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Fifth-Assignment Answer Sheet
by Freddy Rojas Cama

1. This question calls for drawing and plotting a function of random variables whose are
bhased on a chi squared distribution.

(a) This question calls for drawing 8 i.i.d normal random variables {z}%_,, then we LO
create a new variable based on those z draws: we take into account the following’
formula s = sz Thus, s; is distributed as a central chi-squared variable with 6 }b
8 degrees of frcedom. We replicate the drawing generation process 4000 times. W
plot the kernel density and the eéxact distribution of those draws in the figure 1. (se’eé
appendix for Gauss code)!.
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Figure 1: Exact pdf and kernel

As we see the exact pdf of a central chi-squared variable with 8 degrees of freedom
is closed to the kernel density of these 4000 draws.

(b) The kernel density and the pdf are virtually identical When we want to do the
approximation using a kernel function gy (z) = -2 7 K (53%¢) we notice that we
need a multivariate K, this because we have 8 draws which come from 1.7.d normal
random variables. In this case, the multivariate function K is approached by using
a multivariate normal distribution function f:

Faz.g = fa gty 1]

!'We took Tsurumi’s code which he attached on sakai and we modificd it in our convinience.
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Because of independent property of those draws we define the product of each f;
times the jacobian as the multivariate function f. In this case the jacobian is:

822 822 %
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where z2 = wv;, in this case the partial derivatives % = 1when ¢ = jand 0
otherwise, this because of the linear property of.the expression of s = Z z2, we have
that |J]=1:
1 0 ... 0
o1 ... 0
Mi={. . . . |=1
0o 0 ... 1

Thus, we perform the kernel density approaching K using f. In that case, we have
that K (-) = [15., K.2 = [, f:2. The kernel function is described as follows:
*

e ~ )
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as f is a normal distribution we have the following
_  — Zig
mis) = hzg_ I, £ (3555
8
— h ZE_ I ( i=l 12 — Zi:l Z?Z)

So, s =322 and s; = 3 2%,.

gn(8) = hze . (3—38)

Thus, because of the linearity of the (final) variable (s) we do not need to do the
steps in order to get into the jacobian-of-transformation process Thus, we directly
use the kernel on the s = 3~ z2.

2. We use Simpson’s rule in oder to obtain the mean, mode, variance, skewness and kurtosis
(stats) of the chi-squared variable with 8 degrees of freedom and we compare them with
the exact estimates of stats.We report results based on different grids and upper-limits
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choices. We fix the lower limit to zero, because s; > 0.

'
Table 2.1: Exact and Simpson’s rule for grid size =10

Exact upper limits
30 40 50
Mean 8.000 7.940 7960 8.211
Mode 6.000  6.000 8.000 5.000

Variance 16.000 16.932 17.934 17.159
Skewness  1.000 0.815 0.7988  0.882
Kurtosis 4.500  3.905  3.555  3.402

] ‘: .
Considering a grid size of 100 L ¥

Table 2.2: Exact and Simpson’s rule for grid size =100

Exact upper limits
30 40 50
Mean 8.000 7993 8.000  8.000
Mode 6.000 6.000 6.000 6.000

Variance  16.000 15.872 15.996 15.999
Skewness  1.000 0967 0999  1.000
Kurtosis,z# 4.500 4261 4.485  4.500

T

considering a grid size of 300

Table 2.1: Exact and Simpson's rule for grid size =300

Exact ' upper limits
.30 40 50
Mean 8.000 7.993 8000 8.000
Mode 6.000 6.000 6.000 6.000

Variance 16.000 15.873 15.996 16.000
Skewness 1.000 0.9670 0.998 1.000
Kurtosts 4,500 4,261 4,484 4,500

From above result we can say that the most important is to cover the support of the
variable when we are using Simpson’s rule; we have even got identical results with a grid
of 100 points and an upper limit between 40 and 50. We fill out the final table in terms

of the range
Table 2.4: Final results

Number of grids and limits of Integration...
Grids 100-300

Lower Limit 0

Upper limit  48-50

If we want to be strict with the resolution of this question (considering no ranges), we can
say that the grids and the upper limit of integration whose reproduce the exact moments
are 100 and 50 respectively.
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3. Let X ~ x?(0) and Y ~ x? (0) where x2 (0) denotes the central chi-squared variable with

a degrees of freedom.> Derive the pdf of: ;
z= (1)

X+Y
and clearly identify the distribution of z . We denote ¢ = Y so,

?

Jeq = fw,y|J| ‘
1 T 1
T ——————— /2_1 _ e /2-1 _.._g‘i
e e (03) pgee e ()M

Where ¢ = Y and the equation (1) is given by: o

:T‘;Lg 66_){; — ;;;‘E'I_E'Z+(1_ZZ)5 ﬁ =( q + 2q )
7 5 ' 0 1 l—z  (1-2)?
(1-2)g+2¢q qp
= >0
a-27 -
By replacing terms into (1}, we have:
1 T 1
—_ - vpf2-1 _+ p/2-1 q q
fea I (&) 21’/2X exp ( ) I (&) T (2)2/2? exp ( 2) (1—2)?
2
— 1 =q P/t I zg p/2-1 q q
- (r(g)zpm) (1 z) P \T37-2/7 p(_i) (1—2)?
B 1 2 2 P/2 lex l Zq qp-l
T A\T@E»2) \1- P\T21-2"2) <27
B ) 2 , \P/2-1 " 1 zq B !
T oAr(@)eer) \1- P\721- (1= 2)
2 .

_ 1 z )”/2 Iexp (—zq—(l—z)q ¢!

I (5) 202 1-=2 2{1~-=z) (1—2)°

1
)

) (r(% 2p/2)2(1_z)p/2 p( 2(1—z) i_:fu

Where I' (-) is the gamma function, and I' (@) = (a ~ 1)!, and |J| is the determinant of the
jacobian matrix. Besides, we know that p = 1, so we may re write the last equation as
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Jua = (F(%;W)? (l-fz)_l/zexp (_2(1q— z)) (1—1z)2

Now we got the marginal distribution f, = [ f, 4 dg as follows:

Jo= (I‘(521/2)2 (1 - z)_l/zﬁ[ex%) 4

»
By using the fact that, the integral of this expon_e‘ngjal distribution / exp (—-—2—(1—‘5—27) dg is

follows:

g
equal to 2(1 — 2) .2

f: =

I
B
!

By replacing the equation (1) into th t. expression, w;an re write the equation-(2)
as follows: /2 ) 12 ‘o f -
r () - - At
& (75) (A '
L) \g+Y +

By denoting a = %, 8= % then we may have that f; can be written as follows: \) u

et () ) ot

—

Therefofe f. 18 laBeta distribution with parameter a = %, 8 = 1. We plot the distribution wﬁ‘?’

(histogra. ich come from z = XL_H, and of a Beta distribution which 4

By using the fact | 2(11_2) exp (_2(111,)) dr=1andT(1)=1. W ? ?
S i
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a= %,ﬁ = % and we confirm that above procedure is ok (see figure 2).

.
Exact and Histogrom of Beta distribution
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Figure 2: Exact pdf and histogram of Beta(0.5,0.5)

2 gandom variable.
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4. This question asks for the cleyﬁ‘%ﬁ:ion of the pdf of the non centraf x

k
flan, @, ea) = [[F(=)
i=1

The spherically simmetry given by: z = :cf+x§+:ci depends on the mean only through C‘N'\?ﬂ'

the square length. r & ‘_‘
s £ h
A= g g
#1 = sqrt(A) and p; =0 when j #1 a - l
According to the definition 1.5.1 in Muirhead (1982) “A maz1 random vector X is aid to _ 8
have a spherical distribution if X and H X have some distribution for all mam orthog- \(:‘_'-_ X
onal matrices H. Muirhcad gives the multivariate normal distribution A (0, azl'm) as an /

example of a spherical distribution.We set 0; = 02 = ...... oy = 1 we are dealing with a
~Np)

spherically, symmetric distribution, up to a location shift”. Since we know that z = 2,
sqrt (z) = z1, 4 = sqrt (A}, we have: X

f (w1, %0y i) = f[lf(:ci) 7)
B et B 0
. gi=
{
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The cdf of X is determined by:
F(X<Z) =

(— IT<Tim) < \/'_:E)

(231 < V) = F (im1 < —VE)

= F (\/5) —F (—\/:?)

where T is the threshold in the distribution, So

OF (%) on s
fla) = —5— :
_\ OVE \ —0VE
= (,J)(\/E) 88:1: _¢(_\/E) dx 0«
= £ (V3) %m/ +¢(-VE) éx—m
1 — =
- (e (Bre(-)

We have used the (partial) derivate {at the end of this solution we show that vVZ = z;-, =
r-i.
vz + V) -

VT _ o (\/_ B \/E) 1I—1/2

oz oz 2
So, ¢ is the normal pdf distribution;

1 = =
=57z (6(V3) +o(-v5)) 3)
Givenz = (z4=1 — u.)2 ,we have that \/z+u = z;-1,and we may re-define u = v'h.Therefore
\/E-I-\/E = ;=) (In this case we consider x;=; > 0, thus, we have: VE=g = \/E+\/f—t)
And if z;=; < O,we have z = (—z4=1 — u)2 = (Zj=1 + u)2 and finally we have that
VI — vh = zi=) or written the other way: —VE = z;01 = /T — vh. We replace this into
expression (3):

=ﬁ(¢(\/§+\/ﬁ)+¢(\/'—x/ﬁ)) (4)
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5. We derive the equation (4) on p.16 of the lecture notes on chapter 4.

i) = gl [o(vE- ) vo(va Vi)
_ f-\/x%)

exp 3

+ exp (— ﬁ;ﬁ) )
= 2f\/_+/\!
1 1 exp
WAV | w

‘ .
-

3]
0
%]
3

11 (:1:+/\ exp \/_\/_
B 2\/_\/27r_0 -+ exp -\/_\/—)

We use the hyperbolic function properties, Wikipedia® says: exp (z) = cosh (z)+sinh (z), exp (—x) =
cosh (z) — sinh (). This is based on Euler’s Formula cosh (a)+ zsinh (a) = exp (ia) .
Based on the former expressions we finally have:

X(z,1,)) = —t_2 exp(_(xh\))

2VZ /270 2
[ cosh (\/a_:\/X)J;- sinh a:\/X)
‘ + cosh (\/E\/X) —s] ﬁﬁ) |
= % \/21'11’_0‘ exp (——(I ; A cash (\/E\/X)

6. In the answer to excersise 4.47 CB states “by similar argument for z > 0 we get
P(Z > 2) =P (X > 2). Fill in the intermediate step to get: P(Z > 2) =P (X > z).The
question is related to: a) Show that Z has a normal distribution, b) Show that the joint
distribution of Z and Y is not bivariate normal. Hint: Z and Y has the same sign. In
the case for P(Z < z), where z is a threshold and negative and the fact that: z if zy > 0
and —z if zy < 0. X and Y are N (0,1) for z < 0.

P(Z<2)=P(X <z N XY 0)+'P(—X§z/\XY>O)

Hereis 2 < 0,Y <0 NQ&M@’A—QS

P(Z<z2)=P(X <z +P(X2-2AY<0)
Because X and Y are independent, we have that:

hig
P(Z<z) = P(X<2) PY <0)+P(X >—2)P(Y <0)

P(X<2) P(X2-2) 'S -,Z

2 2

3Scarch for: hyperbolic function properties. —
Sec mathworld, /
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By symmetry we have:
P(Z<2)=P(X<2)

In the case for z positive and P(Z > z) = P (X > z):

P(Z>z) = P(X>zAXY>0+P(-X>z A XY >0)
= PX>2AY>0+P(-X>zAY>0)
PX>2) P(Y >0 +P(X<-2)P(Y >0)
P(X>2) P{X<-z)
2 + 2.

As before we have the following: Vet 4
P(Z) Z)=P(X>z)

7. Computing the variance of X by using the conditional variance identity of the equation
4.4.4 on page 167 of C.B.

Viz) = E(V(zly) + V (E(z]y)) (5)

Where V(z) and V (z|y) are the unconditional and conditional variances respectively. So,
X ~ x? con p + 2k degrees 0f_£1;§€d0m and X|k ~ x* con p + 2k degrees of freedom.

E(z|k) = ~&/ k
V(E (zlk) = pr “a
Where /' (p) = 0 begause p is a constant. Furthermore, k is distributed as Poisson (A)

is equal to A and V (E (z]k)) = 4A. Now V (zly) = E (z2ly) - (E (z]y))* =
2{(p+2X) and E(V (zly)) = E (2p) +4E ()\) = 2p + 4\, By adding the last expressions,

we have the following:
V()= E(V (zly) + V (E (z]y)) =N= 2p + 8X

8. We compute E (z?) directly

oo 0 Xe/ttk-1 £y NE exp (—=A)
2 B WA 1 Wty
fo * kzor Dy k) 2Pk p( 2) P (6)

= [ XP/2Hk-1 z Mexp (=\)
2
) P it il
%) ( rEemzm e (73) ) A

Becausem is the pdf of Jlf @ hi squared distribution with

E (:cz)

p + 2k degrecs of freedom, we can get the moment® (:L'2) as follows:

00 XP/2tk-1 T %/
E(2%,) = /(; 3;21" (5 ) I exp (-5) dr = + 2k) - 2k)? (7)
2

5See Mathworld. Because E (x) = p+ 2k and given that V (z) = E (z°) — (E (z))*. Also, E (%) =V (z) +
(E@)?=2(p+2k)+ (p+2k)°.
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By using the eq. (7), we can express the eq. (6) as follows:

Z 2(p+@—9~(87(2k) X ex" Aexp (=)
0
Ak (=X) M exp (—A)
_ gpz$ M 22 ep
4pqu ex;:‘(—/\ X\ ﬁ exgl( =A)
E(z?) = 2p+4,\+7>\+9:/+4 ,\+/\2

Where M—l 1and E(k) = X and V(k) A which corresponds to the
Poisson Distribution. Since V' (z) = E( , we have that E (z N =V (z)+

(E{x
(E(z))” = A+ A%, Therefore, we have that:
V(z)=E(2*) - (E(z))>=2p+4)+p° %+4 )\+W2A)

Because we know that:

E (a:2)

o0

AFex Afex A
B@ = Y B cm)—p“"‘ Z(p+2k)—p—(—)
k=0
o Lk k
_ Afexp (—A) Afexp(—A)
R R
k=0 k=0
= (p+2}))
Given the last equation, we finally have that:
V(z)=E(2) — (E(z))N= 2%+ 8)
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1 Appendix

1.1 Question 1.(a)

Advanced Economic Statistics - Rutgers University

/* Code by Hiraki Tsurumi (Assign #4-10:
Rojas Cama */

// Last update October 10th 2010

// Rutgers University - Phd program

asgn04-10.pro) but modified by Freddy

/* m===============s=ssssss===

b
/R KR o KA o AR o R o o o o R o K A K S K o KK

* Question N 1 and N 2

Yoom,

o ook o o o o o o o ook o K o R Kok KK K R ok K kR kR ok

new;
library pgraph;
pPgewin auto;

graphset;

n_r=4000;

n_c=8;
z_ij=rndn{n_r,n_c)."2;
z_i=sumc(z_ij’);
format /ml /rd 6,8;
{x1,den1}=kden(z_i);
nn=1000;

up=maxc(z_i);

low=0;
h=(up-low)/{nn-1};
xx=seqa(low,h,nn};

ey

ar
kG

3
W

A

k=n_c;
fx=(2" (k/2)*gamma (k/2)) "-1*(xx.~ (k/2-1)) . *exp(~xx./2);
/*===drawing on one graph two functions with different vector dimensiong====»/
graphset;

begwind;

_protate=0;

_pcolor = { 9 5 }; /* Colors for series */

_pmcoler = {

1, 8, 2, 8, 8, 8, 8, 8, 15 };

/*Colors for axes, title, x and y labels, date, box, and background */

_plwidth={12
_paxht=0.10;
_ptitlht
plegetl = { 27 2 4.0 };
title("Exact
ylabel ("density");

xlabel ("x");

makewind (7.8, 7.8, 0, 0, 0);
~pltype=6;

11

12 }; /*Controls line thickness for main curves*/
/*Controls size of axes labels*/
0.18; /+*Controls main title size */

and kernel densities of Chi-square distribution");
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_plepgctl={2 4 4.5 5.4};
_plegstr="exact pdf";
xy (xx,£x);
_pcolor = { 5 }; /* Colors for series */
_pmcolor = { 1, 8, 2, 8, 8, 8, 8, 8, 15 };
_plegctl={2 4 4.5 5.0};
_plwidth={8}; /#Controls line thickness for main curves*/
_plegstr="kernel density ";
-pltype=3;
xy(x1,denl);
endwind; e
/#====computation of mean, variance, skewness, and kurtosis see mathworld ====+/
//exact h
mean=k;
var=2x*k;
skew=(8/k)"0.5;
kurtosis=12/k+3;
mode=maxc ((k-2)|0};
cls;
print;

LI}

" Statistics from draws whose come from Chi-square formula “;
print "exact mean, mode, variance, skewness, and kurtosis ";
mean|mode|var|skewlkurtosis;

noa.

]
/#===computation of mean, mode, variance, skewness, and kurtosis by Simpson’s

upa=30; lowa=0.00;

nn=100; nnl=nn+i;
ha=(upa-lowa}/nn;
pea=seqa{lowa,ha,nnl);
wpl={1 4}; wp2={2 4}; wpd=1;
m2=nn/2-1;

wp3=ones(1,nn2) .*.wp2;
wp=wpl wp3 wp4;

wp=wp*(ha/3};
sur=(2" (k/2)*gamma(k/2)) " -1*{(pea. " (k/2-1}) .*exp(-pea./2);
/*--marginal posterior pdf, mean and sd~---*/

vol=up*sur;

//print "volume" vol;
mar=sur,

mu=wp*(pea.*mar) ;
var=wp*(((pea-mu) "2) .*mar);

12
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sd=sqrt(var);

skew=wp* (({pea-mu) "3) . *mar) ;

skew=skew/sd"3;

kurto=wp+*(((pea-mu)"4).*mar) ;

kurto=kurte/sd"4;

mode=pea [maxindc (mar)];

par=mujmode|var|skew]kurto;

wovy; " Statistics from draws whose come from Simpson’s rule Formula ";
print " mean mode var skew and kurtosis " par;

/*====gample mean, variance, skewness, and kurtosis ====x/
xi=z'i; ?
smean=meanc(x1); 0y -
sd=stdc(x1);
svar=sd~2;

skw=meanc ({xl-smean) "3}/sd"3;
skurt=meanc{{(xl<smean)"4)/sd"4;
sxl=sortc(x1,1);
smode=s5x1[maxindc(denl)];
print;

"oU.. "™ Statistics from dragﬁiﬁhose come from moment estimates ";
print "sample mean, mode, 'variance, skewness, and kurtosis ";
print smean{smode|svar|skw|skurt;

end;

/® x/

/* kernel density estimation */

/x ®/
proc(2)=kden(v);
local g,h,j,nn,res;
nn=rows(v);
h=1.06#stdc(v)/nn".2;
print "h " h;
g=0;

J=1;

do while j <= nn;

g=glmeanc (pdfn((v-v[j1}/h))/h;
j=ivt

endo;

res=sortc(v g[2:nn+1],1);
retp(res[.,1],res[.,2]);
endp; '
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