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Abstract

This paper proposes new jackknife IV estimators that are robust to the effects

of many weak instruments and error heteroskedasticity in a cluster sample setting

with cluster-specific effects and possibly many included exogenous regressors. The

estimators that we propose are designed to properly partial out the cluster-specific

effects and included exogenous regressors while preserving the re-centering property

of the jackknife methodology. To the best of our knowledge, our proposed procedures

provide the first consistent estimators under many weak instrument asymptotics in

the setting considered. We also present results on the asymptotic normality of our

estimators and show that t-statistics based on our estimators are asymptotically normal

under the null and consistent under fixed alternatives. Our Monte Carlo results further
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1 Introduction

The problem of endogeneity remains central to economics, despite the vast literature

on the topic. One key reason for this is that there are many different regression settings for

which endogeneity is an issue, but for which valid estimators are not currently available. One

such setting involves the case where the objective is to estimate an IV regression with fixed

effects using panel or cluster-sampled data in situations where the number of available in-

struments may be large, but where the instruments themselves are all only weakly correlated

with the endogenous regressors. There is now a substantial literature on estimation and in-

ference under many weak instruments, including Chao and Swanson (2005), Stock and Yogo

(2005), Hansen, Hausman, and Newey (2008), Hausman et al. (2012), Chao et al. (2012,

2014), Bekker and Crudu (2015), Crudu, Mellace, and Sándor (2020), and Mikusheva and

Sun (2020). However, the analyses given in these papers are for cross-sectional data, thus

precluding panel data or cluster sampling settings where there is additional unobserved het-

erogeneity modeled by fixed or cluster-specific effects. Moreover, even in the cross-sectional

context, 2SLS and the LIML estimators are not well behaved under many weak instruments.

In particular, Chao and Swanson (2005) and Stock and Yogo (2005) show that the 2SLS

estimator is inconsistent under many weak instrument asymptotics, even when the errors

are homoskedastic. In addition, Hausman et al. (2012) and Chao et al. (2012) both point

out that LIML is also inconsistent under many weak instruments, when there is error het-

eroskedasticity. Estimators that are robust to the effects of many weak instruments in cross

sectional settings with error heteroskedasticity turn out to have a jackknife form, as discussed

in Chao and Swanson (2004). These include the JIVE1 and JIVE2 estimators studied in An-

grist, Imbens, and Krueger (1999), for example. For further discussion, see Phillips and Hale

(1977), Blomquist and Dahlberg (1999), Ackerberg and Devereux (2009), and Bekker and

Crudu (2015). These papers again only study various versions of the jackknife IV estimator

in a cross-sectional setup without fixed effects.

The goal of this paper is to consider the problem of many weak instruments in a panel

data or cluster-sampling framework with fixed or cluster specific effects. In addition to the

presence of unobserved heterogeneity, our setup allows the structural equation of interest to

have a partially linear form so that additional exogenous regressors can enter the equation

nonlinearly. In this sense, our paper is also related to recent work by Cattaneo, Jansson, and

Newey (2018a,b) on the partially linear model. However, the focus of these papers differs
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from ours, as they do not consider the problem of endogeneity. Thus, rather than employing

IV estimators, estimation is done using an OLS estimator, with the nonlinear component

being first approximated nonparametrically by a set of basis functions.

To consistently estimate the parameters of an IV regression with fixed or cluster-specific

effects, we propose three new estimators, which we refer to by the acronyms FEJIV, FELIM,

and FEFUL. These estimators are so named as they are modified versions and generaliza-

tions, respectively, of the jackknife IV (JIV), the LIML, and the Fuller (1977) estimators. In

contrast to the original JIV, LIML, and Fuller estimators, our new estimators are designed

to be robust to the effects of many weak instruments and error heteroskedasticity, even in

the presence of additional complications caused by having fixed or cluster-specific effects

and many included exogenous regressors. To achieve consistency in our setting requires

an estimator that not only properly partials out additional covariates and cluster-specific

effects, but at the same time is also properly centered in a form similar to a degenerate

U-statistic. It turns out that accomplishing both of these objectives simultaneously is quite

challenging. While a number of innovative JIV-type estimators have been proposed recently

(see, for example, the improved jackknife estimators, IJIVE1 and IJIVE2, of Ackerberg and

Devereux (2009), and the UJIVE estimator of Kolesár (2013)), due to the aforementioned

difficulties, these estimators are not consistent when applied to our setting under many weak

instrument asymptotics, as we shall elaborate in greater detail in Section 2. On the other

hand, the estimation procedures that we introduce here are carefully designed to properly

partial out the presence of fixed or cluster-specific effects and included exogenous regressors,

while preserving the re-centering property of the jackknife methodology. To the best of our

knowledge, the estimators presented here are the first consistent estimators under many weak

instrument asymptotics in an IV regression model with fixed or cluster-specific effects and

possibly many included exogenous regressors. In addition to consistency, we also establish

the asymptotic normality of the FELIM and FEFUL estimators1.

This paper also provides a number of results showing that hypothesis testing procedures

based on FELIM and FEFUL are robust to the effects of many weak instruments. In partic-

1We do not provide a formal proof of the asymptotic normality of the FEJIV estimator because the results

of our Monte Carlo study, as reported in Section 5, show that FELIM and FEFUL tend to have better finite

sample properties than FEJIV. For this reason, we shall focus the presentation of our theoretical results on

FELIM and FEFUL only. However, one can easily show, by slightly modifying the arguments that we give for

FELIM and FEFUL, that FEJIV is also asymptotically normal, under many weak instrument asymptotics.

Note also that our simulation finding regarding the properties of FEJIV are consistent with the findings of

Davidson and MacKinnon (2006).
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ular, we construct t-statistics based on these two estimators and show that, when the null

hypothesis is true, these t-statistics converge to an asymptotic standard normal distribution

under both standard (strong but fixed number of instruments) asymptotics and also under

many weak instrument asymptotics. Moreover, our t-statistics are shown to be consistent

in the sense that under fixed alternatives they diverge, with probability approaching one, in

the direction of the alternative hypothesis.

The many-weak-instrument asymptotic framework used in this paper to analyze the

performance of FELIM and FEFUL was first proposed in Chao and Swanson (2005). This

framework extends earlier work by Morimune (1983) and Bekker (1994) on what has become

known in the IV literature as the many-instrument asymptotics or “Bekker asymptotics”,

whereby a large sample approximation is carried out by considering an alternative sequence

where the number of instruments is allowed to approach infinity as the sample size grows

to infinity. A key difference between the Bekker asymptotic framework and the many-

weak-instrument asymptotic framework is the rate of growth of the so-called concentration

parameter. As has been pointed out by Phillips (1983) and Rothenberg (1984), among others,

the concentration parameter is the natural measure of instrument strength in a linear IV

model. In the original papers by Morimune (1983) and Bekker (1994), the concentration

parameter is assumed to grow at the same rate as the sample size, which is also what is

assumed under standard (strong but fixed number of instruments) asymptotics, whereas the

many-weak-instrument asymptotic framework allows the concentration parameter to grow

at a rate much slower than the sample size, thus allowing for much weaker instruments. Let

2 be a sequence that gives the rate of growth of the concentration parameter, and let 2

denote the number of instruments. Chao and Swanson (2005) show that for consistent point

estimation to be possible, a sufficient condition is
p
2

2
 → 0, as 2, 

2
 →∞. This

allows for the possibility that 2 is of an order smaller than 2 which, in turn, can be of

an order much smaller than the sample size . The original Bekker framework, on the other

hand, requires 2 
2
 and  to all be of the same order of magnitude. Recent work by

Mikusheva and Sun (2020) indicates that the condition
p
2

2
 → 0, as 2, 

2
 →∞

is not only sufficient but also necessary for consistency in point estimation and hypothesis

testing.

It should be noted that the hypothesis testing procedures considered in this paper will

not be valid under the weak instrument asymptotics proposed in Staiger and Stock (1997).
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However, we do not find this to be a problem. The reason is that the Staiger-Stock framework

considers a setting where 2 =  (1); hence, the instruments are so weak that the IV model is

not point identified. As a result, two of the properties that we are particularly interested in,

and that we think are most important for reliable practical applications (namely, consistency

in point estimation and test consistency), will both be unachievable in their framework. In

addition, the results of a survey of the applied literature reported in Hansen, Hausman, and

Newey (2008) suggest that instruments used in empirical microeconomic applications are

typically not so weak that one must resort to the type of large sample approximations given

by the Staiger-Stock weak instrument asymptotics.

The rest of the paper is organized as follows. Section 2 states the model, defines the

FELIM, FEFUL, and FEJIV estimators, and provides an explanation of how our estimators

improve upon various alternative jackknife IV estimators that have previously been proposed

in the literature. Analytical results presented in Section 3 establish that our estimators are

consistent and asymptotically normally distributed. Section 4 shows how to estimate the

variances of the estimators and also provides asymptotic results for t-statistics based on our

estimators. Section 5 contains the results of a series of Monte Carlo experiments in which

the relative performance of our estimators is compared with that of extant estimators in the

literature. Section 6 concludes. Proofs of Theorem 1, Corollary 1, and Theorems 4-6 are

presented in the Appendix to this paper. The proofs of Theorems 2 and 3 are longer and are

given in a supplemental Appendix, along with the proofs of a number of supporting lemmas.

Before proceeding, we will first say a few words about some of the commonly used no-

tations in this paper. In what follows, we use min (), max (), and  () to denote,

respectively, the minimal eigenvalue, the maximal eigenvalue, and the trace of a square

matrix  whereas 0 denotes the transpose of a (not necessarily square) matrix . kk2
denotes the usual Euclidean norm when applied to a (finite-dimensional) vector . On the

other hand, for a matrix , kk2 ≡ max
np

 (0) :  (0) is an eigenvalue of 0
o
de-

notes the matrix spectral norm, while kk ≡
p
 {0} denotes the Frobenius norm and

kk∞ ≡ max1≤≤

X

=1
|| (i.e., the maximal row sum of an  × matrix). In ad-

dition, we use  ◦  to denote the Hadamard product of two conformable matrices  and

 (i.e.,  ◦ ≡ []  for  = [] and  = []) We take  () to be a diagonal matrix

whose diagonal elements correspond with the elements of the vector  while  () is taken

to be a diagonal matrix whose diagonal elements are the same as the diagonal elements of
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the square matrix . Furthermore, we will let  = (1 1  1)
0
denote a  × 1 vector of

ones. Finally, we use CS and T, respectively, to denote the Cauchy-Schwarz and the triangle

inequality, and the abbreviation w.p.a.1 stands for “with probability approaching one”.

2 Model, Assumptions, and Estimation Procedures

The model that we consider is a cluster-sample IV regression model

()
1×1

=  0
()0 + 

¡
1()

¢
+  + () (1)

() = Φ

¡
1()

¢
+Υ

¡
2()

¢
+  + () (2)

where  = 1    = 1   and the total sample size is given by  =
X

=1
. The

notation ( ) : N×N→ N denotes a pairing function which maps an ordered pair of natural

numbers into a natural number, so that, in particular, we have (1 1) = 1, (1 1) = 1,

(2 1) = 1 + 1, and ( ) = . This is just a notational device used to convert a double

index into a single index, thus, facilitating certain vectorization and summation operations

while still allowing one to keep track of both  and . In this setup, we take () to be a

× 1 vector of endogenous regressors, and we let 1() and 2() denote, respectively, a

1 × 1 vector and a 2 × 1 vector of exogenous variables, for  = 1 2   and  = 1  

(or, equivalently, for ( ) = 1 ). Note that  (·), Φ (·), and Υ (·) are allowed to
be nonlinear functions, so that the structural equation (1) can be taken to be a partially

linear equation, and the system of first-stage equations given by (2) may be interpreted

as a generalized additive model in the sense of Hastie and Tibshirani (1990). In addition,

 and  in the above equations are unobserved or individual effects interpreted as “fixed

effects” in the sense that although we do not necessarily require  and  to be (non-

random) constants, they are allowed to be correlated with the exogenous variables 1()

and2(), unlike the typical assumptions specified in a traditional “random effects” model.

More precise assumptions on the model given by equations (1) and (2) are given below.

We will develop some additional notations before proceeding. First, let

() =
³
 0
1()

0
2()

´0
 for ( ) = 1 , and define

 =
¡
(11) (11) (1) ()

¢0
. Now, stacking the observations ( ) = 1 ,
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we can write the model given by equations (1) and (2) more succinctly as


×1

= 
×

0
×1
+ 

×1
+ 

×

×1

+ 
×1

, (3)


×

= Φ
×

+ Υ
×

+ 
×

Ξ
×

+ 
×

, (4)

where  = (1  )
0
, Ξ = (1  )

0
, and


×

=

⎛⎜⎜⎜⎜⎜⎝
1 0 · · · 0

0 2
. . .

...
...

. . .
. . . 0

0 · · · 0 

⎞⎟⎟⎟⎟⎟⎠ .
and where the other vectors and matrices are stacked similar to . For notational conve-

nience, we have suppressed the dependence of , Φ, and Υ on . Note that our setup

allows the clusters to be of possibly different sizes, so that our model can also be interpreted

as a possibly unbalanced panel data model.

Making use of these notations, we can write down the following assumptions for our

model.

Assumption 1: Let F
 =  () (i.e., the -algebra generated by ). Suppose that the

following conditions are satisfied (i) Conditional on F
 ,
³
(11) 

0
(11)

´
 

³
(11) 

0
(11)

´



³
(1) 

0
(1)

´
 

³
() 

0
()

´
are mutually independent. (ii) 

£
()|F



¤
= 0 and


£
()|F



¤
= 0  for ( ) = 1 .

Assumption 2: Suppose that there exists a constant  ≥ 1 such that for all 
(i) max1≤()≤


h
8()|F



i
≤   ∞ and max1≤()≤


h°°()°°82 |F



i
≤   ∞

 and (ii) inf1≤()≤
min

¡
Ω()

¢ ≥ 1  0 , where Ω() = 
h
()

0
()|F



i
with

() =
³
()  0

()

´0
.

Assumption 3: Suppose that Υ

¡
2()

¢
= 

¡
2()

¢

√
 for ( ) = 1 , where

 = 
¡
1  

¢
. The following conditions are assumed on the diagonal elements

1   as  → ∞. (i) Either  =
√
 or 

√
 → 0 for  ∈ {1  }. (ii) Let

min = min1≤≤  , and suppose that 
min
 →∞ as →∞, such thatp2

¡
min

¢2 →
0. (iii) min () ≥ 1  0 and max (Γ

0Γ) ≤   ∞  for all  sufficiently large,

where  = Γ0 (1)Γ and
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Γ
×

=
³

¡
2(11)

¢ · · · 
¡
2(11)

¢ · · · 
¡
2(1)

¢ · · · 
¡
2()

¢ ´0
.

Assumption 4: Suppose that Φ

¡
1()

¢
= 

¡
1()

¢

√
 and 

¡
1()

¢
= 

¡
1()

¢

√
 for ( ) = 1 , where 

×
=  (1  ) and  is a sequence

of positive real numbers. The following conditions are assumed on 1   and on  as

 → ∞: (i) either  =
√
 or 

√
 → 0 for  ∈ {1  }; (ii) either  =

√
 or


√
→ 0

We shall consider approximating the function 
¡
2()

¢
in Assumption 3 by the series ex-

pansion
X2

=1
2

¡
2()

¢
 for some family of approximating functions 21 (·)  22 (·)  2.

Stacking the observed values of these functions into a matrix, we obtain the×2 matrix,

2 =
£
2
¡
2(11)

¢
  2

¡
2(11)

¢
  2

¡
2(1)

¢
  2

¡
2()

¢¤
, where 2

¡
2()

¢
=¡

21
¡
2()

¢
  22

¡
2()

¢¢0
is a 2 × 1 vector, for each ( ) ∈ {1 }. Simi-

larly, we shall approximate the functions 
¡
1()

¢
and 

¡
1()

¢
given in Assumption 4

by, respectively, the series expansions
X1

=1
Θ1

¡
2()

¢
andX1

=1
1

¡
2()

¢
 for a family of approximating functions 11 (·)  12 (·)   Stacking

the observed values of these functions, we get the  ×1 matrix,

1 =
£
1
¡
1(11)

¢
  1

¡
1(11)

¢
  1

¡
1(1)

¢
  1

¡
1()

¢¤
, with 1

¡
1()

¢
=¡

11
¡
1()

¢
  11

¡
1()

¢¢0
being a 1 × 1 vector, for each ( ) ∈ {1 }.

For notational convenience, we shall suppress the dependence of 1 and 2 on . In

addition, let 
×

=
h
1 2

i
, with  = 1 +2, and let Π

2 =
¡
1  2

¢0
,

Θ1 =
¡
Θ1 Θ1

¢0
, and 1 =

¡
1  1

¢0
.

Analogous to the linear IV model, we could interpret 2 as the matrix of observations

on the instruments of the model and 1 as the matrix of observations on the additional

covariates or included exogenous regressors. Viewed in this light, we see that Assumption

3 is general enough to accommodate a range of situations including both cases where there

are strong instruments and cases where the instruments are weaker. In particular, when

1 = · · · =  = min =
√
, our model specializes to the more classical situation where

the instruments are strong. On the other hand, the cases where some of the ’s ( = 1  )

grow at a rate slower than
√
 correspond to cases where at least some of the components

of the parameter vector of interest  are weakly identified. By allowing for the possibility

2The approximating functions 2 (·), for  = 1 2, may be polynomials, splines, or some other

family of functions as discussed in Newey (1997).
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that different ’s may grow at different rates, our setup also allows for heterogeneity in

how strongly the different components of  are identified. Note, however, that we do require

that
p
2

¡
min

¢2 → 0, since (as discussed in Chao and Swanson (2005), Hausman et al.

(2012), and Chao et al. (2012)), if this condition is not fulfilled, then consistent estimation

of at least some of the components of  may not be possible; and, in this paper, we focus

only on situations where we can consistently estimate . To interpret this condition, it is

easiest to consider the special case where 1 = · · · =  = min . In this case,
¡
min

¢2
can

be interpreted as giving the order of magnitude of the signal component of the IV model,

whereas
p
2 measures the order of magnitude of a leading noise term, so that, in order for

consistent estimation to be possible, the signal-to-noise ratio
¡
min

¢2

p
2 must diverge

to infinity. A consequence of imposing this condition is that our framework does not include

the Staiger and Stock (1997) type weak instrument situation, where 1 = · · · =  =

min =  (1), under which consistent point estimation cannot be achieved.

Likewise, Assumption 4 allows for possible local-to-zero modeling of the nonlinear com-

ponents 
¡
1()

¢
and 

¡
1()

¢
. In the special case where 1 = · · · =  =  =

√


and 1 = · · · =  = min =
√
, our structural equation of interest becomes a standard

partially linear model, whereas the system of first-stage equations becomes a standard mul-

tivariate generalized additive model . However, by allowing for the possibility that some of

the ’s and/or  may grow at a rate slower than
√
, we also accommodate situations

where the additional covariates may only be weakly correlated with () and/or with some

elements of ().

Assumption 5: (i)  → ∞ as  → ∞ such that  ∼ . (ii) 1 2 → ∞ as

→∞ such that 2
1 =  (1) and 2

2 =  (1). (iii) Let  = 
− (0)−10.

There exists a positive constant  such that min
¡
 0

¢ ≥   0  for all  sufficiently

large. (iv) Let ⊥ =  ()− (1) = (1)2
¡
 02

(1)2
¢−1

 02
(1) and let ⊥1 =

1
¡
 01

1
¢−1

 01
, where  (1) =  − 1

¡
 01

1
¢−1

 01
 with 

as defined in part (iii) above. Suppose that max1≤()≤

⊥1
()()

=  (1) and

max1≤()≤
⊥()() =  (2).

Note that part (ii) of Assumption 5 requires that both1 and2 grow at a rate slower

than the sample size . Hence, our setup does not include the type of many-instrument setup

of Morimune (1983) and Bekker (1994), where the number of instruments grows at the same

rate as , nor the type of many-regressor setup of Cattaneo, Jansson, and Newey (2018a,b),
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where the number of exogenous regressors grows to infinity on the same order as . However,

note that our assumptions are in accord with the interpretation of the structural equation

as a partially linear model with the nonlinear component being estimated nonparametrically

by a series estimator, as Newey (1997) has given results which show that consistent series

estimation requires , the number of approximating functions, to grow slower than the

sample size . In fact, for consistent series estimation using regression spline functions,

Newey (1997) provides an explicit rate restriction, where 2 → 0 as  → ∞, and our
assumption is in accord with this rate condition. Moreover, note that our setup does allow

the number of fixed or cluster-specific effects to be on the order of , so that the number

of overall covariates in the structural equation of interest will be on the order of . Hence,

we believe that our framework is general enough to accommodate a wide range of empirical

problems of interest.

Assumption 6: (i) min1≤≤  ≥ 3 for all ; (ii) There exists a positive integer  ≥ 3
such that max1≤≤  ≤  ∞ for all .

Assumption 7: Let W1 ⊆ R1 and W2 ⊆ R2 denote the support of 1() and 2(),

respectively. The following rates of approximation are assumed. (i) There exists a positive

real number  and a vector of coefficients 
1  such that

°° (·)− 101 (·)
°°
∞ = 

³

−
1

´
, as 1 →∞,

where 

1 =  (1) and

°° (·)− 101 (·)
°°
∞ = sup1∈W1

¯̄
 (1)− 101 (1)

¯̄
.

(ii) There exists a positive real number  and a matrix of coefficients Θ
1  such that

°° (·)−Θ101 (·)
°°
∞

= 

³

−
1

´
, as 1 →∞,

where max 

1 =  (1)  with max = max1≤≤  and

°° (·)−Θ101 (·)
°°
∞

=

max∈{12} sup1∈W1

¯̄
 (1)− 0Θ

101 (1)
¯̄
 with  denoting a  × 1 elementary

vector with 1 in the  component and 0 in all other components.

(iii) There exists a positive real number  and a matrix of coefficients Π
2 such that

°° (·)−Π202 (·)
°°
∞

= 

³

−
2

´
, as 2 →∞,

where max 

2 =  (1)  with max = max1≤≤  and

°° (·)−Π202 (·)
°°
∞

=
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max∈{12} sup2∈W2

¯̄
 (2)− 0Π

202 (2)
¯̄
. (iv) Assume that

max1≤()≤

°°Γ0 (1)()
°°
2

√
 =  (1).

A few comments about Assumption 7 are in order. Parts (i)-(iii) of this assumption

place conditions on the rate at which the error in approximating the functions  (·),  (·),
 (·), and Γ (·) must vanish uniformly. A similar assumption has been specified in Newey

(1997) in studying convergence rates for nonparametric series estimators (see Assumption

3 of that paper). As noted in that paper, the size of the exponents, such as ,  , ,

and  depends both on the degree of smoothness of the function to be approximated (i.e.,

the number of continuous derivatives that the functions has) and on the dimension of the

argument of the function (i.e., the dimension of 1() or 2() in our case). For example,

under Assumption 7(i), if the approximating functions used are splines or polynomials, then°° (·)− 101 (·)
°°
∞ = 

³

−
1

´
 with  = 1, where  is the number of continuous

derivatives of the function  (·) and 1 is the dimension of 1(). Since our results require

that these approximation errors vanish sufficiently fast, this, in turn, places certain require-

ments on the smoothness of the functions  (·),  (·),  (·), and Γ (·) and on the dimension
of 1() or 2(), with some trade-offs between the two. Finally, note that part (iv) of

Assumption 7 is similar to a condition given in Assumption 3 of Cattaneo, Jansson, and

Newey (2018b). As noted in that paper, this condition comes close to being minimal for the

central limit theorem to hold.

Although our specification allows the structural equation (1) and the system of first-stage

equations (2) to have nonlinear components, the results that we give in this paper will also,

of course, hold under a linear specification with (possibly) many weak instruments and/or

many weak covariates taking the form

() =  0
()0 +


101()√


+  + () (5)

() =
Θ

101()√


+
Π

202()√


+  + () (6)

where  = 1   and  = 1  . In this case, 1() and 2() will be exogenous regres-

sors/instruments that need not depend on other variables such as 1() and 2(). In

addition, in a strictly linear setup, parts (i)-(iii) of Assumption 7 that impose conditions on

the approximation errors by series estimation will no longer be needed.
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Assumption 8: Let  = 
£
 0

¤

£
0

¤
. Suppose that the limit of  exists, so

that  →  , as →∞ for some fixed ×1 vector  ∈ S, where S denotes some compact
subset of R.

To estimate the parameter (vector) of interest  in equation (1), we propose three new

jackknife-type IV estimators. We shall use the acronyms FEJIV, FELIM, and FEFUL to

denote, respectively, the Fixed Effect Jackknife IV, the Fixed Effect LIML, and the Fixed

Effect Fuller estimator.

1. FEJIV: b = ( 0)−1 0,

where  = ⊥ −  () (), ⊥ =  () −  (1), and  () = 
−

 (), with  () and  (1) being projection matrices that project into the column

space of
h
 

i
and

h
1 

i
, respectively. In addition,  denotes an  ×

diagonal matrix, whose diagonal elements b = ³ b1 b2 · · · b ´0
, when stacked

into a vector, correspond to the solution of the system of linear equations ⊥ =¡
 () ◦ ()

¢
, where ⊥ is an  × 1 vector containing the diagonal elements

of the projection matrix ⊥.

2. FELIM: The FELIM estimator b is the estimator that minimizes the objective func-
tion b () =

( −)
0
 ( −)

( −)
0
 (1) ( −)

 (7)

where  is as defined above in the definition of FEJIV and  (1) = 
−  (1)

with  (1) as defined above. b has the explicit representation
b = ³ 0

h
− b (1)

i

´−1 ³

 0
h
− b (1)

i

´
 (8)

where b is the smallest root of the determinantal equation detn 0
 − 

0
 (1)

o
= 0 with  =

h
 

i
.

3. FEFUL: The FEFUL estimator b is defined as follows
b = ³ 0

h
− b (1)

i

´−1 ³

 0
h
− b (1)

i

´

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where (1) = 
− (1) and b = hb − ³1− b´

i

h
1−

³
1− b´

i
for some constant . Here, b is the smallest root of equation
det

n

0
 − 

0
 (1)

o
= 0. For the Monte Carlo results reported in section 5,

we shall take  = 1.

To help develop some intuition for these new estimators, it is easiest if we focus the

discussion on FEJIV. To proceed, note first that, under our setup, it is not difficult to show

that b − 0 = (
0)−1 0+  (1) = (

0)−1 (Υ0+  0) +  (1) 

so that, at least in large samples, the “numerator” of the right-hand side of this equation has

a familiar form (i.e., it is in terms of a linear form Υ0 plus a bilinear form  0). Next,

note that an elementary result from linear algebra states that if  =  , where  is a

square matrix,  is a diagonal matrix, and  is a symmetric matrix, then  = ( ◦) ,
where  = (11 22  

)
0
and  = (11 22  

)
0
. Put in words, this result

states that the vector of diagonal elements of  is a linear transformation of the vector of

diagonal elements of , with the transformation matrix given by ( ◦). Since in the
definition of b , we have specified  = ⊥− () (), it follows that by choosing the

diagonal elements of  to satisfy the system of linear equations ⊥ = ¡ () ◦ ()
¢
,

where ⊥ =
¡
⊥11 

⊥
22  

⊥


¢0
, we would, by construction, end up with a matrix 

whose diagonal elements 11  
are all zero. This, in turn, leads to the bilinear

form  0 having the characteristics of a degenerate U-statistic, with expectation that is

properly centered at zero. This proper centering, in turn, allows b to be both consistent
and asymptotically normal under many weak instrument asymptotics. In addition, writeb − 0 = (

0)−1 0 ( ++ ), and note that

 0 ( ++ ) = (Φ +Υ +Ξ+ )
£
⊥ − () ()

¤
( + )

= (Φ +Υ + )
£
⊥ − () ()

¤
( + ) 

Looking at the equation above, we see that the matrix  is designed to not only partial

out the fixed effects, but also to make all the “projection residues”  (), 
()Υ,

and  ()Φ sufficiently small so as not to cause a bias problem even in the presence

of many weak instruments. For this purpose, it is important that our specification uses

13



 () This matrix projects into the orthogonal complement of the full set of exogenous

variables/approximating functions, () = (1 2 ), and not 
(1) whose use may

still leave the projection residue  (1)Υ relatively large. In addition, note that 
()

appears on both sides of the jackknife correction matrix  () () so that fixed ef-

fects and nonlinear exogenous components are taken out on both sides of the (multivariate)

bilinear form, not just on one side. FELIM and FEFUL are a bit more complicated than

FEJIV, but they share the same basic design as FEJIV; and, in consequence, they will also

be consistent and asymptotically normal under many weak instrument asymptotics, as we

will show in the theorems below.

On the other hand, jackknife IV estimators currently available in the literature do not

fully accomplish the dual goals of being both properly centered and of having all cluster-

specific effects and additional covariates properly partialed out. To be more specific, we

will briefly discuss a number of jackknife IV estimators that have been proposed in the

literature. The paper by Angrist, Imbens, and Krueger (1999) consider the JIVE1 and

JIVE2 estimators of the parameter vector  but in a cross-sectional setup without either

fixed effects or included exogenous regressors. Hence, these authors do not explicitly study

the more general version of these estimators that partials out additional covariates. Hausman

et al. (2012) introduce jackknife versions of LIML and Fuller estimators called HLIM and

HFUL, but they do so in a cross-sectional context where there are no fixed effects and where

only a small number of included exogenous regressors is allowed, so that the problem of

having to partial out fixed effects and a potentially large number of included exogenous

variables is not studied in that paper. In addition, the symmetric jackknife IV (SJIVE)

estimator proposed by Bekker and Crudu (2015) is formulated in a setting without fixed

effects and with no included exogenous regressors. Hence, that paper also does not consider

issues related to having to partial out additional covariates.

A recent paper, Evdokimov and Kolesár (2018), does examine a number of interesting

jackknife IV estimators that allow for partialing out of additional covariates. In the following

discussion we discuss how these estimators might perform if applied to our setting under

many weak instrument asymptotics. Consider first the IJIVE1 estimator studied in that

paper. This estimator was originally proposed by Ackerberg and Devereux (2009) and is

further analyzed in the grouped data setting by Evdokimov and Kolesár (2018). Using our
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notation, the estimator can be written in the form

b 1 =
³
 0 (1)

£
⊥ −

¡
⊥
¢¤ £


−

¡
⊥
¢¤−1

 (1)
´−1

×
³
 0 (1)

£
⊥ −

¡
⊥
¢¤ £


−

¡
⊥
¢¤−1

 (1)
´


It follows that we can further write the deviation of this estimator from the true value 0 as

b 1 − 0 = ( 01)
−1
( 01 + 01)

= ( 01)
−1
( 01 + Φ01+Υ0

1+  01) , (9)

where 1 = (1)
£
⊥ −

¡
⊥
¢¤ £


−

¡
⊥
¢¤−1

 (1). By straightforward

calculation, it is easy to see that the ( )

diagonal element of the matrix 1 is given by

1()() =

X
()=1


(1)

()()

1− ⊥
()()

h
⊥()() −

(1)

()()
⊥()()

i
6= 0

for ( ) = 1 , so that 
01, the bilinear form on the right-hand side of equation (9)

above, will not be a degenerate U-statistic and will not be properly centered at zero. Another

way of looking at this issue is that although the matrix
£
⊥ −

¡
⊥
¢¤ £


−

¡
⊥
¢¤−1

does have a “jackknife form” in the sense that the elements of its main diagonal are all

zero, it defines a bilinear form not with respect to  and  but with respect to the projected

vectors b = (1) and b = (1). Note, however, that in general the  element of b
will contain not just the  element of  but other elements as well, and similarly for b. In
consequence, merely having the diagonal elements zeroed out in this case is not sufficient for

the bilinear form 01 = b0 £⊥ −
¡
⊥
¢¤ £


−

¡
⊥
¢¤−1b to be properly centered

at zero. In some sense, the process of partialing out the covariates has interfered with the

process of jackknife recentering in the way this estimator is constructed. We can use a similar

argument to also show that the bilinear form for IJIVE2 is not properly centered at zero.

Now consider the UJIVE estimator, which was first introduced in Kolesár (2013) and

is further analyzed in the grouped data setting by Evdokimov and Kolesár (2018). This
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estimator takes the form

b  =
³
 0
h e ()

¡
 ()

¢−1 − e (1)
¡
 (1)

¢−1i

´−1

×
³
 0
h e ()

¡
 ()

¢−1 − e (1)
¡
 (1)

¢−1i

´


where  =
h
1 2

i
, e () =  () −

¡
 ()

¢
, and e (1) =  (1) −

¡
 (1)

¢
.

To discuss this estimator, it is most convenient to consider the  = 1 case (i.e., the case

where there is only one endogenous regressor). In this case, the diagonal matrix  defined

in Assumption 3 reduces to the scalar  = min . Now, we can write the deviation of this

estimator from the true value 0 as

b  − 0 =

µ
 0

2

¶−1µ
 0 + 0+ Φ0+Υ0

+  0

2

¶


where  =
£
 () −

¡
 ()

¢¤

¡
 ()

¢−1 − £ (1) −
¡
 (1)

¢¤

¡
 (1)

¢−1
.

Note first that the diagonal elements of the matrix  are all equal to zero, so the bilinear

term for this estimator,  0, is properly centered. However, this estimator has a bias

problem that arises from the presence of the term  0
2
, which can be nonnegligible

and even large in order of magnitude. To see this, observe first that simple manipulation

shows that  = (1)
¡
 (1)

¢−1− ()
¡
 ()

¢−1
. Using this identity, we can

write

 0

2
=

Υ0
(1)

¡
 (1)

¢−1


2
− Υ0


()

¡
 ()

¢−1


2

+
Φ0

(1)
¡
 (1)

¢−1


2
− Φ0

()
¡
 ()

¢−1


2

+
 0 (1)

¡
 (1)

¢−1


2
−  0 ()

¡
 ()

¢−1


2
 (10)

Note that the term on the right-hand side of (10) which can be particularly large in order

of magnitude is Υ0
(1)

¡
 (1)

¢−1


2
. In fact, one can show that

Υ0
(1)

¡
 (1)

¢−1


2
=

Γ
0


(1)
¡
 (1)

¢−1
√
2

√

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=




Γ0
(1)

¡
 (1)

¢−1



= 

µ




¶
.

Hence, this estimator will be inconsistent as long as  =  (). This will certainly be true in

weak instrument cases where  =  (), but can also occur even in strong instrument cases

where  ∼
√
 if the included exogenous regressors enter significantly into the structural

equation of interest, in which case  ∼
√
. Our simulation results, given in Section 5,

confirm that UJIVE tends to do much less well in terms of bias when there are included

exogenous regressors that enter significantly into the structural equation of interest.

It should be noted, however, that, in the context of a linear IV model such as that

given by (5) and (6), UJIVE can be shown to be consistent under many weak instrument

asymptotics in the special case where the equation of interest contains no included exogenous

regressors and only fixed effects. This is not only because in this case there is no term of the

form  0
2
 = 

01
1 (2

√
), but also because, in a linear model with no

included exogenous regressors, Υ0


2


= Π20 02
h


¡


¢−1 − (2)
¡
 (2)

¢−1i
 (

√
) = 0 so that, without the

contaminating effects of the included exogenous regressors, UJIVE does properly partial out

the fixed effects.

Since our setup essentially has a panel data structure, one may also wonder if it is possible

to simply first difference away the fixed effects and then do a jackknife-type recentering. A

problem with this strategy occurs if the IV regression contains, in addition to fixed effects,

other included exogenous regressors which cannot be eliminated by first-differencing. In that

case, one will have to do a projection to partial out these included exogenous regressors,

leading to the same problem as we have discussed previously with regard to IJIVE1. In fact,

the problem will be worse in this case due to the serial correlation in the errors induced by the

first-differencing. Moreover, even if there are no additional included exogenous regressors, the

serial correlation induced by first differencing causes additional complications. In particular,

let  =  ( 0)−1  0 denote the projection matrix of the instruments3. Then, to achieve

proper jackknife recentering in this case requires the removal not only of the elements on

the main diagonal of  but also the elements on the superdiagonal and the subdiagonal of

, so that with serial correlation proper recentering is attained only at the cost of greater

information loss. Finally, the presence of serial correlation also makes the large sample

3Here, we let  denote the matrix of observations on the instruments because we are referring to a case

where there are no included exogenous variables, 1.
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covariance matrix of a jackknife IV estimator under many weak instrument asymptotics

both more complicated and more difficult to estimate. Hence, we believe that our approach

for removing fixed or cluster-specific effects has certain advantages over any alternative

procedure that is based on first-differencing. It should be noted that a recent panel data

paper by Hsiao and Zhou (2018) does take the approach of constructing a jackknife IV

estimator after first-differencing the data. However, the objective and focus of that paper

differs greatly from ours. First of all, the panel data simultaneous equations model specified

in Hsiao and Zhou (2018) does not allow for the degree of instrument weakness that we

consider. In addition, the model that they consider does not have error heteroskedasticity or

included exogenous regressors. If we apply their estimator to our setting, the estimator will

not be consistent in the case where 2 ∼
¡
min

¢2
or in the case where 2

¡
min

¢2 →∞

but
p
2

¡
min

¢2 → 0. Still, it should be stressed that in their setting with strong

instruments and error homoskedasticity their estimator has good asymptotic properties.

Turning our attention back to the equation ⊥ =
¡
 () ◦ ()

¢
, note that in

order for this system of linear equations to have a unique solution, we need the matrix¡
 () ◦ ()

¢
to be invertible. The following lemma provides sufficient conditions for

the invertibility of
¡
 () ◦ ()

¢
.

Lemma 1: Suppose that Assumptions 5 and 6(i) are satisfied. Then, there exists a positive

constant  such that min
¡
 () ◦ ()

¢ ≥   0 , for all  sufficiently large4.

It should be noted that a more general result on conditions for the invertibility of

Hadamard products has been given previously in Cattaneo, Jansson, and Newey (2018b)5.

However, we choose to present a specialization of their result because it shows that, in

the context of our cluster-sampling setup, a key condition for ensuring the invertibility of¡
 () ◦ ()

¢
is min1≤≤  ≥ 3, which we explicitly assume in Assumption 6 part

(i) above.

A further observation is that, in analyzing estimators that are obtained from minimizing

a variance ratio (e.g., FELIM), it is often convenient to first consider the objective function

in the form  () =
³
0

0


´

³
0

0
 (1)

´
, where  = [] and where  is a

(+ 1)×1 vector, not initially normalized to identify the dependent variable from the regres-
4The proof of Lemma 1 follows in a manner similar to the argument given in Section 3 of the Supplemental

Appendix to Cattaneo, Jansson, and Newey (2018b). Hence, to save space, we have not included the proof

here. An explicit proof of this lemma, however, is available from us upon request.
5See, in particular, the analysis given in Section 3 of their Supplemental Appendix.
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sors. Here, ones performs the minimization problem on  () in order to obtain a minimizere = ³ e1 e02 ´0, with e1 a scalar and e2 a ×1 vector, and subsequently normalize the last
 components of e to obtain an estimator e = −e2e1 for the coefficients of the endoge-
nous regressors . The following assumption ensures that this subsequent normalization is

well-defined. Moreover, in the proof of Lemma S2-11 given in the Supplemental Appendix

to this paper, we show that, by following this procedure, we end up with exactly the FELIM

estimator b, that satisfies the first-order conditions of the objective function given by (7)
and that also has explicit representation given by equation (8) above.

Assumption 9: Consider the variance-ratio objective function

 () =
³
0

0


´

³
0

0
 (1)

´
, where  ∈  =

©
 ∈ R+1 : kk2 = 1

ª
. Let e

be a (+ 1)× 1 vector that minimizes the objective function  ()  among all  ∈  (i.e.,e = argmin∈  ()). Partition e = ³e1 e02´0 as defined above and assume that there
exists a positive constant  such that¯̄̄e1 ¯̄̄ ≥   0  for all  sufficiently large. (11)

Note that constraining  (so that kk2 = 1) is not restrictive since we are dealing with

an objective function  () that is a ratio of quadratic forms in . More precisely, let

 = argmin∈R+1  (), where  6= 0, and let e = 
°°°°

2
so that

°°°e°°°
2
= 1. Then, 

¡

¢
=³


0

0


´

³

0

0
 (1)

´
=
³°°°°−1

2

0

0


°°°°−1
2

´

³°°°°−1

2

0

0
 (1)

°°°°−1
2

´
= 

³e´, so any minimal value of  () obtained by minimizing  over all  ∈ R+1 can

also be achieved by some e such that °°°e°°°
2
= 1.

3 Consistency and Asymptotic Normality

of Point Estimators

Theorem 1: Suppose that Assumptions 1-7 are satisfied. Let

 =
¡
 0 £− 

(1)
¤

¢−1 ¡

 0 £− 
(1)

¤

¢
, for some sequence  such that  =



³£
min

¤2

´
=  (1). Then, as →∞,

°°

¡
 − 0

¢
min

°°
2

→ 0 and
°° − 0

°°
2

→ 0.

Special cases of the class of estimators that satisfy the conditions of Theorem 1, and

are thus consistent in the sense described in the theorem, include FEJIV b, FELIM b,
19



and FEFUL b. Evidently, the main difference between these estimators is the different
specifications of . b takes  = 0 for all ; b takes  = b where b is the
smallest root of the determinantal equation det

n

0
 − 

0
 (1)

o
= 0; and b takes

 = b = hb − ³1− b´

i

h
1−

³
1− b´

i
, as described earlier. Hence, by

verifying that, in all three cases,  satisfies the condition  = 

³£
min

¤2

´
=  (1),

we can easily specialize the consistency result of Theorem 1 to establish the consistency of

FEJIV, FELIM, and FEFUL. These results are given in the following corollary.

Corollary 1: Under Assumptions 1-7 and 9, the following results hold as  → ∞. (a)°°°

³b − 0

´
min

°°°
2

→ 0 and
°°°b − 0

°°°
2

→ 0. (b)
°°°

³b − 0

´
min

°°°
2

→ 0 and°°°b − 0

°°°
2

→ 0. (c)
°°°

³b − 0

´
min

°°°
2

→ 0 and
°°°b − 0

°°°
2

→ 0.

The next two results establish asymptotic normality for the FELIM and FEFUL es-

timators, under two different cases: (i) Case I: 2
¡
min

¢2
=  (1) and (ii) Case II:

2
¡
min

¢2 → ∞ but
p
2

¡
min

¢2 → 0. The FEJIV estimator can also be shown

to have an asymptotic normal distribution under both Cases I and II. However, we choose

to focus our theoretical analysis on FELIM and FEFUL because, as noted previously, the

results of our Monte Carlo study indicate that FELIM and FEFUL have better finite sample

properties than FEJIV.

To facilitate the statement of the next two results, define

Λ = −1
 (Σ1 + Σ2)

−1
 = −1

 Σ
−1
 , (12)

Λ =

¡
min

¢2
2

−1
 Σ2

−1
 , (13)

where  = Γ0 (1)Γ, Σ1 =  
¡
Γ0 (1)

√
|F



¢
= Γ0 (1)2

(1)Γ,

and

Σ2 = −1
  

¡
 0|F



¢
−1



=

X
()()=1
()6=()

2()()
£
2()|F



¤
−1

 
£
 ()

0
()|F



¤
−1



+

X
()()=1
()6=()

2()()
−1
 

£
 ()()|F



¤

£
()

0
()|F



¤
−1

 ,
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with Σ = Σ1 + Σ2 and  () = () − () for ( ) = 1 . Here, for any random

vector ,  
¡
|F



¢
denotes the conditional variance-covariance matrix of  given F

 . In

addition, let 2 = 
³
2(11)  

2
()

´
= 

¡
21  

2


¢
, where 2() =

h
2()|F



i


for ( ) = 1  and where, for notational convenience, we suppress the dependence of

2() on F
 .

As evident from the results given below, Λ and Λ are the (conditional) variance-

covariance matrices of FELIM (and also of FEFUL) in large samples under Cases I and II,

respectively.

Theorem 2: Suppose that Assumptions 1-9 are satisfied. In addition, suppose that Case

I holds so that 2
¡
min

¢2
=  (1). Then, Λ is positive definite  for all  suffi-

ciently large; and, as →∞, Λ−12 

³b − 0

´
→  (0 ) and Λ

−12
 

³b − 0

´
→

 (0 ).

Theorem 3: Suppose that Assumptions 1-9 are satisfied, and suppose that Case II holds,

so that
¡
min

¢2
2 =  (1)  but

p
2

¡
min

¢2 → 0. In addition, let e be a  × 

matrix with 1 ≤  ≤ , and suppose that there exists a positive constant  such that°°°e

°°°
2
≤  ∞ and min

³eΛ
e0´ ≥ 1  0 . Then,¡

min 
p
2

¢ ³eΛ
e0´−12 e

³b − 0

´
→  (0 ) and¡

min 
p
2

¢ ³eΛ
e0´−12 e

³b − 0

´
→  (0 ).

As alluded to earlier, the asymptotic results for FEJIV, FELIM, and FEFUL given in

the above theorems can be specialized to obtain results for the linear IV regression case with

(possibly) many weak instruments and/or many weak covariates, as specified in equations

(5) and (6) above.

4 Covariance Matrix Estimation and Hypothesis

Testing

To consistently estimate the asymptotic variance-covariance matrix of FELIM and FE-

FUL, we propose the following estimators

b = b−1

bΣ
b−1
 and b = b−1


bΣ
b−1
 , (14)
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where

b =  0
h
− b (1)

i
, b =  0

h
− b (1)

i
bΣ =  0 ( [b ◦b]) − b (b ◦b)0  ( ◦)  ¡b0 ◦ ()

¢
− ¡b0 ◦ ()

¢0
 ( ◦) (b ◦b)b0 + bb0 (b ◦b)0  ( ◦) (b ◦b)

+
³b0 ◦ b

´0
 ( ◦)

³b0 ◦ b

´
,bΣ =  0 ( [b ◦b ]) − b (b ◦b )0  ( ◦) ¡b 0 ◦ ()

¢
− ¡b 0 ◦ ()

¢0
 ( ◦) (b ◦b )b0 + bb0 (b ◦b )0  ( ◦) (b ◦b )

+
³b 0 ◦ b

´0
 ( ◦)

³b 0 ◦ b

´
.

and where  =
£
 ◦

¤−1
, b = ()

³
 −b´, b = ()

³
 −b´,b = () −bb0, and b = () − bb0 . In addition, letb = h 0 ()

³
 −b´i ∙³ −b´0 ()

³
 −b´¸ and

b = h 0 ()
³
 −b´i ³ −b´0 ()

³
 −b´ denote estimators of the pa-

rameter  = lim→∞
£
 0

¤

£
0

¤
 based on b and b , respectively.

Our next result shows the consistency of the covariance matrix estimators given in equa-

tion (14) under both Cases I and II6.

Theorem 4: Suppose that Assumptions 1-9 are satisfied. Then, the following statements

are true.

(a) For Case I, where 2
¡
min

¢2
=  (1), 

b = Λ +  (1) and 
b =

Λ +  (1), where Λ is as defined in equation (12).

(b) For Case II, where2
¡
min

¢2 →∞, butp2
¡
min

¢2 → 0,
h¡
min

¢2
2

i

b =

6It can be shown that an estimator of the asymptotic covariance matrix of FEJIV, which will be consistent

under both Case I and II, is given by

b = b−1bΣ b−1 = ( 0)−1
∙
 0 +

³b ◦ b´0  ( ◦) ³b ◦ b´¸ ( 0)−1 

where  = 
¡b(11) b(11) b(1) b()¢, b() = 0() (b ◦ b), b =

 ()
³
 −b´, and b =  (). Note also that the standard error used for FEJIV in our Monte

Carlo study given in section 5 is based on the above formula.
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Λ +  (1) and
h¡
min

¢2
2

i

b = Λ +  (1), where Λ is as defined

in equation (13).

Theorem 5 below provides asymptotic normality results for t-statistics associated with

the FELIM and FEFUL estimators in the case where 1 = · · · =  = min . The

case where the degree of instrument weakness is homogeneous and does not vary across

the different first-stage equations is one which is often assumed in previous papers on weak

and/or many instruments. In this case, we show that, without any additional side condi-

tions that may restrict the form of the linear hypothesis tested, the t-ratio based on our

estimators has an asymptotic standard normal distribution under the null hypothesis, as

long as
p
2

¡
min

¢2
=
p
2 ()

2 → 0. Moreover, the results show that, under these

same rate conditions, the tests are also consistent, as the test statistics diverge under fixed

alternatives.

Theorem 5: Suppose that Assumptions 1-9 are satisfied. Suppose further that the diagonal

matrix  in Assumption 3 takes the form  = min ·  (i.e., 1 = · · · =  = min ).

Then, the following statements are true for the t-statistics T =
³
0b − 

´


q
0b and

T =
³
0b − 

´


q
0b .

a. For Case I, where 2
¡
min

¢2
=  (1):

(i) Under 0 : 
00 = , T

→  (0 1) and T
→  (0 1) 

(ii) Under 1 : 
00 6= , with probability approaching one, as  →∞, the following

results hold: T → +∞ if 00  ; T →−∞ if 00  ; T → +∞ if 00  ;

and T →−∞ if 00  .

b. For Case II, where 2
¡
min

¢2 →∞ but
p
2

¡
min

¢2 → 0:

(i) Under 0 : 
00 = , T

→  (0 1) and T
→  (0 1) 

(ii) Under 1 : 
00 6= , with probability approaching one, as  →∞, the following

results hold: T → +∞ if 00  ; T →−∞ if 00  ; T → +∞ if 00  ;

and T →−∞ if 00  .
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Our next result considers cases where we test a null hypothesis involving only one coef-

ficient, such as testing the significance of a particular parameter. We choose to analyze this

case because this seems to be the most frequent use of the t-statistic by empirical researchers.

In these cases, we establish that, under mild additional conditions, the t-test based on our

proposed estimators will be robust to many weak instruments, even if there is heterogeneity

in the degree of instrument weakness across the different first-stage equations. Moreover,

our test will be robust to many weak instruments even if the empirical researcher using our

test has no knowledge of how the degree of instrument weakness varies across the different

first-stage equations. For this result, we introduce a modification of Assumption 3.

Assumption 3*: Suppose that Υ

¡
2()

¢
= 

¡
2()

¢

√
 for ( ) = 1 ,

where  has the form

 =

⎛⎝ 1
1×1

0

0
¡
min

¢ · 2
⎞⎠ , (15)

with 1 = 
¡
1  1

¢
 and where 1 and 2 are positive integers, with 1 + 2 = .

The following conditions are assumed. (i) Either  =
√
 or 

√
 → 0 for  ∈

{1  }. (ii) Let min = min1≤≤ and suppose that 
min
 → ∞ as  → ∞ such

that
p
2

¡
min

¢2 → 0. (iii)
¡
min

¢
 → 0 as  → ∞ for  ∈ {1  1}. (iv) Let 

be as defined in Assumption 3(iii) above, and suppose that there exists a positive constant

 such that max () ≤   ∞ and min () ≥ 1  0  for all  sufficiently

large. (v) Let  denote a  × 1 elementary vector whose  element is 1 with all other
elements (or components) equal to 0. Partition −1

 as −1
 =  =

³

0
1· 

0
2·

´0
, where

1· is 1 ×  and 2· is 2 × . Suppose that there exists a positive constant ∗ such that

0
0
2·2· ≥ ∗  0 for all  sufficiently large and for  ∈ {1  }.
Note that writing the matrix  in the form given by equation (15) may appear to

require a particular ordering of the diagonal elements 1  1 
min
 of , where 

min
 is

placed in the last 2 diagonal position. However, it is easily seen that the way  is specified

in equation (15) does not really lead to any loss of generality. In fact, a more general 

matrix, where not all of the diagonal elements grow at the same rate, as →∞, can always
be put in the form given in equation (15), via repermutation of the rows and columns of .

To see this, suppose that 1  1 
min
 are not ordered as in equation (15), so that we

have some diagonal matrix ∗
 whose diagonal elements are 1  1 

min
  but in some
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other ordering. Then, there exists some permutation matrix  such that  = ∗


0,

where  is the diagonal matrix given in equation (15). Moreover, let the elements of b∗ ∗0,
∗, and b ∗ be ordered in a way that is conformable with ∗

 and let
b 0, , and b be the

corresponding vectors and matrix but with elements ordered conformably with . Then,

it is easy to see that b = b∗, 0 = ∗0,  = ∗, b =  b ∗ 0. Hence, by making use of

these relations and of the fact that  is an orthogonal matrix, we further obtain that T∗ =

∗0
³b∗ − ∗0

´

p
∗0b ∗∗ = ∗0 0

³b∗ − ∗0
´

p
∗0 0 b ∗ 0∗ = 0

³b − 0

´

p
0b  = T.

It follows that the value of the t-statistic is invariant to repermutation of the order of the

elements of b, 0, , and b , so that the asymptotic distribution which we derive for T, under
an assumed ordering of the elements of b, 0, , and b that is conformable with equation

(15) will still apply, even if the t-statistic computed by the empirical researcher is based on

some other ordering.

Here, we let 1 = 
¡
1  1

¢
 such that

¡
min

¢
 → 0 as  → ∞ for

 ∈ {1  1}, where 1 and 2 are positive integers with 1 + 2 = . This specification

excludes the case where 1 = 0, or 2 = , because this case has already been covered by

Theorem 5.

Theorem 6: Suppose that Assumptions 1, 2, 3*, 4-9 are satisfied; and, in what follows,

let  denote a  × 1 elementary vector whose  element is 1 with all other elements

(or components) equal to 0, and define the t-statistics T =
³
0b − 

´


q
0 b and

T =
³
0b − 

´


q
0 b.

a. For Case I, where2
¡
min

¢2
=  (1), the following results hold for any  ∈ {1  }.

(i) Under 0 : 
0
0 = , T

→  (0 1) and T
→  (0 1).

(ii) Under 1 : 
0
0 6= , with probability approaching one, as →∞, the following

results hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if

00  ; and T → −∞ if 00  .

b. For Case II, where 2
¡
min

¢2 →∞ but
p
2

¡
min

¢2 → 0, the following results

hold, for any  ∈ {1  }.

(i) Under 0 : 
0
0 = , T

→  (0 1) and T
→  (0 1).
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(ii) Under 1 : 
0
0 6= , with probability approaching one, as →∞, the following

results hold: T → +∞ if 00  ; T → −∞ if 00  ; T → +∞ if

00  ; and T → −∞ if 00  .

Comparing Assumption 3* with Assumption 3, we see that the one additional side con-

dition required for Theorem 6 is the condition placed on elements of 2· in part (v) of

Assumption 3*. To test hypotheses involving only the  coefficient, this condition will be

violated only if the  column of 2· does not have a single nonzero entry, which seems

unlikely in most practical applications.

To date, papers in the weak instrument literature have focused primarily on size con-

trol, with little attention paid to test consistency under weak identification. One exception

is a recent paper by Mikusheva and Sun (2020), which shows that a condition similar top
2

¡
min

¢2 → 0 is both necessary and sufficient for the existence of a consistent test.

Interpreted in light of their result, the results presented in Theorems 5 and 6 above prove

that t-tests based on FELIM and FEFUL are consistent as long as instruments are strong

enough so that consistency in hypothesis testing is possible. In contrast, t-tests based on es-

timators such as the 2SLS estimator will only be consistent if 2
¡
min

¢2 → 0 (i.e., under

stronger instruments). Test statistics based on LIML also have undesirable properties under

many weak instrument asymptotics, when there is error heteroskedasticity. In addition, note

that one advantage of t-tests is that they are particularly easy to apply if one is interested in

testing against one-sided alternatives. The results of Theorems 5 and 6 show that, when the

null hypothesis is incorrect, t-tests based on FELIM and FEFUL diverge in the direction of

the true alternative, with probability approaching one, even in situations where identifica-

tion is weaker than that typically assumed under standard large sample theory, provided of

course that
p
2

¡
min

¢2 → 0. Hence, the test statistics proposed in this paper should be

useful to empirical researchers interested in testing whether an effect in a particular direction

is statistically significant.

5 Monte Carlo Results

In this section, we report some Monte Carlo results based on a setup similar to that of

Hausman et al. (2012), but extended to the cluster-sample/panel data setting. In particular,

we consider two closely related groups of data-generating processes:
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DGP 1:

() = 
1×1

()
1×1

+ 0
1×9

1()
9×1

+  + (),

() = 
1×1

2()
1×1

+ Φ0
1×9

1()
9×1

+  + ().

In all experiments that utilize this DGP, we take  =
³
1 1 · · · 1

´0
andΦ =

³
1 1 · · · 1

´0
.

DGP 2:

() = 
1×1

()
1×1

+ 1
1×1

1()
1×1

+  + (),

() = 
1×1

2()
1×1

+ Φ1
1×1

1()
1×1

+  + ().

In all experiments that utilize this DGP, we take 1 = 1 and Φ1 = 1. Additionally, we set  =

300 and  = 3 for each  ∈ {1 2  300}, so that  = 900. We also take
©
1()

ª900
()=1

≡
 (0 1),

©
2()

ª900
()=1

≡  (0 1), and
©
()

ª900
()=1

≡  (0 1). Moreover,

1(), 2(), and () are all mutually independent. The ( )

observation of the vector

of instruments is specified to be 2() =
³
2() 22() 32() 42() 2()()1 · · ·

· · · 2()()5

´0
, while the ( )


observation of the vector of included exogenous re-

gressors, or covariates, is given by 1() =
³
1() 21() 31() 41() 1()()1 · · ·

· · · 1()()5

´0
, where () ∈ {0 1} for  ∈ {1 2  5} is a binary variable such that

Pr
¡
() = 1

¢
= 12 and where

©
()

ª
is independent across both ( ) and . The

structural disturbance, () is allowed to exhibit conditional heteroskedasticity in a manner

similar to the design given in Hausman et al. (2012). In particular, under DGP1, we take

() = () +

s
1− 2

2 + (086)
4

¡
1() + 0862()

¢
 (16)

where 1()|1() 2() ∼ 
³
0 1

h
1 +

¡
091() + 2()

¢2i´
and 2() ∼ 

¡
0 (086)

2
¢
.

Both of these distributions are assumed to be independent across the index ( ). Under

DGP2, () has a similar structure as given in equation (16) above, except that we take

1()|1() 2() ≡ 1()|1() 2() ∼ 
³
0 2

h
1 +

¡
1() + 2()

¢2i´
. Also, 1 and

2 are normalization constants chosen so that under both DGP1 and DGP2 the unconditional
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variance,  
¡
1()

¢
, is equal to 1. For all experiments reported below, we set  = 03 and,

under both DGP1 and DGP2, we choose the parameter , so that the R-squared for the

regression of 2 on the instruments and the included exogenous variables take the values 0,

01, and 02.

Our simulation study examines the finite sample properties of our three estimators (FE-

JIV, FELIM, and FEFUL) and their associated t-statistics. Additionally, we compare the

performance of our estimators with the 2SLS estimator, the IJIVE1 estimator originally pro-

posed in Ackerberg and Devereux (2009), the IJIVE2 estimator introduced in Evdokimov

and Kolesár (2018), and the UJIVE estimator originally proposed in Kolesár (2013) and

further studied in Evdokimov and Kolesár (2018). The comparison of these point estimators

is made on the basis of median bias and nine decile range. We also evaluate the associated

t-statistics for these estimators on the basis of size control, as measured by their rejection

frequencies under the null hypothesis 0 :  = 0.

The results of our Monte Carlo study are reported in Tables 1-6 below.

Table 1: Median Bias, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1056 0.0429 0.0417 0.3405 0.0012 0.0029 0.0157

24 0.1 0.1028 0.0417 0.0400 0.3474 -0.0002 0.0007 0.0122

0.2 0.1060 0.0423 0.0417 0.3517 0.0022 0.0083 0.0200

0 0.0852 0.0321 0.0298 0.2241 -0.0059 0.0009 0.0105

32 0.1 0.0830 0.0273 0.0264 0.2376 -0.0131 -0.0010 0.0082

0.2 0.0842 0.0295 0.0285 0.2453 -0.0094 0.0026 0.0118

0 0.0729 0.0247 0.0244 0.1622 -0.0062 -0.0004 0.0079

40 0.1 0.0714 0.0245 0.0240 0.1783 -0.0084 -0.0014 0.0058

0.2 0.0724 0.0270 0.0255 0.1802 -0.0050 0.0032 0.0104

0 0.0625 0.0212 0.0200 0.1269 -0.0068 0.0004 0.0065

48 0.1 0.0605 0.0182 0.0176 0.1272 -0.0117 -0.0020 0.0042

0.2 0.0605 0.0190 0.0182 0.1414 -0.0082 0.0009 0.0073

Results based on 10,000 simulations
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Table 2: Nine Decile Range 0.05 to 0.957, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.5986 0.9415 0.9447 6.1610 1.5655 1.2073 1.0575

24 0.1 0.6032 0.9402 0.9428 6.1080 1.5857 1.2502 1.0800

0.2 0.5968 0.9392 0.9360 6.2265 1.5635 1.1811 1.0528

0 0.5386 0.7618 0.7639 5.7060 1.1133 0.9156 0.8485

32 0.1 0.5367 0.7662 0.7657 6.2091 1.1017 0.9167 0.8526

0.2 0.5492 0.7763 0.7716 5.8831 1.1172 0.9282 0.8678

0 0.4994 0.6591 0.6570 5.5880 0.8722 0.7608 0.7229

40 0.1 0.4961 0.6412 0.6415 5.1816 0.8585 0.7572 0.7170

0.2 0.4970 0.6528 0.6546 5.5664 0.8550 0.7454 0.7109

0 0.4608 0.5790 0.5764 4.7318 0.7231 0.6490 0.6237

48 0.1 0.4586 0.5822 0.5822 5.0871 0.7322 0.6516 0.6288

0.2 0.4700 0.5873 0.5855 5.0922 0.7309 0.6636 0.6389

Results based on 10,000 simulations

Table 3: 0.05 Rejection Frequencies8, DGP 1

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1861 0.1056 0.0961 0.5167 0.0322 0.0559 0.0588

24 0.1 0.1809 0.1013 0.0920 0.5333 0.0307 0.0583 0.0602

0.2 0.1894 0.1038 0.0940 0.5318 0.0317 0.0579 0.0610

0 0.1716 0.1077 0.0962 0.5281 0.0313 0.0486 0.0515

32 0.1 0.1678 0.1061 0.0974 0.5307 0.0367 0.0556 0.0587

0.2 0.1767 0.1124 0.1033 0.5342 0.0373 0.0581 0.0620

0 0.1662 0.1143 0.1055 0.5390 0.0371 0.0510 0.0536

40 0.1 0.1600 0.1084 0.0987 0.5573 0.0371 0.0519 0.0553

0.2 0.1643 0.1129 0.1033 0.5469 0.0387 0.0521 0.0555

0 0.1551 0.1166 0.1039 0.5749 0.0348 0.0479 0.0508

48 0.1 0.1542 0.1126 0.1033 0.5695 0.0399 0.0531 0.0555

0.2 0.1643 0.1200 0.1102 0.5733 0.0409 0.0567 0.0603

7By nine decile range we mean the range between the 005 and the 095 quantiles.
8See Ackerberg and Devereux (2009), Kolesár (2013), and Evdokimov and Kolesár (2018) for formulae

for the estimators IJIVE1, IJIVE2, and UJIVE as well as for the standard errors used in constructing the

t-statistics for these estimators.
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Results based on 10,000 simulations

Table 4: Median Bias, DGP 2

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1056 0.0429 0.0417 -0.0095 0.0012 0.0029 0.0157

24 0.1 0.1030 0.0403 0.0397 -0.0110 -0.0037 0.0034 0.0155

0.2 0.1076 0.0457 0.0445 -0.0047 0.0051 0.0135 0.0258

0 0.0852 0.0321 0.0298 -0.0120 -0.0059 0.0009 0.0105

32 0.1 0.0837 0.0285 0.0281 -0.0137 -0.0102 -0.0007 0.0087

0.2 0.0869 0.0315 0.0305 -0.0138 -0.0079 0.0058 0.0156

0 0.0729 0.0247 0.0244 -0.0135 -0.0062 -0.0004 0.0079

40 0.1 0.0715 0.0255 0.0246 -0.0137 -0.0069 -0.0002 0.0073

0.2 0.0752 0.0277 0.0271 -0.0077 -0.0030 0.0082 0.0148

0 0.0625 0.0212 0.0200 -0.0096 -0.0068 0.0004 0.0065

48 0.1 0.0603 0.0196 0.0185 -0.0108 -0.0098 -0.0013 0.0048

0.2 0.0635 0.0208 0.0198 -0.0111 -0.0089 0.0026 0.0085

Results based on 10,000 simulations

Table 5: Nine Decile Range 0.05 to 0.95, DGP 2

2 R2
2|21 2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.5986 0.9415 0.9447 1.5682 1.5655 1.2073 1.0575

24 0.1 0.6153 0.9693 0.9704 1.6082 1.6216 1.3049 1.1267

0.2 0.6399 1.0004 0.9935 1.6862 1.6536 1.3127 1.1508

0 0.5386 0.7618 0.7639 1.0812 1.1133 0.9156 0.8485

32 0.1 0.5574 0.7975 0.7949 1.1461 1.1600 0.9613 0.8939

0.2 0.5821 0.8192 0.8103 1.1639 1.1644 1.0028 0.9361

0 0.4994 0.6591 0.6570 0.8578 0.8722 0.7608 0.7229

40 0.1 0.5119 0.6670 0.6634 0.8851 0.8864 0.7891 0.7481

0.2 0.5301 0.6920 0.6876 0.9098 0.9150 0.8068 0.7691

0 0.4608 0.5790 0.5764 0.7159 0.7231 0.6490 0.6237

48 0.1 0.4762 0.6038 0.6019 0.7554 0.7649 0.6822 0.6560

0.2 0.4995 0.6237 0.6216 0.7731 0.7742 0.7101 0.6838

Results based on 10,000 simulations
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Table 6: 0.05 Rejection Frequencies, DGP 2

2 R2
2|21

2SLS IJIVE1 IJIVE2 UJIVE FEJIV FELIM FEFUL

0 0.1861 0.1056 0.0961 0.2236 0.0322 0.0559 0.0588

24 0.1 0.1783 0.1015 0.0924 0.2243 0.0304 0.0627 0.0646

0.2 0.1786 0.1018 0.0927 0.2306 0.0313 0.0631 0.0657

0 0.1716 0.1077 0.0962 0.2563 0.0313 0.0486 0.0515

32 0.1 0.1718 0.1098 0.0992 0.2575 0.0356 0.0547 0.0579

0.2 0.1739 0.1155 0.1039 0.2607 0.0380 0.0600 0.0627

0 0.1662 0.1143 0.1055 0.2770 0.0371 0.0510 0.0536

40 0.1 0.1600 0.1133 0.1029 0.2767 0.0380 0.0558 0.0590

0.2 0.1608 0.1167 0.1063 0.2851 0.0389 0.0578 0.0609

0 0.1551 0.1166 0.1039 0.2958 0.0348 0.0479 0.0508

48 0.1 0.1579 0.1173 0.1057 0.2960 0.0384 0.0524 0.0555

0.2 0.1614 0.1240 0.1121 0.2988 0.0440 0.0605 0.0616

Results based on 10,000 simulations

Looking over the results reported in Tables 1-6, note first that, in terms of median bias,

the performance of FEJIV, FELIM, and FEFUL are almost uniformly better than 2SLS,

IJIVE1, and IJIVE2, although our experiments do show the latter three to be less dispersed

than the three estimators studied in this paper. Comparing FELIM and FEFUL in terms

of the nine decile range, we see that FEFUL is less dispersed than FELIM, which is in

accord with the motivation behind the original Fuller (1977) modification. Perhaps the most

notable difference in performance is that t-statistics based on FELIM and FEFUL have

much less size distortion than t-statistics constructed from any of the other five estimators.

The t-statistics based on the FEJIV estimator tend to be undersized, but the empirical

rejection frequencies are still closer to the nominal level than t-statistics based on 2SLS,

IJIVE1, IJIVE2, or UJIVE. Finally, we note that UJIVE did much better under DGP2 than

under DGP1. This is due to the fact that UJIVE does not properly partial out the included

exogenous regressors; hence, it performs less well under DGP1, where a larger number of

included exogenous regressors enter significantly into the structural equation of interest.
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6 Conclusion

This paper considers an IV regression model with many weak instruments, cluster specific

effects, error heteroskedasticity, and possibly many included exogenous regressors. To carry

out point estimation in this setup, we propose three new jackknife-type IV estimators, which

we refer to by the acronyms FEJIV, FELIM, and FEFUL. All three of these estimators are

shown to be robust to the effects of many weak instruments, in the sense that they are

shown to be consistent in a framework broad enough to include both the standard situation

with strong instruments and situations with many weak instruments. To the best of our

knowledge, the estimators proposed in this paper are the first to be consistent under many

weak instrument asymptotics when the IV regression under consideration has both cluster

specific effects and possibly many included exogenous regressors. We establish asymptotic

normality for FELIM and FEFUL under both strong instrument and many weak instrument

asymptotics. In addition, we provide consistent standard errors for our estimators and show

that, when the null hypothesis is true, t-statistics based on these standard errors are as-

ymptotically normal under both strong instrument and many weak instrument asymptotics.

Finally, we show that under both strong instrument and many weak instrument asymptot-

ics, the t-statistics based on these standard errors are consistent under fixed alternatives.

Thus, we underscore an interesting aspect of the many weak instrument setup. Namely,

test consistency is still possible under this framework, as has been pointed out in a recent

paper by Mikusheva and Sun (2020). In a series of Monte Carlo experiments, we find that

t-statistics based on FELIM and FEFUL control size better in finite samples than t-statistics

based on alternative jackknife-type IV estimators that have previously been proposed in the

literature. Hence, based on the findings of this paper, we recommend that either FELIM or

FEFUL be used in settings where there are many weak instruments. cluster specific effects,

and possibly many included exogenous regressors.
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7 Appendix: Proofs of Main Theorems and Other Key

Results

This appendix provides the proofs for Theorem 1, Corollary 1, and Theorems 4-6 of the

paper. The proofs of Theorems 2 and 3 are longer and, thus, are given in Appendix S1

of a Supplemental Appendix to this paper. In addition, the proofs provided below rely

on a number of technical results that are established in Appendix S2 of the Supplemental

Appendix. These results are designated in the derivations that follow by the use of the

prefix S. So, for example, Lemma S2-2 will refer to the second lemma in Appendix S2 of the

Supplemental Appendix.

Proof of Theorem 1:

To proceed, note first that, by parts (a) and (b) of Lemma S2-2 and by the assumption

on , we have 
−1
  0 £− 

(1)
¤
−1

 = −1
  0−1

 − 
−1
  0 (1)−1

 =

+ (1), where  = Γ0 (1)Γ =  (1). By Assumption 3(iii), we also have that 

is positive definite almost surely for  sufficiently large, so that−1
  0 £− 

(1)
¤
−1



is invertible w.p.a.1. Hence, w.p.a.1., we can write

1

min



¡
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¢
=

¡
−1
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

¢−1 1

min

−1
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(1)
¤


+
¡
−1
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¤
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

¢−1 1

min

−1
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(1)
¤

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Moreover, by applying part (a) of Lemma S2-4 and part (a) of Lemma S2-5, we obtain

1

min
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1
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  0 (1)
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Ã


[min ]
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!
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¤



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1

!
=  (1) 

Applying part (b) of Lemma S2-4 and part (b) of Lemma S2-5, we get

1
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−1
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1
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

p
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+  (1) =  (1) 

It follows by the triangle inequality and the Slutsky’s Theorem that
°°

¡
 − 0

¢

¡
min

¢°°
2
=

 (1), which gives the first result. To show the second result, note that, by straightforward

calculations, we obtain
°°

¡
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¢

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q
(min )

2
 (min )

2
q¡

 − 0
¢0 ¡

 − 0
¢
=°° − 0

°°
2
, which implies that

°° − 0
°°
2

→ 0, as required. ¤

Proof of Corollary 1:

In light of the results given in Theorem 1, it suffices that we verify the condition  =



³£
min

¤2

´
=  (1) for all three estimators. For the FEJIV estimator considered in

part (a),  = 0 for all , so this condition is trivially satisfied. Now, part (b) considers the

FELIM estimator. For this estimator, the result of Lemma S2-11 has shown that we can

take  = b = min∈ ³0 0


´

³
0

0
 (1)

´
=
³
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³
 −b´¸. By part (a) of Lemma S2-

7, we then have b = 

³£
min

¤2

´
, so FELIM also satisfies the needed condition. Finally,

part (c) considers the FEFUL estimator, which takes  = b
=
hb − ³1− b´ ()

i

h
1−

³
1− b´ ()

i
. By part (b) of Lemma S2-7, we

have that b = 

³£
min

¤2

´
, so the needed condition is satisfied again. The consistency

results given in parts (a)-(c) of this corollary then follow as a consequence of Theorem 1. ¤

Proof of Theorem 4:

We shall prove this theorem for the FELIM case since the proof for FEFUL is similar. To

proceed, first define 1 =  0 ( [b ◦b]), 2 = (b ◦b)0  ( ◦)  ¡b0 ◦ ()
¢
,
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where  () = () − () and where for notational conve-

nience we suppress the dependence of 2(), (), Ψ(), (), and Ψ() on F
 =  ().

Using these notations, to show part (a), we first write 
b = b1+ b2+ b3+ b4,
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 −b´. Moreover, by the result
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S2-18 and Slutsky’s theorem to deduce that
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Next, consider b2. Here, note that we can further decompose b2 as b2 = b21 + b22,
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 (1) under Case I and applying the result of Lemma S2-10, as well as parts (d) and (e) of

Lemma S2-18 and Slutsky’s theorem, we get
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Turning our attention to b3, note that, in this case, we can apply Lemma S2-10, parts (b)
and (e) of Lemma S2-18, and Slutsky’s theorem to obtain
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 (1 +  (1))

+2
−1


£
−1

 +−1
 (b − )

¤ 3
2

(b − )
0
−1

 −1
 (1 +  (1))

= −1
 −1

 

X
()()=1
()6=()

2()()
2
()

2
()

0−1
 −1

 +  (1) . (19)

Lastly, we consider b4. Here, we can apply Lemma S2-10, part (f) of Lemma S2-18, the
fact that 2

¡
min

¢2
=  (1) under Case I, as well as Slutsky’s theorem to obtain

b4 = −1
 −1

 4
−1
 −1

 (1 +  (1))

= −1


X
()()=1
()6=()

2()()
−1
 

()
0
()

−1
 −1

 +  (1)  (20)
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It follows from equations (17), (18), (19), and (20) that


b = −1

 Σ1
−1
 +−1



X
()()=1
()6=()

2()()
2
()

−1
 Ψ()

−1
 −1



+−1


X
()()=1
()6=()

2()()
−1
 

()
0
()

−1
 −1

 +  (1)

= −1
 (Σ1 + Σ2)

−1
 +  (1) = Λ +  (1) .

To show the same result for FEFUL, note that b satisfies the conditions of both Lemma
S2-12 and Lemma S2-18. Hence, we can make the same argument as given above for FELIM,

except that we use the result of Lemma S2-12 in lieu of Lemma S2-10 to obtain 
b =

−1
 (Σ1 + Σ2)

−1
 +  (1) = Λ +  (1).

To show part (b), we again only provide an explicit argument for b since the proof of b
follows in a similar way. To proceed, write

h¡
min

¢2
2

i

b =

h¡
min

¢2
2

iX4

=1

b,
where b1, b2, b3, and b4 are as defined in the proof of part (a).
Considering b1 first, note that, since2

¡
min

¢2 →∞ but
p
2

¡
min

¢2 → 0 under

Case II, we have, upon applying the result of Lemma S2-10, part (a) of Lemma S2-18, and

Slutsky’s theorem,

¡
min

¢2
2

b1 = −1


¡
min

¢2
2

⎡⎢⎢⎣Σ1 + X
()()=1
()6=()

2()()
2
()

−1
 Ψ()

−1


⎤⎥⎥⎦−1
 (1 +  (1))

= −1


¡
min

¢2
2

X
()()=1
()6=()

2()()
2
()

−1
 Ψ()

−1
 −1

 +  (1)  (21)

Now, consider b2. Here, we write h¡min

¢2
2

i b2 = h¡min

¢2
2

i b21
+
h¡
min

¢2
2

i b22, where b21 and b22 are again as defined in the proof of part (a).
Making use of the results of Lemma S2-10, parts (d) and (e) of Lemma S2-18, and Slutsky’s
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theorem while noting that 2
¡
min

¢2 →∞ under Case II, we get

¡
min

¢2
2

b21 = −−1


¡
min

¢ ©
−1

 +−1
 (b − )

ª min

2

2
−1
 −1

 (1 +  (1))

= −−1


¡
min

¢2
2

X
()()=1
()6=()

2()()
−1
 2()

0
()

−1
 −1

 +  (1)

Moreover, since b22 = b 0
21, we also haveh¡

min

¢2
−1
2

i b22 = −−1


h¡
min

¢2
−1
2

iX

()()=1
()6=()

2()()
−1
 ()

2
()

0−1
 −1

 +

 (1). It follows from these calculations that

¡
min

¢2 b2
2

= −−1


X
()()=1
()6=()

¡
min

¢2
2()()

2

−1


¡
2()

0
() + ()

2
()

0¢−1
 −1

 + (1) 

(22)

Next, consider b3. Given that 2
¡
min

¢2 → ∞ under Case II, we get, upon applying

the result given in Lemma S2-10, as well as parts (b) and (e) of Lemma S2-18 and Slutsky’s

theorem,¡
min

¢2
2

b3 =
¡
min

¢2
−1



£
−1

 +−1
 (b − )

¤ 3
2

0−1
 −1

 (1 +  (1))

+
¡
min

¢2
−1



£
−1

 +−1
 (b − )

¤ 3
2

(b − )
0
−1

 −1
 (1 +  (1))

= −1


X
()()=1
()6=()

¡
min

¢2
2()()

2

−1
 2()

2
()

0−1
 −1

 +  (1) (23)

Finally, we consider b4. Again, noting that 2
¡
min

¢2 → ∞ under Case II, we have,

upon applying the result given in Lemma S2-10, as well as part (f) of Lemma S2-18 and

Slutsky’s theorem,¡
min

¢2
2

b4 = −1


¡
min

¢2
2

−1
 4

−1
 −1

 (1 +  (1))
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= −1


¡
min

¢2
2

X
()()=1
()6=()

2()()
−1
 

()
0
()

−1
 −1

 +  (1)  (24)

It follows from equations (21), (22), (23), and (24) that¡
min

¢2

b

2

= −1


¡
min

¢2
2

X
()()=1
()6=()

2()()
−1


³
2()Ψ() + 

()
0
()

´
−1

 −1
 +  (1)

=

¡
min

¢2
2

−1
 Σ2

−1
 +  (1) = Λ +  (1) .

To show the same result for FEFUL, note again that b satisfies the conditions of Lemmas
S2-12 and S2-18. Hence, we can make the same argument as given above for FELIM, except

using Lemma S2-12 in lieu of Lemma S2-10 to obtain
h¡
min

¢2
2

i

b =h¡

min

¢2
2

i
−1

 Σ2
−1
 +  (1) = Λ +  (1). ¤

Proof of Theorem 5:

To show part (a), first note that since 1 = · · · =  = min here, we can take

min = . Moreover, by part (d) of Lemma S2-3 and Assumption 3(iii), Λ is positive

definite . In addition, specializing the result of part (a) of Theorem 4 to this case, we

have 
b = 2

b = Λ+ (1), so that 
2

b is positive definite w.p.a.1. Hence, under

0 : 
00 = , we can write

T =
0b − q

0b =
0
³b − 0

´
q
0b =

0Λ12

h
Λ

−12


³b − 0

´i
q
02b

Now, specializing the result of Theorem 2 to this case, we have Λ
−12
 

³b − 0

´
=

Λ
−12


³b − 0

´
→  (0 ). It follows by the continuous mapping theorem that

T =
0Λ12

h
Λ

−12


³b − 0

´i
p
0Λ

[1 +  (1)]
→  (0 1) . (25)

On the other hand, under 1, we have 
00 =  +  for some  ∈ R\ {0}, and we can write

T =
³
0b − 

´


q
0b = 0

³b − 0

´


q
0b + 

q
0b. The first term above is
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 (1)  as shown in (25) above, whereas application of part (a) of Theorem 4 and Slutsky’s

theorem shows that 2
0b = 0Λ+ (1), where 

0Λ  0 for all  6= 0  in light of
part (d) of Lemma S2-3 and Assumption 3(iii). In addition, by parts (a) and (c) of Lemma

S2-3; Assumption 3(iii); and the fact that, under Case I, 2
¡
min

¢2
= 2

2
 =  (1);

there exists a positive constant  ∞ such that, almost surely for all  sufficiently large,

max (Λ) ≤
max

£
 

¡
Γ0 (1)

√

¢ |F



¤
+

2

2
max

£
 

¡
 0

p
2

¢ |F


¤
[min ()]

2
≤ .

(26)

It follows that, in this case, 

q
0b = 

q
02b = ¡p0Λ

¢
[1 +  (1)]. So,

w.p.a.1, 

q
0b → +∞ if   0 whereas 

q
0b → −∞ if   0, from which the

stated result follows. Finally, note that the results for T can be shown in the same way, so

to avoid redundancy, we omit the proof.

To show part (b), note that, setting e = 0 and  =  ·  in Theorem 3, we have¡


p
2

¢
(0Λ)

−12
0
h


³b − 0

´i
→  (0 1). Moreover, part (b) of Theorem

4 implies that (22)
b = (42) b = Λ +  (1). It follows that, under

0 : 
00 = ,

T =

¡


p
2

¢
0
h


³b − 0

´i
q
0 (42) b =

¡


p
2

¢
0
h


³b − 0

´i
p
0Λ

[1 +  (1)]
→  (0 1) .

(27)

Under 1, we again write 
00 =  +  for some  ∈ R\ {0}, and note that, in this case, by

part (b) of Theorem 4 and Slutsky’s theorem, we have (42) 
0b = 0Λ +  (1).

Moreover, there exists a positive constant  such that 0Λ = 2
0−1

 Σ2
−1
 2 =

0−1
  

¡
 0

p
2|F



¢
−1

  ≥   0  for all  6= 0, by the almost sure positive
definiteness of  

¡
 0

p
2|F



¢
as shown in part (b) of Lemma S2-3. In addition, by

part (c) of Lemma S2-3 and Assumption 3(iii), there exists a positive constant  such that,

almost surely for all  sufficiently large

max (Λ) ≤ 2
2

1

[min ()]
2

2

2
max

"
 

Ã
 0p
2

!
|F



#
≤  ∞. (28)
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It follows that, for this case,

q
0b =

¡
2

p
2

¢
q

(42) 0b =
¡
2

p
2

¢
p

0Λ
[1 +  (1)] .

Hence, w.p.a.1, 

q
0b → +∞ if   0 whereas 

q
0b → −∞ if   0, given the

condition that 2
p
2 →∞. Finally, write

T =
0b − q

0b =
0
³b − 0

´
q
0b +

q
0b .

Since the first term on the right-hand side above is  (1) as shown in (27), we deduce that

w.p.a.1, T → +∞ if   0 and T → −∞ if   0. The results for T can be shown in

the same way, so to avoid redundancy, we omit the proof. ¤

Proof of Theorem 6:

To show part (a), note first that, by part (d) of Lemma S2-3 and Assumption 3*(iv), Λ

is positive definite . Hence, under 0 : 
0
0 = , we can write

T =
0b − q
0 b =

0
¡


¢
−1

 Λ
12



h
Λ
−12
 

³b − 0

´i
q
0
¡


¢
−1

 
b−1



¡


¢


=
0Λ

12



h
Λ
−12
 

³b − 0

´i
q
0

b

(29)

where the last equality follows from the fact that

0
¡


¢
−1

 =
¡


¢
0
h ¡

1
¢−1

1 · · · ¡


¢−1


i
= 0. Now, applying the result

of Theorem 2 to this case, we have Λ
−12
 

³b − 0

´
→  (0 ). In addition, applying

the result of part (a) of Theorem 4 to this case, we have 
b = Λ +  (1). Let

0 = 0Λ
12


p
0Λ, and note that 

0
 = 1. It follows from these intermediate results

and the continuous mapping theorem that T = 0Λ
−12
 

³b − 0

´
[1 +  (1)]

→  (0 1).

On the other hand, under 1, we can take 
0
0 =  +  for some  ∈ R\ {0}. Write

T =
0
³b − 0

´
q
0 b +

¡


¢
q

0
¡


¢
−1

 
b−1



¡


¢


=
0
³b − 0

´
q
0 b +

¡


¢
q

0
b

,
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where the last line again follows from the identity 0
¡


¢
−1

 = 0, as shown previously.

Now, the first term on the right-hand side of the last equality above has previously been

shown to converge to a  (0 1) distribution so that, in particular, 0
³b − 0

´


q
0 b =

 (1). Moreover, application of part (a) of Theorem 4 and Slutsky’s theorem shows that

0
b = 0Λ +  (1), where 0Λ  0  since Λ is positive definite

 by part (d) of Lemma S2-3 and Assumption 3*(iv). In addition, by parts (a) and

(c) of Lemma S2-3, Assumption 3*(iv), and the fact that 2
¡
min

¢2
= 2

2
 =  (1)

under Case I, there exists a positive constant  such that, almost surely for all  sufficiently

large, max (Λ) ≤   ∞, as can be shown by following an argument similar to that
given previously in obtaining equation (26) in the proof of Theorem 5. Hence, in this

case, 

q
0 b = ¡¢q0

b =
¡¡


¢

p
0Λ

¢
[1 +  (1)]. Given that

 →∞ as →∞, w.p.a.1, 
q
0 b → +∞ if   0 whereas 

q
0 b → −∞ if

  0, from which the stated result follows. The results for T can be shown in the same

way, so to avoid redundancy, we omit the proof.

To show part (b), note first that

¡
min

¢
−1

 =
¡
min

¢Ã −1
1 0

0
¡
min

¢−1 · 2
!
→
Ã
0 0

0 2

!
= 0, () .

Moreover, note that there exists a positive constant  such that 0Λ ≥   0 w.p.a.1

as →∞ since

0Λ = 0
−1


¡
min

¢
−1

  

Ã
 0p
2

|F


!
−1



¡
min

¢
−1

 

= 0
−1
 0 

Ã
 0p
2

|F


!
0

−1
  [1 +  (1)]

and since, by applying the result of part (b) of Lemma S2-3 and Assumption 3*(v), we

have 0
−1
 0

¡
 0

p
2|F



¢
0

−1
  ≥ 0

0
2·2· ≥ ∗ =   0  for

2· as defined in Assumption 3*(v) and for positive constants  (defined in Lemma S2-

3), ∗ (defined in Assumption 3*(v)), and  = ∗. Now, setting e = 0 in Theorem

3, we have
¡
min 

p
2

¢ ¡
0Λ

¢−12
0

³b − 0

´
→  (0 1), and, by applying part

(b) of Theorem 4 and Slutsky’s theorem, we also obtain
h¡
min

¢2
2

i
0

b =
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0Λ +  (1). Hence, under 0 : 
0
0 = , we can apply the identity 0

¡


¢
−1

 = 0
to obtain

T =

¡
min 

p
2

¢ h
0
¡


¢
−1

 

³b − 0

´i
q£
(min )

2
2

¤
0
¡


¢
−1

 
b−1



¡


¢


=

¡
min 

p
2

¢ h
0

³b − 0

´i
q£
(min )

2
2

¤
0

b

=

¡
min 

p
2

¢ h
0

³b − 0

´i
p
0Λ

[1 +  (1)]
→  (0 1) .

Under 1, write 
0
0 =  +  for some  ∈ R\ {0}. As shown above,h¡

min

¢2
2

i
0

b = 0Λ +  (1), where there exists a positive constant 

such that 0Λ ≥   0 w.p.a.1 as  → ∞. In addition, by part (c) of Lemma S2-3
and Assumption 3*(iv), there exists a positive constant  such that, almost surely for all 

sufficiently large, max (Λ) ≤  ∞, as can be shown by following an argument similar
to that given previously in obtaining equation (28) in the proof of Theorem 5. It follows

from these results and from making use of the identity 0
¡


¢
−1

 = 0 that

q
0 b =

¡
min 

p
2

¢ ¡


¢
q

(min )
2

2
0
¡


¢
−1

 
b−1



¡


¢


=
minp
2

¡


¢
p

0Λ
[1 +  (1)] .

Thus, w.p.a.1, 

q
0 b → +∞ if   0 whereas 

q
0 b →−∞ if   0, given that¡

min

¢2

p
2 →∞ and min  =  (1) for any  ∈ {1  }. Finally, write

T =
0b − q
0 b =

0
³b − 0

´
q
0 b +

q
0 b . (30)

Since the first term on the right-hand side of equation (30) is  (1)  as shown above, we

deduce that w.p.a.1., T → +∞ if   0 and T → −∞ if   0. Finally, the results for

T can be shown in the same way, so to avoid redundancy, we omit the proof. ¤
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