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1 Introduction

In this paper we introduce and examine a real time dataset consisting of all releases of season-

ally adjusted and unadjusted U.S. industrial production, and the U.S. composite leading indicator.

This is done by forming various forecasting models the revision processes of our variables. Although

forecasting is clearly are area of research which Clive Granger holds dear, the topic of real-time

data may not appear to be an appropriate topic with which to pay tribute to the work of Clive

Granger. However, the subject is one to which Oscar Morgenstern - one of Clive’s earliest collab-

orators - devoted an entire monograph. Further, Oskar Morgenstern’s importance in Clive’s early

academic development, and Clive’s great respect for him, should not go unnoticed. To illustrate

this point, consider that it was Morgenstern who invited Clive, upon receiving the prestigious Hark-

ness Scholarship of the Commonwealth Fund, to join a time series research project at Princeton

University. While at Princeton, Clive began his work on spectral analysis, leading to one of his

first monographs (see Granger and Hatanaka (1964)), and also resulting at least one of his many

seminal contributions to the analysis of time series data (i.e. Granger (1969)).1

Today, Morgenstern would most likely write a somewhat different monograph. For example,

he would likely examine preliminary data with many of the time series techniques and tools which

Clive and many of his collaborators have developed over the last four decades. These might include

careful examination of the integratedness properties of the revision process (see e.g. Granger and

Newbold (1974), Granger and Ding (1996), Granger and Ermini (1993), Granger and Hallman

(1991), and Granger and Swanson (1997)), cointegration analysis, (see e.g. Granger(1983, 1986),

Granger and Engle (1987), Granger and Gonzalo (1995), Granger and Lee (1990), Granger and

Swanson (1996), and Granger and Weiss (1983)), causal analysis (see e.g. Granger (1969, 1980,

1988), Granger and Lin (1995), and Swanson and Granger (1997)), and forecasting experimentation

(see e.g. Granger (1992, 1996), Granger and Bates (1968), Granger and Nelson (1979)), for example.

At this juncture, our goal is not to produce such a monograph. We offer only a modest attempt to

reflect again on the issue of preliminary data releases which is so important in many regards, and

which has perhaps yet not received as much attention as it deserves. Of course, this subject has

not been completely ignored since the publication of Morgenstern (1963). A very limited number
1Further details of Clive’s early research appear in the Econometric Theory interview of Clive Granger by Peter

Phillips (1997).
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of recent articles in this area (from which many other important references can be obtained) are:

Boschen and Grossman (1982), Conrad and Corrado (1979), Ghysels (1982), Hamilton and Perez-

Quiros (1996), Harvey et al. (1993), Kavajecz and Collins (1995), Keane and Runkle (1990), Koenig

and Emery (1994), Mankiw and Shapiro (1986), Mankiw et al. (1984), Maravall and Pierce (1986),

Mariano and Tanizaki (1995), Patterson (1995), Pierce (1981), Swanson (1996), and Swanson and

White (1995, 1997a,b).

There are many examples in applied economics which illustrate the need to take a closer look

at questions pertaining to the quality of preliminary data releases. For example, many econometric

forecasting models are routinely constructed using “currently available” data. In the US., data are

often downloaded from CITIBASE, and used without giving too much thought to the “timing” of

the data. However, it is well known that many CITIBASE series are formed by combining various

different “vintages” of economic data (e.g. preliminary data and data which have been revised a

number of times).2 Along the same lines, consider that it is most often preliminary data which

are used by policymakers while, post mortem, their actions are scrutinized based on the use of

revised data.3 Further, forecasters typically use a mixture of revised and preliminary data in real

time settings, and their predictions are initially appraised against preliminary releases. Ex post

or in sample benchmarking of forecasting performance, however, is usually based on final figures.

One natural question which arises in these types of scenarios is: “Which vintages of data are used

and/or should be used by policy setters and forecasters, and are these data the same as those that

are usually used in the construction of standard econometric models and forecasts¿‘

In our analysis, we classify economic data into three categories:

(1) “Preliminary”, “First Reported”, or “Unrevised” Data. These types of data consist of the

first reported datum for each variable at each point in time. Thus, a series of this type has had no

revisions to any observations at any point in time. Swanson and White (1996, 1997) use unrevised

data to construct real-time or ex-ante forecasts of a group of macroeconomic variables, and find that

professional forecasts (which are necessarily real-time) are sometimes dominated by econometric

models, based of a number of model selection criteria such as mean square forecast error and
2There are various exceptions to this practice. For example, Fair and Shiller (1990) acknowledge the issue of data

revision quite explicitly, although they do not address it in their analysis.
3One of the few explicit treatments of data errors and its transmission into policy decisions is Maravall and Pierce

(1986).
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directional change forecasting ability.

(2) “Partially Revised” or “Real − T ime” Data. These types of data are difficult to collect, as

they are made up of a full vector of observations at each point in time for each variable. For

example, if constructing a real-time data set for money, say M2, then for January 1990 a complete

sequence of data, from say 1959, to January 1990 must be collected. Furthermore, the data must

be collected as if one were in January 1990, so that no revisions of any kind made after January

1990 are incorporated into the dataset at time January 1990. Then, a whole new sequence of data

from 1959 to February 1990 is collected, representing all of the information which was available in

February of 1990, and thus including unrevised figures for February 1990, “once” revised figures

for January 1990, and so on. This procedure is continued for each observational period in the

sample. This real-time data collection strategy ensures that “future information” due to the use

of information which is temporally antecedent to the date under consideration is not (accidentally)

used in the construction of revised data. Also, this type of data avoids many of the types of problems

associated with seasonal revisions, benchmark revisions, and definitional changes, for example, and

can be thought of as truly real-time in the sense that it is the data set which is available to real-

time forecasters and policy-setters at any given point in time. As an illustration of the potential for

problems of this sort to arise, note that when dealing with seasonally adjusted data, it is has been

observed by Pierce (1981) that revisions are mostly due to the adjustment process, as it involves

two-sided filters. But these two-sided filters necessarily involve a mixing of data vintages (e.g.

future data seep into the revised values of past data), and as such it is clearly difficult to ensure the

future information does not enter into the revision process. For more on the features of the most

commonly used X-11 seasonal adjustment procedure, see for instance Ghysels, Granger and Siklos

(1996) among others. In this paper, we focus on real-time datasets, examining the revision process

across more than three decades for our series.4 One of the real-time datasets which we examine in

this paper an updated version of the real-time CLI dataset used by Diebold and Rudebusch (1991)

in their analysis of the forecasting ability of the CLI for fully revised industrial production.

(3) “Fully Revised” or “Final” Data. It is quite possible that true “final” data will never be

available for many economic series. This is because benchmark and definitional changes are ongoing

and may continue into the indefinite future, for instance. In practice, by final data we usually mean
4Sargent (1989) is one of the few examples where revision process errors (in his case, “final” data errors) is treated

explicitly, examining how they affect the estimation of econometric models.
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the revision of a data observation after which no more revisions will be made. This is the type

of data that academics often have in mind when conducting economic time series studies, perhaps

simply because it is data which is not subject to revision, and it is felt that if one could adequately

forecast a “final revised” figure, then there is no need for further modeling. However, this data is

clearly not easy to obtain, as data are generally subject to revision for indefinite lengths of time.

Indeed, most datasets which are constructed by applied economists clearly consist of a mixture

of preliminary data, partially revised data, and final revised data. In the following, we consider

real-time data, where Xt+i(t) refers to the t + ith release date of data pertaining to calendar date

t, and X is the growth rate of the original series.

Our primary aim in this paper is to underscore this potential shortcoming of dataset construction

by examining real time datasets, noting their time series characteristics, and examining univariate

and multivariate regression models of the data revision process. This approach allows us to assess

whether there are predictable patterns in the data revision process. We indeed find that this is

the case. For example, our findings based regressions which include both IP and the CLI suggest

that multivariate information “matters” in the revision process. In particular, previously available

IP revisions are useful for explaining CPI revisions, suggesting that releases of CPI do not fully

incorporate newly available IP data. In addition, real-time forecasting experiments suggest that

there is useful univariate as well as multivariate information in the revision processes of IP and

the CLI. Given these sorts of findings, we suggest that there is a need for careful examination of

real-time data when asking a variety of standard questions, including: “Are two variables Granger

causal for one another?”, and “Is variable x useful for constructing forecasts of variable y, in a

real-time forecasting scenario, say, such as that faced by policy makers in Washington as well as

decision makers on Wall street?”.

The rest of the paper is organized as follows. In Section 2, we examine basic statistical properties

of our data, including integratedness, cointegratedness, and autoregressive behavior. In Section 3 we

perform a series of regression and ex ante forecasting experiments in order to ascertain whether or

not revisions to our industrial production series are useful for forecasting revisions to the composite

leading indicator, and vice-versa, thereby examining the “efficiency” of data revision within the

context of providing optimal forecasts of “fully revised” data. The fourth section concludes and

makes recommendations for future research.
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2 The Data

The three variables for which we collect real-time data are U.S. seasonally adjusted industrial pro-

duction (1950:4 to 1996:2), unadjusted industrial production (1950:4 to 1996:2), and the composite

leading indicator (1968:10 to 1996:2). A typical months’ release of data for these variables com-

prises of a first, or preliminary, release for the previous month, and 4 to 6 months of revisions to

data previously released. In addition, more comprehensive benchmark and baseyear revisions occur

from time to time for each of the variables.

Turning first to our industrial production data, the following details are perhaps worth noting.

The seasonally adjusted industrial production and unadjusted industrial production series are com-

piled by the Federal Reserve Board. The main source for seasonally adjusted industrial production

data is the Federal Reserve Bulletin. For unadjusted industrial production data we use the Federal

Reserve Bulletin for data up to 1959:12, and the Survey of Current Business for data after 1959:12.

Additional data for each series are obtained from Federal Reserve monthly statistical releases.5

Also, for three of the major (benchmark) revisions to the variables, the Federal Reserve Board

released separate publication - (1) Industrial Production 1957-59 Base, (2) Industrial Production

1971, and (3) 1976 Revision. Since 1980, benchmark revisions to both industrial production series

have occurred approximately every 2 years, while prior to 1980 such revisions were less frequent.

Benchmark revisions to industrial production usually result in updates of around 2 years of previ-

ously available data, and occur 5 times during our sample period: December 1953, December 1959,

July 1971, July 1985, and April 1990.6 These 5 base year revisions incorporate re-weighting of,

and changes to the components of the index. For both series there are 3 missing entries due to two

major revisions, they are 1953:11,12 and 1985:03. We replaced each missing observation with the

first available data for that period (which in each case is a second release).

Our other variable, the composite leading indicator was compiled by the Department of Com-

merce until 1994:12. It is currently released by The Conference Board. Our CLI dataset up until

1988:12 was made available to us by Glenn Rudebusch (see e.g. Diebold and Rudebusch (1991)).
5Federal Reserve releases for industrial production are referred to as G.12.3 for dates up to 1990:4, and G.17

thereafter. These releases are typically published on the 15th of each month and contain the preliminary data for the

previous month, as well as revisions to data for earlier months.
6Details of the base year changes are available in the relevant Federal Reserve Bulletin, see e.g. pp. 1247-1279 -

December 1953, pp. 1451-1466 and pp. 552-573 - July 1971, pp. 447-497 - July 1985, and pp. 187-204 - April 1990.
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We augment this dataset by including data from the Business Consumers Digest, up to 1990:12,

and the Survey of Current Business, from 1991:1 to 1994:12. Benchmark revisions to the CLI occur

every 12-18 months, and are revisions to the whole series. These revisions incorporate changes in

methodology for computing the index, updated statistical factors, and historical revisions in com-

ponent data. Base year revisions to the CLI occur three times - August 1970, January 1989, and

October 1993.7 For our analysis, we examine revisions of monthly growth rates, and hence data not

rebased. This approach allows us to avoid problems associated with level shifts in our CLI series.

We address what might be called “variance shifts” by examining sub-samples of our datasets.

3 Basic Statistics and Data Analysis

In our examination of the real-time datasets discussed above, we examine revisions to the data

process. In particular, we consider what we shall call fixed width revisions, which are defined as

Xt+i(t) − Xt+i−1(t), where X is the growth rate of the original levels data, formed by taking log

differences. Here, the subscript refers to the release date of the data, and the bracketed index

denotes the date to which the release pertains. Thus, by varying the index, i, while keeping t

fixed, we examine various different “releases” of data for a given time period, for example. We

also consider what we call increasing width revisions, which are defined as Xt+i(t) − Xt(t).8 The

increasing width revisions represent the accumulated fixed width revisions, and for i = 24 we obtain

the difference between what we will here call the “final” datum, and the first available datum. Our

examination of this type of data allows us to assess whether or not there is significant systematic

bias in accumulated revisions, when there is no significant systematic bias in individual revisions.

One reason why such information is of interest is that we can then ascertain whether there is

significant bias in the difference between first and final releases of our variables.

Tables 1a-2b contain summary statistics for fixed and increasing width revisions of unadjusted

and seasonally adjusted industrial production and the CLI, for the entire datasets (Tables 1a-1b)
7See Business Conditions Digest, pp. iii - August 1970, and the Survey of Current Business, pp. 23-27 - January

1989, and pp. 44-52 - October 1993, for details of the revision.
8All time series formed in our analysis were tested for nonstationarity using augmented Dickey-Fuller tests with

an intercept, and with the number of lagged dependent variables used in the regressions chosen by starting with 20

lags, and decreasing the number of lags used until the last included lag had a coefficient significantly different from

zero at a 95% level of confidence. In all cases, the I(1) null hypothesis was rejected at a 5 percent significance level.

6



and for a smaller sample from 1975:10-1996:2 (Tables 2a-2b)9. We consider revisions over horizons

i = 1, . . . , 12, 18, and 24. Each table contains three panels corresponding to our three variables.

The first panel pertains to seasonally adjusted IP. We report the mean, variance, skewness and

kurtosis for both the fixed and increasing width revisions. We observe that the mean of fixed

length revisions is significantly different from zero at a 95% level of confidence, for i = 1, 3, and

6. This suggests that there is systematic bias in revisions of adjusted industrial production, which

could be used to increase the accuracy of preliminary releases. Interestingly, this feature also

characterizes unadjusted IP and, to a lesser extent, the CLI. This result holds for our full sample

periods (Table 1a-1b), as well as for the smaller sample period (Table 2a-2b), which we use in our

“efficiency” tests described in the next section. Notice also that the results in Tables 1a and 2a

show some clear departures from normality as both the skewness and kurtosis statistics usually

differ from the values associated with the Gaussian distribution, but only for the fixed revision

case.

Perhaps not surprisingly, nonzero mean revisions also arise for increasing width revisions. In-

deed, we expect that fixed length revision mean bias associated with lower values of i leads to mean

bias for subsequent values of i, when examining increasing widths revisions. Interestingly, the num-

ber of significant nonzero means is much greater for the columns associated with increasing width

revisions than for those associated with fixed widths. For example, based on increasing revisions

with i = 24, the difference between the “final” and initial releases display significant mean bias for

a number of variables and sample periods (see Tables 1a- 2b). In these cases, a correction could be

made to all releases of the variables, prior to their final release, which improves the accuracy of all

of our preliminary data.

An important caveat to the above discussion is that the summary statistics for our data series

reported in Tables 1a and 2a are reported for the entire data series. Hence, no effort has been

made to assess the impact of benchmark revisions on the findings, for example. In an effort to

address this issue, we also include two additional tables, (Tables 1b and 2b) which contain summary

statistics based on datasets from which observations associated with benchmark revisions have been

removed. Interestingly, the patterns of significant revision biases are essentially the same as those
9The smaller sample period was selected because in late 1975 there appears to be a “variance shift” in the CLI

and in IP (see Figures 1-3). In addition, it is worth noting that there was a 25% level shift in the CLI in late 1975.

However, this level shift does not affect our data, as we are looking at growth rate revisions
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reported above, although bias estimates are generally lower, as might be expected given that we

have removed observations which might be viewed as outliers. Another feature of our datasets

which is worth mentioning is that major revision points are usually associated with base year and

benchmark revisions. For IP, benchmark revisions occurred on 1953:11, 1959:12, 1967:10, 1971:8,

1976:7, 1985:6, 1990:3, 1994:1, 1997:1, and 1997:11, while baseyear revisions occurred on 1953:11,

1959:12, 1962:10, 1971:8, 1985:6, 1990:3, and 1997:1. For the CLI, benchmark revisions occurred

on 1973:9, 1975:4, 1975:10, 1979:2, 1983:1, 1993:9, and 1996:10, while baseyear revisions occurred

on 1968:12, 1970:7, 1976:10, 1988:12, and 1993:9. Casual examination of these dates, however,

suggests that there are no obvious links between major revisions of IP and major revisions of CLI.

The statistics reported in Tables 1b and 2b are complemented by a set of figures displaying

the data without benchmark revisions (see Figures 1 to 3). Each figure shows plots of the first,

second, sixth, and twelfth fixed width revisions, as well as the first, second, eighteenth, and twenty-

fourth increasing width revisions. We notice some common patterns in Figures 1 and 2 (Industrial

Production). First, there appears to be much more variability in first revisions than in later

revisions. This finding corresponds to the results presented in Tables 1a and 1b, where we primarily

find significant mean bias for fixed length revisions constructed using small values of i. This finding

does not impact on our results concerning increasing length revisions, though, as in these cases

even small errors accumulate over time. Indeed, the increasing width revisions plotted in Figures

1 and 2 are not only highly variable but are also frequently nonzero, regardless of the value of

i. Second, the revision patterns are somewhat similar, with most outliers occurring in the same

time periods, regardless of whether the data have been seasonally adjusted or not. This might be

viewed as somewhat surprising, given that seasonally adjusted data are contaminated by future

information “leakage” caused by the use of two-sided moving average filters (see above discussion).

On the other hand, the result makes sense given that benchmark revisions which tend to drive

the outliers do not follow a seasonal pattern. Figure 3 contains plots CLI revisions. Overall the

features of these data are similar to those of the IP series, and there is no obvious structural break,

although there is an apparent decrease in fixed revision variability associated not only with 1st

revisions versus 2nd revisions, say, but also with increasing calendar time for any given revision

series. Next, we turn to an examination of the predictability of our variables using information in

past revisions. Any evidence of this type of predictability which we find will be taken as evidence

that the revision process is “inefficient”. Thus our use of the word of efficiency is used only in the
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context of predictability.

4 Efficiency of Data Revisions

The main question we are concerned with in this section is whether there are predictable patterns

in the revision process. We attempt to answer this question by constructing various different

regressions and by examining the autocorrelation functions of the variable. Before turning to our

regression results, consider the autocorrelation functions plotted in Figures 4 and 5. Each figure

consists of four three-dimensional plots. On one axis we display the order of the autocorrelations,

while the other axis corresponds to different values of i. Thus, each row of autocorrelation bars,

corresponding to the revision index, is based on the examination of an individual revision time

series, i.e. ρ[(Xt+i(t) − Xt+i−1(t)), (Xt−j+i(t − j) − Xt−j+i−1(t − j))] for fixed width revisions,

and ρ[(Xt+i(t) − Xt(t)), (Xt−j+i(t − j) − Xt−j(t − j))] for increasing width revisions, where ρ

denotes the autocorrelation, i is the revision index, and j is the lag order. We first discuss the

results appearing in Figure 4, which are based on an examination of seasonally adjusted and

unadjusted Industrial Production. The left two panels correspond to fixed width, while the right

two panels are for increasing width revisions. We note two features of importance. First, the

autocorrelations in the seasonally adjusted data are rather similar in magnitude to those associated

with unadjusted data, although there are more fixed width autocorrelations which are significantly

different from zero when adjusted data are examined. Second, there is much more persistence in

the increasing width revisions. The second feature is consistent with the accumulation of errors in

increasing width revisions, while the first feature provides weak evidence in support of a hypothesis

of increasing autocorrelation associated with the use of two-sided seasonal adjustment filters (i.e.

a hypothesis that there is information leakage when seasonally adjusted data are revised). In

summary, though, the incidence of nonzero autocorrelations in this first casual examination of

autocorrelation functions suggests that past revisions may be useful for predicting future revisions,

and hence future releases of the actual data. Thus, the revision process may be inefficient. Even

cursory examination of Figure 5 suggests that these findings also apply to the CLI revisions data.

Moreover, it is interesting to note that the CLI autocorrelation functions are similar in the upper

and lower panels, suggesting that the our shorter sample has prediction patterns similar to our

longer sample.
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In order to investigate the statistical significance of any predictable patterns in our data, we

began by running a number of autoregressions. In particular, we ran autoregressions based on all

of the data series plotted in Figures 4 and 5 (i.e. i = 1, . . . , 24), and with lags selected based

on the Schwarz Information Criterion. The regressions are formed by projecting jth revisions of

data pertaining to time t onto the jth revisions pertaining to time t − i, i = 1, . . . , 24. Tables

3a-3b contain our findings for the full and shorter sample periods, where results are only tabulated

for regressions in which at least one explanatory variable is significantly different from zero at

a 90% level of confidence.10 Our overall conclusion based on this univariate analysis is clearly

that the inefficiency in the revision process is primarily due to mean bias (note the number of

significant constants in the reported regressions), with little information in autoregressive variables

being relevant. This can be seen most clearly by examining the results contained in Table 3b.

In addition, note that reported adjusted R2 values are quite small, suggesting that there is little

predictive content, at least when we attempt to explain a first revision today with a first revision

yesterday, say, as is done in the regressions.

In order to further examine the issue of efficiency in a univariate context, we consider regressions

involving different vintages of revisions of the same variable, for a fixed time period. Hence,

instead of running autoregressions with time period t − i, i = 1, . . . , 24, used to construct the

explanatory variables, we fix i = 0, and the regressions are thus formed by projecting jth revisions

of data pertaining to time t onto (j − i)th revisions pertaining to time t, i = 1, . . . , 24, where the

number of regressors in each regression is constrained by the condition that j > i. This condition

is needed in order to ensure that present and/or future information is not used in and of the

explanatory variables. Tables 4a-4b contain our findings, where again only coefficients significantly

different from zero at a 90% level of confidence are reported. We find that future revisions (e.g.

Xt+j(t) − Xt+j−1(t)), can often be predicted from past revisions when j is small, regardless of

which sample period is used. For instance, for the CLI (small sample, see Table 4b) various

coefficients associated with regressions, where the dependent variable is Xt+j(t)−Xt+j−1(t) for j =

2, 4, 6, 8, 9, 10, 20, 21, and, 22, are significant. Such predictable patterns also occur, but to a lesser

extent, for revisions in unadjusted and adjusted IP. Thus, while our autoregressions reported in

Tables 3a-3b show that inefficiencies often appear through mean biases when examining individual
10The values in parentheses are the numerical values of the significant coefficient estimates. All estimates are based

on OLS and are evaluated using HAC standard error estimates.
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revision vintages (allowing t to vary), our results in Tables 4a-4b suggest that inefficiencies also

occur between different vintages (for fixed t).

Given these findings, it should also be of interest to assess whether information in lags of one

of our variables is useful for predicting revisions in other variables. We first address this question

by running multivariate regressions of the type reported on in Table 5. In all, 16 regressions

- with up to 23 exogenous variables in each - were run, and, as above, those with significant

coefficients are reported on in the table. In all regressions, the dependent variable is the first

revision of a given variable, say Yt+1(t) − Yt(t). Panel A of the table contains regression results

based on fixed width revisions, while Panel B contains results for increasing width revisions. In

the fixed width regressions, the explanatory variables are first revisions available during previous

time periods, Xt−i+1(t − i) − Xt−i(t − i), for i = 1, . . . , 24. In the increasing width regressions,

the explanatory variables are accumulated revisions available at time t regarding previous periods’

data (i.e. Xt(t − i) − Xt−i(t − i), for i = 1, . . . , 24). The first column in the table lists the

dependent variable, while the second shows the independent variable. The third column lists the

significant coefficients from each regression. The results are interesting for a number of reasons.

First, there are a number of significant regressors in our regressions, suggesting that multivariate

information may “matter” in the revision process, particularly in increasing width revision cases.

In addition, note the relatively high R̄2 values for some of the regressions. Second, the usefulness of

previously available IP revisions for explaining CLI revisions suggests that releases of the composite

leading indicator do not fully incorporate newly available IP data. For example, we might expect

a one period lag in the transfer (across government agencies) of updated IP information to the

CLI. However, we find that information available prior to time t − 1 is useful for predicting CLI

revisions in 2 CLI regressions. This multivariate result is rather significant, as it casts some doubt

on the accuracy of early CLI releases. In addition, note that this result is not affected by the use

of our shorter sample period. Finally, it is worth pointing out that CLI revisions may be useful

for predicting IP revisions, although the relationship appears weaker than that from IP to CLI

revisions.

In order to shed additional light on the above findings, we also report on a different variety of

multivariate regression (see Table 6). In these regressions, previous updates of the CLI are used

to model current updates of IP, for example. The most surprising result from this table is that

past revisions of a particular calendar date for CLI are useful for predicting the current IP revision
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for the same calendar date, in many case. In addition, there appears to be causality from IP to

CLI, but the linkages are weaker than for the CLI to IP case. Thus, our earlier conclusions based

on an examination of the results in Table 5 remain intact when a different variety of multivariate

regression is run. In summary, our multivariate analysis appears to point to a number of potentially

interesting types of inefficiencies inherent to the revision process which are not readily apparent

when univariate data are examined.

In the spirit of much of Clive Granger’s work on out-of-sample forecasting, we close our discus-

sion of the data revision process with an examination of the relevance of our regression findings

within the context of a real-time forecasting experiment. In particular, for a variety of the uni-

variate and multivariate fixed width regressions reported on in Tables 3a-3b and 5 we construct a

sequence of 1-step ahead forecasts based on regressions formulated using increasing samples of data

with coefficients re-estimated at each point in time (model specifications were fixed beforehand

using the SIC). A representative sample of our findings is reported in Figure 6. Of particular note

is that the out-of-sample R2 values (see e.g. Swanson and White (1995) for further explanation

of out-of-sample R2 values) based on all of the reported experiments (where the ex-ante period is

1992:1-1996:2) are greater than zero, with many values greater than 0.10. In addition, the highest

R2 values are associated with experiments based on univariate models.

5 Conclusions and Recommendations

In this paper we have undertaken a multivariate time series analysis of the data revision process

for industrial production (IP) and the composite leading indicator (CLI). We offer the following

conclusions. First, there appears to be mean bias in the revision process for both seasonally adjusted

and unadjusted IP, and for the CLI. This type of inefficiency is interesting, because merely adding

constants to preliminary releases can correct such systematic bias. Second, based on univariate

autoregressive models we find some evidence that past revisions of our variables have predictive

content for current and future revisions. This in turn suggests that past revisions can be used

to improve upon our estimates (or preliminary releases) of final data. Third, we present findings

based multivariate regressions which suggest that multivariate information “matters” in the revision

process. For example, previously available IP revisions are useful for explaining CLI revisions,

suggesting that releases of CLI do not fully incorporate newly available IP data. In addition,
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real-time forecasting experiments suggest that there is useful univariate as well as multivariate

information in the revision processes of IP and the CLI.

This work represents a starting point, and many issues remain to be explored, both theoretical

and empirical. From a theoretical perspective, for example, it is of interest to characterize the

data revision process within the context of a macroeconomic model of policy decision-making.

From an empirical perspective, it is of interest to assess whether knowledge of the revision process

be used in a real-time context to improve economic forecasts of fully-revised data. Also, within

a multivariate real-time data context, many questions concerning Granger causality and model

specification remain unanswered. Finally, it remains to assess whether the types of inefficiencies

which we find in this paper characterize real-time data in general, or are specific to our datasets.
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