Professor Norman Swanson

Solution to Final Exam Practice Problems

(a) and $\mathrm{D}\left(\mathrm{x}_{t} \mid \mathrm{x}_{t-1}\right) \neq \mathrm{D}\left(\mathrm{x}_{t} \mid \mathrm{x}_{t-1}, y_{t-1}\right)$
$\Longrightarrow y_{t}$
G.C. x_{t}
w.r.t. $\mathrm{x}_{t-1}, y_{t-1}$

1. b. The same holds the opposite way
$\Longrightarrow x_{t}$
G.C. y_{t}
w.r.t. $\mathrm{x}_{t-1}, y_{t-1}$
(i.e., $\mathrm{y}_{t} \mid \mathrm{x}_{t-1}, y_{t-1} \sim \operatorname{IN}\left((\beta \gamma+\delta) y_{t-1}+\beta \gamma x_{t-1}, w\right)$ for some w and this is not the same conditional distribution as that of $\left.\mathrm{y}_{t} \mid \mathrm{y}_{t-1}\right)$.
2. c. Notice using the formula from class that

$$
\begin{aligned}
& \mathrm{y}_{t} \left\lvert\, \mathrm{x}_{t} \sim \operatorname{IN}\left((\beta \gamma+\delta) y_{t-1}+\beta \gamma x_{t-1}+\frac{\beta \sigma_{22}+\sigma_{12}}{\sigma_{22}}\left(x_{t}-\gamma y_{t-1}\right), w\right)\right. \\
& w=\sigma_{11}-\frac{\sigma_{12}^{2}}{\sigma_{22}}
\end{aligned}
$$

So β cannot unambiguously be obtained from the conditional distribution, unless $\sigma_{12}=0$. If $\sigma_{12}=0$, then we can estimate the conditional model (given above), i.e., regress y_{t} on x_{t}, x_{t-1} and y_{t-1} given the original equation

$$
\mathrm{y}_{t}=\beta x_{t}+\beta \gamma x_{t-1}+\delta y_{t-1}+\epsilon_{y t} .
$$

2. (a) $\Delta y_{t}=\epsilon_{2 t} \Longrightarrow y_{t}$ is $\mathrm{I}(1)$

$$
\Longrightarrow x_{t} \text { is } \mathrm{I}(1) .
$$

1. b. $\mathrm{x}_{t}-\alpha y_{t}=\epsilon_{1 t} \Longrightarrow$ they are cointegrated with cointegrating vector

$$
(1,-\alpha) .
$$

c. $\mathrm{x}_{t}=\alpha\left(y_{t-1}+\epsilon_{2 t}\right)+\epsilon_{1 t}$

$$
=\left(x_{t-1}-\epsilon_{1 t-1}\right)+\alpha \epsilon_{2 t}+\epsilon_{1 t}
$$

$$
\operatorname{VAR}\left\{\begin{array}{l}
x_{t}=x_{t-1}+\alpha \epsilon_{2 t}+\epsilon_{1 t}-\left(x_{t-1}-\alpha y_{t-1}\right) \\
y_{t}=y_{t-1}+\epsilon_{2 t}
\end{array}\right.
$$

$$
\Longrightarrow \mathrm{VEC}\left\{\begin{array}{ll}
\Delta x_{t}=-z_{t-1}+\left(\alpha \epsilon_{2 t}+\epsilon_{1 t}\right) \\
\Delta y_{t}=\epsilon_{2 t}
\end{array} \quad \mathrm{z}_{t-1}=\right.
$$

A more useful solution strategy is
In general, say have an equation with contemporaneous variables in it. Say, for example, that $x_{t}=\alpha x_{t-1}+\beta y_{t}+\gamma y_{t-1}+\epsilon_{x t}$ then $(1-\alpha \mathrm{B}) \mathrm{x}_{t}=(\beta+\gamma B) y_{t}+\epsilon_{x t}$

$$
\Longrightarrow x_{t}-\frac{(\beta+\gamma B)}{(1-\alpha \beta)} y_{t}=\frac{\epsilon_{x t}}{(1-\alpha B)}
$$

and assuming $|\alpha|<1 \Longrightarrow \frac{\epsilon_{x t}}{(1-\alpha B)}$ has finite variance $\Longrightarrow x_{t}-\frac{(\beta+\gamma B)}{(1-\alpha B)} y_{t}$ is stationary and at $\mathrm{B}=1$ we get the CI vector
\Longrightarrow CI vector is $\left(1,-\frac{(\beta+\gamma)}{(1-\alpha)}\right)$
3. $\mathrm{y}_{t} \mid X_{t}, f_{t-1} \sim N\left(X_{t} \beta+\rho_{1} u_{t-1}+\rho_{2} u_{t-2}, \sigma_{\epsilon}^{2}\right)$

$$
u_{t-1}=y_{t-1}-X_{t-1} \beta
$$

$$
u_{t-2}=y_{t-2}-X_{t-2} \beta
$$

$$
\Longrightarrow \mathrm{y}_{t} \mid X_{t}, f_{t-1} \sim N\left(\left(X_{t}-\rho_{1} X_{t-1}-\rho_{2} X_{t-2}\right) \beta+\rho_{1} y_{t-2}+\rho_{2} y_{t-2}, \sigma_{\epsilon}^{2}\right)
$$

$$
\mathrm{H}_{0}: \rho_{1}=\rho_{2}=0
$$

Under $\mathrm{H}_{0}, y_{t} \mid X_{t}, f_{t-1} \sim N\left(X_{t} \beta, \sigma_{\epsilon}^{2}\right)$ so Step 1 is: Regress y_{t} on X_{t}, construct u_{t}.

Now $\mathrm{g}(\cdot)=\left(X_{t}-\rho_{1} X_{t-1}-\rho_{2} X_{t-2}\right) \beta+\rho_{1} y_{t-1}+\rho_{2} y_{t-2}$ $\left.\mathrm{g} \beta\right|_{\rho_{1}=\rho_{2}=0}=X_{t}$
$\left.\mathrm{g} \rho_{1}\right|_{\rho_{1}=\rho_{2}=0}=\left(X_{t-1} \beta-Y_{t-1}\right)=u_{t-1}$
$\left.\mathrm{g} \rho_{2}\right|_{\rho_{1}=\rho_{2}=0}=\left(X_{t-2} \beta-Y_{t-2}\right)=u_{t-2}$
So Step 2. Regress \widehat{u}_{t} on $\mathrm{X}_{t}, \widehat{u}_{t-1}, \widehat{u}_{t-2}$ and $\mathrm{TR}^{2} \sim \chi_{2}^{2}$ from this regression, where $\mathrm{T}=$ the number of observations used.

Also, as in class, note that
$\xi_{L M}=S(y ; \widetilde{\theta}) I^{-1}(\widetilde{\theta}) S(y ; \widetilde{\theta})$ and you should try to derive these scores and informations of the test statistic directly in addition to the work above.

