 
 
 
 
 
 

 



Table 7. Posterior Distributions with Less Informative Priors 
 

Parameter 

Less Informative Priors 

Prior 
Distribution 

Prior 
Mean 

High 
Posterior 

Mode 

Low 
Posterior 

Mode 

Posterior 
Mean & 
90% C.I. 

aρ  Beta (2,2) 0.50  
[0.14, 0.86] 

0.88 0.87 0.92    
[0.78, 0.99] 

100 aσ  
Uniform 
(0.01,10) 

5.00    
[0.51, 9.49]  0.82 0.80 0.70    

[0.37, 0.94] 

gρ  Beta (2,2) 0.50  
[0.14, 0.86] 0.50 0.96 0.52    

[0.11, 0.87] 

100 gσ  
Uniform 
(0.01,10) 

5.00  
[0.51, 9.50] 0.01 0.10 0.59    

[0.02, 1.23] 

Rρ  Beta (2,2) 0.50  
[0.14, 0.86] 0.94 0.20 0.96    

[0.85, 0.99] 

100 Rσ  
Uniform 
(0.01,10) 

5.00  
[0.51, 9.50] 0.17 0.45 0.08    

[0.04, 0.15] 

φ  
Uniform 
(0.0,40) 

20.00  
[2.02, 38.02] 

8.71 7.46 4.14    
[2.23, 7.65] 

θ  Beta (2,2) 0.50  
[0.14, 0.87] 0.65 0.76 0.57    

[0.07, 0.97] 

η  
Uniform 
(0.0,5.0) 

2.50  
[0.25, 4.75] 

0.33 0.37 0.03    
[0.00, 0.22] 

ξ  
Uniform 
(0.5,5.0) 

2.75  
[0.72, 4.78] 2.63 2.59 2.37    

[0.98, 3.72] 

100 Yσ  
Uniform 
(0.01,10) 

5.00  
[0.51, 9.50] 0.01 0.06 0.09    

[0.01, 0.31] 

100 Cσ  
Uniform 
(0.01,10) 

5.00  
[0.51, 9.49] 1.19 1.06 1.19    

[1.05, 1.36] 

100 Iσ  
Uniform 
(0.01,10) 

5.00  
[0.51, 9.49] 2.90 2.93 2.91    

[2.37, 3.46] 

/100 TB Yσ
 

Uniform 
(0.01,10) 

5.00  
[0.51, 9.49] 0.62 0.67 0.52    

[0.02, 0.89] 

RWC  2.50  
[0.01, 8.56] 

0.00 4.69 0.31    
[0.11, 1.00] 

Log-Posterior at Mode  1013.3 1009.9  
Log-Likelihood at Posterior 

Mode  1004.7 1002.4  
Note: Encompassing model estimated using observables {gY, gC, gI, dTB/Y} from the Mexican Data, 
1980.1-2003.2 using measurement errors in all four variables. Results are posterior modes, means and 90 
percent confidence intervals for posterior distributions.  



Table 8. Variance Decompositions of Extensions 
 

Structural 
Shock gY gC gI dTB/Y 

Less Informative Priors 

aε  97.91 90.28 66.97 24.50 

gε  0.01 0.01 0.00 0.00 

*Rε  2.08 9.71 33.03 75.50 

 
Observing Interest Rates 

aε  92.19 91.20 90.81 80.11 

gε  1.38 2.16 1.03 1.79 

*Rε  0.59 1.71 5.06 11.77 

εS 5.84 4.93 3.11 6.33 

Two Spread Elasticities 
aε  93.97 90.69 83.99 62.67 

gε  1.55 2.89 0.92 1.73 

*Rε  0.58 1.50 8.77 21.70 

εS 3.90 4.91 6.31 13.89 
Note: gX denotes log-differences, dX denotes first differences. Model-based moments using different pairs of observables and no 
measurement errors from the Mexican Data, 1980.1-2003.2 except in the two lower panels where, due to availability of interest 
rate data, the sample is 1994.1-2003.2. Moments are computed using posterior modes.  

 
 
 
 

Table 9. Model Comparison – Less Informative Priors 
 

Models Likelihood Posterior Marginal Likelihood 
Encompassing Model 1004.7 1013.3 958.4 

Stochastic Trend Model 996.8 1005.9 968.3 
Financial Frictions Model 1004.7 1010.6 965.0 

Note: Results are in logs. Log-Likelihood levels computed in the posterior mode. Results on marginal data densities are 
approximated by Geweke's harmonic mean estimator with truncation parameter 0.5. Results are computed observing the time series 
for output, consumption, investment and the trade balance-to-GDP ratio, and i.i.d. measurement errors were added to the 
observation of all variables. 

 
 
 
 
 



Table 10. Encompassing Model Observing Interest Rate Data  
 

Parameter Prior 

Without Spread 
Shocks With Spread Shocks 

Mode Mean & 
90% C.I Mode Mean & 

90% C.I 

aρ  
0.95    

[0.93, 0.97] 0.88 0.89    
[0.86, 0.91] 0.88 0.89    

[0.87, 0.91] 

100 aσ  
0.75    

[0.14, 1.76] 0.79 0.80    
[0.62, 1.01] 0.79 0.78    

[0.58, 1.00] 

gρ  
0.72    

[0.68, 0.76] 0.72 0.72    
[0.68, 0.76] 0.72 0.72    

[0.68, 0.76] 

100 gσ  
0.74    

[0.14, 1.71] 0.14 0.13    
[0.01, 0.33] 0.13 0.12    

[0.01, 0.32] 

Rρ  
0.83    

[0.74, 0.91] 0.88 0.87    
[0.80, 0.93] 0.87 0.87    

[0.79, 0.93] 

100 Rσ  
0.72    

[0.30, 1.29] 0.15 0.15    
[0.09, 0.22] 0.15 0.15    

[0.09, 0.22] 

 
2.43    

[0.97, 4.46]   0.52 0.53    
[0.28, 0.82] 

φ  
6.00    

[1.71, 12.6] 14.44 14.62    
[11.30, 18.56] 14.13 14.38    

[11.16, 18.24] 

θ  
0.50    

[0.14, 0.87] 0.68 0.67    
[0.26, 0.97] 0.62 0.67    

[0.28, 0.97] 

η  1.00    
[0.84, 1.18] 0.78 0.78    

[0.66, 0.92] 0.77 0.78    
[0.65, 0.91] 

ξ  2.51      
[1.72, 3.42] 2.55 2.52    

[1.81, 3.29] 2.54 2.51    
[1.81, 3.28] 

100 Yσ  
2.01    

[0.67, 3.90] 0.56 0.58    
[0.34, 0.83] 0.55 0.59    

[0.32, 0.88] 

100 Cσ  
2.01    

[0.67, 3.90] 1.04 1.07    
[0.84, 1.35] 0.93 0.94    

[0.67, 1.23] 

100 Iσ  
2.01    

[0.67, 3.90] 2.10 2.14    
[1.43, 2.86] 2.00 2.09    

[1.39, 2.83] 

/100 TB Yσ
 

2.01    
[0.67, 3.90] 0.69 0.71    

[0.51, 0.95] 0.65 0.68    
[0.47, 0.92] 

 
2.01    

[0.67, 3.90] 0.18 0.18    
[0.13, 0.24] 0.17 0.17    

[0.11, 0.24] 

 
2.01    

[0.67, 3.90] 1.47 1.50    
[1.24, 1.82] 1.41 1.45    

[1.14, 1.80] 

RWC 3.06    
[0.15, 3.21] 0.16 0.22    

[0.00, 0.88] 0.16 0.22    
[0.00, 0.88] 

Log-Posterior at Mode 717.0  719.0  
Log-Likelihood at 

Posterior Mode 697.6  698.7  
Note: Results are posterior modes, means and 90 percent confidence intervals for posterior 
distributions. Estimates obtained using six observables, {gY, gC, gI, dTB/Y, gR*, gS} from the 
Mexican Data, 1994.1-2003.2. All estimations were done using measurement errors in all six 
variables. RWC refers to the random walk component, see text for details. 



Table 11. Encompassing Model with two Spread Elasticities 
 

Parameters 
BENCHMARK PRIORS LESS INFORMATIVE PRIORS 

Prior Mode Mean & 
90% C.I Prior Mode Mean & 

90% C.I 

aρ  
0.95    

[0.93, 0.97] 0.94 0.94    
[0.92, 0.96] 

0.50  
[0.14, 0.86] 0.71 0.75    

[0.61, 0.87] 

100 aσ  
0.75    

[0.14, 1.76] 0.91 0.93    
[0.75, 1.14] 

5.00    
[0.51, 9.49]  0.93 0.96    

[0.75, 1.21] 

gρ  
0.72    

[0.68, 0.76] 0.72 0.72    
[0.68, 0.76] 

0.50  
[0.14, 0.86] 0.44 0.46    

[0.08, 0.92] 

100 gσ  
0.74    

[0.14, 1.71] 0.16 0.15    
[0.01, 0.40] 

5.00  
[0.51, 9.50] 0.35 0.25    

[0.01, 0.78] 

Rρ  
0.83    

[0.74, 0.91] 0.87 0.87    
[0.79, 0.93] 

0.50  
[0.14, 0.86] 0.96 0.94    

[0.73, 0.99] 

100 Rσ  
0.72    

[0.30, 1.29] 0.13 0.13    
[0.08, 0.19] 

5.00  
[0.51, 9.50] 0.09 0.08    

[0.04, 0.13] 

 
2.43    

[0.97, 4.46] 0.43 0.43    
[0.24, 0.69] 

5.00  
[0.51, 9.49] 0.22 0.19    

[0.01, 0.47] 

φ  
6.00    

[1.71, 12.6] 7.74 7.45    
[5.25, 10.22] 

20.00  
[2.02, 38.00] 9.95 9.49    

[6.36, 13.04] 

θ  
0.50    

[0.14, 0.87] 0.66 0.67    
[0.25, 0.97] 

0.50  
[0.14, 0.87] 0.47 0.56    

[0.13, 0.95] 

 
2.50  

[0.25, 4.75] 0.20 0.18    
[0.09, 0.30] 

2.50  
[0.25, 4.75] 1.41 1.17    

[0.46, 2.09] 

 
2.50  

[0.25, 4.75] 0.00 0.00    
[0.00, 0.00] 

2.50  
[0.25, 4.75] 0.00 0.41    

[0.00, 2.68] 

 2.51      
[1.72, 3.42] 2.39 2.38    

[1.69, 3.14] 
2.75  

[0.72, 4.78] 3.33 3.14    
[1.72, 4.32] 

100 Yσ  
2.01    

[0.67, 3.90] 0.44 0.45    
[0.19, 0.71] 

5.00  
[0.51, 9.50] 0.01 0.13    

[0.01, 0.44] 

100 Cσ  
2.01    

[0.67, 3.90] 0.90 0.92    
[0.71, 1.15] 

5.00  
[0.51, 9.49] 0.95 0.98    

[0.77, 1.21] 

100 Iσ  
2.01    

[0.67, 3.90] 1.56 1.58    
[0.91, 2.25] 

5.00  
[0.51, 9.49] 2.05 2.12    

[1.51, 2.77] 

/100 TB Yσ
 

2.01    
[0.67, 3.90] 0.58 0.59    

[0.40, 0.79] 
5.00  

[0.51, 9.49] 0.43 0.36    
[0.04, 0.72] 

 
2.01    

[0.67, 3.90] 0.19 0.20    
[0.15, 0.25] 

5.00  
[0.51, 9.49] 0.19 0.20    

[0.16, 0.24] 

 
2.01    

[0.67, 3.90] 1.61 1.65    
[1.34, 2.03] 

5.00  
[0.51, 9.49] 1.32 1.41    

[1.13, 1.75] 

RWC 3.06    
[0.15, 3.21] 0.18 0.13    

[0.00, 0.66] 
2.55  

[0.02, 8.71] 0.17 0.14    
[0.00, 0.45] 

Log-Posterior at Mode 728.2   725.8  
Log-Likelihood at 

Posterior Mode 701.5   711.6  
Note: Results are posterior modes, means and 90 percent confidence intervals for posterior distributions. Estimates 
obtained using six observables, {gY, gC, gI, dTB/Y, gR*, gS} from the Mexican Data, 1994.1-2003.2. All estimations were 
done using measurement errors in all six variables. RWC refers to the random walk component, see text for details. 



Figure 1. Priors and Posteriors:  Encompassing Model 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: The plots in this figure report the prior/posterior distributions of the parameters in the Encompassing Model. Plots are generated using the MCMC draws of 
the Metropolis Hastings algorithm.  



 
 

Figure 2. Observed and model-based dynamics of the interest rate 

 
Note: The blue (shorter/thicker) line depicts the gross real Mexican interest rate computed as in Uribe and 
Yue (2006) using the US Tbills rate and the Mexican EMBI spread. The green (longer/thinner) time series 
are the model-based dynamics implied by the encompassing model computed using the Kalman smoother.  
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Figure 3. Impulse Response Functions, Encompassing Model 

 
Note: Each column tracks the response of output (Y); consumption (C); investment (I), and employment (h) as deviations from steady states, after an estimated 1 S.D.  
shock to the transitory technology process (Column 1); the foreign interest rate process (Column 2); and the growth process (Column 3). Blue line is the mean posterior 
and dashed lines depict 90 percent interval based upon the posterior distribution.  
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Figure 4. Impulse Response Functions after a transitory technology 
Shock: A Counterfactual Experiment 

 

 
Note: The dotted line depicts the mean posterior distribution of the same impulse response function following an 
estimated 1 S.D. shock to the transitory technology process except that we counterfactually assume the parameter 
η to be zero. The other lines reproduce the first column in Figure 3. 

 
 

Figure 5. Time Series for Domestic and Foreign Interest Rates 
 

 
Note: R* is the world interest rate (taken from the TBills rate); Spread is the EMBI+ Mexico; R is the 
Mexican interest rate implied by multiplying R* and S. Sources: Uribe and Yue (2006). 
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Figure 6. Simulating The Tequila Crisis 
 
 

Using only smoothed growth shocks 

 
Using only smoothed foreign interest rate shocks 

 
Using only smoothed transitory technology shocks 
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Figure 6 (cont). Simulating The Tequila Crisis 

 
Using only smoothed spread shocks 

 
 

Note: Each row tracks the observed (solid line) and model-based simulated (dashed line) time series of log-output (Y); log-consumption (C); log-investment 
(I), and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state shocks. Simulations do not include 
measurement errors. 
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Figure 7. Simulating The Tequila Crisis Using Only Transitory Technology Shocks and Various Degrees of 
Financial Frictions 

 

Using only smoothed transitory technology shocks and no financial frictions 
 

 
 

Using only smoothed transitory technology shocks and no working capital needs 
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Figure 7(cont). Simulating The Tequila Crisis Using Only Transitory Technology Shocks and Various 

Degrees of Financial Frictions 
 

Using only smoothed transitory technology shocks and no spread 

  
Note: Each row tracks the observed (solid line) and model-based simulated (dashed and starred lines) time series of log-output (Y); log-consumption (C); 
log-investment (I), and the trade balance-to-GDP (TB/Y). The model-based simulations were obtained using the smoothed state transitory technology 
shocks. 
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