Bubbles and the Current Crisis

Roberto Chang

Rutgers

April 2013

Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis

Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis
- A good illustration of the issues we discussed last time

Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis
- A good illustration of the issues we discussed last time
- Novelty: bubbles can be expansionary.

Motivation

- Martin and Ventura (2011) argue that an OG model with financial frictions and bubbles on asset prices provides the best available explanation of the crisis
- A good illustration of the issues we discussed last time
- Novelty: bubbles can be expansionary.
- Main idea: plegeable income of entrepreneurs depends on the terminal value of capital, so a bubble enables them to borrow and invest more. This increases investment efficiency and can more than compensate for the fact that bubbles absorbes savings.

Model

- Overlapping generations of two period lived agents

Model

- Overlapping generations of two period lived agents
- All agents work when young, consume when old

Model

- Overlapping generations of two period lived agents
- All agents work when young, consume when old
- Risk neutral

Firms

Each firm j that can produce in period t has access to technology

$$
F\left(l_{j t}, k_{j t}\right)=k_{j t}^{\alpha} j_{j t}^{1-\alpha}
$$

A consequence is that the wage is given by the marginal product of labor:

$$
\begin{aligned}
w_{t} & =(1-\alpha)\left(k_{t} / I_{t}\right)^{\alpha} \\
& =(1-\alpha) k_{t}^{\alpha}
\end{aligned}
$$

the last equality holding because $I_{t}=1$. (k_{t} is the aggregate capital/labor ratio).

Investment

For existing firms in period t, the investment technology is the usual one:

$$
k_{j, t+1}=Z_{j t}+(1-\delta) k_{j t}
$$

New firms in period t (which can only start producing in $t+1$) have

$$
k_{j, t+1}=\pi_{t} Z_{j t}+(1-\delta) k_{j t}
$$

where $\pi_{t}>1$ and can be random ("investment efficiency").
Note that efficiency would entail that all investment should be done by new firms.

Savings

- Each generation t has unit size

Savings

- Each generation t has unit size
- A fraction ε : entrepreneurs

Savings

- Each generation t has unit size
- A fraction ε : entrepreneurs
- Only entrepreneurs can start new firms

Savings

- Each generation t has unit size
- A fraction ε : entrepreneurs
- Only entrepreneurs can start new firms
- Anyone can buy old firms and operate them

Borrowing and Lending

- Any agent can borrow and lend at some stochastic interest rate R_{t+1}

Borrowing and Lending

- Any agent can borrow and lend at some stochastic interest rate R_{t+1}
- $E_{t} R_{t+1}=$ "the " interest rate at t

Borrowing and Lending

- Any agent can borrow and lend at some stochastic interest rate R_{t+1}
- $E_{t} R_{t+1}=$ "the " interest rate at t
- Collateral constraint of agent j :

$$
\begin{aligned}
R_{t+1} f_{j t} & \leq \phi_{t+1}\left[F\left(l_{j, t+1}, k_{j, t+1}\right)-w_{t+1} l_{j, t+1}+V_{j, t+1}\right] \\
& =\phi_{t+1}\left[r_{t+1} k_{j t+1}+V_{j, t+1}\right]
\end{aligned}
$$

where $f_{j t}=$ amount borrowed, $\phi_{t}=$ "financial friction", $V_{j, t+1}=$ price of the firm acquired by j, and $r_{t}=\alpha k_{t}^{\alpha-1}$

Optimality conditions

If non-entrepreneurs are willing to lend to entrepreneurs and to buy old firms, then

$$
E_{t} R_{t+1}=\max \frac{E_{t}\left[r_{t+1} k_{j t+1}-R_{t+1} f_{j t+1}+V_{j t+1}\right]}{V_{j t}+Z_{j t}-f_{j t}}
$$

where $r_{t}=\alpha k_{t}^{\alpha-1}$ and the max is s.t.

$$
k_{j, t+1}=Z_{j t}+(1-\delta) k_{j t}
$$

Likewise, if entrepreneurs are willing to start new firms, then

$$
E_{t} R_{t+1} \leq \max \frac{E_{t}\left[r_{t+1} k_{j t+1}-R_{t+1} f_{j t+1}+V_{j t+1}\right]}{Z_{j t}-f_{j t}}
$$

where $r_{t}=\alpha k_{t}^{\alpha-1}$ and the max is s.t.

$$
k_{j, t+1}=\pi_{t} Z_{j t}+(1-\delta) k_{j t}
$$

and

$$
R_{t+1} f_{j t} \leq \phi_{t+1}\left[r_{t+1} k_{j t+1}+V_{j, t+1}\right]
$$

Equilibrium

- Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not

Equilibrium

- Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not
- Conjecture that

$$
\begin{aligned}
E_{t} R_{t+1} & =r_{t+1}+(1-\delta)=\alpha k_{t+1}^{\alpha-1}+(1-\delta) \\
V_{j t} & =(1-\delta) k_{j t}
\end{aligned}
$$

Equilibrium

- Look for equilibrium in which entrepreneurs are always constrained and nonentrepreneurs are not
- Conjecture that

$$
\begin{aligned}
E_{t} R_{t+1} & =r_{t+1}+(1-\delta)=\alpha k_{t+1}^{\alpha-1}+(1-\delta) \\
V_{j t} & =(1-\delta) k_{j t}
\end{aligned}
$$

- The conjecture assumes that there is no bubble

Solution

- Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

$$
f_{j t}=\frac{\pi_{t} E_{t} \phi_{t+1}}{1-\pi_{t} E_{t} \phi_{t+1}} w_{t}
$$

Solution

- Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

$$
f_{j t}=\frac{\pi_{t} E_{t} \phi_{t+1}}{1-\pi_{t} E_{t} \phi_{t+1}} w_{t}
$$

- Nonentrepreneurs have more than enough savings to buy old firms and lend to entrepreneurs:

$$
(1-\varepsilon) w_{t} \geq V_{t}+f_{t}^{N}
$$

Solution

- Entrepreneurs only invest in new firms and borrow as much as they can. The collateral constraint then becomes:

$$
f_{j t}=\frac{\pi_{t} E_{t} \phi_{t+1}}{1-\pi_{t} E_{t} \phi_{t+1}} w_{t}
$$

- Nonentrepreneurs have more than enough savings to buy old firms and lend to entrepreneurs:

$$
(1-\varepsilon) w_{t} \geq V_{t}+f_{t}^{N}
$$

- Capital evolves according to:

$$
k_{t+1}=\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha}
$$

$$
k_{t+1}=\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha}
$$

- Capital evolves as in the typical OG model, with shocks to "technology "

$$
k_{t+1}=\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha}
$$

- Capital evolves as in the typical OG model, with shocks to "technology "
- MV: This model seems insufficient to understand the crisis.

$$
k_{t+1}=\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha}
$$

- Capital evolves as in the typical OG model, with shocks to "technology "
- MV: This model seems insufficient to understand the crisis.
- Main argument: what was the particular shock that caused such a severe downturn?

Bubbly Equilibria

- Now let us conjecture that there are bubbles in equilibrium:

$$
\begin{aligned}
E_{t} R_{t+1} & =r_{t+1}+(1-\delta)=\alpha k_{t+1}^{\alpha-1}+(1-\delta) \\
V_{j t} & =(1-\delta) k_{j t}+b_{j t}
\end{aligned}
$$

The entrepreneurs ' collateral constraint becomes

$$
f_{j t}=\frac{\pi_{t} E_{t} \phi_{t+1}}{1-\pi_{t} E_{t} \phi_{t+1}} w_{t}+\frac{E_{t} \phi_{t+1} b_{j t+1}^{N}}{\left(1-\pi_{t} E_{t} \phi_{t+1}\right) E_{t} R_{t+1}}
$$

This is the same as before except for the bubble component.

Also, for any existing firm,

$$
E_{t} R_{t+1}=\frac{E_{t} b_{j t+1}}{b_{j t}}
$$

i.e. the expected growth rate of bubbles must equal the interest rate.

Capital Accumulation with Bubbles

The capital accumulation equation becomes

$$
\begin{aligned}
k_{t+1}= & {\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha} } \\
& +\frac{\left(\pi_{t}-1\right)}{1-\pi_{t} E_{t} \phi_{t+1}} \frac{E_{t} \phi_{t+1} b_{t+1}^{N}}{\alpha k_{t+1}^{\alpha-1}+(1-\delta)}-\left(b_{t}+b_{t}^{N}\right)
\end{aligned}
$$

Note that now bubbles can have two opposite effects on the accumulation of capital:
(1) Usual crowding out effect

Capital Accumulation with Bubbles

The capital accumulation equation becomes

$$
\begin{aligned}
k_{t+1}= & {\left[1+\frac{\left(\pi_{t}-1\right) \varepsilon}{1-\pi_{t} E_{t} \phi_{t+1}}\right](1-\alpha) k_{t}^{\alpha} } \\
& +\frac{\left(\pi_{t}-1\right)}{1-\pi_{t} E_{t} \phi_{t+1}} \frac{E_{t} \phi_{t+1} b_{t+1}^{N}}{\alpha k_{t+1}^{\alpha-1}+(1-\delta)}-\left(b_{t}+b_{t}^{N}\right)
\end{aligned}
$$

Note that now bubbles can have two opposite effects on the accumulation of capital:
(1) Usual crowding out effect
(2) They may relax financial constraints, leading to faster capital accumulation.

The bubbles growth condition becomes

$$
E_{t} b_{t+1}=\left[\alpha k_{t+1}^{\alpha-1}+(1-\delta)\right]\left(b_{t}+b_{t}^{N}\right)
$$

The aggregate bubble grows faster than the interest rate because of the creation of new (bubbly) firms

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable
- A plethora of equilibria are possible

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable
- A plethora of equilibria are possible
- Assume $p=\operatorname{Prob}\left\{z_{t+1}=F \mid z_{t}=B\right\}$

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable
- A plethora of equilibria are possible
- Assume $p=\operatorname{Prob}\left\{z_{t+1}=F \mid z_{t}=B\right\}$
- Start with some period t in which $b_{t}=0, b_{t}^{N}>0$

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable
- A plethora of equilibria are possible
- Assume $p=\operatorname{Prob}\left\{z_{t+1}=F \mid z_{t}=B\right\}$
- Start with some period t in which $b_{t}=0, b_{t}^{N}>0$
- Afterwards, $b_{t}^{N}=n b_{t}$ if $z_{t}=B$

Bubbles and Sunspots

- Let $z_{t} \in\{F, B\}$ be a "sunspots " variable
- A plethora of equilibria are possible
- Assume $p=\operatorname{Prob}\left\{z_{t+1}=F \mid z_{t}=B\right\}$
- Start with some period t in which $b_{t}=0, b_{t}^{N}>0$
- Afterwards, $b_{t}^{N}=n b_{t}$ if $z_{t}=B$
- Assume $\operatorname{Prob}\left\{z_{t+1}=B \mid z_{t}=F\right\}$ is negligible

More assumptions:

- $\pi_{t}=\pi, \phi_{t}=\phi$

More assumptions:

- $\pi_{t}=\pi, \phi_{t}=\phi$
- $\delta \approx 1$

More assumptions:

- $\pi_{t}=\pi, \phi_{t}=\phi$
- $\delta \approx 1$
- Define $x_{t}=b_{t} /\left[(1-\alpha) k_{t}^{\alpha}\right]=$ bubble as share of savings

More assumptions:

- $\pi_{t}=\pi, \phi_{t}=\phi$
- $\delta \approx 1$
- Define $x_{t}=b_{t} /\left[(1-\alpha) k_{t}^{\alpha}\right]=$ bubble as share of savings
- Then

$$
x_{t+1}=\frac{[\alpha(1+n) /(1-\alpha)(1-p)] x_{t}}{1+\frac{(\pi-1) \varepsilon}{1-\phi \pi}\left(\frac{(\pi-1) \phi n}{1-\phi \pi}-1\right)(1+n) x_{t}}
$$

We also need

$$
x_{t} \leq \frac{1-\phi \pi-\varepsilon}{1-\phi(\pi-n)} \frac{1}{1+n} \equiv \bar{x}
$$

Given path for x_{t}, capital accumulation is given by

$$
k_{t+1}=\left(\left[1+\frac{(\pi-1) \varepsilon}{1-\pi \phi}+\frac{\phi(\pi-1) n}{1-\phi \pi}\right](1+n) x_{t}\right)(1-\alpha) k_{t}^{\alpha}
$$

