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In the field of economics, recent advances in the areas of machine learning, shrinkage, and variable selection

have been spectacularly successful. In one key area of study, advances in both modelling and estimation

have enabled empirical practitioners to show the usefulness of latent factors designed to efficiently extract

common information from interesting new datasets. At the center of this “big data” success are diffusion

and mixed frequency indices, which have proven useful time and time again in forecasting contexts. This

paper lends further support to recent claims of the usefulness of these sorts of indices, albeit with a twist.

We focus on a historical dataset than contains the Great Recession of 2008, and show that the usefulness

of said indices is pronounced during “low” GDP growth periods, while simple autoregressive models are

adequate during “high growth” periods. This finding stems from the introduction of very simple “hybrid”

models that employ dynamic recursive (rolling) thresholding in order to switch between benchmark linear

models and more complex index driven models, depending on GDP growth conditions. In the context of

predicting both quarterly real GDP growth and CPI inflation, these hybrid models are found to be superior,

for all forecast horizons. When comparing the hybrid models against a host of alternatives, mean square

forecast error gains reach as high as 35%, during the Great Recession, and remain significant throughout our

entire prediction period. Additionally, the very best short-term GDP forecasting models contain variants of

the Aruoba et al. (2009) business conditions index, although these models are most useful when diffusion

indices are also incorporated. Thus, mixing mixed frequency and diffusion indices matters. Finally, across all

experiments, we find strong new evidence of the usefulness of survey predictions, including those from the

Survey and Professional Forecasters, and those from the Livingston Survey.
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1 Introduction

In the field of economics, recent advances in the areas of machine learning, shrinkage, and

variable selection have been spectacularly successful. In one key area of study, theoretical

advances, both in modelling and estimation, have enabled empirical practitioners to show

the usefulness of latent factors designed to efficiently extract common information from

interesting new datasets. At the center of this “big data” success are diffusion and mixed

frequency indices, which have proven useful time and time again in forecasting contexts. A

very incomplete list of key contributions in this area include Forni et al. (2000, 2005), Bai

and Ng (2002), Bai and Ng (2002, 2013), Stock and Watson (2002a,b, 2006), Ghysels et al.

(2007), and Aruoba, Diebold and Scotti (2009, henceforth ADS).

In this paper, we explore the usefulness of diffusion and mixed frequency indices of the

variety discussed in the above papers, in the context of predicting U.S. GDP and CPI infla-

tion around the time of the Great Recession of 2008.1 In particular, we present the results

of an extensive series of experiments wherein standard linear specifications are compared

with models utilizing: diffusion indices extracted from largescale monthly macroeconomic

datasets, mixed frequency indices extracted from carefully selected small mixed frequency

datasets, and survey predictions. More importantly, we introduce very simple “hybrid”

models that employ recursive, rolling, and fixed thresholding in order to “switch” between

benchmark linear models and more complex mixed frequency and diffusion index models

(i.e., “big data” models) that may contain survey predictions. Thresholds are time-varying,

and are determined in real-time by examining extant measures of GDP growth, using vari-

ous windowing techniques. Simply put, we wish to assess whether very intuitive and simple

thresholding techniques lead to notable improvement in predictive model performance; and

we find this to be the case. Moreover, our thresholding experiments indicate that the useful-

ness of “big data” indices is dependent upon whether GDP growth is low (under 1%, say) or

high. When it is low, they are useful. When it is high, prediction of GDP and CPI requires

little more than autoregressive type models. The notion behind the thresholding used in

this paper can be easily motivated using a standard example. Namely, consider the case of

correlation in the stock market. When in good times, financial instrument returns may be

(nearly) independent, allowing for simple risk diversification and asset allocation based on

Sharpe type factor-regression analysis, say. This is often done in the hedge fund industry, for

1For further discussion of recent advances in mixed frequency modelling, see Ghysels et al. (2006, 2007),
and the 2016 special issue of the Journal of Econometrics on the topic, with editorial comment by Ghysels
and Marcelino (2016).
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instance. However, when the market “goes south”, correlations that were hithertofore zero

become non-zero, causing a previously diversified portfolio to simply follow the market. Thus,

the dynamic behavior of the financial instrument returns in this example change markedly

depending on business conditions. This in turn begs the question as to whether “markedly”

different models should be used in the two “regimes”, when the objective is prediction. Our

prediction experiments use two such markedly different classes of models. One class involves

standard benchmark linear specifications. The other class involves utilization of “big data”.

Sargent and Sims (1977) found that a small number of common factors explain much of

the variation in various macroeconomic variables. A multitude of theoretical and empirical

advances associated with constructing latent factor indices have occurred since the publi-

cation of this paper.2,3 For example, in the forecasting literature, prediction models that

utilize estimates of latent factors have been extensively studied (e.g., see Stock and Watson

(1999, 2002a, 2006), Boivin and Ng (2006), Bai and Ng (2009), Armah and Swanson (2010),

D’Agostino and Giannone (2012),Kim and Swanson (2014, 2018b), and the references cited

therein). In D’Agostino and Giannone (2012), the authors show that different model spec-

ifications involving latent factors are useful at different times in the economic cycle. This

is not surprising, given the wealth of research stressing the importance of regime switching

that is related to phases of the business cycle. More generally, model instability, regardless

of whether it is driven by the business cycle, is an important topic of research in the area of

forecasting. In the context of the construction of diffusion indices, Stock and Watson (2008)

show that independent and mild factor loading instability may not appreciably affect factor

estimation. Along the same lines, Carrasco and Rossi (2016) derive rates of convergence for

approximate (or misspecified) factor models. Our approach is to be agnostic concerning mis-

specification, and to propose very simple dynamic thresholding techniques for “switching”

between the use of standard “small data” linear forecasting models, and “big data” models

that utilize diffusion indices and mixed frequency factors. We find that use of even the very

simplest GDP-based dynamic thresholds which utilize rolling windows of data (called τ rolt

thresholding) and recursive windows of data (called τ rect thresholding) for “switching” yield

impressive gains when predicting real GDP growth and CPI inflation.

2The idea of utilizing statistical estimates of common factors dates back to Spearman (1904). Refer to
Swanson (2016) for further discussion of the broad history of machine learning, shrinkage, and variable
selection in the context of factor modelling.

3A few important papers include Stock and Watson (1988, 1989, 2002b, 2006), Forni and Reichlin (1998),
Ding and Hwang (1999), Forni et al. (2000, 2005), Bai and Ng (2002, 2006a), Bai and Ng (2007, 2013),
Bai (2003), Mariano and Murasawa (2003), Boivin and Ng (2005, 2006), Hallin and Liska (2007), Aruoba
et al. (2009), Aruoba and Diebold (2010), Onatski (2009), Corradi and Swanson (2014), and Marcellino et al.
(2015).
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In our prediction experiments, we examine not only the “hybrid” models discussed above,

but we also examine a large set of linear models containing combinations of autoregressive

and dynamic distributed lag terms, mixed frequency indices, and diffusion indices. More

specifically, we examine 37 different sets mixed frequency indicators and associated indices;

as well as a number of diffusion indices extracted from a large-scale macroeconomic dataset

containing 143 variables. One feature of our setup is that it allows us to carry out a sys-

tematic examination of the usefulness of the mixed frequency factor model in ADS(2009).

We document when and how the important ADS business conditions index is useful for con-

structing predictions of both real GDP growth and CPI inflation.4 We additionally examine

the usefulness of survey information available from the Survey of Professional Forecasters

and from the Livingston Survey.

Our main results can be summarized as follows. First, for 1-quarter ahead GDP pre-

diction, under τ rolt thresholding, the ADS index is not only useful, but yields the very best

prediction model, in terms of mean square forecast error. However, this “top” model involves

combining the ADS index with diffusion indices, so that it is a combination mixed frequency

and diffusion index model that dominates all other specifications. This result lends strong

support to the notion that the daily ADS index produced by the FRBP is not only useful

as a business conditions index, but is also highly useful for short-term GDP forecasting.

Second, regardless of forecast horizon and variable being predicted, the very best models

always involve dynamic thresholding, and model combination never yields a “top-5” model.

The only exception to this rule is for annual 1-year ahead GDP growth prediction, in which

case setting τt = τ = 0 yields the mean-square forecast error “best” (MSFE-best) model.

This result implies that not only is simple thresholding useful in contexts where mixtures of

mixed frequency and diffusion indices are included in forecasting models, but that forecast

combination, long held out to be virtually unbeatable in numerous aggregate macroeconomic

forecasting contexts, is dominated under simple thresholding rules. However, it is interest-

ing to note that model combination does actually yield superior predictions at all forecast

horizons, for the case of CPI inflation, but only when no hybrid models of any sort are

considered.

Third, MSFE percentage gains associated with use of our hybrid models for forecasting

GDP vary from around 10% to as much as 35%, depending on the sample period analyzed.

Notably, the hybrid models perform particularly well during the Great Recession, where

MSFE gains are 3 times as high as those based on the entire forecast period from 1987 -

4Interesting related research is contained in Balke et al. (2017), who construct a daily real activity index
using Beige Book information.
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2012. This suggests that our simple thresholds are serving, roughly speaking, to differentiate

between “high growth” and “low growth” epsiodes, and that during “low growth” episodes

it pays to utilize models with mixed frequency and diffusion indices, while during “high

growth” episodes, it suffices to utilize simple autoregressive models. Moreover, findings are

qualitatively the same when forecasting CPI inflation using the same dynamic thresholding

mechanism as that used in the case of GDP. Various possible reasons for this are discussed

later in the paper, and our arguments are not unrelated to the story of correlation in the

stock market discussed above.

Fourth, a final key element of the our results concerns the usefulness of survey variables.

Note that a variety of the indicator sets used in the construction of our mixed frequency

indices include either Livingston or SPF survey predictions of GDP growth. Findings regard-

ing indices containing these variables depend upon whether one is predicting GDP growth or

CPI inflation. For GDP, in hybrid cases, a subset of top five performing models contain Liv-

ingston GDP predictions in their mixed frequency indices. No survey variables are contained

in the top performing non-hybrid models. In stark contrast, for CPI, both Livingston and

SPF forecasts appear in all 1st ranked specifications, from amongst all non-hybrid models.

Moreover, when hybrid specifications are considered, at least one top 5 model includes either

SPF or Livingston survey variables, regardless of forecast horizon, thresholding method, or

version of inflation being forecasted. We thus have strong new evidence of the usefulness of

these surveys, at multiple prediction horizons.

The rest of the paper is organized as follows. In Section 2, we present the modelling

framework, including discussions of diffusion and mixed frequency indices, as well as the

specification of (hybrid) prediction models. In Section 3, we outline the dataset used in our

analysis. Section 4 contains the results of our prediction experiments. Finally, in Section 5,

we provide concluding remarks. Various technical details and additional empirical results are

contained in two appendices.

2 The Modelling Framework

2.1 Diffusion Indices

The diffusion indices or common factors examined in our empirical analysis are based on

the following setup. Suppose that a multidimensional normalized random variable, Xt, is
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generated according to the following dynamic factor model (henceforth DFM):

Xit = λi(L)′ft + eit, (1)

for i = 1, 2, ..., N , and t = 1, 2, ..., T , where Xit is a single datum, ft is a q×1 vector of latent

common factors, λi(L)are q×1 vector lag polynomials in nonnegative powers of L, and eit is

an idiosyncratic shock. That is, N series of data are assumed to be composed of two parts,

common components, λi(L)ft, and idiosyncratic errors eit, for each i. As discussed in Stock

and Watson (2006), a standard assumption is that the factors and idiosyncratic errors are

uncorrelated and that the idiosyncratic error terms are mutually uncorrelated, at all leads

and lags. One can also allow for some degree of serial correlation in this model. Under the

assumption that the lag polynomials have finite dimension, p, we can write the model in

equation (1) in static form, as follows:

Xt = ΛFt + et , (2)

where Ft = (f ′tf
′
t−1...f

′
t−p+1)′ is an r× 1 vector,with r ≤ pq, r is the number of static factors,

and Λ is the factor loading matrix. The static factors in equation (2) are estimated using

principal component analysis.

In particular, following Stock and Watson (2006), let k (k < min{N, T}) be an arbitrary

number of factors, assume that N < T , let Λ be the N × k matrix of factor loadings,

(Λ1,Λ2, ...,ΛN)′, and let F be a k × T matrix of factors (F1, F2, ..., FT ). From equation (2),

estimates of Λ and Ft are obtained by solving the following optimization problem :

V = min
F,Λ

1

T

T∑
t=1

(Xt − ΛFt)
′
(Xt − ΛFt), subject to Λ′Λ = Ik . (3)

We treat F1, ..., FT as fixed parameters to be estimated after normalizing Λ. Given Λ̂, the

solution to equation (3) satisfies F̂t = (Λ̂′Λ̂)−1Λ̂′Xt. Substituting this into equation (3) yields

V = min
1

T

T∑
t=1

X ′t(I − Λ(Λ′Λ)−1Λ′)Xt, subject to Λ′Λ = Ik (4)

= max tr((Λ′Λ)−
1
2 Λ′
∑

XX
Λ(Λ′Λ)−

1
2 , subject to Λ′Λ = Ik (5)

= max Λ′
∑

XX
Λ, subject to Λ′Λ = Ik, (6)

where
∑

XX = T−1
∑T

t=1 XtX
′
t. This optimization is solved by setting Λ̂ equal to the eigen-

5



vectors of X ′X corresponding to its r largest eigenvalues. Then, construct F̂t = Λ̂′Xt.

Following Bai and Ng (2002), after estimating Λ̂ and F̂t, let V̂ (k) = T−1
∑T

t=1(Xt −
Λ̂F̂t)

′(Xt − Λ̂F̂t) be the sum of squared residuals from regressions of Xt on the k factors

and IC(k) = log(V̂ (k)) + k(N+T
NT

) log(C2
NT ) be the information criterion, where CNT =

min{
√
N,
√
T}.A consistent estimator of the true number of factors is r = arg min0≤k≤k IC(k), where

k is the maximum number of factors. Since this important paper by Bai and Ng, many ad-

ditional estimators of r have been proposed (see e.g. Carrasco and Rossi (2016), Kim and

Swanson (2018b), and the references cited therein). Examination of their performance in our

prediction experiments is left to future research.

2.2 Mixed Frequency Indices

Stock and Watson (1989) construct business condition indices from four monthly variables

(industrial production, real manufacturing, trade and sales, number of employees on nonagri-

cultural payroll, and personal income less transfer payments). Mariano and Murasawa (2003)

add quarterly real GDP to the single index model of Stock and Watson, and develop a mixed

frequency model with latent factors. ADS (2009) take all of this research one important step

further, and construct mixed frequency business conditions indices at a daily frequency. Fi-

nally, Camacho et al. (2014, 2018) include one-time Markov switching, and Marcellino et al.

(2015) incorporate stochastic volatility into the standard latent factor model used in mixed

frequency modelling.

In this paper, we utilize the mixed frequency dynamic factor model presented in ADS,

wherein it is assumed that the latent dynamics of an index, say mft, follows a zero-mean

AR(p) process, and is generated daily, so that the index t denote daily increments. Thus,

our mixed frequency (MF) index evolves according to:

mft = ρ1mft−1 + · · ·+ ρpmft−p + et, (7)

where et is white noise with unit variance. Suppose that we have J indicator variables that we

wish to model, and let yit, denote a single datum at time t, for variable i, i = 1, ..., J . Now,

assume that this variable depends depends linearly on mft, and possibly also on various

exogenous variables w1
t , . . . , w

k
t and/or n lags of yit. This leads to the following measurement

equation:

yit = ci + βimft + δi1w
1
t + · · ·+ δikw

k
t + γi1y

i
t−1 + · · ·+ γiny

i
t−n + uit, (8)
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where the uit are contemporaneously and serially uncorrelated innovations. At time t, the ith

indicator, yi, may be missing. For example, if yit is quarterly real GDP, then it is “missing”

on many days within the quarter. To handle the missing data problem, ADS distinguish

between stock and flow variables, and between observed data and missing data. Suppose

that ỹit denotes a stock variable, recorded at a low frequency. At any time, t, if yit is observed,

then ỹit = yit. If it is not observed, then ỹit = NA. Thus, the stock variable at time t is:

ỹit =

{
yit , if yit is observed

NA , otherwise
. (9)

Combining equations (8) and (9), the measurement equation for a stock variable is:

ỹit =

{
ci + βimft−i + γi1ỹ

i
t−i + · · ·+ γipỹ

i
t−n + uit , if yit is observed

NA , otherwise
. (10)

Unlike a stock variable, a flow variable is assumed to exist at a higher frequency, but is

only recorded at lower frequencies, and can thus can be interpreted as an intra-period sum

of daily values, so that a flow variable is defined as:

ỹit =


Di∑
j=1

yit−j+1 , if yit is observed

NA , otherwise

, (11)

where Di denotes the number of days in a period. Combining equations (8) and (11), the

measurement equation for a flow variable is:

ỹit =


Di∑
i=1

ci + βi
Di∑
i=1

mft−i+1 + γi1ỹ
i
t−Di

+ · · ·+ γinỹ
i
t−nDi

+ u∗it , if yit is observed

NA , otherwise

.

(12)

We use the sum of state variables for the period (i.e.,
Di∑
i=1

mft−i+1) in the measurement

equation in the case of flow variable, as in ADS. For example, in a quarterly real GDP

growth measurement equation, all daily factors from the first day to the last day of the quar-

ter are summed and plugged into the measurement equation. Note that different temporal

aggregation schemes between lower frequency flow variables and daily state variables may

be considered. For further discussion, refer to Mariano and Murasawa (2003).

Here, equation (7) is the state equation and equations (9) and (11) are the measurement
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equations. Together, these equations constitute a state-space model, for which both smoothed

and unsmoothed estimation algorithms are discussed in Appendix A. Broadly speaking, un-

der the assumption that errors in state and measurement equations are normally distributed,

it is straightforward to estimate this model using the Kalman filtering and prediction error

decomposition.

2.3 Mixed Frequency and Diffusion Index Models (with Thresh-

olding)

The diffusion and mixed frequency indices discussed above are used in a variety of forecasting

experiments in the sequel, as discussed in the introduction to this paper. In particular,

adhering to the approach used in Stock and Watson (2002a,b), Bai and Ng (2006b) and Kim

and Swanson (2014), we examine the following prediction models:

ŷt+h = ĉh +
r∑

ki=1

p̂hk∑
j=1

ψ̂h,kij DIkit−j +

q̂∑
i=1

φ̂hi yt−i + εt+h, (13)

ŷt+h = ĉh +

p̂h∑
j=1

ψ̂hjMFt−j +

q̂h∑
i=1

φ̂hi yt−i + εt+h, (14)

and

ŷt+h = ĉh +
r∑

ki=1

p̂hk∑
j=1

ψ̂h,kij DIkit−j +

p̂h∑
j=1

ψ̂hjMFt−j +

q̂h∑
i=1

φ̂hi yt−i + εt+h, (15)

where yt is a scalar target variable being predicted, ŷt+h are predictions thereof, εt+h is

a disturbance term, h denotes forecast horizon, ĉh, ψ̂h,kj and φ̂hi are estimated using least

squares (LS), and p̂hk, q̂
h
k , p̂h, and q̂h are selected via use of the Schwarz Information Criterion

(SIC). In these models, the diffusion indices, (i.e., DIkit , for ki = 1, ..., r) are estimated

recursively using a large-scale monthly dataset. This is done prior to recursive estimation

of our prediction models. When predicting the growth of quarterly real GDP, we set r = 1,

while for monthly prediction, we set r = 2. This choice is consistent with empirical findings

in the literature (see e.g. Stock and Watson (2002b), D’Agostino and Giannone (2012), and

Kim and Swanson (2018a)). In a set of experiments not reported here, r was recursively

estimated, and prediction results were found to be inferior to those based on our simpler

strategy of fixing r. (Complete results are available upon request.) Mixed frequency indices

(i.e., MFt) are also estimated prior to recursive estimation of our prediction models. A variety

of different mixed frequency datasets are utilized for this step, as discussed below. Finally,
8



all forecasting equations are estimated both with an without autoregressive terms. For a

detailed examination of the usefulness of including autoregressive terms in models such as

those examined here, see Clements and Galvao (2008).

In our prediction experiments, we also consider a very simple class of “hybrid” forecasting

models that combine purely autoregressive models with more complex models that include

diffusion and mixed frequency indices, via simple thresholding rules. The specification of

these models is predicated on the fact that various machine learning, shrinkage and variable

selection techniques that involve choices concerning which loss functions and tuning param-

eters to use are often utilized when the practitioner is faced with large-dimensional and

multiple frequency datasets. However, the choice of loss functions and tuning parameters is

complicated, and we wish to evaluate diffusion and mixed frequency indices through a very

different lens. Namely, we propose an extremely simple alternative class of forecasting models

based on so-called “thresholding”, and assess whether this simple variety of models yields

improved predictions, relative to the models outlined in equations (13), (14), and (15).5 In

particular, we examine the following hybrid prediction model:

ŷHybridt+h = I{GDPt > τt} × ŷARt+h + (1− I{GDPt > τt})× ŷt+h, (16)

where ŷARt+h is the prediction from a purely autoregressive (AR) model, with lags selected

via the SIC (this is called our AR(SIC) model), ŷt+h is a prediction from one of the models

defined in equations (13), (14), and (15), and GDPt is the historical variable, in growth rates,

that is used in this triggering mechanism. The thresholding parameter, τt, is defined using

a number of simple schemes. Namely, we consider a recursively estimated threshold (i.e.,

τt ≡ τ rect = 1
t

t∑
j=1

GDPj, t = R, ..., R + P − h, with R + P = T ), and a threshold estimated

using rolling windows of data (i.e., τt ≡ τ rolt = 1
R

t∑
j=t−R+1

GDPj, t = R, ..., R+P −h). In this

model, thus, a linear AR(SIC) model is combined with an alternative model that includes

diffusion and/or mixed frequency indices. In the prediction experiments reported on below,

we also examine two other alternative models. These include multivariate distributed lag and

multivariate autoregressive distributed lag models (see below for further discussion). These

two models are “stand alone” prediction models, but are also combined with our benchmark

AR(SIC) model in order to specify two alternative variants of the hybrid model in equation

(16). Finally, we also consider the case where τt ≡ τ = 0. All threshold parameters are

5See Chudik et al. (2016) for a related discussion in the context of variable selection using large-
dimensional datasets.
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estimated in a real-time fashion, in keeping with the real-time setup in this paper. However,

in order to shed further light on the characteristics of τt, we additionally calculate the fixed

value of τt ≡ τ post that leads to “MSFE-best” predictions, ex post. This “cherry-picking”

exercise allows us to assess the potential gains to our simple thresholding, were a fixed in-

feasible threshold known in advance. We do not consider the case where a time varying

in-feasible threshold is known in advance.

Consider GDP. One way to view our threshold is that we are eschewing the usual practice

of defining thresholds based on signals concerning whether we are in expansion or recession,

and are instead simply assessing, in real-time, whether GDP is growing above or below its

average, as calculated using either a rolling or recursive data sample. When GDP is below

its average, we construct predictions using our mode complex model. One way of thinking

about this setup is that in times of lower growth, GDP is more difficult to predict, in the

sense that the informational content of additional variables becomes relevant. At the same

time, when growth is above average, there is “smooth sailing”, and the informational content

of other variables is subsumed in the autoregressive component of the model. This argument

is not dissimilar to the threshold and “banding” arguments made in many papers, where, for

example, a variable is assumed to follow a random walk in a certain “band”, and is assumed

to follow another process outside the “band”. It is also not dissimilar to the observation

that correlations amongst variables become pronounced in “bad times”, while the same

correlations are small in “good times”.6 Of course, the case where τt = 0 is “closer” to the

usual expansion/recession definitions. Our objective, then, is to assess whether extremely

simple thresholding rules lead to improved prediction, and if so, which variable(s) do these

thresholding rules work for.

In closing this section, it is worth stressing that switching between models depends solely

upon the value of real GDP growth. This is true regardless of whether we are forecasting real

GDP growth or CPI inflation. Interestingly, when CPI inflation is instead used to trigger

switching between CPI models, hybrid model performance is actually worse than that based

on a GDP trigger mechanism. This lends support to our claim discussed below that the trig-

gering mechanism based on GDP, roughly speaking, acts as a signal of a “low-growth” state,

in which case our more complicated models become more accurate, predictively. Moreover,

6A standard example is the case of correlation in the stock market. When in good times, financial instru-
ments may be (nearly) independent, allowing for simple risk diversification and asset allocation based on
Sharpe type regression analysis. This is often done in the hedge fund industry, for instance. However, when
the market ”goes south”, correlations that were hithertofore zero become non-zero, causing a previously
diversified portfolio to simply follow the market. Thus, the dynamic behavior of the financial instruments in
this example change markedly depending on business conditions.
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the “best” variable for signalling this state is GDP in our experiments. This makes sense,

given the NBER statement that: “A recession is a significant decline in economic activity

spread across the economy, lasting more than a few months, normally visible in real GDP,

real income, employment, industrial production, and wholesale-retail sales”7; and given that

CPI inflation does not appear in this NBER list of recession indicators.

3 Data

We utilize two distinct U.S. datasets. The first dataset is used for constructing mixed fre-

quency indices. The frequencies of variables in this dataset range from daily to semi-annual.

This dataset includes the variables used in the construction of the Federal Reserve Bank

of Philadelphia (FRBP) business conditions index due to ADS (2009), hereafter called the

ADS, as well as two GDP growth rate predictions tracked by the SPF and Livingston sur-

veys. Non-survey series were obtained from FRED, the exhaustive online dataset maintained

by the Federal Reserve Bank of St. Louis, while survey data were obtained from the online

Real-Time Data Research Center website of the FRBP. The lowest frequency variable in the

dataset is a GDP growth prediction from the Livingston Survey, which is available every

six months and has been extensively studied in the literature. In our implementation, we

include the mean and median of two-step ahead (two-quarter ahead) forecasts of real GDP

growth from first half year of 1971 to second half year of 2012. Also included in our dataset

is a quarterly SPF variable defined as projected real GDP growth. This survey variable is

included for a time period spanning the fourth quarter of 1968 to the fourth quarter of 2012,

and as in the case of the Livingston data, we examine mean and median variants, although

in this case they correspond to one-quarter ahead forecasts, rather than bi-annual forecasts.

The real gross domestic product variable (GDP) in our dataset is seasonally adjusted, and

spans 1960.1 to 2013.2. Monthly indicators included in the dataset are the index of industrial

production (1960.2-2013.6), total non-agricultural employees on payroll (1960.2-2013.6), real

manufacturing, trade and sales (1967.1-2013.6), real personal income less transfer payment

(1960.2-2013.6), and the consumer price index (CPI) for all items (1960.2-2013.6). All series

are seasonally adjusted, and mnemonics used in the sequel when discussing these variables

are given in panel (a) of Table 3. Finally, our weekly variable is initial claims for unemploy-

ment insurance for the period January 7, 1967 to June 29, 2013, and our daily variable is a

government bond spread (i.e., the difference between the 10-year Treasury-bond yield and

7see http://www.nber.org/cycles/jan08bcdc memo.html.
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the 3-month Treasury-bill yield), for the period January 2, 1962 to June 28, 2013.

The second dataset that we utilize is an existing largescale macroeconomic dataset, and

is used when constructing our diffusion indices. This dataset contains 143 monthly U.S. vari-

ables for the period 1960.1 - 2012.12, and is the dataset examined by Kim and Swanson

(2014). It is this dataset that determines the length of our out-of-sample prediction period.

Series in this dataset are contained in the following categories: industrial productions, em-

ployment, manufacturing, trade, sales, housing starts, inventories, orders or unfilled orders,

stock price indices, exchange rates, interest rates and spreads, money and credit related

quantities, and price related indices such as the consumer price index and personal con-

sumption expenditures. This dataset also has a group of survey variables. One such variable

is the Michigan consumer expectations index, and six others comprise a group known as

the purchasing manager’s indices (or national association of purchasing manager’s indices).

As mentioned elsewhere, all series are transformed to stationarity. A complete listing of the

variables in this dataset, as well as transformations used, is available in the online appendix

to Kim and Swanson (2018b).

4 Empirical Results

4.1 Experimental Setup

The benchmark model considered in this paper is the AR(SIC) model. This model is com-

bined in a number of ways with diffusion and mixed frequency indices, as discussed above.

We also estimate the following linear multivariate distributed lag (DL) models, and multi-

variate autoregressive distributed lag (DLAR) models. In particular, we construct forecasting

models that are specified as follows:

ŷt+h = ĉh +
J∑
j=1

p̂h,j∑
i=1

ψ̂h,ji xjt−i +

q̂h∑
i=1

φ̂hi yt−i, (17)

where the exogenous variables, xt, in the above expression are the same variables used to

extract our mixed frequency indices, and lags are selected via use of the SIC, as discussed

above. The target variables in our experiments are quarterly real GDP growth and CPI

inflation (see below for further details), and all prediction models are summarized in Table

1. The different sets of exogenous variables used in this context are described in Table 2.

The forecast frequency in all cases is the same as the frequency of yt. For a discussion of
12



pastcasting, nowcasting, and prediction at lower frequencies than those at which the data

are recorded, see Kim and Swanson (2018a).

When predicting lower frequency variables, such as GDP, using higher frequency vari-

ables, such as our mixed frequency indices (which are estimated at a daily frequency), the

last available observation on the lower frequency variable is utilized in our forecasting mod-

els. In general, we ensure that predictions use all available information, in real-time. The

frequency of the different variables used in our experiments is given in panel (a) of Table 2.

Notice that in addition to examining the use of standard daily, weekly, and monthly indica-

tors, we also include real GDP predictions from the well known SPF and Livingston surveys.

This allows us to assess whether these surveys are useful, when utilized for the estimation

of our mixed frequency indices, and when utilized in the xt variable given in equation (17).

Finally, it should be stressed that our mixed frequency indicators are constructed using a

small number of indicator variables (i.e., those listed in panel (a) of Table 3). panel (b) of

the same table defines 37 different sets of mixed frequency indicators used to construct 37

alternative indices. The indicator set named “C” contains the set of variables used in the

construction of the ADS business conditions index updated regularly by the FRBP. This set

includes IC1, Pay, IP, RM, PI, and GDP, using the variable mnemonics contained in panel

(a) of the table. This set subsumes the four variables used in the original ADS (2009) paper,

and used in our above discussion of mixed frequency modeling. Our diffusion indices, on

the other hand, are constructed using the large-scale monthly dataset discussed above, and

do not utilize the same variables as those used in the construction of our mixed frequency

indices. In all experiments, all variables are transformed to stationarity. For a listing of the

variables used in diffusion index construction, see the online appendix to Kim and Swanson

(2018b). For a discussion of the timing of our datasets, see the above section entitled “Data”.

All mixed frequency and diffusion indices, as well as all parameters in our forecasting

models, are estimated recursively, so that predictions are made in pseudo real-time. The

reason that we use the phrase “pseudo real-time” is that we do not use real-time datasets in

our analysis, and indeed there is no real-time dataset currently available that would allow

us to do so. Using standard notation, our first estimations are carried out using the first R

observations in our datasets, and predictions for period R+h are constructed. Then, models

are re-estimated using R+ 1 observations, and predictions for period R+ h are constructed.

This procedure is carried out until the sample is exhausted, yielding sets of P − h + 1,

predictions and prediction errors, where h is the forecast horizon, set alternatively to 1, 2,

4, and 8 quarters ahead for predictions of real GDP growth, and 1, 3, 6, and 12 months
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ahead for predictions of our monthly CPI target variable. The prediction periods are 1987.1

to 2012.4 for quarterly real GDP growth, and 1987.1 to 2012.12 for monthly CPI inflation.

We construct predictions for two varieties of these two target variables. Namely,

yAt+h = 100 · ln(Yt+h/Yt) and yIt+h = 100 · ln(Yt+h/Yt+h−1),

where Yt denotes the “levels” variable, and the superscripts A and I denote whether cu-

mulative or one-period ahead growth is targeted. Thus, two variants of each variable are

predicted. Models are evaluated using the MSFE, defined as:

MSFE =
1

P − h+ 1

T∑
t=R+h

(yt+h − ŷt+h)2,

and the ratios of MSFEs of model i, say, and the benchmark AR(SIC) model are given

by RMSFE = MSFEi/MSFEAR(SIC). Inference on prediction sequences of model i, when

compared with the AR(SIC) model, is carried out using the pair-wise Diebold-Mariano

(DM: 1995) predictive accuracy test. The null hypothesis of DM test statistic is:

H0 : E
(
f(εhAR(SIC),t)− f(εhi,t)

)
= 0,

where εhAR(SIC),t and εhi,t are the true prediction errors of model i and the AR(SIC) model,

respectively, and f(·) is the loss function, assumed to be quadratic. The DM test statistic

is DM =
√
P d√

σ̂2
d

, where d = 1
P

∑T
t=R+h d̂t, d̂t = (ε̂hAR(SIC),t)

2 − (ε̂hi,t)
2. Here, ε̂hAR(SIC),t and

ε̂hi,t are estimates of εhAR(SIC),t and εhi,t. Additionally, σ̂2
d is a HAC standard error of d̂t. The

DM test statistic has a limiting standard normal distribution, under the assumption that

parameter estimation error vanishes as P,R → ∞, and that the two prediction models are

non-nested. For a discussion of testing in nested contexts, see McCracken (2000) and Clark

and McCracken (2001, 2005).

As a final check of our results, we note that in the forecasting literature, it is well known

that simple forecast combinations often outperform forecasts based on individual models

(e.g., see Timmermann (2006)). Given this fact, we consider 10 different equal weighted

model combinations. The different model combinations are detailed in panel (a) of Table

2. Note that both smoothed and non-smoothed mixed frequency indices are utilized in all

models and model combinations. Smoothing is discussed above.
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4.2 Findings

Table 4 contains numerical summary statistics based on our prediction experiments. In par-

ticular, RMSFEs are tabulated for the “best” 5 models in each of 4 categories. The cat-

egories include: (1) the class of all models (i.e., benchmark linear, index, and combination

models), excluding hybrid models of any kind; (2) the class of all models, but only including

hybrid models with τ rect thresholding; (3) the class of all models, but only including hybrid

models with τ rolt thresholding; and (4) the class of all models, but only including hybrid

models with τ = 0 thresholding. Results of DM tests comparing each “winning” model to

our benchmark AR(SIC) model are given by one, two, or three stars, denoting rejection of

a one-sided DM test in favor or the non-AR(SIC) model, at the 1%, 5%, and 10% levels,

respectively. Bold RMSFEs in the 2nd, 3rd, and 4th columns of numerical entries in this

table denote cases where threshold-type models ranked from 1 through 5 have lower point

MSFEs than similarly ranked models involving no thresholding. In these same columns,

entries superscripted with an “A” denote models that have lower MSFEs than the very

best non-threshold-type model, for each forecast horizon. Similarly, entries superscripted

with an “B” denote models that have lower MSFEs than the very best non-threshold-type

models, for each forecast horizon (excluding non-threshold combination models). Finally, en-

tries superscripted with an “C” denote models that have lower MSFEs than the very best

non-threshold-type models, for each forecast horizon (including only combination models).

The results contained in Table 4 point to a number of clear conclusions for the case of

GDP. First, for 1-quarter ahead GDP prediction (see the first block of entries in panel (a) of

Table 4), the ADS index is not only useful, but yields the very best prediction model, in terms

of RMSFE. This occurs when τ rolt thresholding is utilized, yielding a RMSFE of 0.705.

Moreover, all forms of thresholding lead to improved predictive accuracy. However, in this

“top” model, the ADS index is combined with diffusion indices, so that it is a hybrid model

that utilizes both mixed frequency (MF) indices and diffusion (DI) indices that dominates all

other specifications, when h = 1. Indeed, cursory examination of the GDP results across all

forecast horizons in panel (a) indicates that many models ranked among the top 5 include a

mixture of MF and DI indices. This result lends strong support to the notion that the daily

ADS index produced by the FRBP is not only useful as a business conditions index, but is

also highly useful for short-term GDP forecasting.

Drilling down a bit further yields additional interesting findings. In particular, if the

RMSFE of our best non-hybrid model is compared with the RMSFE of our best hybrid

model (i.e., the model with τ rolt thresholding), but only for the period of 2007.4 - 2009.2
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(i.e., the period during the Great Recession), then the hybrid model yields a 34.3% MSFE

improvement. Notably, the same hybrid model still dominates across our entire forecast

period (i.e., 1987.1 - 2012.1), but the improvement in MSFE is only 9.4%.8 In this sense,

our mixed frequency and diffusion index models are clearly performing “best” during periods

of low growth (e.g. the Great Recession), while during other epsidodes, the AR(SIC) model

sometimes dominates, accounting for the relative reduction (from 34% to 9%) in MSFE

gains associated with use of our hybrid model when evaluating performance during the

entire forecasting period.9 These findings are mirrored when CPI inflation is examined (see

Table 4, panel (b)), although it is recursive thresholding that yields the biggest MSFE

percentage gains, when utilizing our hybrid model, and gains during the Great Recession

are only 8%, and decline to 3% when evaluating performance during the entire forecasting

period. See Figures 2 and 3 for graphical depictions of these findings. In particular, to see

how our thresholding approach fared during the recent Great Recession (GR), refer to Figure

2 for GDP and Figure 3 for CPI. Consider Figure 2. panel (b) of this figure blows up the

period containing the GR, and the solid line (i.e., the line that reaches the lowest point over

the entire time span plotted) in this panel is that of actual real GDP growth. Interestingly,

it is only our hybrid model with τ rolt thresholding that achieves predictions near actual

values at the very lowest point in the recession (see the shaded area in the plot). This is

taken as evidence confirming our notion above finding that “low-growth” states lead to the

superior performance of models that utilize τ rolt thresholding. Moreover, inspection of Panel

C of the same figure reveals that the fact that τ rolt thresholding yields the “MSFE-best”

hybrid model across our entire sample period (see the following paragraph for a complete

discussion of this finding) is highly dependent upon the inclusion of the Great Recession in

our forecasting period. Indeed, inspection of the plots in Panel C of Figure 3 reveals that

τ rect thresholding is almost always preferred to τ rolt thresholding, with the exception of the

GR period, when comparing all predictions between 1987 and 2012.10

Second, the finding discussed above, concerning the fact that the very best model for h = 1

involves thresholding, carries over to all forecast horizons, regardless of whether the target

forecast variable is GDPA
t+h or GDP I

t+h. Namely, for h = 1, 2, 4, and 8, and for incremental

or cumulative GDP growth, the 1st ranked “MSFE-best” models utilize τ rolt thresholding.

8This figure can be readily calculated by comparing the RMSFEs of 0.778 and 0.705 given in the first
row of entries in Table 4, panel (a). For a graphical depiction of these findings, refer to Figure 2.

9For discussion of the changing performance over time of GDP prediction models, see Rossi and Sekh-
posyan (2010).

10As shall be subsequently discussed, τ rect thresholding is always preferred to τ rolt thresholding for CPI
inflation prediction, so that it is actually τ rect thresholding is largely preferred in all of our experiments.
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The only exception to this rule is the case of GDP I
t+4 , where τ = 0 thresholding yields

the “MSFE-best” model. This result implies that not only is simple thresholding useful in

contexts where mixtures of MF and DI indices are included, but that forecast combination,

which is often unbeatable in a variety of aggregate macroeconomic forecasting contexts, is

dominated under simple thresholding rules. Figure 1 plots τ rolt and τ rect used in our prediction

experiments. As expected, τ rolt is more volatile than τ rect , and has decreased considerably in

recent years, after remaining surprisingly stable for around 15 years. Interestingly, even τ rect

has decreased to all time lows in recent years, suggesting that use of a constant threshold

is not optimal, perhaps due to regime shifts and other varieties of model instability. As

confirmation of this conclusion, turn to Table B2 in Appendix B, in which RMSFEs that

correspond to those in Table 4 are tabulated, except that the threshold is fixed, and is

calculated ex-post (i.e., it is “cherry picked”).11 The interesting take-away from this table

is that the best RMSFEs are often not appreciably lower than those calculated using our

truly ex-ante, but time varying, thresholds. Turning back to Figure 1, it is noteworthy that

while τ rolt does vary over time, it always lies between approximately 0.7% and 0.9%. This

real GDP growth rate range is quite “tight”, and while not zero, is rather close to zero.

One way of viewing this feature is that prediction becomes “more difficult”, hence requiring

more complex models in certain regions of the range of GDP growth. However, unlike many

papers that utilize notions of recession to determine thresholds, we use a very much simpler

approach. Based on our findings, perhaps the economy should be viewed as being in a “low

growth” state when quarterly real GDP growth falls below 1%, say, and not when standard

recession dating metrics signal a recession.

Third, regardless of forecast horizon, and for all 4 categories, the top ranked model (i.e.,

the model denoted by “Ranking = 1” in the first column of the table, for each forecast

horizon) utilizes mixed frequency indices constructed via use of the smoothed Kalman filter,

as denoted by the inclusion of “SL” in model names. The incidence of models with and

without autoregressive terms, as denoted by models that contain “AR” in their names, is

spotty, and many top ranked models do not utilize AR terms. This speaks to the ability of

MF/DI technology to “mop up” autoregressive information required for predicting real GDP

growth.

Fourth, almost every hybrid model under τ rolt thresholding yields a MSFE that is signif-

icantly lower than that of the AR(SIC) model, and involves combining MD and DI indices.

Additionally, our other benchmark linear models (i.e., the linear multivariate DL and mul-

11These “cherry picked” thresholds are given in Table B1.
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tivariate autoregressive DL models) are never in the top 5 models, regardless of forecast

horizon or whether we model GDPA
t+h or GDP I

t+h. These findings lend further support to

our earlier conclusions that τ rolt thresholding is useful, and that combination mixed fre-

quency (MF) / diffusion index (DI) model that dominates all other specifications considered

in this paper.

Now, consider CPI inflation prediction. Turning to panel (b) of Table 4, the first thing to

note is that the findings discussed above in the context of predicting real GDP growth apply

to CPI inflation, with a couple of notable exceptions. First, while thresholding remains very

important, and indeed our hybrid models are “MSFE-best” in all cases except for CPIIt+12,

it is largely τ rect thresholding that yields the best models. Thus, it remains the case that

when we are in a state of the economy involving “low growth”, we benefit from using our

more heavily parameterized hybrid models for predicitng CPI inflation. Interestingly, in the

case of CPI, the threshold appears slightly more stable than in the case of GDP, in the sense

that τ rect thresholding is peferred to τ rolt thresholding. This is a somewhat surprising finding.

Second, if only non-hybrid models are compared, model combination yields the “MSFE-

best” model in 6 of 7 forecast horizon / target variable variant permutations. (Recall that

model combination never “wins” under GDP prediction.) Still, in the truly “MSFE-best”

models, which are always hybrid models, model combination never plays a role. Instead,

it is always models utilizing mixtures of MF and DI indices that dominate, just as when

predicting GDP.

Finally, note that percentage gains associated with use of our hybrid models vary from

around 10% to as much as 40%. It remains to see whether these gains can be bested us-

ing other simple forms of thresholding, or by more complicated prediction models. Overall,

though, our experiments are surprisingly robust in their support of the use of hybrid thresh-

old models.

A final key element of the results contained in Table 4 pertains to the use of survey

variables. Recall first that a variety of the indicator sets used in the construction of our

mixed frequency indices include either Livingston or SPF survey predictions of GDP growth.

In panel (b) of Table 3, it is noted that the indicator sets including these variables are sets

“G” through “N”. Thus, if top performing models in Table 4 include these letters in their

names, we have direct evidence of the usefulness of these surveys. Findings vary greatly

depending upon whether one is predicting GDP growth or CPI inflation. For GDP, in hybrid

cases, a subset of top 5 performing models for GDP I
t+2 and GDP I

t+8 contain Livingston

GDP predictions in their mixed frequency indices. No survey variables are contained in
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the top performing non-hybrid models. In stark contrast, for CPI, both Livingston and

SPF forecasts appear in all 1st ranked specifications, from amongst all non-hybrid models.

Moreover, when hybrid specifications are considered, at least one top 5 model includes either

SPF or Livingston survey variables, regardless of forecast horizon or thresholding method;

and regardless of whether CPIAt+h or CPIIt+h is being predicted. Moreover, in most cases it is

a Livingston survey variable that is in the indicator set used for MF index construction. We

conclude that this finding constitutes strong new evidence of the usefulness of these surveys,

at multiple prediction horizons.12

Please now refer to Figures 4 and 5 in the paper. These figures contain plots of RMSFEs,

cumulated over time as the forecast period increases. The plots in these figures aid us in

discovering whether the gains associated with the use of our hybrid models are sample-

period specific, for example. Consider Figure 3. The panels denoted by “Average” refer to

predictions of GDPA
t+h, while those denoted by “Increments” refer to predictions of GDP I

t+h.

It is apparent from inspection of these plots that our “MSFE-best” hybrid models with

τ rolt thresholding are almost everywhere superior to “MSFE-best” non-thresholding (called

“Linear Model”) and combination models, regardless of forecast sample period. This story

is less clear for CPI, as is evident upon inspection of Figure 4. In this figure, the various

plots indicate a close race between τ rect and τ rolt thresholding, although we know from Table

4 that τ rect thresholding prevails. Moreover, model combination also fares well in the case

of CPI prediction; a finding supported by noting that for non-hybrid models, combination

always yields the 1st ranked model, regardless of forecast horizon, and regardless of whether

CPIAt+h or CPIIt+h is being predicted.

5 Concluding Remarks

We present the results of a set of prediction experiments wherein standard linear specifi-

cations, including autoregressive and autoregressive distributed lag models, are compared

with models utilizing: diffusion indices extracted from largescale monthly macroeconomic

datasets, mixed frequency indices extracted from small mixed frequency datasets, and sur-

vey predictions. Additionally, we employ very simple recursive, rolling, and fixed thresholding

in order to construct a class of “hybrid” models which “switch” between benchmark linear

12Note also that survey variables that differ from our SPF and Livingston survey variables are included in
our diffusion index dataset, as discussed above. Thus, all diffusion indices contain survey variables, although
we have not examined factor loadings or constructed diffusion indices with and without these variables in
order to assess the relevance of the inclusion of these variables. Such an assessment is left to future research.
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models and more complex models that also include diffusion indices, mixed frequency in-

dices, and survey predictions. Thresholds are time-varying, and are determined in real-time

by examining extant measures of GDP growth, using various windowing techniques. We find

that thresholding is very useful for prediction, in the sense that hybrid GDP growth and CPI

inflation prediction models are always preferred to a variety of alternative non-hybrid mod-

els. Additionally, the hybrid models perform particularly well during the Great Recession,

suggesting that our simple thresholds are serving, roughly speaking, to differentiate between

“good times” and “bad times”, and that during “bad times” (or periods of “low growth”), a

case can be made for specifying much more complicated prediction models than those useful

during “good times”. We further find that the daily ADS index produced by the FRBP is

not only useful as a business conditions index, but is also highly useful for short-term GDP

forecasting. Finally, we present strong new evidence of the predictive usefulness of GDP

survey predictions from the Survey of Professional Forecasters and the Livingston Survey.
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Table 1: Prediction Model Specifications*

Model Description

Group 1: Autoregressive model (lags selected using the SIC)

AR(SIC) yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1

Group 1: Distribute Lag model (lags selected using the SIC)

DL yT+h|T = α̂h
0 +

K∑
j=1

p∑
i=1

β̂j,h
i Xj

T−i+1

Group 1: Autoregressive Distributed Lag model (lags selected using the SIC)

DLAR yT+h|T = α̂h
0 +

p∑
i=1

α̂k,h
i yT−i+1 +

k∑
j=1

p∑
i=1

β̂j,h
i Xj

T−i+1

Group 1: Diffusion Index model

DI yT+h|T = α̂h
0 +

K∑
j=1

p∑
i=1

α̂j,h
i DIjT−i+1

Group 1: Diffusion Index model with AR component

DIAR yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

K∑
k=1

p∑
i=1

β̂j,h
i DIjT−i+1

Group 2: Mixed Frequency model (MF)

MF X NSF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSFT−i+1

MF X SF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

q∑
i=1

β̂h
i X SFT−i+1

MF X NSL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSLT−i+1

MF X SL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

q∑
i=1

β̂h
i X SLT−i+1

Group 3: Mixed Frequency model with AR component (MFAR)

MFAR X NSF yT+h|T = α̂h
0 +

p∑
i=1

α̂iyT−i+1 +
q∑

i=1
β̂h
i X NSFT−i+1

MFAR X SF yT+h|T = α̂h
0 +

p∑
i=1

α̂iX SFT−i+1

MFAR X NSL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

q∑
i=1

β̂h
i X NSLT−i+1

MFAR X SL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

q∑
i=1

β̂h
i X SLT−i+1

Group 4: Mixed Frequency model with DI component (MFDI)

MFDI X NSF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSFT−i+1 +

k∑
j=1

q∑
i=1

β̂j,h
i DIjT−i+1

MFDI X SF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSFT−i+1 +

k∑
j=1

q∑
i=1

β̂j,h
i DIjT−i+1

MFDI X NSL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSFT−i+1 +

k∑
j=1

q∑
i=1

β̂j,h
i DIjT−i+1

MFDI X SL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i X NSFT−i+1 +

k∑
j=1

q∑
i=1

β̂j,h
i DIjT−i+1

Group 5: Mixed Frequency model with DI and AR components (MFDIAR)

MFDIAR X NSF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

p∑
i=1

β̂h
i X NSFT−i+1 +

k∑
j=1

q∑
i=1

γ̂ji DIjT−i+1

MFDIAR X SF yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

p∑
i=1

β̂h
i X SFT−i+1 +

k∑
j=1

q∑
i=1

γ̂ji DIjT−i+1

MFDIAR X NSL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

p∑
i=1

β̂h
i X NSLT−i+1 +

k∑
j=1

q∑
i=1

γ̂ji DIjT−i+1

MFDIAR X SL yT+h|T = α̂h
0 +

p∑
i=1

α̂h
i yT−i+1 +

p∑
i=1

β̂h
i X SLT−i+1 +

k∑
j=1

q∑
i=1

γ̂ji DIjT−i+1

∗ Notes: Prediction models are grouped into five groups. The first group contains benchmark models, i.e, AR, DL, DLAR, DI
and DIAR models. The second group contains mixed frequency indices, while the third group is the same, but with added
autoregressive terms. Finally, the fourth group of models combines mixed frequency and diffusion indices, while fifth group
is the same, but with added autoregressive terms. The mnemonics introduced in this table are utilized in Table 4, wherein
prediction experiment results are gathered.
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Table 2: Prediction Model Specifications - Additional Details*

(a) Combination Models and Thresholds

Model Description

Group 6: Forecast Combinations

ŷT+h|T = 1
I

I∑
i=1

ŷiT+h|T , i = 1, .., I, where I = number of models used in combination

CMA1 All benchmark models i.e, AR,DL,DLAR,DI and DIAR
CMA2 All nonsmoothed MF models
CMA3 All smoothed MF models
CMA4 All nonsmoothed MFAR models
CMA5 All smoothed MFAR models
CMA6 All nonsmoothed MFDI models
CMA7 All smoothed MFDI models
CMA8 All nonsmoothed MFDIAR models
CMA9 All smoothed MFDIAR models
CMA10 All models

Hybrid Models
If real GDP growth at time t > τt, then
use AR(SIC) model for forecasting,
else use one selected alternative model from Groups 1-5

Threshold Mechanisms (recursive, rolling, and zero) used in hybrid models

Recursive τ rect = 1
t

t∑
j=1

GDPj , for t = R, ..., R+ P − h.

Rolling τ rolt = 1
R

t∑
j=t−R+1

GDPj , for t = R, ..., R+ P − h.

Zero τt = τ = 0 (real GDP growth rate equals 0).

(b) Smoothing and Matching Timing

First Day Last Day
Smoothed SF SL

Nonsmoothed NSF NSL

∗ Notes: See notes to Table 1. A 6th group of prediction models containing various forecasts combinations is given in panel
(a), along with definitions of thesholding mechanisms used in hybrid models that comibine an AR(SIC) model with one of the
other models listed in Table 1. Notation denoting the use of smoothed and unsmoothed mixied frequency indices is given in
panel (b) of the table. In this notation, “S” and “NS” denote smoothed and unsmoothed indices, respectively. Additionally, in
the notation introduced in panel (b), and in the context of mixed frequency modelling, “F” denotes models for which monthly
(quarterly) indicators utilize observations from the first day of the month (or quarter), while “L” denotes models for which
monthly (quarterly) indicators utilize observations from the last day of the month (or quarter). Thus, for forecasting quarterly
variables, the “F” indicator sets which utilize both quarterly and monthly data, use “first day” observations, while for forecasting
monthly variables, only monthly indicators utilize observations from the first day of the month. “F” and “L” experiments are
performed using indicator sets A to F (see panel (b) of Table 3 for a list of indicator sets). All other indicator sets utilize “L”
dating. For further details, refer to Section 4 and Appendix 1.
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Table 3: Variable Definitions and Indicator Sets Used for Constructing Mixed Frequency
Indices*

(a) Variable Definitions
Frequency Variables Abbreviation Transformation

Daily Government Bond Spread SPR Xt −Xt−1

Weekly Initial Claims for Unemployment Insurance
Level IC1 Xt

Growth Rate IC2 ln(Xt)− ln(Xt−1)

Monthly Payroll Pay ln(Xt)− ln(Xt−1)
Industrial Production IP ln(Xt)− ln(Xt−1)
Real Manufacturing Trade & Sales RM ln(Xt)− ln(Xt−1)
Real Personal Income less Transfer Payments PI ln(Xt)− ln(Xt−1)
Consumer Price Index CPI ln(Xt)− ln(Xt−1)

Quarterly Real GDP growth, historical data GDP ln(Xt)− ln(Xt−1)
Real GDP growth, mean, SPF SPF1
Real GDP growth, median, SPF SPF2
Real GDP growth, mean, Livingston LIV1
Real GDP growth, median, Livingston LIV2

(b) Indicator Sets Used for Constructing Mixed Frequency Indices
Set Variables used in Index Construction Set Variables used in Index Construction
D1 SPR
W1 IC1 WM4 IC1,Pay, IP, RM, PI
M1 Pay Q1 GDP
M2 Pay, IP MQ1 Pay, GDP
M3 Pay, IP, RM MQ2 Pay, IP, GDP
M4 Pay, IP, RM, PI MQ3 Pay, IP, RM, GDP
WM1 IC1,Pay MQ4 Pay, IP, SPF1
WM2 IC1,Pay,IP MQ5 Pay, IP, RM, PI, GDP
WM3 IC1,Pay, IP, RM INF IC1,Pay, IP, RM, PI, CPI, GDP
A IC1, Pay, IP, GDP K SPR, IC1, Pay, IP, RM, PI, GDP, SPF1
B IC1, Pay, IP, RM, GDP L SPR, IC1, Pay, IP, RM, PI, GDP, SPF2
C IC1, Pay, IP, RM, PI, GDP M SPR, IC1, Pay, IP, RM, PI, GDP, LIV1
D SPR, IC1, Pay, IP, GDP N SPR, IC1, Pay, IP, RM, PI, GDP, LIV2
E SPR, IC1, Pay, IP, RM, GDP O IC2, Pay, IP, GDP
F SPR, IC1, Pay, IP, RM, PI, GDP P IC2, Pay, IP, RM, GDP
G IC1, Pay, IP, RM, PI, GDP, SPF1 Q IC2, Pay, IP, RM, PI, GDP
H IC1, Pay, IP, RM, PI, GDP, SPF2 R SPR, IC2, Pay, IP, GDP
I IC1, Pay, IP, RM, PI, GDP, LIV1 S SPR, IC2, Pay, IP, RM, GDP
J IC1, Pay, IP, RM, PI, GDP, LIV2 T SPR, IC2, Pay, IP, RM, PI, GDP

∗ Notes: panel (a) contains variable definitions. The government bond spread is difference between the 10
year Treasury constant maturity yield and 3 month Treasury-Bill yield. See Section 3 for complete details
concerning the sample periods of the datsets used in prediction experiments. Our levels initial claims variable
corresponds to that used in ADS (2009), although a growth variant of this variable is also included in various
experiments. Two varieties of GDP survey predictions are utilized in our experiments, including 1-quarter
ahead predictions from the Survey of Professional Forecasters (SPF), and 2-quarter ahead predictions from
the Livingston Survey (LIV).Various mixed frequency indices are constructed as discussed in Section 2.2,
using the indicator sets summarized in panel (b) of the table. All such indices are constructed at a daily
frequency.
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Figure 1: Rolling and Recursive Real GDP Growth Thresholds∗

∗ Notes: The figure displays recursive and rolling dynamic thresholds defined in panel
(a) of Table 2, and used in construction forecasts based on the hybrid models reported
on in Table 4. NBER recession periods are shaded.
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Figure 2: One-Quarter Ahead Real GDP Growth Forecasts∗

(a) Whole Forecasting Period (b) During Great Recession

(c) Cumulative RMSFEs

∗ Notes: Panel (a) and (b) plot actual GDP against 1-quarter ahead GDP forecasts from various prediction
models. The shaded areas indicate NBER recessions. Panel C plots corresponding cumulative RMSFEs,
where the divisor MSFE used in the construction of the RMSFEs is the benchmark AR(SIC) model. See
Section 4 and the notes to Tables 1-4 for further details.
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Figure 3: One-Month Ahead CPI Inflation Forecasts∗

(a) Whole Forecasting Period (b) During Great Recession

(c) Cumulative RMSFEs

∗ Notes: See notes to Figure 2.
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Figure 4: Cumulative RMSFEs of GDP Forecasts∗

(a) 2-Quarter, Average (b) 2-Quarter, Increments

(c) 8-Quarter, Average (d) 8-Quarter, Increments

∗ Notes: See notes to Figure 2.

29



Figure 5: Cumulative RMSFEs of CPI Inflation Forecasts∗

(a) 3-Month, Average (b) 3-Month, Increments

(c) 12-Month, Average (d) 12-Month, Increments

∗ Notes: See notes to Figure 2.
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Appendices

A State Space Estimation of Mixed Frequency Indices: An

Example

As in ADS (2009), assume that there are four indicators, including real GDP (a quarterly flow

indicator), the number of employees on nonagricultural payrolls (a monthly stock indicator), initial

claims for unemployment insurance (a weekly flow indicator), and the yield spread between the

10-year U.S. Treasury bond and the corresponding 3-month T-bill ( a daily stock variable). The

measurement equation for the daily spread, which is missing for weekends and holidays, with an

autoregressive term and no exogenous variables, is:

ỹSpreadt =

{
c1 + β1mft + γ1ỹ

i
t−1 + u1

t , if ySpreadt is observed

NA , otherwise.
.

The measurement equations for weekly initial claims, which is flow variable and is missing for

six days per week, with an autoregressive term, is:

ỹICt =

{ ∑7
i=1 c2 + α2

∑7
i=1mft−i+1 + γ2ỹ

IC
t−W + u∗2t , if yICt is observed

NA , otherwise.
.

The measurement equation for monthly nonagricultural payroll employees, which is stock vari-

able and is observed on one day each month, with an autoregressive term, is:

ỹPayt =

{
c3 + α3mft + γ3ỹ

Pay
t−M + u3

t , if yPayt is observed

NA , otherwise.
.

The measurement equations for quarterly real GDP, which is flow variable and observed at one

day during a quarter is

ỹGDPt =

{ ∑Q
i=1 c4 + α4

∑Q
i=1mft−i+1 + γ4ỹ

GDP
t−Q + u∗4t , if yGDPt is observed

NA , otherwise.
.

The state equation is assumed to follow a zero mean AR(1) process. That is,

mft = ρmft−1 + et.

The above measurement equations and state equation can be summarized in vector form (assume

normally distributed errors).
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Measurement Equation
ỹ1
t

ỹ2
t

ỹ3
t

ỹ4
t

 =



α1 α2 α3 α4

0 α2 0 α4

...
...

...
...

0 0 0 α4 or 0

1 0 0 0



′ 
mft

...

mft−q

u1
t

 +


0 0 0

γ2 0 0

0 γ3 0

0 0 γ4



ỹ2
t−W

ỹ3
t−M

ỹ4
t−Q

 +


0

u∗2t

u3
t

u∗4t


yt = Ztβt +Γwt+ εt.

State Equation

mft+1

mft

mft−1

...

mft−q+1

u1
t+1


=



ρ 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · 0 γ1





mft

mft−1

mft−2

...

mft−q

u1
t


+



1 0

0 0

0 0
...

...

0 0

0 1


[
et

ζt

]
,

βt+1 = Tβt + Rηt .[
εt

ηt

]
∼ N

( [
04×1

02×1

]
,

[
Ht 0

0 Q

] )
,

and

Ht =


0 0 0 0

0 σ∗22t 0 0

0 0 σ2
3t 0

0 0 0 σ∗24t

 , Q =

[
1 0

0 σ2
1

]
,

where the u∗jt and σ∗2jt signify the measurement error and the variance thereof, respectively, in case

of flow variable j. The sum of daily MF indexes for the week or the quarter is plugged into the

measurement equation. In the case of stock variables such as monthly payroll and daily spread,

one MF index on the day at which data is available is plugged into the measurement equation.

The coefficient matrix, Zt, in the measurement equation, is time-varying because the MF index is

evolving on a daily basis, and the number of days in the quarter is time-varying. The large dimension

of state vector, βt, makes estimation difficult, especially in forecasting applications. ADS adopt the

so-called Harvey cumulator, which is common in the mixed frequency literature. Define the CDi
t

cumulator variable for period Di, e.g., quarter (Q),month (M),week (W ) as:

CDi
t = ItC

Di
t−1 +mft

= ItC
Di
t−1 + ρ1mft−1 + ρ2mft−2 + · · ·+ εt,
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where It is an indicator variable defined as

IDi
t =

{
0, if t is the first day of the period Di

1, otherwise.
.

Then, for the quarterly cumulator CQ
t ,which is the sum of daily MF factors during the quarter

(i.e.,
∑Qt

j=1mft−j+1), the measurement equation for real GDP, for example, is:

ỹGDPt =

{ ∑Q
t=1 c4 + α4C

Q
t + γ4ỹ

GDP
t−Q + u∗4t , if yGDPt is observed

NA , otherwise.
,

Here, Qt is the number of days in a quarter and is time-varying. Now, the state space system can

be represented using a 4x1 state vector, which has much smaller dimension, compared to the 93x1

dimension used in the previous state-space representation of the model. Namely:
mft+1

CW
t+1

CM
t+1

CQ
t+1

 =


ρ 0 0 0

ρ IWt 0 0

ρ 0 IMt 0

ρ 0 0 IQt



mft

CW
t

CM
t

CQ
t

 +


1

1

1

1

 [et] ,

βt+1 = Ttβt + Rηt,
ỹ1
t

ỹ2
t

ỹ3
t

ỹ4
t

 =


c1∑W
i=1 c2

c3∑Q
i=1 c4

 +


α1 0 0 0

0 α2 0 0

α3 0 0 0

0 0 0 α4



mft

CW
t

CM
t

CQ
t



+


γ1 0 0 0

0 γ2 0 0

0 0 γ3 0

0 0 0 γ4



ỹ1
t−D

ỹ2
t−W

ỹ3
t−M

ỹ4
t−Q

+


u1t

u∗2t

u3
t

u∗4t

 ,
Yt = C + Zβt + Γwt + εt

This state space model can readily be estimated. For illustrative purposes, and following our above

discussion, consider :

Yt = C + Zβt + Γwt + εt

βt = Ttβt−1 + Rηt,

where εt ∼N(0, Q) and ηt ∼N(0, H), Yt is a vector of indicators, possibly having missing obser-

vations, and βt is the latent state vector. This model contains the mixed frequency factor mft,

and the weekly, monthly, and quarterly cumulator. In the vector of exogenous variables wt, one
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autoregressive term of each indicator is included as in ADS. With missing data, and assuming nor-

mality, the Kalman filter can be used to estimate this system (see Kim and Nelson (KN: 1999) for

details). Following KN, let Yt ≡ [y1
t,y

2
t,..., y

N
t ], Yt|t−1 = E[Yt|Yt−1], ηt|t−1 = Yt −Yt|t−1, Ft|t−1 =

cov[ηt|t−1], βt|t = E(βt|Yt), Pt|t = cov(βt|Yt), βt|t−1 ≡ E(βt|Yt−1), and Pt|t−1 = cov(βt|Yt−1).

The Kalman filter consists of following six equations: four prediction equations and two updating

equations. For any t, with no missing observations,

βt|t−1 = Ttβt−1|t−1, (18)

Pt|t−1 = TtPt−1|t−1T
′
t + RHR′, (19)

ηt|t−1 = Yt −Yt|t−1 = Yt −C− Zβt|t−1 − Γwt, (20)

Ft|t−1 = ZPt|t−1Z
′ + Q, (21)

βt|t = βt|t−1 + Pt|t−1Z
′F−1

t|t−1ηt|t−1, (22)

Pt|t = Pt|t−1 −Pt|t−1Z
′F−1

t|t−1ZPt|t−1. (23)

Two prediction steps are associated with the state equation and the two more prediction steps

are performed using the measurement equations. Given initial choices of state vector, β0|0 and its

covariance matrix, project the its future value of state vector and its covariance matrix using (18)

and (19). In (20) and (21), the vector of prediction errors and associated covariance matrix are

obtained after comparing the realized observations with predictions of them. Finally, update the

state information (and associated covariance matrix) using (22) and (23).

If observations are missing, the measurement equation in vector form is modified as the observed

number of observations changes. That is, measurement equations associated with missing data are

removed from the measurement equation yielding:

Y∗t = C∗ + Z∗βt + Γ∗twt + u∗t , (24)

u∗t ∼ N (0, Q∗).

In actual applications, prediction steps are performed using the modified measurement equation

(i.e., equation (24)). For any t, with missing observations, one thus utilizes the following system:

βt|t−1 = Ttβt−1|t−1,

Pt|t−1 = TtPt−1|t−1T
′
t + RHR′,

η∗t|t−1 = Y∗t −Y∗t|t−1 = Y∗t −C∗ − Z∗βt|t−1 − Γ∗wt, (25)

F∗t|t−1 = Z∗Pt|t−1Z
∗′ + Q∗, (26)

βt|t = βt|t−1 + Pt|t−1Z
∗′F

∗−1
t|t−1η

∗
t|t−1,
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Pt|t = Pt|t−1 −Pt|t−1Z
∗′F∗−1

t|t−1Z
∗Pt|t−1.

Finally, if all data are missing at period t, only prediction steps based on the state equation are

required, yielding:

βt|t−1 = Ttβt−1|t−1,

Pt|t−1 = TtPt−1|t−1T
′
t + RHR′.

Assuming i.i.d. normal errors in the measurement and state equations, maximum likelihood esti-

mation (MLE) can be applied using the prediction error decomposition to the linear state space

model. Specifically, when the all N variables are observed at time t, the log-likelihood is incremen-

tally increased as follows:

logL = −1

2
[N log 2π + (log |Ft|t−1| + η′t|t−1F

−1
t|t−1ηt|t−1)].

For missing data, the incremental log-likelihood at time t is

logL = −1

2
[N∗ log 2π + (log |F∗t|t−1| + η∗′t|t−1F

∗−1
t|t−1η

∗
t|t−1)],

where N∗ < N is the number of available observations at time t, and η∗t|t−1 and F∗t|t−1 are defined

above. Finally, if all indicators are missing, the incremental change of the likelihood is zero. In

extracting an MF index, two steps are needed. The first step involves estimating the parameters

in the models. Using MLE, given initial parameter, state vector, and covariance matrix choices,

find the estimates of the parameters which is maximizing the log-likelihood. In a second step, given

parameter estimates, one can extract an MF index in the state vector by running the Kalman filter.

For the initial choices of state vector, β0|0, and of its covariance matrix, P0|0, under stationarity,

the unconditional mean of state vector, E(βt), and its covariance matrix, E(Pt) are used. Following

Durbin and Koopman (2001), and in addition to the above “non-smoothed” approach, we also

consider use of a fixed interval smoothing algorithm for this step. If all data are observed at period

t, and with rT = 0,

βt|T = βt|t + Ptrt−1,

Pt|T = Pt|t − Pt|tNt−1Pt|t,

rt−1 = Z′tF
−1
t vt + L′trt,

Nt−1 = Z′tF
−1
t Zt + L′tNt
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where

Lt = Tt − KtZt,

vt = Yt − E(Yt|Yt−1).

If some observations are missing at period t, set:

βt|T = βt|t + Ptr
∗
t−1,

Pt|T = Pt|t − Pt|tN
∗
t−1Pt|t,

r∗t−1 = Z∗′t F∗−1
t v∗t + L∗′t r∗t ,

N∗t−1 = Z∗′t F∗−1
t Z∗t + L∗′t N∗t��L

∗
t ,

where

L∗t = T∗t − K∗tZ
∗
t ,

v∗t = Y∗t − E(Y∗t |Yt−1).

If all data are missing at period t,

βt|T = βt|t + Ptrt−1,

Pt|T = Pt|t − Pt|tNt−1Pt|t,

rt−1 = T′trt,

Nt−1 = T′tNtTt.
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B Additional Empirical Results Based on “Cherry Picking

”a Fixed Threshold for Use in Hybrid Models

Table B1: Thresholds (τPost) of Real GDP Growth For Each Target Variable∗

(a) τPost in GDP Growth Hybrid Models

h 1 2, A 4, A 8, A 2, I 4, I 8, I

Cutoffs 0.758 0.684 0.560 0.838 0.692 0.671 0.478

(b) τPost in CPI Inflation Hybrid Models

h 1 3, A 6, A 12, A 3, I 6, I 12, I

Cutoffs -1.399 0.560 0.956 0.517 0.245 0.025 1.206

∗ Notes: This table presents fixed “cherry picked” GDP growth thresholds. These thresholds
are those leading to the “best” MSFEs, ex post, and are separately calculated for each fore-
cast horizon, denoted by 1,2,4, and 8 (quarters ahead) for GDP prediction, and 1,3,6, and 12
(months ahead) for CPI prediction. All thresholoding is done via evaluation of GDP growth,
as outlined in panel (a) of Table 2. Finally, “A” and “I” refer to whether “average” of “incre-
mental” versions of GDP growth and inflation are predicted, as outlined in Section 4.1. See
Section 2.3 for further details on the thresholding mechansim used.
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Table B2: Summary of Top-5 ”MSFE-Best” models by Ex-Post Experiments*

(a) Real GDP Growth

Ranking Linear Model RMSFE Average Model RMSFE Hybrid (Cherry P icked Threshold) RMSFE

GDPA
t+1

1 MF B NSL 0.778 CMA5 0.801 MFDIAR C SF 0.659∗A

2 MFAR O NSL 0.779∗ CMA3 0.809 MFDI C SF 0.663∗A

3 MFAR B NSL 0.780 CMA10 0.817 MF C SF 0.694∗A

4 MF O NSL 0.782∗ CMA4 0.817 MFDIAR M4 SL 0.694∗A

5 MFAR MQ2 NSL 0.783∗ CMA2 0.819 MFAR S NSL 0.695∗A

GDPA
t+2

1 MFDI MQ1 SL 0.775 CMA5 0.810 MFDI MQ1 SL 0.705∗∗A

2 MFDI MQ2 SL 0.780 CMA9 0.821 MF MQ2 SL 0.724∗A

3 MF A NSL 0.791 CMA3 0.829 MFDI MQ2 SL 0.731∗A

4 MFDIAR MQ2 SL 0.791 CMA7 0.830 MFDI M1 SL 0.735∗A

5 MFDIAR MQ1 SL 0.793 CMA4 0.834 MFDIAR MQ4 SL 0.737∗A

GDPA
t+4

1 MFDIAR Q SL 0.839 CMA9 0.888 MFDIAR Q SL 0.801A

2 MFAR Q SL 0.841 CMA5 0.891∗ MFDIAR T SL 0.807A

3 MFDI Q SL 0.848 CMA7 0.900 MFAR Q SL 0.809A

4 MF Q SL 0.851 CMA3 0.913 MFDI Q SL 0.813A

5 MFDI O SL 0.858 CMA10 0.917 MF Q SL 0.819A

GDPA
t+8

1 MF Q SL 0.866∗∗ CMA5 0.966 MF Q SL 0.859∗∗A

2 MFAR Q SL 0.883∗∗ CMA3 0.967 MF T SL 0.873∗∗C

3 MF T SL 0.884∗∗ CMA9 1.005 MFDIAR T SL 0.877∗∗C

4 MFDI T SL 0.890∗∗ CMA7 1.007 MFDI T SL 0.879∗∗C

5 MFDIAR T SL 0.890∗∗ CMA10 1.016 MFAR Q SL 0.882∗∗C

GDPI
t+2

1 MFDIAR MQ1 SL 0.877∗ CMA5 0.944 MFDI MQ1 SL 0.857∗∗A

2 MFDI MQ1 SL 0.879∗ CMA9 0.945 MFDIAR MQ1 SL 0.860∗A

3 MFDI O SL 0.908 CMA4 0.966 MFAR MQ4 SL 0.881∗C

4 MFDIAR O SL 0.910 CMA7 0.968 MFDIAR MQ4 SL 0.885∗C

5 MFDI MQ2 SL 0.911 CMA10 0.971 MFDIAR M1 SL 0.886∗C

GDPI
t+4

1 MFAR INF SL 0.989 CMA1 0.998 MFDIAR T SL 0.985∗A

2 MFDIAR T SL 0.993 CMA5 1.012 MFDIAR Q SL 0.990C

3 MFAR Q1 SL 0.993∗ CMA9 1.026 MFDIAR WM3 SL 0.991C

4 MFAR C SF 0.994 CMA3 1.029 MFAR D SF 0.992C

5 MFAR T SL 0.994 CMA10 1.031 MFDIAR WM4 SL 0.994C

GDPI
t+8

1 MF F SF 0.964∗ CMA3 1.003 MF J SL 0.922∗∗∗A

2 MF D SF 0.965∗ CMA1 1.011 MF F SF 0.957∗∗A

3 MF D1 NSL 0.967∗ CMA2 1.016 MF J NSL 0.957∗∗∗A

4 MF D1 SL 0.968∗ CMA5 1.017 MF INF SL 0.958∗∗A

5 MF E SF 0.968∗ CMA10 1.024 MF D SF 0.958∗∗A
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Table B2: (Cont.)

(b): CPI Inflation

Ranking Linear Model RMSFE Average Model RMSFE Hybrid (Cherry P icked Threshold) RMSFE

CPIAt+1

1 MFDIAR S NSL 0.972 CMA10 0.974 MF WM1 SL 0.941∗A

2 MFAR MQ5 SL 0.972 CMA1 0.988 MF K SL 0.942∗A

3 MFAR I SL 0.975 CMA5 0.990 MF K NSL 0.942∗A

4 MFAR D SL 0.976 CMA4 0.991 MF D NSF 0.942∗A

5 MFAR L SL 0.976 CMA8 0.993 MF N SL 0.942∗A

CPIAt+3

1 MFDI WM3 SL 0.948 CMA10 0.913∗∗ MFDI WM3 SL 0.886∗A

2 MFDI WM4 SL 0.959 CMA6 0.964 MFDI E SL 0.890∗A

3 MFDI MQ1 SL 0.960 CMA7 0.972 MFDI E NSL 0.890∗A

4 MFDI MQ1 NSL 0.962 CMA1 0.977 MFDI N SL 0.893∗A

5 MFDI W1 NSL 0.963 CMA5 1.022 MFDI N NSL 0.893∗A

CPIAt+6

1 MFDI W1 NSL 0.854 CMA10 0.831∗∗∗ MFDI MQ5 SL 0.726∗∗∗A

2 MFDI WM3 SL 0.856 CMA7 0.869 MFDI WM3 SL 0.735∗∗∗A

3 MFDI MQ5 SL 0.856 CMA6 0.869 MFDI W1 SL 0.739∗∗∗A

4 MFDI MQ1 SL 0.859 CMA1 0.909∗ MFDI W1 NSL 0.741∗∗∗A

5 MFDI W1 SL 0.863 CMA4 1.061 MFDI N SL 0.742∗∗A

CPIAt+12

1 MFDI WM3 SL 0.801∗∗ CMA10 0.750∗∗∗ MFDI N SL 0.654∗∗∗A

2 MFDI MQ5 SL 0.802∗∗ CMA7 0.829∗ MFDI E SL 0.661∗∗∗A

3 MFDI WM4 SL 0.810∗ CMA6 0.836∗ MFDI MQ5 SL 0.665∗∗∗A

4 MFDI D1 SL 0.811∗ CMA1 0.867∗ MFDI D SL 0.666∗∗∗A

5 MFDI D1 NSL 0.811∗ CMA4 0.980 MFDI K SL 0.667∗∗∗A

CPIIt+3

1 MFDI WM3 SL 0.915 CMA10 0.901∗∗ MFDI F NSF 0.871∗∗A

2 MFDI WM4 SL 0.915 CMA7 0.925 MFDI D SF 0.874∗∗∗A

3 MFDI F NSF 0.916 CMA6 0.926 MFDI D NSF 0.875∗∗A

4 MFDI D1 NSL 0.917 CMA1 0.928∗∗ MFDI T NSL 0.881∗∗A

5 MFDI I SL 0.919 CMA4 0.997 MFDI E NSF 0.881∗∗A

CPIIt+6

1 MFDI W1 SL 0.970 CMA10 0.946∗∗ MFDI K SL 0.844∗∗∗A

2 MFDI MQ5 SL 0.970 CMA1 0.968 MFDI F SF 0.846∗∗∗A

3 MFDI D1 SL 0.973 CMA7 0.976 MFDI K NSL 0.847∗∗∗A

4 MFDI MQ1 SL 0.974 CMA6 0.979 MFDI N SL 0.848∗∗∗A

5 MFDI N NSL 0.974 CMA4 1.032 MFDI N NSL 0.849∗∗∗A

CPIIt+12

1 MFDI K SL 0.944∗ CMA10 0.928∗∗∗ MFDI K SL 0.920∗∗A

2 MFDI F SF 0.945∗ CMA7 0.951∗ MFDI F SF 0.921∗∗A

3 MFDI S SL 0.947∗ CMA6 0.956∗ MFDI E SF 0.925∗∗A

4 MFDI E SF 0.948∗ CMA1 0.975 MFDI M1 SL 0.930∗∗B

5 MFDI M1 SL 0.948∗ CMA8 0.985 MFDI M1 NSL 0.931∗∗B

(∗) Notes: See notes to Table 4 and Table A1. In these results, the group denoted as “Hybrid Model with Cherry Picked
Threshold” corresponds to models chosen based on use of the cherry-picked thresholds tabulated in Table A1.
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Camacho, M., Pérez-Quirós, G., and Poncela, P. (2014). Green shoots and double dips in

the euro area: A real time measure. International Journal of Forecasting, 30:520–535.
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