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1. The answer to exercise 6.15 (b) of CB states "g(X, S2) has zero expectation so (X, §%) 2
not complete." We give an example of P(¢{T) = 0) # 1. By definition 6.2.21 of Casella
and Berger (2002), let f (£|f) be a family of pdf's or pmf’s for a statistic T (z). The
family of probability distributions is called "complete" if Egg (T) = 0 for all 6 implies
) Py[(g(T)) = 0] = 1 for all §.. Equivalently, @ is named a complete statistic. In solution of )
6.15 b in Casella and Berger (2001) we have that g (T) is;
. -2z S°
T) = X:_2
9(T) a-+n a q
which has expectation equal to zero. We claim that the related family of probability
distributions is not complete in fact; we begin with the following expression in order to
prove this;
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where ¢ is a constant. In terms of matrices

n (X9 ({EX)  1X'AX
a+n n2 an—1

where A is an idempotent matrix equal to [ — %ii’ . we can rewrite the above expression

as fO].].OWlng; (sz) ('L’.X) B lX’AX

an—1

)
we name (—l-—) % = b and (é) L= d, thus we have

b (X)) (X)) -d- X'AX =c (1)

equality, and one of the solutions is taking ¢ = 0. Thus, Ps[(g(T)) = 0] # 1 because
there are another solutions (g (T} # 0) where the expressmn (1) 1s hold e
v" Sy udn obﬁ-j U*‘
2. Considering an example in genetic modeling whlch is a genalc 11 ge multmomlal model
we observe the multinomial vector (z1, z2, 3, 4) with the probabilities 2+ i3 11-0),102-9
and § (6) respectively.

above expression is a polinomial where b, d and ¢ are chosen in order to fulfill the above g

(a). We show that this is a curved exponential family. Thus,
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according to chapter 3, a family of pdf’s or pmf’s is called an exponential family if
it can be expressed as;

£ (@A) = Az e exp (3 wi (V) - ti(2))
In this case;

™ {

hixy =
( xll:cr!:c;;!su.

V) =
)y = B

1
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ti \th i, -
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. We find a sufficient statistic for 8. In this case;

p(zlo)  _ nl -l PR PR P Py
q (T (J’.‘) 19) x1!22!$3!$4l Pflpémpgapf“

pzl)  _ _ !
g(T(x)18) ~ \zilwelzs!zy!
thus, &(_%%%_) does not depend of 8, therefore the category countings are the sufficient
statistics to estimate multinomial parameters.

-
. According to wikipedia!, A sufficient statistic is minimal sufficient if it can be repre-

sented as a function of any other sufficient statistic. In other words, S(X) is minimal
sufficient if and only if S(X) is sufficient, and if T(X) is sufficient, then there ex-

“ists a function f such thal S(X) = f(T(X)). A useful characterization of minimal

sufficiency is that when the density fg exists, S(X) is minimal sufficient if and only
if fﬂ ; is independent of # & S(z) = S(y) Our proposal is T (z') which states that

sufficient, statistics are t; = x; for 1 = 1,2 and 3 and {4 = n — ZLI Zj.
et .

! ! 2
n—-z|—z,—T;
i

n! =) pTh pth 3
f(ﬂ:1,.’1}'2,273,$4): .’L‘” ’l.'LJI( ] —"CC' _mf)[Pl P2 P3 (1—FZ'—1
l.ﬂ','z. 3 n 1:1 ) 3}t 3=

according to chapter 3, a family of pdf’s or pmf’s is called an exponential family if
it can be expressed as

F@) =h@) e exp (3w (V) i (2))
In this case;
1
he) = zilzglay! (n — z) — b — 2i)!
c(A) = n
w; = InF; fori=1,2 and 3
t; = zjfori=12and3

wo= (1= )

t4 = n-—z)—=xh—af

!See http://en. wikipedia.org/wiki/Sufficient_statistic
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We checked out the sufficiency of our proposal

CLI — 3 (M) (1= s )7

g (T (z')10) —zi -z =zl prl pt el (1 ~ b )n—ma—ma—zs

J 1

«10)  _ ( nl - ,
qTENNB) ~ \ (n -z - 7 - zp) ‘

we know that our proposal is a function of statistics ¢{; = z for all 7 in order to
compute the probabilities of ccurrency in*the multinomial model. We check the

minimal sufficiency; h o
n! T1 pT2 3 \PTE1ImT2E
fo (-’17’) _ =milzalml(n— :1:1—:::2—13)' P P2 ( Jj=1 PJ")
- m1 :1:2 :1:3 :c4

if z; = x| we have

/ ! 4
) n—I;—Iy —I3

3
fo@) %4 (1 — Y= b
fo(@. T T (noa,—zp - ah) P
the expression (2) is depéﬁdent of parameters of the probability function; as we know

T (z') is a function of T'(x)}, and T (z') is a sufficient statistic (see above). Then
T (z'}) is a minimal sufficient statistic.

(2)

3. This exercise it is an application of generalized-method-of-moments methodology;

(i). We find the method of moment estimates of 8; the data are;

ry = 125
Ty = 18
xry = 20
Ty = 34
The moments to match; N
=P
In this case we have
x 1 + g
Yimo 204
Ty 1
= =(1-8)
Yoi i 4
_‘ii_ - 1 (1-6)
2. i 4
T B Q
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for each above equation there is a # which solves thdke equations;

T

6 = 4—— —2=0.538
i Ti

-~ T2

§ = —4 + 45
> i

§ = 4= +1=0593

i T
§ =t = 06007

P

(ii). We use GMM estimates in order to get an cstifate of 6;

min (P - P) 4 (P - P)

where P = {38, o8-, S, BV, P= {5+ §,1(1-60),1(1-0),§) and 4
is a identity matrix. Thus, we minimize the following;

2 2 2
T 1 @8 T 1 z 1 _

2
xd 1
+ | ———-=0
(E?mi 4)

28 (0 & 1.8 T2 _ 1 LS
aé) :’72'(2‘?3;-_5_1) iﬂ (242%_1(1_9)) 12 (Z?3ii_i(l—9)) oo

x4 1
(5 _30)/‘% -

re-arranging terms

a5(8) _ T + T2 T3 Z4 +Q_0
ad 2 Z: z; 2 Zf T; 2 Zf x 2 Zf x; 2
replacing data into above identity
6 _ 125 18 2 34
2 2.197 2.197  2-197 2.197

A

4. This question continues the discussion in previous question:
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(i).

There are 197 events classified into one of 4 possible categories X = (x,, 2, 3,24) =
(125, 18, 20, 34).The probability of ocurrency is % + %,é (1-6), % {1-8) and 41 (6)
respectively. Now, the log-likelihood function is;

z11n (%+g) +22ln (%(1—9)) +o3ln (%(1—9))

~r U}"U\ \5“9\/\&&

maximizing the log-likelihood;

dlog L (6) T, Tyt r3 x4

9  ~—32+0 1-9g T 0
50,
dlogL(6) _ 125 38 LM,
b6 T 246 1-6 6
9 = 0.6270

See Pedersen (2001) which show the same result. We verified by the second order
condition that the solution,makimizes the likelihood function (we reach a global
solution), in this case weake the expression (3) and perform another derivative
with respect to parameter 6

62 log L (9) _ At o+ 3 T4

0608 (2+9)2_(1—9)2_(9)2<0

Thus, the solution is a global maximum (a negative value of the second derivative
ensures that we reach a global solution).

. We wrote a GAUSS procedure for plotting the grid search, we used a grid of 1000

points between the space 0.1 and 0.9. It was too casy to do this search because
the space for seeking the solution is bounded and known. The figure 4.1 shows the

. / gnid 13\, 3006
(3)

7
{ uc.k.g /
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search

MLE estimation ong grid search

L <“P\305‘D \to\-~
| 62 [hefho)
fem el

=270 -260 -250 -240 -A50 -220 -210 -20C

/l c.C o .2 0.3 .4 0.5 0.6 C.7 0.8 a.9 L ¢
Theta
Figure 4.1

{:_: -
We identify the value of theta which maximizes the log-likelihood using the following
command in GAUSS

thetalmaxindc(1nL)];

where theta is the vector where we look for the solution, the solution.belongs to
[0.9 0.1] interval, and 1nL is the loolikelihood, as a result we have Bgria = 0.6269.
: Anyway, we also use the maxlik and we set up the following procedure:

=L proc(l) = max_b(p0,data);

local x,L;

x=data;

L=(0.5+p0/4) "x [11*((1-p0)/4) "x{2] *((1-p0) /4) "x [3]*(p0/4) ~x[4] ;
retp(ln(L));

endp;

please see appendix for the GAUSS code. In this case we got fnaxux = 0.6268. In

anycase, we got the same results as in £.4.
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1 Appendix
1.1 Question 4.ii: GAUSS code

new;
cls;

/* Code by Freddy Rojas Cama */
// Last update November 15th 2010
// Rutgers University - Phd program in Economics

library pgraph kermnel maxlik;
pqgwin many;
print "Assignment 7th";
print "";
/**************************************#***************
BQuestion 4.ii@
*******************************************************/
x=126}18|20|34;
/7 Likelihood
grid=(0.90-0.1)/(1000-1); o
theta=seqa{0.1,grid, 1000} ;
L=(0.5+theta./4) . x[1]) .#({1-theta)./4). x[2] .x((1-theta)./4) .~ x[3] .*{theta./4) . x[4]);
1nL=1n{L};
// Graph
graphset;
_pcolor = { 9 }; /* Colors for series */
_pmcoleor = { 1, 8, 2, 8, 8, 8, 8, 8, 15 };
/*Colors for axes, title, x and y labels, date, box, and background */
_plwidth={12}; /*Controls line thickness for main curvesx*/
// _paxht=0.20; /*Controls size of axes labels*/
-ptitlht = 0.18; /+*Controls main title size */
_pltype=1{6};
_plegctl = { 1 5 0.04 13};
_plegstr="MLE estimation and grid search";
title("MLE estimation and grid search");
ylabel("Log L"};
xlabel("Theta"};
xy(theta,lnL);
//max1ik
{ x,f,g,cov,retcode } = MAXLIK{x,0,&max_b,0.3);
proc(1)=max_b(p0,data);
local x,L;
x=data;
L=(0.5+p0/4) "x[1]1*((1-p0) /4) "x[2] * ((1-p0) /4) "x [3]*(p0/4) "x [4] ;
retp(1n(L));
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endp;

"Argument which maximixes the objective funtion (using maxlik)";; x;

"Argument which maximixes the objective funtion (using grid-search)";; thetalmaxindc(1nL)];
"maxlikelihood";; f;

"gradient";; g;
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