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Abstract

When specifying and estimating latent factor models, a common assumption made is

one of factor pervasiveness, which implies that all available predictor variables in a

dataset, with the possible exception of a negligible number of them, load significantly

on the underlying factors. In this paper, we analyze the more likely scenario where

there is significant underlying heterogeneity in the sense that some of the variables

load significantly on the underlying factors, while others are irrelevant. Consistent

factor estimation is shown to be feasible, even under factor nonpervasiveness, if one

first pre-screens all available variables and prunes out the irrelevant ones. For this

purpose, we introduce, within a factor-augmented VAR framework, a novel variable

selection procedure that, with probability approaching one, correctly distinguishes

between relevant and irrelevant variables. Our methodology enables the consistent

estimation of conditional mean functions of factor-augmented forecast equations, even

when the conventional assumption of factor pervasiveness is violated.
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1 Introduction

As a result of the astounding rate at which raw information is currently being

accumulated, there is a clear need for variable selection, dimension reduction and

shrinkage techniques when analyzing big data using machine learning techniques.

This has led to a profusion of novel research in areas ranging from the analysis of

high dimensional and/or high frequency datasets to the development of new statistical

learning methods. Needless to say, there are many critical unanswered questions in

this burgeoning literature. One such question, which we address in this paper stems

from the pathbreaking work due to Bai and Ng (2002), Stock and Watson (2002a,b),

Bai (2003), Forni, Hallin, Lippi, and Reichlin (2005), and Bai and Ng (2008). In

these papers, the authors develop methods for constructing forecasts based on factor-

augmented regression models. An obvious appeal of using factor analytical methods

for this problem is the capacity for dimension reduction, so that in terms of the

specification of the forecasting equation, employment of a factor structure allows the

parsimonious representation of information embedded in a possibly high-dimensional

vector of predictor variables.

Within this context, we note that a key assumption, commonly used in the lit-

erature to obtain consistent factor estimation, is the so-called factor pervasiveness

assumption which presupposes that all available variables in a dataset, with the pos-

sible exception of a negligible number of them, load significantly on the underlying

latent factors1. Such an assumption places stringent requirements on the relationship

between variables in a given dataset and, thus, may not be satisfied by many datasets

that are available for empirical research. A more likely scenario might be that there is

significant underlying heterogeneity, so that some of the available variables are rele-

vant in the sense that they load significantly on the underlying factors, whereas others

are irrelevant, in the sense that they do not share any common dynamic structure

with the other variables in the dataset. In scenarios such as this where the assumption

of factor pervasiveness does not hold, inconsistency in factor estimation may result

1A more formal discussion of this factor pervasiveness assumption is given in part (a) of Remark

OA1.1 of the Online Appendix to this paper, Chao and Swanson (2022c).
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if one were to naively use all available variables to estimate the underlying factors,

without regard to whether they are relevant or not. See an earlier version of this

paper, Chao and Swanson (2022a), for a particularly pathological example where the

estimated factor b → 0 regardless of what the true value of the factor  happens to

be - a situation which could very well arise when the underlying factors are nonperva-

sive. Not being able to obtain consistent estimates of the underlying factors, in turn,

would clearly cause problems for empirical researchers, such as when the objective is

to estimate forecast functions that incorporate estimated factors. On the other hand,

if one were to pre-screen the variables and successfully prune out the irrelevant ones;

then, under appropriate conditions, consistent estimation can be achieved. Hence, a

main contribution of this paper is to introduce a novel variable selection procedure

which allows empirical researchers to, with probability approaching one, correctly

distinguish the relevant from the irrelevant variables, prior to factor estimation. We

study this problem within a factor-augmented VAR (FAVAR) framework - a setup

which has the advantage that it allows time series forecasts to be made using infor-

mation sets much richer than that used in traditional VAR models. While the present

paper focuses on the development of the variable selection procedure itself as well as

the analysis of its asymptotic properties; we have shown in an earlier, extended ver-

sion of this paper, Chao and Swanson (2022a), that the use of our methodology will

allow the conditional mean function of a factor-augmented forecast equation to be

consistently estimated in a wide range of situations, including cases where violation of

factor pervasiveness is such that consistent estimation is precluded in the absence of

variable pre-screening.2 Moreover, there are also clear benefits to using our procedure

even in cases where weaker pervasiveness assumptions, such as that discussed in Bai

and Ng (2021), characterize the data.

The research reported here is related to the well-known supervised principal com-

ponents method proposed by Bair, Hastie, Paul, and Tibshirani (2006). Additionally,

our research is related to some interesting recent work by Giglio, Xiu, and Zhang

2See Theorem 5 of Chao and Swanson (2022a) which is available at

http://econweb.umd.edu/~chao/Research/research_files/ConEstVarSelForecast-03-18-

2022-main.pdf. Moreover, the proof of Theorem 5 can be found in the Techni-

cal Appendix to that paper, Chao and Swanson (2022b), which is available at

http://econweb.umd.edu/~chao/Research/research_files/AppConFacVarSel-03-18-2022.pdf. In

particular, see Appendix A of Chao and Swanson (2022b) for the proof of Theorem 5. We intend

to write up a separate paper containing this consistency result in the near future.
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(2021), who propose a method for selecting test assets, with the objective of estimat-

ing risk premia in a Fama-MacBeth type framework. A crucial difference between the

variable selection procedure proposed in our paper and those proposed in these pa-

pers is that we use a score statistic that is self-nomalized, whereas the aforementioned

papers do not make use of statistics that involve self-normalization. An important

advantage of self-normalized statistics is their ability to accommodate a much wider

range of possible tail behavior in the underlying distributions, relative to their non-

self-normalized counterparts. This makes self-normalized statistics better suited for

various types of economic and financial applications, where the data are known not

to exhibit the type of exponentially decaying tail behavior assumed in much of the

statistics literature on high-dimensional models. In addition, the type of models stud-

ied in Bair, Hastie, Paul, and Tibshirani (2006) and Giglio, Xiu, and Zhang (2021)

differ significantly from the FAVAR model studied here. In particular, Bair, Hastie,

Paul, and Tibshirani (2006) study a one-factor model in an  Gaussian framework

so that complications introduced by dependence and non-normality of distribution

are not considered in their paper. Giglio, Xiu, and Zhang (2021) do make certain

high-level assumptions which may potentially accommodate some dependence both

cross-sectionally and intertemporally, but the model that they consider is very differ-

ent from the type of dynamic vector time series model studied here.

In another important related paper, Bai and Ng (2021) provide results which show

that factors can still be estimated consistently in certain situations where the factor

loadings are weaker than that implied by the conventional pervasiveness assumption,

although in such cases the rate of convergence of the factor estimator is slower and

additional assumptions are needed. As further discussed in the next section of this

paper, their factor consistency result relies on a key condition, and the appropriateness

of this condition depends on how severely the condition of factor pervasiveness is

violated, which is ultimately an empirical issue. In this context, various authors have

documented cases in economics-related research where empirical results suggest that

the underlying factors may be quite weak, so that the rate condition given in Bai and

Ng (2021) may not be appropriate. See, for example, the discussions in Jagannathan

andWang (1998), Kan and Zhang (1999), Harding (2008), Kleibergen (2009), Ontaski

(2012), Bryzgalova (2016), Burnside (2016), Gospodinov, Kan, and Robotti (2017),
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Anatolyev and Mikusheva (2021), and Freyaldenhoven (2021a,b).

Finally, it is worth pointing out that our variable selection procedure differs sub-

stantially from the approach to variable/model selection taken in much of the tra-

ditional econometrics literature. In particular, we show that important moderate

deviation results obtained recently by Chen, Shao, Wu, and Xu (2016) can be used to

help control the probability of a Type I error, i.e., the error that an irrelevant variable

which is not informative about the underlying factors is falsely selected as a relevant

variable. This is so even in situations where the number of irrelevant variables is

very large and even if the tails of the underlying distributions do not satisfy the kind

of sub-exponential behavior typically assumed by large deviation inequalities used in

high-dimensional analysis. Hence, we are able to design a variable selection proce-

dure where the probability of a Type I error goes to zero, as the sample sizes grow

to infinity. This fact, taken together with the fact that the probability of a Type II

error for our procedure also goes to zero asymptotically, allows us to establish that

our variable selection procedure is completely consistent, in the sense that the prob-

abilities of both Type I and Type II errors go to zero in the limit. This property of

complete consistency is important because if we try simply to control the probability

of a Type I error at some predetermined non-zero level, which is the typical approach

in multiple hypothesis testing, then we will not in general be able to estimate the fac-

tors consistently, even up to an invertible matrix transformation, and in consequence,

we will have fallen short of our ultimate goal of obtaining a consistent estimate of the

conditional mean function of the factor-augmented forecasting equation.

The rest of the paper is organized as follows. In Section 2, we discuss the FAVAR

model and the assumptions that we impose on this model. We also describe our

variable selection procedure and provide theoretical results establishing the complete

consistency of this procedure. Section 3 presents the results of a promising Monte

Carlo study on the finite sample performance of our variable selection method, and

makes recommendations regarding the calibration of the tuning parameter used in

the said method. Section 4 offers some concluding remarks. Proofs of the main

theorems and of the supporting lemmas are given in the Appendix to this paper. In

addition, we have prepared a separate Online Appendix, Chao and Swanson (2022c),

which provides additional results showing that proper selection of variables using our
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proposed methodology can lead to the consistent estimation of latent factors even in

situations where the assumption of factor pervasiveness is violated.

Before proceeding, we first say a few words about some of the frequently used no-

tation in this paper. Throughout, let () (), max (), and min () denote, respec-

tively, the  largest eigenvalue, the maximal eigenvalue, and the minimal eigenvalue

of a square matrix . Similarly, let () (), max (), and min () denote, respec-

tively, the  largest singular value, the maximal singular value, and the minimal sin-

gular value of a matrix , which is not restricted to be a square matrix. In addition,

let kk2 denote the usual Euclidean normwhen applied to a (finite-dimensional) vector
. Also, for a matrix , kk2 ≡ max

np
 (0) :  (0) is an eigenvalue of 0

o
denotes the matrix spectral norm. For two sequences, {} and {}, write  ∼
 if  =  (1) and  =  (1), as  → ∞. Furthermore, let || de-
note the absolute value or the modulus of the number ; let b·c denote the floor
function, so that bc gives the integer part of the real number , and let  =

(1 1  1)
0
denote a  × 1 vector of ones. Finally, for a sequence of random vari-

ables + ++1 ++2 ; we let  (+ ++1 ++2 ) denote the

-field generated by this sequence of random variables.

2 Model, Assumptions, and Variable Selection in

High Dimensions

Consider the following -order factor-augmented vector autoregression (FAVAR):

+1 = +1 + · · ·+−+1 + +1, (1)

where

+1
(+)×1

=

⎛⎜⎝ +1
×1
+1
×1

⎞⎟⎠ , +1
(+)×1

=

⎛⎜⎝ +1
×1
+1
×1

⎞⎟⎠ , 
(+)×1

=

⎛⎜⎝ 
×1

×1

⎞⎟⎠  and



(+)×(+)
=

⎛⎜⎝  
×

 
×


×


×

⎞⎟⎠  for  = 1  
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Here,  denotes the vector of observable economic variables, and  is a vector of

unobserved (latent) factors. In our analysis of this model, it will often be convenient

to rewrite the FAVAR in several alternative forms, which will facilitate writing down

assumptions and conditions used in the sequel. We thus briefly outline two alternative

representations of the above model. First, it is easy to see that the system of equations

given in (1) can be written in the form:

+1 =  +    +   + +1 (2)

+1 =  +   +  + +1 (3)

where

 
×

=
³
 1  2 · · ·  

´
  
×

=
³
 1  2 · · ·  

´



×

=
³
1 2 · · · 

´
 
×

=
³
1 2 · · · 

´


 
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ , and  
×1

=

⎛⎜⎜⎜⎜⎜⎝


−1
...

−+1

⎞⎟⎟⎟⎟⎟⎠ . (4)

Another useful representation of the FAVAR model is the so-called companion form,

wherein the -order model given in expression (1) is written in terms of a first-order

model:

 
(+)×1

= + −1 +,

where   =
³
 0

  0
−1 · · ·  0

−+2  0
−+1

´0
and where

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,  =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 · · · −1 

+ 0 · · · 0 0

0 +
. . .

... 0
...

. . .
. . . 0

...

0 · · · 0 + 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, and  =

⎛⎜⎜⎜⎜⎜⎜⎜⎝



0
...

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5)

7



In addition to observations on , suppose that the data set available to researchers

includes a vector of time series variables which are related to the unobserved factors

in the following manner:

 = Γ  + , (6)

where 
×1

= (1 2  )
0
. Assume, however, that not all components of 

provide useful information for estimating the unobserved vector  , so that the×

parameter matrix Γ may have some rows whose elements are all zero. More precisely,

let the 1 ×  vector 0 denote the 
 row of Γ, and assume that the rows of the

matrix Γ can be divided into two classes:

 = { ∈ {1  } :  = 0} and (7)

 = { ∈ {1  } :  6= 0} . (8)

Now, let P be a permutation matrix which reorders the components of  such that

P =
³

(1)0
 

(2)0


´0
, where


(1)


1×1
= Γ1  + 

(1)
 (9)


(2)


2×1
= 

(2)
 . (10)

The above representation suggests that the components of 
(1)
 can be interpreted as

the relevant variables for the purpose of factor estimation, as the information that

they supply will be helpful in estimating  . On the other hand, the components

of the subvector 
(2)
 are irrelevant variables (or pure “noise” variables), as they do

not load on the underlying factors and only add noise if they are included in the

factor estimation process. Given that an empirical researcher will typically not have

prior knowledge as to which variables are elements of 
(1)
 and which are elements

of 
(2)
 , it will be nice to have a variable selection procedure which will allow us to

properly identify the components of 
(1)
 and to use only these variables when we try

to estimate  . On the other hand, if we unknowingly include too many components

of 
(2)
 in the estimation process, then inconsistent factor estimation can arise. This

is demonstrated in an example analyzed recently in Chao and Swanson (2022a) which
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considers a setting similar to the specification given in expressions (6)-(10) above, but

for the case of a simple one-factor model. More precisely, Chao and Swanson (2022a)

give an example which shows that, in this situation without variable pre-screening, the

usual principal-component-based factor estimator b → 0 regardless of the true value

 under the additional rate condition that 
³


(1+)
1

´
= +

¡
−1
1

¢
, where  and

 are constants such that 0    ∞ and 0    1 and where 1 is the number

of relevant variables, 2 is the number of irrelevant variables, and  = 1 + 2.

This example shows the kind of severe inconsistency in factor estimation that could

result if the commonly assumed condition of factor pervasiveness (which essentially

requires that 1 ∼ ) does not hold3. This example is also related to a growing

number of results which have appeared in the statistics literature showing the possible

inconsistency of sample eigenvectors as estimators of population eigenvectors in high

dimensional situations. See, for example, Paul (2007), Johnstone and Lu (2009),

Shen, Shen, Zhu, and Marron (2016), and Johnstone and Paul (2018).

At this point, it should also be noted that, in an interesting and thought-provoking

recent paper, Bai and Ng (2021) provide results which show that factors can still be

estimated consistently in certain situations where the factor loadings are weaker than

that implied by the conventional pervasiveness assumption, but that in such cases the

rate of convergence is slower and additional assumptions are needed. To understand

the relationship between their results and our setup here, note that a key condition for

the consistency result given in their paper, when expressed in terms of our setup and

notation here, is the assumption that  (1) → 0. When violation of the factor

pervasiveness condition is more severe than that characterized by this rate condition,

i.e., if (1)→ 1 for some positive constant 1 or, even worse, if  (1)→∞;
then the latent factors will be estimated inconsistently unless there is some method

which can correctly identify the relevant variables and use only these variables to

estimate the factors. Indeed, in an Online Appendix which accompanies this paper,

we give a result which shows that if we were to pre-screen the variables using the

3The reason why we refer to the result given in Chao and Swanson (2022a) as a severe form of

inconsistency in factor estimation is because inconsistency of this type will preclude the consistent

estimation of the conditional mean function of a factor-augmented forecast equation. This is different

from the case where the factors may be estimated consistently up to a non-zero scalar multiplication

or, more generally, up to an invertible matrix transformation. In the latter case, consistent estimation

of the conditional mean function of a factor-augmented forecast equation can still be attained.
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variable selection method proposed below; then, consistent factor estimation can be

achieved even if the rate condition  (1) → 0 is not satisfied. Questions about

the severity with which the conventional factor pervasiveness assumption may be vi-

olated must ultimately be answered on a case-by-case basis as the answers depend on

the dataset used for a particular study. On this front, various authors have already

documented cases where the empirical evidence suggests that the underlying factors

may be quite weak, so that the rate condition given in Bai and Ng (2021) may not

be appropriate. For example, see Jagannathan and Wang (1998), Kan and Zhang

(1999), Harding (2008), Kleibergen (2009), Onatski (2012), Bryzgalova (2016), Burn-

side (2016), Gospodinov, Kan, and Robotti (2017), Anatolyev and Mikusheva (2021),

and Freyaldenhoven (2021a,b). In such cases, it is of interest to explore the possibil-

ity that perhaps the weakness in the loadings is not uniform across all variables, but

rather is due to the fact that only a fraction of the  variables loads significantly

on the underlying factors. Furthermore, even if the empirical situation of interest is

one where, strictly speaking, the condition  (1) → 0 does hold, it may still be

beneficial in some such instances to do variable pre-screening. This is particularly

true in situations where the condition  (1) → 0 is “barely” satisfied, in which

case one would expect to pay a rather hefty finite sample price for not pruning out

variables that do not load significantly on the underlying factors, since these variables

will add unwanted noise to the estimation process. For all these reasons, we believe

there is a clear need to develop methods that will enable empirical researchers to

pre-screen the components of  so that variables which are informative and helpful

to the estimation process can be properly identified.

To provide a variable selection procedure with provable guarantees, we must first

specify a number of conditions on the FAVAR model defined above.

Assumption 2-1: Suppose that:

det
©
(+) −1 − · · ·−


ª
= 0 implies that ||  1. (11)

Assumption 2-2: Let  satisfy the following set of conditions: (a) {} is an
independent sequence of random vectors with  [] = 0 ∀; (b) there exists a positive
constant  such that sup kk62 ≤   ∞; and (c)  admits a density  such
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that, for some positive constant   ∞, sup
Z
| ( − )−  ()|  ≤  kk,

whenever kk ≤  for some constant   0.

Assumption 2-3: Let  be the 
 element of the error vector  in expression

(6), and we assume that it satisfies the following conditions: (a)  [] = 0 for

all  and ; (b) there exists a positive constant  such that sup ||7 ≤  

∞, and there exists a constant   0 such that inf
£
2
¤ ≥ ; and (c) de-

fine F 
−∞ =  ( −2 −1 ), F∞+ =  (+ ++1 ++2 ), and

 () = sup
£
sup

©¯̄

¡
|F 

−∞
¢−  ()

¯̄
:  ∈ F∞+

ª¤
. Assume that there ex-

ist constants 1  0 and 2  0 such that

 () ≤ 1 exp {−2}  for all .

Assumption 2-4:  and  are independent, for all   and .

Assumption 2-5: There exists a positive constant  such that sup∈ kk2 ≤
 ∞ and kk2 ≤  ∞, where  = (0  0 )0.
Assumption 2-6: Let  be as defined in expression (5) above, and let the modulus

of the eigenvalues of the matrix (+) − be sorted so that:¯̄̄
(1)

¡
(+) −

¢¯̄̄ ≥ ¯̄̄(2) ¡(+) −
¢¯̄̄ ≥ · · · ≥ ¯̄̄((+)) ¡(+) −

¢¯̄̄
= min.

Suppose that there is a constant   0 such that

min
¡
(+) −

¢ ≥ min (12)

In addition, there exists a positive constant  ∞ such that, for all positive integer

,

max
¡

¢ ≤ max

©¯̄
max

¡

¢¯̄

¯̄
min

¡

¢¯̄ª

 (13)

Remark 2.1:

(a) Note that Assumption 2-1 is the stability condition that one typically assumes for

a stationary VAR process. One difference is that we allow for possible heterogeneity

in the distribution of  across time, so that our FAVAR process is not necessarily

a strictly stationary process. Under Assumption 2-1, there exists a vector moving

average representation for the FAVAR process.
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(b) It is well known that det
©
(+) −

ª
= det

©
(+) −1 − · · ·−


ª


where  is the coefficient matrix of the companion form given in expression (5).

See, for example, page 16 of Lütkepohl (2005). It follows that Assumption 2-1 is

equivalent to the condition that

det
©
(+) −

ª
= 0 implies that ||  1 (14)

In addition, Assumption 2-1 is also, of course, equivalent to the assumption that all

eigenvalues of  have modulus less than 1.

(c) Assumption 2-6 imposes a condition whereby the extreme singular values of the

matrices  and (+) − have bounds that depend on the extreme eigenvalues of

these matrices. More primitive conditions for such a relationship between the singular

values and the eigenvalues of a (not necessarily symmetric) matrix have been studied

in the linear algebra literature. In fact, an easy extension of a well-known result by

Ruhe (1975) yields the following lemma4:

Lemma 1: Let  be an × square matrix with (ordered) singular values given by:

(1) () ≥ (2) () ≥ · · · ≥ () () ≥ 0.

Suppose that  is diagonalizable, i.e.,  = Λ−1 where Λ is diagonal matrix whose

diagonal elements are the eigenvalues of . Let the modulus of these eigenvalues be

ordered as follows: ¯̄̄
(1) ()

¯̄̄
≥
¯̄̄
(2) ()

¯̄̄
≥ · · · ≥

¯̄̄
() ()

¯̄̄
.

Then, for any  ∈ {1  } and for any positive integer , we have that:

 ()
−1
¯̄̄
()

¡

¢¯̄̄ ≤ ()

¡

¢ ≤  ()

¯̄̄
()

¡

¢¯̄̄

4We do not give a proof of Lemma 1 in this paper because its proof follows from a straightforward

extension of the proof of Theorem 1 of Ruhe (1975) and because this lemma is not central to our

paper and we only state it here in order to provide a motivation for Assumption 2-6. An explicit

proof of this lemma is given in the Technical Appendix of an earlier version of this paper, Chao and

Swanson (2022b). See, in particular, Lemma C-9 and its proof in Appendix C of Chao and Swanson

(2022b).
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where  () = (1) ()(1) (
−1).

Note that in the special case where the matrices  and (+)− are diagonalizable,
the inequalities given in expressions (12) and (13) are a direct consequence of this

lemma. On the other hand, Assumption 2-6 takes into account other situations where

expressions (12) and (13) are valid even though the matrices  and (+) −  are

not diagonalizable.

(d) Note that Assumptions 2-1, 2-2, and 2-6 together imply that the process {}
generated by the FAVAR model given in expression (1) is a -mixing process with

-mixing coefficient satisfying:

 () ≤ 1 exp {−2} 

for some positive constants 1 and 2, with

 () = sup
£
sup

©¯̄

¡
|A

−∞
¢−  ()

¯̄
:  ∈ A∞+

ª¤
, and with

A
−∞ =  (−2−1) and A∞+ =  (+++1++2 )

5. Note,

in addition, that Assumption 2-2 (c) rules out situations such as that given in the

famous counterexample presented by Andrews (1984) which shows that a first-order

autoregression with errors having a discrete Bernoulli distribution is not -mixing,

even if it satisfies the stability condition. Conditions similar to Assumption 2-2(c)

have also appeared in previous papers, such as Gorodetskii (1977) and Pham and

Tran (1985), which seek to provide sufficient conditions for establishing the  or 

mixing properties of linear time series processes.

Our variable selection procedure is based on a self-normalized statistic and makes

use of some pathbreaking moderate deviation results for weakly dependent processes

recently obtained by Chen, Shao, Wu, and Xu (2016). An advantage of using a self-

normalized statistic is that doing so allows us to impose much weaker moment condi-

tions, even when  is much larger than  . In particular, as can be seen from Assump-

tions 2-2 and 2-3 above, we only make moment conditions that are of a polynomial

order on the errors processes {} and {}. Such conditions are substantially weaker
than assumption of Gaussianity or of sub-exponential tail behavior which has been

5This can be shown by applying Theorem 2.1 of Pham and Tran (1985). A proof of this result is

also given in the Technical Appendix of an earlier version of this paper, Chao and Swanson (2022b).

See, in particular, Lemma C-11 and its proof in Appendix C of Chao and Swanson (2022b).
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made in papers studying high-dimensional factor models and/or high-dimensional

covariance matrices, without employing statistics that are self-normalized6.

To accommodate data dependence, we consider self-nomalized statistics that are

constructed from observations which are first split into blocks in a manner similar to

the kind of construction one would employ in implementing a block bootstrap or in

proving a central limit theorem using the blocking technique. Two such statistics are

proposed in this paper. The first of these statistics has the form of an ∞ norm and

is given by:

max
1≤≤

| | = max
1≤≤

¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄  (15)

where

 =

X
=1

(−1)+1+−1X
=(−1)+

+1 and (16)

  =

X
=1

⎡⎣(−1)+1+−1X
=(−1)+

+1

⎤⎦2 . (17)

Here,  denotes the 
 component of  , +1 denotes the 

 component of +1,

 1 = b1
0 c, and  2 = b2

0 c, where 1  1 ≥ 2  0,  =  1 +  2,  = b0c, and
0 =  − +1. Note that the statistic given in expression (15) can be interpreted as

the maximum of the (self-normalized) sample covariances between the  component

of  and the components of +1. Our second statistic has the form of a pseudo-1

norm and is given by:

X
=1

 | | =
X

=1



¯̄̄̄
¯̄ q

 

¯̄̄̄
¯̄ 

where  and   are as defined in expressions (16) and (17) above and where

{ :  = 1  } denotes pre-specified weights, such that  ≥ 0 for every  ∈
{1  } and

X

=1
 = 1. Both of these statistics employ a blocking scheme

similar to that proposed in Chen, Shao, Wu, and Xu (2016), where, in order to keep

6See, for example, Bickel and Levina (2008) and Fan, Liao, and Mincheva (2011, 2013).
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the effects of dependence under control, the construction of these statistics is based

only on observations in every other block. To see this, note that if we write out the

“numerator” term  in greater detail, we have that:

 =

1+−1X
=

+1 +

+1+−1X
=+

+1

+

2+1+−1X
=2+

+1 + · · ·+
(−1)+1+−1X
=(−1)+

+1 (18)

Comparing the first term and the second terms on the right-hand side of expression

(18), we see that the observations +1, for  =  1+    + − 1, have not been
included in the construction of the sum. Similar observations hold when comparing

the second and the third terms, and so on.

It should also be pointed out that although we make use of some of their fun-

damental results on moderate deviation, both the model studied in our paper and

the objective of our paper are very different from that of Chen, Shao, Wu, and Xu

(2016). Whereas Chen, Shao, Wu, and Xu (2016) focus their analysis on problems

of testing and inference for the mean of a scalar weakly dependent time series using

self-normalized Student-type test statistics, our paper applies the self-normalization

approach to a variable selection problem in a FAVAR setting. Indeed, the problem

which we study here is in some sense more akin to a model selection problem rather

than a multiple hypothesis testing problem. In order to consistently estimate the

factors (at least up to an invertible matrix transformation), we need to develop a

variable selection procedure whereby both the probability of a false positive and the

probability of a false negative converge to zero as 1, 2,  →∞7. This is different

from the typical multiple hypothesis testing approach whereby one tries to control

the familywise error rate (or, alternatively, the false discovery rate), so that it is no

greater than 005 say, but does not try to ensure that this probability goes to zero

as the sample size grows.

To determine whether the  component of  is a relevant variable for the purpose

7Here, a false positive refers to mis-classifying a variable,  as a relevant variable for the purpose

of factor estimation when its factor loading 0 = 0, whereas a false negative refers to the opposite
case, where 0 6= 0 but the variable  is mistakenly classified as irrelevant.
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of factor estimation, we propose the following procedure. Define  ∈ b to indicate

that the procedure has classified  to be a relevant variable for the purpose of factor

estimation. Similarly, define  ∈ b to indicate that the procedure has classified 

to be an irrelevant variable. Now, let S+ denote either the statistic max1≤≤ | |
or the statistic

X

=1
 | |. Our variable selection procedure is based on the

decision rule:

 ∈
( b if S+ ≥ Φ−1

¡
1− 

2

¢
b if S+  Φ−1

¡
1− 

2

¢  (19)

where Φ−1 (·) denotes the quantile function or the inverse of the cumulative distri-
bution function of the standard normal random variable, and where  is a tuning

parameter which may depend on  . Some conditions on  will be given in Assump-

tion 2-10 below.

Remark 2.2:

(a) To understand why using the quantile function of the standard normal as the

threshold function for our procedure is a natural choice, note first that, by a slight

modification of the arguments given in the proof of Lemma A38, we can show that,

as  →∞
 (| | ≥ ) = 2 [1−Φ ()] (1 +  (1))  (20)

which holds for all  and  and for all  such that

0 ≤  ≤ 0min
©
 (1−1)6 ( )  22

ª
, where  ( ) denotes a slowly varying func-

tion such that  ( ) → ∞ as  → ∞. In view of expression (20), we can interpret
moderate deviation as providing an asymptotic approximation of the (two-sided) tail

behavior of the statistic,   based on the tails of the standard normal distribution.

Now, suppose initially that we wish simply to control the probability of a Type I error

for testing the null hypothesis 0 :  = 0 (i.e., the 
 variable does not load on the

underlying factors) at some fixed significance level . Then, expression (20) suggests

that a natural way to do this is to set  = Φ−1 (1− 2). This is because, given that

the quantile function Φ−1 (·) is, by definition, the inverse function of the cdf Φ (·), we
have that:


¡| | ≥ Φ−1 (1− 2)

¢ ≤ 2 £1−Φ
¡
Φ−1 (1− 2)

¢¤
(1 +  (1)) =  (1 +  (1)) 

8The statement and proof of Lemma A3 are provided below in the Appendix to this paper.
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so that the probability of a Type I error is controlled at the desired level  asymp-

totically. Note also that an advantage of moderate deviation theory is that it gives

a characterization of the relative approximation error, as opposed to the absolute

approximation error. As a result, the approximation given is useful and meaningful

even when  is very small, which is of importance to us since we are interested in

situations where we might want to let  go to zero, as sample size approaches infinity.

We give the above example to provide some intuition concerning the form of

the threshold function that we have specified. The variable selection problem that

we actually consider is more complicated than what is illustrated by this example,

since we need to control the probability of a Type I error (or of a false positive) not

just for a single test involving the  variable but for all variables simultaneously.

Moreover, as noted previously, we also need the probability of a false positive to go

to zero asymptotically, if we want to be able to estimate the factors consistently, even

up to an invertible matrix transformation. We show in Theorem 1 below that these

objectives can all be accomplished using the threshold function specified in expression

(19), since a threshold function of this form makes it easy for us to properly control

the probability of a false positive in large samples.

(b) The threshold function used here is reminiscent of the one employed in a cele-

brated paper by Belloni, Chen, Chernozhukov, and Hansen (2012). More specifically,

Belloni, Chen, Chernozhukov, and Hansen (2012) use a similar threshold function to

help set the penalty level for Lasso estimation of the first-stage equation of an IV

regression model assuming . data. In spite of the similarity in the form of

the threshold function, the problem studied in that paper is very different from the

one which we analyze here. In consequence, the conditions we specify for setting the

tuning parameter  will also be quite different from what they recommend in their

paper.

Under appropriate conditions, the variable selection procedure described above

can be shown to be consistent, in the sense that both the probability of a false positive,

i.e. 
³
 ∈ b| ∈ 

´
, and the probability of a false negative, i.e., 

³
 ∈ b| ∈ 

´
,

approach zero as 1 2  →∞. To show this result, we must first state a number
of additional assumptions.

Assumption 2-7: There exists a positive constant  such that for all  ≥ 1 and
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 1 ≥ 1:

min
1≤≤

min
∈

min
∈{1}



⎧⎨⎩
⎡⎣ 1√

1

(−1)+1+−1X
=(−1)+

+1

⎤⎦2⎫⎬⎭ ≥ 

where, as defined earlier,  1 = b1
0 c,  2 = b2

0 c for 1  1 ≥ 2  0 and  =j
0

1+2

k
, and 0 =  − + 1.

Assumption 2-8: Let  ∈  = { ∈ {1  } :  6= 0}. Suppose that there
exists a positive constant,  such that, for all 1 2and  sufficiently large:

min
1≤≤

min
∈

¯̄̄̄


 1

¯̄̄̄

= min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
≥   0

where  = 0 ,   = 0  , and   = 0  Here,  is a  × 1
elementary vector whose  component is 1 and all other components are 0.

Assumption 2-9: Suppose that, as 1, 2, and  → ∞, the following rate condi-
tions hold:

(a)
√
lnmin

©
 (1−1)6 22

ª→ 0, where 1  1 ≥ 2  0 and  = 1 +2.

(b) 1
31 → 0 where 1 is as defined in part (a) above.

Assumption 2-10: Let  satisfy the following two conditions: (a)  → 0 as

1 2 → ∞, and (b) there exists some constant   0 such that  ≥ 1 for

all 1 2 sufficiently large.

Remark 2.3:

(a) Assumption 2-9 imposes the condition that there exists a positive constant, 

such that, for all 1 2 and  sufficiently large:

min
1≤≤

min
∈

¯̄̄̄
¯̄1

X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
≥   0.
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This is a fairly mild condition which allows us to differentiate the alternative hy-

pothesis,  ∈  from the null hypothesis,  ∈  since if  ∈ , then it is clear

that:



 1
=
1



X
=1

1

 1

(−1)+1+−1X
=(−1)+

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª
= 0

given that  = 0. Note that this assumption does rule out certain specialized situa-

tions, such as the case when  = 0,   = 0, and   = 0 for some  ∈ {1  }.
However, we do not consider such cases to be of much practical interest since, for ex-

ample, if  = 0,   = 0, and   = 0 for some  then expression (2) above

implies that the  component of +1 will have the representation

+1 =  +  0
  +  0

  + +1 = +1

so that, in this case, +1 depends neither on   =
¡
 0
  

0
−1  

0
−+1

¢0
nor on

  =
¡
 0
  

0
−1  

0
−+1

¢
. This is, of course, an unrealistic model for +1 since it

would not even be a dependent process in this case.

(b) Bai and Ng (2008) address the important issue that one should choose the pre-

dictor variables  based on their predictability for +1. While we agree with their

viewpoint overall, it is worth stressing that for the FAVAR model considered here,

whether  helps to predict some future values of  (say, +) depends on two things:

(i) whether  loads significantly on the underlying factors   (i.e., whether  6= 0 or
not) and (ii) whether at least some components of   are helpful for predicting certain

components of +. The variable selection procedure which we propose here focuses

on the first issue but not the second. This is because, in our view, it is important to

first obtain good factor estimates with certain desirable asymptotic properties before

trying to assess which factor may or may not be useful for predicting +. Note that,

for a given , the precision with which   is estimated depends primarily on the size of

the cross-sectional dimension, and the exclusion of any relevant  (with  6= 0) will
have the negative effect of reducing the sample size used for this estimation. More

importantly, as we will discuss in greater details in the Online Appendix9, if we try to

9See part (a) of Remark OA1.2 of the Online Appendix.
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do too much at the variable selection stage and end up excluding a significant number

of (predictor) variables that load strongly on at least some of the factors; then, this

can lead to the factor vector   being inconsistently estimated. While the question

of predictability is certainly an important one, the answer we get for this question

can, in some situations, be at odds with the objective of achieving consistent factor

estimation. This is because while 0 = 0 does imply that · will not be helpful for

predicting future values of  , the reverse is not necessarily true. On the other hand,

to ensure consistent estimation of the factors, we would like to use every data point

 for which 
0
 6= 0. Furthermore, if it is true that some of the factors load primarily

on variables which are uninformative predictors for certain components of +, then

that will show up in the form of certain parameter restrictions on the forecasting

equation, in which case the best way to address this problem is to perform hypothe-

sis testing or model selection on the forecasting equation itself, after the unobserved

factors have first been properly estimated.

The following two theorems give our main theoretical results on the variable se-

lection procedure described above.

Theorem 1: Let  = { ∈ {1  } :  = 0}. Suppose that Assumptions 2-1,
2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-9 (a) and 2-10 hold. Let Φ−1 (·) denote the inverse
of the cumulative distribution function of the standard normal random variable, or,

alternatively, the quantile function of the standard normal distribution. Then the

following statements are true:

(a) Let { :  = 1  } be pre-specified weights such that  ≥ 0 for every  ∈
{1  } and

X

=1
 = 1, then:



Ã
max
∈

X
=1

 | | ≥ Φ−1
³
1− 

2

´!
= 

µ
2



¶
=  (1) ,

where  = 1 +2.

(b)



µ
max
∈

max
1≤≤

| | ≥ Φ−1
³
1− 

2

´¶
= 

µ
2



¶
=  (1) .

Theorem 2: Let  = { ∈ {1  } :  6= 0}. Suppose that Assumptions 2-1,
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2-2, 2-3, 2-5, 2-6, 2-8, 2-9, and 2-10 hold. Then the following statements are true.

(a) Let { :  = 1  } be pre-specified weights such that  ≥ 0 for every  ∈
{1  } and

X

=1
 = 1, then:



Ã
min
∈

X
=1

 | | ≥ Φ−1
³
1− 

2

´!
→ 1.

(b)



µ
min
∈

max
1≤≤

| | ≥ Φ−1
³
1− 

2

´¶
→ 1.

Remark 2.4:

(a) Theorem 1 shows that, for both of our statistics, the probability of a false positive

approaches zero uniformly over all  ∈  as 1 2  →∞. The results of Theorem
2 further imply that, for both of our statistics, the probability of a false negative

also approaches zero, uniformly over all  ∈  as 1 2  → ∞. Together, these
two theorems show that our variable selection procedure is (completely) consistent

in the sense that the probability of committing a misclassification error vanishes as

1 2  →∞.
(b) Note that, as a by-product, our variable selection procedure provides us with an

estimate b1 of the unobserved quantity 1, and we show in Lemma OA-2 part (a)

of the Online Appendix that b1 is a consistent estimator of 1, in the sense thatb11
→ 1. This estimate will be helpful to empirical researchers wishing to assess

the degree of factor pervasiveness in the particular empirical application of interest

to them. Moreover, as previously discussed, the rate condition given in Bai and Ng

(2021) for consistent factor estimation (i.e., Assumption A4 in their paper) can be

restated in our setup as the assumption that  (1)→ 0; but 1 is not observed

so any assessment of the appropriateness of this condition for a given application will

require an estimate of 1. Viewed from this perspective, what we have proposed here

actually builds on the work of Bai and Ng (2021), as our procedure helps to highlight

the importance of the rate condition they have introduced and provides additional

information that is useful to empirical researchers about the degree of pervasiveness

of the underlying factors.
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(c) Note, in addition, that knowledge of the number of factors is not needed to

implement our variable selection procedure. Hence, in the case where the number

of factors needs to be determined empirically, an applied researcher could first use

our procedure to properly select the relevant variables and then apply an information

criterion such as that proposed in Bai and Ng (2002) to estimate the number of

factors. We plan to write a sequel to the current paper showing that doing so will

lead to consistent estimation of the number of factors.

3 Monte Carlo Study

In this section, we report some simulation results on the finite sample performance

of our variable selection procedure. The model used in the Monte Carlo study is the

following tri-variate FAVAR(1) process:

 = +−1 +  (21)

 =  + , (22)

where

 =

⎛⎜⎜⎝
1

2



⎞⎟⎟⎠ ,  =
⎛⎜⎜⎝
2

1

2

⎞⎟⎟⎠ ,  =
⎛⎜⎜⎝
09 03 05

0 07 01

0 06 07

⎞⎟⎟⎠ , and  =

⎛⎝ 1

0
2×1

⎞⎠ 

with 1 denoting an 1 × 1 vector of ones. We consider different configurations of
 , 1, and  as given in the tables below. For the error process in equation (21),

we take {} ≡  (0Σ), where:

Σ =

⎛⎜⎜⎝
13 099 0641

099 081 0009

0641 0009 585

⎞⎟⎟⎠ .
The error process, {}  in equation (22) is allowed to exhibit both temporal and
cross-sectional dependence and also conditional heteroskedasticity. More specifically,

we let  = 08−1 +  , and following the approach for modeling cross-sectional
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Table 1: S+ = max1≤≤ | |
 = 100 1 = 50  = 100  = 5

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 2 FPR 0.01690 0.00960 0.00464 0.00218 0.00096 0.00034

FNR 0.00218 0.00548 0.01328 0.03204 0.07274 0.15890

1 = 3 FPR 0.02078 0.01156 0.00632 0.00288 0.00128 0.00048

FNR 0.00126 0.00350 0.00866 0.02234 0.05374 0.12050

1 = 4 FPR 0.02544 0.01468 0.00826 0.00408 0.00194 0.00070

FNR 0.00090 0.00228 0.00582 0.01582 0.04010 0.09362

1 = 5 FPR 0.03208 0.01980 0.01100 0.00584 0.00288 0.00122

FNR 0.00052 0.00164 0.00430 0.01140 0.02988 0.07190

Results based on 1000 simulations.

dependence given in the Monte Carlo design of Stock and Watson (2002a), we specify:

 = (1 + 2)  + +1 + −1, and set  = 1. In addition,  =  with

{} ≡  (0 1) independent of {}, and  follows a GARCH(1,1) process

given by: 2 = 1 + 09
2
−1 + 005

2
−1. To study the effects of varying the tuning

parameter, we let  = −, and consider six different values of , i.e.,  = 02, 03,

04, 05, 06, and 07. We also attempt to shed light on the effects of forming blocks

of different sizes on the performance of our procedure. To do this, for  = 100, we

set  1 = 2, 3, 4, and 5; for  = 200, we set  1 = 5, 6, 8, and 10; and for  = 600,

we set  1 = 6, 8, 10, and 12. In addition, we present results for both statistics, i.e.

max1≤≤ | | and
X

=1
 | |. Note that  = 2 in our setup; and, for the

statistic
X2

=1
 | |, we set 1 = 2 = 12.

The results of our Monte Carlo study are reported in Tables 1-8. In these tables,

we let FPR denote the “False Positive Rate” or the “Type I” error rate, i.e., the

proportion of cases where an irrelevant variable , with associated coefficient  = 0,

is erroneously selected as a relevant variable. We let FNR denote the “False Negative

Rate” or the “Type II” error rate, i.e., the proportion of cases where a relevant

variable is erroneously identified as being irrelevant.

Looking across each row of the tables, note that FPRs decrease when moving

from left to right, whereas FNRs increase. This is not surprising, because moving

from  = −02 to  = −07 for a given  results in smaller values of the tuning

parameter , and the specified threshold Φ−1
¡
1− 

2

¢
thus becomes larger. Overall,

our results indicate that choosing  = − with  = 02, 03, or 04 leads to very
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Table 2: S+ =
X

=1
 | |

 = 100 1 = 50  = 100  = 5

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 2 FPR 0.01460 0.00810 0.00382 0.00174 0.00076 0.00028

FNR 0.00284 0.00700 0.01674 0.04058 0.09412 0.19952

1 = 3 FPR 0.01810 0.00996 0.00526 0.00226 0.00092 0.00032

FNR 0.00172 0.00450 0.01100 0.02860 0.06942 0.15378

1 = 4 FPR 0.02224 0.01276 0.00702 0.00338 0.00162 0.00044

FNR 0.00118 0.00310 0.00828 0.02082 0.05194 0.12132

1 = 5 FPR 0.02796 0.01714 0.00924 0.00502 0.00232 0.00080

FNR 0.00084 0.00222 0.00574 0.01508 0.03948 0.09456

Results based on 1000 simulations.

Table 3: S+ = max1≤≤ | |
 = 200 1 = 100  = 100  = 5

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 2 FPR 0.00578 0.00239 0.00085 0.00020 0.00005 0.00000

FNR 0.01074 0.02997 0.07812 0.18957 0.39889 0.68275

1 = 3 FPR 0.00775 0.00324 0.00126 0.00038 0.00006 0.00001

FNR 0.00724 0.02088 0.05676 0.14547 0.32908 0.60780

1 = 4 FPR 0.00981 0.00457 0.00170 0.00057 0.00014 0.00002

FNR 0.00517 0.01494 0.04224 0.11350 0.27048 0.53471

1 = 5 FPR 0.01334 0.00609 0.00266 0.00094 0.00023 0.00004

FNR 0.00362 0.01133 0.03244 0.08901 0.22162 0.46424

Results based on 1000 simulations.

Table 4: S+ =
X

=1
 | |

 = 200 1 = 100  = 100  = 5

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 2 FPR 0.00486 0.00196 0.00064 0.00014 0.00002 0.00000

FNR 0.01415 0.03813 0.09966 0.23933 0.48356 0.77511

1 = 3 FPR 0.00657 0.00268 0.00098 0.00024 0.00005 0.00001

FNR 0.00921 0.02714 0.07372 0.18714 0.40894 0.70884

1 = 4 FPR 0.00841 0.00378 0.00133 0.00043 0.00004 0.00002

FNR 0.00661 0.01975 0.05564 0.14734 0.34279 0.63906

1 = 5 FPR 0.01124 0.00509 0.00213 0.00069 0.00017 0.00002

FNR 0.00477 0.01475 0.04258 0.11741 0.28620 0.56845

Results based on 1000 simulations.
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Table 5: S+ = max1≤≤ | |
 = 400 1 = 200  = 200  = 10

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 5 FPR 0.00035 0.00009 0.00003 0.00001 0.00000 0.00000

FNR 0.00200 0.01116 0.05764 0.23070 0.61173 0.94453

1 = 6 FPR 0.00040 0.00010 2.5×10−5 5.0×10−6 0.00000 0.00000

FNR 0.00128 0.00740 0.04154 0.18482 0.54582 0.92176

1 = 8 FPR 0.00054 0.00015 0.00005 0.00001 0.00000 0.00000

FNR 0.00054 0.00369 0.02191 0.11627 0.41851 0.85806

1 = 10 FPR 0.00093 0.00031 0.00008 1.5×10−5 5.0×10−6 0.00000

FNR 0.00026 0.00194 0.01218 0.07226 0.30765 0.76833

Results based on 1000 simulations.

Table 6: S+ =
X

=1
 | |

 = 400 1 = 200  = 200  = 10

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 5 FPR 0.00030 8.5×10−5 2.5×10−5 5.0×10−6 0.00000 0.00000

FNR 0.00231 0.01355 0.06894 0.26683 0.67266 0.96749

1 = 6 FPR 0.00034 9.5×10−5 0.00002 5.0×10−6 0.00000 0.00000

FNR 0.00148 0.00901 0.05058 0.21713 0.60968 0.95287

1 = 8 FPR 0.00046 0.00013 0.00004 0.00001 0.00000 0.00000

FNR 0.00068 0.00448 0.02712 0.14045 0.48133 0.90649

1 = 10 FPR 0.00079 0.00026 7.5×10−5 0.00001 5.0×10−6 0.00000

FNR 0.00034 0.00246 0.01535 0.08934 0.36382 0.83510

Results based on 1000 simulations.

Table 7: S+ = max1≤≤ | |
 = 1000 1 = 500  = 600  = 12

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 6 FPR 0.00044 0.00017 7.4×10−5 2.8×10−5 0.00001 2.0×10−6
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 8 FPR 0.00054 0.00023 9.6×10−5 4.2×10−5 1.6×10−5 8.0×10−6
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 10 FPR 0.00080 0.00038 0.00018 0.00007 3.6×10−5 2.0×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 12 FPR 0.00127 0.00068 0.00031 0.00015 6.8×10−5 3.0×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Results based on 1000 simulations.
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Table 8: S+ =
X

=1
 | |

 = 1000 1 = 500  = 600  = 12

 = −02  = −03  = −04  = −05  = −06  = −07

1 = 6 FPR 0.00038 0.00015 0.00006 2.6×10−5 0.00001 2.0×10−6
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 8 FPR 0.00049 0.00020 8.2×10−5 3.4×10−5 1.4×10−5 6.0×10−6
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 10 FPR 0.00072 0.00033 0.00016 0.00006 3.2×10−5 1.8×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

1 = 12 FPR 0.00115 0.00062 0.00028 0.00014 6.0×10−5 2.8×10−5
FNR 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Results based on 1000 simulations.

good performance, since with these choices, neither FPR nor FNR exceeds 01 in any

of the cases studied here. In fact, both are smaller than 005 in a vast majority of the

cases. In contrast, choosing  = 06 or 07 can lead to high FNRs, as these values can

set our threshold at such a high level that our procedure ends up having very little

power. A particularly attractive choice of the tuning parameter is to take  = −04.

As discussed in part (b) of Remark OA1.1 of the Online Appendix, this choice of the

tuning parameter allows the rate condition given in Assumption OA-4 part (c) of the

Online Appendix to be satisfied as long as 1 →∞, so that we do not need to make
a further assumption on the rate at which 1 grows. Assumption OA-4, in turn, is

a condition that is needed to ensure consistent factor estimation using the selected

variables. See Theorem 3 and Remark OA1.1(b) of the Online Appendix for further

discussion.

Looking down the columns of each table, note that FPR tends to increase as  1

increases, whereas FNR tends to decrease as  1 increases. As an explanation for this

result, note first that the smaller is  1 relative to  , the larger is  2 (since  =  1+ 2),

and thus the larger is the number of observations removed when constructing the

self-normalized block sums. Intuitively, this can lead to better accommodation of

the effects of dependence and better moderate deviation approximations under the

null hypothesis, resulting in a lower FPR. However, removal of a larger number of

observations can also lead to a reduction in power, when the alternative hypothesis

is correct, so that a negative consequence of having a smaller  1 relative to  is that

FNR will tend to be higher in this case. The opposite, of course, occurs when we try
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to specify a larger  1 relative to  .

Our results also show that when the sample sizes are large enough such as the

cases presented in Tables 7 and 8, where  = 600 and  = 1000, then both FPR

and FNR are small for all of the cases that we consider. This is in accord with the

results of our theoretical analysis, which shows that our variable selection procedure

is completely consistent in the sense that both the probability of a false positive and

the probability of a false negative approach zero, as the sample sizes go to infinity.

A final observation based on these Monte Carlo results is that there does not seem

to be a great deal of difference in the performance of the statistic max1≤≤ | |
vis-à-vis the statistic

X

=1
 | |. Overall, the statistic max1≤≤ | | seems

to be a bit better at controlling FNR, whereas the statistic
X

=1
 | | seems a

bit better at controlling FPR.

4 Conclusion

In this paper, we propose a new variable selection procedure based on two alternative

self-normalized score statistics and provide asymptotic analyses showing that our

procedure, based on either of these statistics, correctly identify the set of variables

which load significantly on the underlying factors, with probability approaching one

as the sample sizes go to infinity. Our research is motivated by the observation

that inconsistency in factor estimation could result in high dimensional settings when

the conventional assumption of factor pervasiveness does not hold. Hence, in such

settings, it is particularly important to pre-screen the variables in terms of their

association with the underlying factors prior to estimation. We have also conducted,

in this paper, a small Monte Carlo study which yields encouraging evidence about the

finite sample properties of our variable selection procedure. In addition, in an Online

Appendix, Chao and Swanson (2022c) which accompanies this paper, we prove that

consistent estimation of the factors, up to an invertible matrix transformation, can be

achieved by estimating the factors using only those variables selected by our method,

and this is so even in situations where the standard pervasiveness assumption does

not hold. Moreover, in an earlier version of this paper, Chao and Swanson (2022a),

we have shown that, by plugging factors estimated in such a manner into the factor-
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augmented forecasting equation implied by the FAVAR model, the conditional mean

function of the forecasting equation can be consistently estimated, even for the case

of multi-step ahead forecasts. In sum, the collective body of results we have obtained

indicates that the variable selection methodology introduced here can be very useful

to empirical researchers as they engage in the important tasks of factor estimation and

the construction of point forecasts based on factor-augmented forecasting equations.
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5 Appendix: Proofs of Theorems

This appendix contains the proofs of Theorems 1 and 2, as well as that of three

supporting lemmas: Lemma A1, Lemma A2, and Lemma A3. The proofs of Theorems

1 and 2 are given first, followed by the statements and proofs of Lemmas A1-A3.

Proof of Theorem 1: To show part (a), first set  = Φ−1
¡
1− 

2

¢
, where  =

1 +2. Note that, under Assumption 2-10, we can easily show that
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Φ−1
¡
1− 

2

¢ ≤ p
2 (1 + )

√
ln , for all 1 2 sufficiently large.

10 By part (a)

of Assumption 2-9,
√
lnmin

©
 (1−1)6 22

ª → 0 as 1 2  → ∞; this, in
turn, implies that, for some positive constant 0, Φ

−1 ¡1− 

2

¢
satisfies the inequality

constraint 0 ≤ Φ−1
¡
1− 

2

¢ ≤ 0min
©
 (1−1)6 22

ª
for all 1 2  sufficiently

large, so that Φ−1
¡
1− 

2

¢
lies within the range of values of  for which the moderate

deviation inequality given in Lemma A3 holds. Thus, plugging Φ−1
¡
1− 

2

¢
into the

moderate deviation inequality (23) given in Lemma A3 below, we see that there exists

a positive constant  such that:


¡| | ≥ Φ−1

¡
1− 

2

¢¢
≤ 2 £1−Φ

¡
Φ−1

¡
1− 

2

¢¢¤n
1 +

£
1 + Φ−1

¡
1− 

2

¢¤3
−

1−1
2

o
= 2

£
1− ¡1− 

2

¢¤n
1 +

£
1 + Φ−1

¡
1− 

2

¢¤3
−

1−1
2

o
= 



n
1 +

£
1 + Φ−1

¡
1− 

2

¢¤3
−

1−1
2

o


for  ∈ {1  }, for  ∈  = { ∈ {1  } :  = 0}, and for all 1 2  suffi-

ciently large. Next, note that:



Ã
max∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!

≤ 

Ã[
∈

[
1≤≤

©| | ≥ Φ−1
¡
1− 

2

¢ª! Ã
since 0 ≤  ≤ 1 and

X
=1

 = 1

!

≤
X
∈

X
=1


¡| | ≥ Φ−1

¡
1− 

2

¢¢
(by union bound)

≤
X
∈

X
=1





n
1 +

£
1 + Φ−1

¡
1− 

2

¢¤3
−(1−1)

1
2

o
= 2



n
1 +

£
1 + Φ−1

¡
1− 

2

¢¤3
−(1−1)

1
2

o
Using the inequality Φ−1

¡
1− 

2

¢ ≤ p2 (1 + )
√
ln discussed above, we further

obtain, for all 1 2  sufficiently large:



Ã
max∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!≤2



n
1 + 

 (1−1)2
£
1 + Φ−1

¡
1− 

2

¢¤3o
≤2



n
1 + 22−

(1−1)
2 + 22

£
Φ−1

¡
1− 

2

¢¤3
−

(1−1)
2

o
10An explicit proof of this result is given in the Technical Appendix of an earlier version of this

paper, Chao and Swanson (2022b). In particular, this inequality is shown in part (b) of Lemma

C-16 in Appendix C of Chao and Swanson (2022b).
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Ã
by the inequality

¯̄̄̄
¯
X
=1



¯̄̄̄
¯


≤ 

X
=1

|| where  = −1 for  ≥ 1
!

≤2



½
1 + 4−

(1−1)
2 + 4

hp
2 (1 + )

√
ln

i3
−

(1−1)
2

¾
=2



½
1 + 4−

(1−1)
2 + 2

7
2 (1 + )

3
2
(ln)

3
2


1−1
2

¾


Finally, note that rate condition given in part (a) of Assumption 2-9

(i.e.,
√
lnmin

©
 (1−1)6 22

ª→ 0 as 1 2  →∞) implies that
(ln)

3
2 

1−1
2 → 0 as 1 2  →∞, from which it follows that:



Ã
max∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!
≤2



½
1 + 4−

(1−1)
2 + 2

7
2 (1 + )

3
2
(ln)

3
2


1−1
2

¾
= 2


[1 +  (1)] = 

¡
2



¢
=  (1).

Next, to show part (b), note that, by a similar argument as that given for part

(a) above, we have:


¡
max∈ max1≤≤ | | ≥ Φ−1

¡
1− 

2

¢¢
= 

Ã[
∈

[
1≤≤

©| | ≥ Φ−1
¡
1− 

2

¢ª!
≤ 2



½
1 + 4

 (1−1)2 +
2
7
2(1+)

3
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¾
= 2


[1 +  (1)] = 
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
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=  (1). ¤

Proof of Theorem 2: To show part (a), note that:


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min∈
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where =
X

=1

X2()

=1()
0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª
for

1 () = ( − 1)  +  and 2 () = 1 () +  1 − 1. Next, let
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X

=1

µX2()
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©
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ª¶2
, and
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we

see that, under Assumption 2-8, there exists a positive constant  such that for every

 ∈ {1  } and for all 1 2 and  sufficiently large:

min∈ { ( 21)}
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1
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X
=1

⎛⎝ 1
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0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª⎞⎠2

=min∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

 [0 +1]

⎞⎠2

≥ min∈

⎛⎝1


X
=1

1
1

2()X
=1()

 [0 +1]

⎞⎠2

(by Jensen’s inequality)

=min∈

¯̄̄̄
¯̄1 X

=1

1
1

2()X
=1()

©
0 [ ] + 0 [ 

0
]  + 0 [ 

0
] 

ª¯̄̄̄¯̄
2

≥ 2 0 (in light of Assumption 2-8) 

It follows that for all 1 2 and  sufficiently large:



Ã
min∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!

≥ 

Ã
min∈

X
=1



½¯̄̄̄
√
 

¯̄̄̄ h
1−

¯̄̄
−



¯̄̄i¾
≥ Φ−1

¡
1− 

2

¢!

= 

Ã
min∈

X
=1



½¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄ ¯̄̄̄ 
 (21)

 (21)+

  (21)−


 (21)

¯̄̄̄

×
h
1−

¯̄̄
−



¯̄̄io
≥ Φ−1

¡
1− 

2

¢´
= 

Ã
min∈

X
=1



½¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄ ¯̄̄̄
1

1+
√

 −√


√


¯̄̄̄
×
h
1−

¯̄̄
−



¯̄̄io
≥ Φ−1

¡
1− 

2

¢´
≥ 

Ã
min∈

X
=1



½¯̄̄̄√
( (1))
 (21)

¯̄̄̄
1

1+max∈

√ −√
√

×
h
1−max∈

¯̄̄
−



¯̄̄io
≥ Φ−1

¡
1− 

2

¢´
≥ 

Ã
min∈

X
=1



½¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄
1

1+max∈


| − |

×
h
1−max∈

¯̄̄
−



¯̄̄io
≥ Φ−1

¡
1− 

2

¢´
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³
making use of the inequality

¯̄√
−√

¯̄
≤
p
|− | for  ≥ 0 and  ≥ 0

´
= 

Ã
min∈

X
=1



½¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄
1−max∈|E |
1+max∈


|V |

¾
≥ Φ−1

¡
1− 

2

¢!
,

where E =
¡
 − 

¢
 and V =

¡
  − 

¢
 . By the re-

sult of part (a) of Lemma A2 (given below), there exists a sequence of positive numbers

{} such that, as  → ∞,  → 0 and  (max1≤≤max∈ |E | ≥  ) → 0. In

addition, by the result of part (b) of Lemma A2, there exists a sequence of positive

numbers {∗} such that, as  →∞, ∗ → 0 and  (max1≤≤max∈ |V | ≥ ∗ )→
0. Further define E = max1≤≤max∈ |E | andV = max1≤≤max∈ |V |;
and note that, for all 1 2, and  sufficiently large,



Ã
min∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!

≥ 

Ã
min∈

X
=1



½¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄
1−max∈|E |
1+max∈


|V |

¾
≥ Φ−1

¡
1− 

2

¢!

≥ 

Ã
1−max1≤≤max∈|E |
1+max1≤≤max∈


|V | min∈

X
=1



¯̄̄̄√
[ (1)]
 (21)

¯̄̄̄
≥ Φ−1

¡
1− 

2

¢!

= 

Ã
1−E
1+
√
V
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢!

≥ 

Ã(¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!

+

Ã(
1−E
1+
√
V
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E ≥  ∪V ≥ ∗
ª!

≥ 

Ã(¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!

+

Ã(
1−E
1+
√
V
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E ≥ 
ª!

= 

Ã(¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!
+ (1) 

where the last equality above follows from the fact that



Ã(
1−E
1+
√
V
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E ≥ 
ª!

≤ 
¡
E ≥ 

¢
=  (1)
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Moreover, making use of Assumption 2-8, the result given in Lemma A1, and the fact

that  = b0c ∼  1−1 , we see that, there exists positive constants  and  such

that:

min∈

X
=1



¯̄̄
√


¯̄̄
=min∈

X
=1



√
| (1)|
 (21)

≥√
X

=1



min∈ | (1)|
\

max∈  (21)

≥√
X

=1


√

=
√
 √


∼√∼

q
0

∼  (1−1)2 .

On the other hand, applying the inequality

Φ−1
¡
1− 

2

¢ ≤p2 (1 + )
√
ln ∼

√
ln11, we further deduce that,

as 1 2  →∞,

1

Φ−1
¡
1− 

2

¢ min
∈

X
=1



¯̄̄̄
√


¯̄̄̄
≥ √



r


2 (1 + ) ln
∼ \
r

 (1−1)

ln
→∞.

This is true because the condition
√
lnmin

©
 (1−1)6 22

ª→ 0 as 1 2  →
∞ (given in Assumption 2-9 part (a)) implies that ln (1−1) → 0 as 1 2  →
∞. Hence, there exists a natural number such that, for all 1 ≥2 ≥ , and

 ≥ , we have

¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢
so that:



Ã
min∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!

≥ 

Ã(¯̄̄̄
1−
1+
√

∗


¯̄̄̄
min∈

X
=1



¯̄̄
√


¯̄̄
≥ Φ−1

¡
1− 

2

¢) ∩ ©E  
ª ∩ ©V  ∗

ª!
+ (1)

= 
¡©
E  

ª ∩ ©V  ∗
ª¢
+ (1)

(for all 1 ≥2 ≥ and  ≥)

≥ 
¡
E  

¢
+

¡
V  ∗

¢−1 +  (1)Ã
using the inequality 

(
\
=1



)
≥

X
=1

 ()− (− 1)
!

= 1− 
¡
E ≥ 

¢
+1− 

¡
V ≥ ∗

¢−1 +  (1)

= 1− 
¡
E ≥ 

¢− ¡V ≥ ∗
¢
+ (1)

= 1 +  (1).

11As noted previously, an explicit proof of this result is given in the Technical Appendix of an

earlier version of this paper, Chao and Swanson (2022b). In particular, this inequality is shown in

part (b) of Lemma C-16 in Appendix C of Chao and Swanson (2022b).
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Next, to show part (b), note that, by applying the result in part (a), we have that:


¡
min∈max1≤≤ | | ≥ Φ−1

¡
1− 

2

¢¢
≥ 

Ã
min∈

X
=1

 | | ≥ Φ−1
¡
1− 

2

¢!
= 1 +  (1). ¤

Lemma A1: Let   and   be defined in expression (4), and define 1 () =

( − 1)  +  and 2 () = 1 () +  1 − 1. Under Assumptions 2-1, 2-2, 2-5, 2-6,
and 2-9(b); there exists a positive constant  such that:

max1≤≤ ∈

³

21

´
= max1≤≤ ∈

1


X
=1

⎛⎝ 1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

≤  ∞ for all 1 2  sufficiently large.

Proof of Lemma A1: To proceed, let max = max {|max ()|  |min ()|} and, for
 ∈ {1  }, let  denote a × 1 elementary vector whose  component is 1 and
all other components are 0. Now, note that:

max1≤≤ ∈ { ( 21)}

= max1≤≤ ∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

≤ max1≤≤ ∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

©
 [|0 |]

¯̄


¯̄
+ [|0 

0


0
  |]

+ [|0 
0


0
 |]})2

(by triangle and Jensen’s inequalities)

≤ max∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

½q
kk22

q
 k k22max1≤≤

¯̄


¯̄
+
p
0 [ 

0
] 

q
max1≤≤ 0  [ 

0
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≤ ¡max∈ kk22
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¾¶2


where the last inequality follows from the fact that, by making use of Assumption

2-6, it is easy to show that there exists a constant †  0 such thatq
max1≤≤ 0 

0
   ≤ k  k2

q
max1≤≤ 0 = k  k2 ≤ †max and,

similarly,
q
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0
  ≤ k k2 ≤ †max.

12 Hence,

max1≤≤max∈ { ( 21)}
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µ
k k22 +

∙q
 k k22 +

q
 k k22

¸
†max

¶2
≤  ∞,
for some positive constant  such that

 ≥ ¡max∈ kk22
¢
 k k22

µ
k k22 +

∙q
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q
 k k22

¸
†max

¶2
, where

such a constant exists because max∈ kk22 and k k22 are both bounded given
Assumption 2-5; because 0  max  1 given Assumption 2-1; and because, under

Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; one can easily show that there exists a

positive constant ∗ such that  k k22 ≤ ∗ and  k k22 ≤ ∗.13 ¤

Lemma A2: Suppose that Assumptions 2-1, 2-2, 2-3, 2-5, 2-6, and 2-8 hold and

suppose that 1 2  → ∞ such that 1
3
1 = 1 b1

0 c3 → 0. Then, the fol-

lowing statements are true: (a) max1≤≤ ∈

¯̄¡
 − 

¢
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¯̄ → 0 and (b)
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¢
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¯̄ → 0.

12Explicit proofs of these two inequalities are given in the Technical Appendix of an earlier version

of this paper, Chao and Swanson (2022b). In particular, these inequalities are shown in parts (a)

and (b) of Lemma C-7 in Appendix C of Chao and Swanson (2022b).
13An explicit proof that, under Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; there exists some positive

constant # such that  k k62 ≤ # and  k k62 ≤ # is given in the Technical Appendix of

an earlier version of this paper, Chao and Swanson (2022b). In particular, this result is shown in

Lemma C-5 in Appendix C of Chao and Swanson (2022b). By Liapunov’s inequality, the existence

of the sixth moment then implies the existence of the second moment.
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Proof of Lemma A2: To show part (a), let 1 () = ( − 1)  +  and 2 () =

1 () +  1 − 1. Note first that:
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=  (1) 

The last equality above follows from applying the Slutsky’s theorem given that, by

some tedious calculations, one can show the following five results:14

Result (i): max1≤≤ ∈
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=1()
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Result (ii): max1≤≤ ∈
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Result (iii): max1≤≤ ∈
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14Detailed proofs of these results are given in the Technical Appendix (more specifically, in Ap-

pendix C) of an earlier version of our paper, Chao and Swanson (2022b). In particular, result (i)

is shown in part (c) of Lemma C-12; result (ii) is shown in part (a) of Lemma C-12; result (iii) is

shown in part (b) of Lemma C-12; result (iv) is shown in part (a) of Lemma C-6; and result (v) is

shown in part (c) of Lemma C-6.
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Result (iv): max1≤≤ ∈
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Moreover, by Assumption 2-8, there exists a positive constant  such that for all

1 2 and  sufficiently large; we have that:
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It thus follows that: max1≤≤ ∈
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.

Now, applying the triangle and Cauchy-Schwarz inequalities, we see that:
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The last equality above follows from applying the Slutsky’s theorem given that there

exists a positive constant  such that max1≤≤∈  (
2
1) ≤   ∞ for all

1 2  sufficiently large, as shown previously in Lemma A1, and given that, by

some tedious calculations, one can show the following four results:15
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Result (viii): max1≤≤∈
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Moreover, note that, for all 1, 2, and  sufficiently large,

15Detailed proofs of these results are given in the Technical Appendix (more specifically, in Ap-

pendix C) of an earlier version of this paper, Chao and Swanson (2022b). In particular, result (vi)

is shown in part (d) of Lemma C-12; result (vii) is shown in part (b) of Lemma C-6; result (viii) is

shown in part (d) of Lemma C-6; and result (ix) is shown in part (f) of Lemma C-12.
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min1≤≤ ∈ { ( 21)}

=min1≤≤∈
1


X
=1

⎛⎝ 1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

≥min1≤≤∈

⎛⎝1


X
=1

1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª⎞⎠2

(by Jensen’s inequality)

=min1≤≤∈

¯̄̄̄
¯̄1 X

=1

1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
2

=

⎛⎝min1≤≤∈

¯̄̄̄
¯̄1 X

=1

1
1

2()X
=1()

0
©
 [ ] + [ 

0
]  + [ 

0
] 

ª¯̄̄̄¯̄
⎞⎠2

≥ 2  0 (by Assumption 2-8).

It, thus, follows that max1≤≤ ∈

¯̄¡
  − 

¢


¯̄
≤ max1≤≤ ∈

¯̄¡
  − 

¢
 ( 21)

¯̄
min1≤≤ ∈ ( (

2
1)) =  (1) ¤.

Lemma A3: Suppose that Assumptions 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, and 2-7 hold.

Let Φ (·) denote the cumulative distribution function of the standard normal random
variable. Then, there exists a positive constant  such that

 (| | ≥ ) ≤ 2 [1−Φ ()]
n
1 + (1 + )

3
−(1−1)

1
2

o
(23)

for  ∈  = { ∈ {1  } :  = 0}, for  ∈ {1  }, for  sufficiently large, and
for all  such that 0 ≤  ≤ 0min

©
 (1−1)6 22

ª
with 0 being a positive constant.

Proof of Lemma A3: Note first that, for any  such that

 ∈  = { ∈ {1  } :  = 0}, the formula for  reduces to:

 =

ÃX

=1

∙X(−1)+1+−1
=(−1)+

+1

¸2!−1
2 X

=1

X(−1)+1+−1
=(−1)+

+1.

Hence, to verify the conditions of Theorem 4.1 of Chen, Shao, Wu, and Xu (2016), we

set = +1, and note that  [] =  [+1] =  [ [] +1] = 0 , where

the second equality follows by the law of iterated expectations given that Assumption

2-4 implies the independence of  and +1 and where the third equality follows by

Assumption 2-3(a). Hence, the first part of condition (4.1) of Chen, Shao, Wu, and

Xu (2016) is fulfilled. Moreover, in light of Assumption 2-3(b) and in light of the fact

that, under Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; one can show by straightforward
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calculations that there exists a positive constant  such that  k k62 ≤ 16; we see

that there exists some positive constant 1 such that, for every  ∈ {1 },


h
||

31
10

i
= 

h
|+1|

31
10

i
≤
³
 ||

186
29

´ 29
60 ¡

 |+1|6
¢ 31
60

≤
∙³

 ||
186
29

´ 29
186

¸ 31
10

⎡⎣Ã X
=1

−1X
=0

2+1−

!3⎤⎦ 31
60

≤
h¡
 ||7

¢ 1
7

i 31
10

∙³

°° +1

°°6
2

´ 1
6

¸ 31
10

≤ 
31
10

1 ,

where the first and third inequalities above follow, respectively, by Hölder’s and Li-

apunov’s inequalities. Hence, the second part of condition (4.1) of Chen, Shao, Wu,

and Xu (2016) is also fulfilled with  = 31
10

 2. Moreover, note that, by Assumption

2-7, for all  ≥ 1 and  1 ≥ 1 :



⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+


⎤⎦2⎫⎬⎭ =  1

⎧⎨⎩
⎡⎣ 1√

 1

(−1)+1+−1X
=(−1)+

+1

⎤⎦2⎫⎬⎭ ≥  1,

so that condition (4.2) of Chen, Shao, Wu, and Xu (2016) is satisfied here. Now,

making use of Assumption 2-3(c) and Assumption 2-4 and applying Theorem 2.1 of

Pham and Tran (1985), it can be shown that
©
(+1 )

0ª
is  mixing with  mixing

coefficient satisfying  () ≤ 1 exp {−2} for some constants 1  0 and 2  0.

Next, define  = +1 as before, and note that {} is a -mixing process with
-mixing coefficient  satisfying the condition  ≤ 1 exp {−2} for some
constant 1  0 and for all  sufficiently large, given that measurable functions

of a finite number of -mixing random variables are also -mixing, with -mixing

coefficients having the same order of magnitude17. It follows that {} satisfies the
16As noted previously, under Assumptions 2-1, 2-2(a)-(b), 2-5, and 2-6; an explicit proof that

there exists some positive constant # such that  k k62 ≤ # is given in the Technical Appendix

of an earlier version of this paper, Chao and Swanson (2022b). In particular, this result is shown in

Lemma C-5 in Appendix C of Chao and Swanson (2022b).
17For -mixing and -mixing, this result is given in Theorem 14.1 of Davidson (1994). However,

using essentially the same argument as that given in the proof of Theorem 14.1, one can also prove

a similar result for -mixing. An explicit proof of this result is given in the Technical Appendix of

an earlier version of this paper, Chao and Swanson (2022b). In particular, this result is shown in

Lemma C-2 part (a) in Appendix C of Chao and Swanson (2022b).
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 mixing condition (2.1) stipulated in Chen, Shao, Wu, and Xu (2016) for all  ∈ .

Hence, by applying Theorem 4.1 of Chen, Shao, Wu, and Xu (2016) for the case where

 = 118, we obtain the Cramér-type moderate deviation result



½


q
  ≥ 

¾
1−Φ ()

= 1 + (1) (1 + )
3
−(1−1)

1
2  (24)

which holds for all 0 ≤  ≤ 0min
©
 (1−1)6 22

ª
and for | (1)| ≤  with  being

an absolute constant.

Next, consider obtaining a moderate deviation result for



½
−

q
  ≥ 

¾
 [1−Φ ()]. As  =

X

=1

X(−1)+1+−1
=(−1)+

(−+1),
we can take  = −+1, and note that, by calculations similar to those given
above, we have  [] =  [−+1] = 0, 

h
||

31
10

i
= 

h
|−+1|

31
10

i
=


h
|+1|

31
10

i
≤ 

31
10

1 , and



⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+


⎤⎦2⎫⎬⎭ = 

⎧⎨⎩
⎡⎣(−1)+1+−1X

=(−1)+
(−+1)

⎤⎦2⎫⎬⎭ ≥  1

Moreover, it is easily seen that {} (with  = −+1) also satisfies the 

mixing condition (2.1) stipulated in Chen, Shao, Wu, and Xu (2016) for every .

Thus, by applying Theorem 4.1 of Chen, Shao, Wu, and Xu (2016), we also obtain

the Cramér-type moderate deviation result



½
−

q
  ≥ 

¾
1−Φ ()

= 1 + (1) (1 + )
3
−(1−1)

1
2  (25)

which holds for all 0 ≤  ≤ 0min
©
 (1−1)6 22

ª
and for | (1)| ≤  with  being

an absolute constant. Next, note that:¯̄̄̄
(| |≥)
2[1−Φ()] − 1

¯̄̄̄
=

¯̄̄̄

 √ 

≥
2[1−Φ()] − 1

¯̄̄̄
=

¯̄̄̄



 
√

 ≥

∪

− 

√
 ≥


2[1−Φ()] − 1

¯̄̄̄
18Note that Theorem 4.1 of Chen, Shao, Wu and Xu (2016) requires that 0   ≤ 1 and   −2.

These conditions are satisfied here given that we choose  = 1 and  = 3110.
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=

¯̄̄̄


 

√
 ≥


+


− 

√
 ≥


2[1−Φ()] − 1

¯̄̄̄
µ
since

½


q
  ≥ 

¾
∩
½
−

q
  ≥ 

¾
= ∅ w.p.1

¶
≤ 1

2

¯̄̄̄


 

√
 ≥


[1−Φ()] − 1

¯̄̄̄
+ 1

2

¯̄̄̄


− 

√
 ≥


1−Φ() − 1

¯̄̄̄


Thus, in light of expressions (24) and (25), we have that:¯̄̄̄
 (| | ≥ )

2 [1−Φ ()]
− 1
¯̄̄̄

≤ 1

2

¯̄̄̄
¯̄̄̄
µ


q
  ≥ 

¶
[1− Φ ()]

− 1

¯̄̄̄
¯̄̄̄+ 1

2

¯̄̄̄
¯̄̄̄
½
−

q
  ≥ 

¾
1−Φ ()

− 1

¯̄̄̄
¯̄̄̄

≤ 

2
(1 + )

3
−(1−1)

1
2 +



2
(1 + )

3
−(1−1)

1
2 =  (1 + )

3
−(1−1)

1
2

It then follows that:

− (1 + )
3
−(1−1)

1
2 ≤  (| | ≥ )

2 [1−Φ ()]
− 1 ≤  (1 + )

3
−(1−1)

1
2 (26)

Focusing on the right-hand part of the inequality in (26), we have that:

 (| | ≥ )  (2 [1− Φ ()]) − 1 ≤  (1 + )
3
−(1−1)

1
2 . Simple rearrangement of

this inequality then leads to the desired result:

 (| | ≥ ) ≤ 2 [1− Φ ()]
n
1 + (1 + )

3
−(1−1)

1
2

o


which holds for all  ∈  = { ∈ {1  } :  = 0}, for every  ∈ {1  }, for all
 sufficiently large, and for all  such that 0 ≤  ≤ 0min

©
 (1−1)6 22

ª
. ¤
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