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Motivation

Recall that the solution of the Lucas asset price model is given by:

p(z)u0(z) = β
Z
u0(z 0)[z 0 + p(z 0)]Q(z , dz 0)

This is a functional equation where the unknown is a function
p : Z ! R++

Suppose that you know u,Z ,Q, β. How do you compute an approximate
solution?
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Numerical Issues

At least two nontrivial issues appear if e.g. Z is an interval:

1 How do you compute the integral?

2 How do you even represent or approximate a candidate solution, a
function p : Z ! R++?

In this case, both issues "disappear " if one assumes that Z is a �nite set.
But in other contexts that may be unnatural or misleading. Hence we
review procedures to deal squarely with the two issues. Additionally, we
discuss a computational procedure to solve functional equations.
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Function Approximation

The problem is to approximate a (possibly intractable) real valued
function f with a computationally tractable f̂ , using only limited
information about f .

This turns out to be extremely useful in many contexts. For example,
if one iterates on Bellman:

v (i+1)(k, z) = Maxa u(k, z , a) + β
Z
v (i )(k 0, z 0)Q(z , dz 0)

s.t. a 2 Γ(k, z)
k 0 = φ(k, a, z 0)

at each step one only needs to solve for each iteration v (i+1) at a
�nite set of values in K � Z , then form the approximation v̂ (i+1)
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Basic Principles

A useful approach to approximate a function f is to choose an
approximant from a given family:

f̂ (x) =
n

∑
j=1
cjφj (x)

where φj (x), j = 1, ..., n are known basis functions and c1, ...cn are
coe¢ cients that pin down an approximant. n is called the degree of
the approximation.

Obvious monomial example: let φj (x) = x
j�1, so an nth degree

approximation to f is the polynomial c0 + c1x + ...+ cnxn�1
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Approximation Decisions:

How do you choose basis functions?

Given basis functions, how do you choose the coe¢ cients of the
approximation?
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Choosing the Coe¢ cients: Interpolation

Let us focus on the choice of coe¢ cients �rst: suppose that we are
given a family of basis functions.

A typical situation: we know the values of f at some n nodes
x1, ..., xn : f (xk ) = yk , k = 1, ...n.
Then we can choose the nodes by solving:

f̂ (xk ) =
n

∑
j=1
cjφj (xk ) = yk

This is a linear system of n equations in the n unknown coe¢ cients
c1, ..., cn
Often we can choose the nodes, so this is another decision to be
made.
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Choosing Basis Functions: Spectral and Finite Element
Methods

Spectral methods use basis functions that are nonzero at almost all
points of the domain (e.g. monomials). The most popular such
method is polynomial interpolation.

Finite element methods uses basis functions that are nonzero only
over subintervals of the domain. Most popular: linear and cubic
splines.
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Polynomial Approximation

The obvious choice for a basis, monomials, is not good because they
are far from orthogonal as n increases. This makes the interpolation
system ill conditioned

A much better alternative: Chebychev polynomials. For x in [a, b], let
z = (x � a)/(b� a) and de�ne:

T0(z) = 1,T1(z) = z

Tj (z) = 2zTj�1(z)� Tj�2(z), j � 2
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Choice of Nodes

With polynomial approximation, the obvious choice of nodes is
equidistant

But this is known to be problematic

Preferred: Chebychev nodes, for i = 1, ..., n

xi =
a+ b
2

+
b� a
2

cos(
n� i + 0.5

n
π)
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Piecewise Polynomial Interpolation

Instead of constructing a high degree smooth approximation that
interpolates the data, one can subdivide the domain and �t low order
polynomials to each part of the domain.

The simplest method is piecewise linear approximation, aka "connect
the dots "

A popular alternative: piecewise cubic

Piecewise polynomial approximations can be seen as linear
combination of basis functions called splines

R. Chang (Rutgers) Function Approximation April 2013 11 / 21



Piecewise Polynomial Interpolation

Instead of constructing a high degree smooth approximation that
interpolates the data, one can subdivide the domain and �t low order
polynomials to each part of the domain.

The simplest method is piecewise linear approximation, aka "connect
the dots "

A popular alternative: piecewise cubic

Piecewise polynomial approximations can be seen as linear
combination of basis functions called splines

R. Chang (Rutgers) Function Approximation April 2013 11 / 21



Piecewise Polynomial Interpolation

Instead of constructing a high degree smooth approximation that
interpolates the data, one can subdivide the domain and �t low order
polynomials to each part of the domain.

The simplest method is piecewise linear approximation, aka "connect
the dots "

A popular alternative: piecewise cubic

Piecewise polynomial approximations can be seen as linear
combination of basis functions called splines

R. Chang (Rutgers) Function Approximation April 2013 11 / 21



Piecewise Polynomial Interpolation

Instead of constructing a high degree smooth approximation that
interpolates the data, one can subdivide the domain and �t low order
polynomials to each part of the domain.

The simplest method is piecewise linear approximation, aka "connect
the dots "

A popular alternative: piecewise cubic

Piecewise polynomial approximations can be seen as linear
combination of basis functions called splines

R. Chang (Rutgers) Function Approximation April 2013 11 / 21



Splines

A spline of order n on [a, b] is a function s : [a, b]! R such that:

s has continuous derivatives up to order n� 2

There are m nodes a = x1 < ... < xm = b such that s(x) is a
polynomial of degree n� 1 on each subinterval [xi , xi+1]
An order 2 spline is just the common linear interpolant
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Cubic Splines

Suppose we have n+ 1 nodes, x0, x1...xn , and we know yi = f (xi ) at
each node. We want to construct an interpolating cubic spline

On each subinterval [xi , xi+1], the spline will have the representation
ai + bix + cix2 + dix3

Hence we have to �x 4n coe¢ cients

The interpolation conditions, plus continuity and smoothness at the
interior points, give 4n� 2 conditions.
The two extra conditions are solved in di¤erent ways (natural,
Hermite, not-a-knot)

The resulting system of equations to be solved is often linear and
sparse
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Basis for Splines: B-splines

As mentioned, splines can be expressed as linear combinations of a
basis family called B-splines

For piecewise linear splines, B-splines are "tent functions ".

For cubic splines and others, see Judd or MF.
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Choosing an Approximation Method

Keep in mind that spectral methods �t a global approximant, whereas
�nite element methods are "local "

For smooth functions, polynomial approximations are very good

If one has discontinuities, kinks, etc. splines may be preferable
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Multidimensional Case

Consider approximating f (x , y). If fφi (x)gni=1 and fηj (y)gmj=1 are
one dimensional basis families, a basis family for the two dimensional
case is given by the tensor family of products φi (x)ηj (y)

Likewise, if fx1..xng and fy1...ymg are nodes in the unidimensional
case, for the two dimensional case one can use the nodes f(xi , yj )g
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Application: Dynamic Programming (Mc Candless)

global vlast betta del theta k0 kt
vlast = zeros(1,100);
k0 = 0.06:0.06:6;
betta = 0.98; del = 0.1; theta = 0.36; numits = 240;
for k = 1:numits;
for j = 1:100

kt = j * 0.06;
ktp1 = fminbnd(@valfun,0.01,6.2);
v(j) = -valfun(ktp1);
kt1(j) = ktp1;

end
vlast = v;
end
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function val = valfun(x)
%VALFUN From Mc Candless, p. 67
% Auxiliary function

global vlast betta del theta k0 kt

cc = kt^theta + (1 - del)* kt - x;
g = interp1(k0, vlast, x, �spline�);

if cc<=0
val = -888 - 800*abs(cc);

else
val = log(cc) + betta*g;

end

val = -val;
end

R. Chang (Rutgers) Function Approximation April 2013 18 / 21



Application: Functional Equations

Consider the problem: �nd a function f : D �! R , f 2 z, such that
for all x 2 D

Tf (x) = 0

where T : z! z is an operator on z

Example: rewrite the Lucas tree problem as

Tp(z) � p(z)u0(z)� β
Z
u0(z 0)[z 0 + p(z 0)]Q(z , dz 0) = 0

More generally: problems whose solutions are given by systems of
functional equations
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Collocation

Suppose that we will look for an approximate solution in the family

f̂ (x ; c) =
n

∑
j=1
cjφj (x)

Fix the degree of the approximation, n. Then the collocation method
requires the functional equation to hold exactly at n points (nodes) in
the domain:

T f̂ (xi ; c) = T (
n

∑
j=1
cjφj )(xi ) = 0, i = 1, ..n

This gives a (probably nonlinear) system of n equations for the n
unknown coe¢ cients c1...cn
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The Residual Function

Away from the nodes, the residual function:

R(x ; c) = T f̂ (x ; c) = T (
n

∑
j=1
cjφj )(x)

will not be zero. The quality of the approximation can be judged by
looking at the residual function.

Other methods choose c to make the residual function close to zero
in di¤erent ways, e.g. on average.

For example, one could choose c1...cn to minimize a version of least
squares: Z b

a
[R(x ; c)]2 w(x)dx

for some weight function w
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