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1. This question calls for plotting a kernel density estimate and the exact pdf on the same
graph. ’
(i) We drew n = 6000 beta random variables by setting a = 148 and 8 = 4 (see appendix
for details). ¥
(ii} We evaluate the exact pdf at 1000 grid poihté’;('sce appendix for details).
(iii) The graph on which the kernel density and the exact pdf are drawn: \ / O
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Figure 1. Exact and Kernel Densily estimates for Beta(148,4)

2. This question calls for computing the mean, variance, skewness and kurtosis (the stats)
by using analitycal, numerical and sampling-based estimates.

(i) The exact mean, mode, variance, skewness and kurtosis of a beta distribution(148,4)
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'Sce http://mathworld.wolfram. com/BetaDistribution.html
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(ii) We compute the stats by using the Simps_vonif’s rule (see the appendix).
e H F

(iii) We compute the sample estimates of stats using the 6000 draws of beta random
variables (see the appendix). Also, we compute expressions given in item (i) in this
section for calculating the exact moments of the distribution. Thus we have the
following results

Table 1: Report

Exact Simpson's rule -Sample Estimates
Mean 0.97368 0.97368 0.97404
Mode 0.98000 0.98000 0.98660
Variance 1'15;60017 0.00017 0.00016
Skewness  -0.95073 -0.95073 -0.88053
Kurtosis 4.30837 4.30837 3.92832

As we see the estimates by using the exact, numerical and sampling-based methods
are closed by each other. In above table, it seems that we have a sort of unaccuracy
in the sampling-based estimates of "stats" but the consistency of the estimators is
proved as the number of draws goes to infinity.?

3. On the lecture #3 (page 12) a proof of Stein’s lemma is shown. Alternatively, Goldstein
shows a standard way to prove this Lemma. The Stein’s Lemma states that the following
expression must hold:

E(Z f(2))=E(f'(Z))
if and only if Z ~ A7(0,1) . In order to prove this condition, Goldstein breaks E (f' (Z)) in
two parts, they are:. [;° f' (2) ¢ (z) dz and ffm f(z) ¢ (2) dz.Where ¢ (z) is the standard
normal function. On page 16 of Goldstein’s lecture, the key step for reaching the proof
is:

fomf’(2)¢(Zsz=f0wf’ (z)]mw(mdydz (1)

z

We prove the expression (1) as follows: By inspection, we know that y¢ {y) = —¢' (¥).
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So, applying integral to this expression, we have:

fzmyqb(y)dy = /zw—qﬁ’(y)dy

= —/md[rﬁ(y)]d'y

= —¢WIF
= ¢(z2)

Thus, the condition (1) is hold. W

4. This question calls to get the coeflicient of kurtosis for a normal variable by using char-
acteristic function and Stein’s Lemma. ko

(i) by using the characteristic function, we need to perform the following expression:

Py (t)
ot
In this case, for the calculation of kurtosis we set up n = 4. We use the characteristic
function setting 4 = 0 to obtain the coefficient de kurtosis. In this case, we have
that ¢ (t) = e~ So, in order to get the coeflicient of kurtosis, we make the
following steps:

li=0 = i"E (z") (2)

A#o0() _
ot
. The second (partial) derivative is:

_e—ga%? (Jzt)

2
)

a@fé)(t) = e 17 (o'1) - 737 (o7)
The third (partial) derivative is:

8399 (t) _ 15242 ¢ 6.3 —Lg242 0 4 —1a%2 4 4
Bioar =~ ¢ (0%t°) + 2e72 (o%t) +e72 (o)

The fourth (partial) derivative is:

e (t) 1,22 1,22
[l . S S —zo°t 8t4 — 3e737 t 6t2
Dot (0°F) —3e (o)
P Lale (c®?) + 2¢ 171 (c%)
—e—37t (06t2) +em29° (04)
So, we evaluate the fourth derivative at ¢ = 0.
dp(t)
OtotdLot
So, considering expression (2) and (3) we have that E (z) = 30%. The kurtosis

~ 4
(k [z]) is calculated as k[z] = E%Iﬁ):, in terms of expectations k [z] = Lﬂfﬁl— So,
considering that i = 0, we have

|i=0 = 30 (3)

kjz] =3
4
In this case, the excess of kurtosis is defined as & [z] = Eﬁg)— -3=0

3
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(ii) By using the Stein’s Lemma, we have that E(2f (2)) = E(f/(z)) if and only if
Z ~ N (0,1), being in our case that z = £.5 We are looking for E (z*) therefore
fl2)=2%= f;, in this case we have that;

E(zf(2)) = E(f'(2))
Bz = 38(:)
(24) = 3 »
Because (z ) = 1. Then, we have that E Jq—l Then, we have
. D‘
E (o) =s

The kurtosis (k [z]) is calculated as k [z] = Elfiﬁt, in terms of expectations k [z] =

g

—(TLE ::0—,1 ‘. So, considering that p = 0, we have
klz].=3
In this case the excess of kurtosis as defined as & [z] = _(1)_5: ‘_ 3=0

5. The question calls for completing the steps of the solution in exercise 3.33 of Casella and

Berger. We verify that gamma(a’;. 1) is an exponential family. The probability distribution

function is: )
x* texp (—ax)

RCI Y

[+ 4

1
gamma(a} a) -

S0 we must to arrange the above terms in order to get the following structure:

k
f (z16) = h{z) c(8) exp (Z wi (0) & (a:)) (5)
t=1
thus, re-arranging terms to expression (4):
1 z®Vexp (—azx)
gamna(c, ~) m)a—

z® exp (~ax)
2T (a) (é)a
exp (alogz — ax)

al (a) (é)a
where we use the fact that exp (o logz) = z@,
1 exp(alogz — ax
gamma(a! _) = ( g 1y & )
zT (a) (3)
- 1o® exp (al
= ZT(a) plalogz — ax)

*Recall u = 0 only for kurtosis-calculation purposcs.
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so, in this case we have reproduced the structure of expression {5), thus we have the
following (considering the parameters of the functin as arguments in that expression):
hiz) = %,c(a) = ﬁ‘%,wl (@) = a,t1{a) =logz,w: (@) = o and ¢ (a) = —=z.

6. This question calls for filling in intermediate steps in order to get a complete derivation
of theorem 3.6.7 (Casella and Berger). Likewise, this question asks for obtaining the
variance of xg.

(i} We must show that

sion%:
)

(ii) We obtain the variance of x?, by using the theorem 3.6.7. In this case £ [h (x;‘;)] =

E((x3)’]

o] - e |22

= pE [X;2:+2]

by using the characteristic function to get the F [X?,] :

E [(xﬁ)g] =p(p+2)

in any case we know that the expectation of a chi-square variable is the number
of degrees of freedom®. We compute the variance

B[] - (ELON = po+2 -7

Ta+1)=a),s0, el {a)=a-(a- 1) =a!
s0e mathworld.com
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Asignment 03 (code sent by Hiraki Tsurumi)
Modified by Freddy Rojas Cama
Last update October 1st, 2010 ‘

ok ot oK R KKOK R R ok ol o ok ok ok e kR kK

// Question N 1 (i),(ii) and (iii) _
A

™

//Preliminaries and housecleaning
nev;
cls;
library pgraph;
//#include density.src;
pagwin auto;
graphset;
alpha=148; .
beta=4; R o
//Grid Points for exact pdf
nn=1000;
up=1.0;
low=0.5;
h=(up-low)/(nn-1);
xx=seqa(low,h,nn};
lnconst=1nfact (alpha+beta-1)-1Infact (alpha-1)-1lnfact(beta-1);
const=exp(lnconst);
fx=const*xx” (alpha-1).*(1-xx) "~ (beta-1);
//Draws from Beta Function
n=6000;
x=rndbeta{n,1,alpha,beta);
hO=1.06*stdc(x}/{(n".2);
h2=0.01;
h3=0.15;
{x0,den0}=kden{x,h0);
{x2,den2}=kden(x,h2)};
{x3,den3}=kden(x,h3);
{x4,dend}=kernele(x,h0);
// setting up graphs
graphset;
begwind;
_protate=0;
_pcolor = { 9 5 }; /% Colors for series */
_pmcolor = {1, 8, 2, 8, 8, 8, 8, 8, 16 };
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/*Colors for axes, title, x and y labels, date, box, and background */
_plwidth={12 12 }; /*Controls line thickness for main curves*/
_paxht=0.10; /*Controls size of axes labels#/

_ptitlht = 0.22; /*Controls main title size */

_plegctl = { 27 2 4.0 };
title("Exact and kernel densities");
ylabel("density");

xlabel{"x");

xtics(.9,1.0,.01,0);

ytics(0,40,5,0); ’
makewind(7.8, 7.8, 0, 0, 0); o b
_pltype=6;

_plegctl={2 4 1.5 5.4};

_plegstr="exact pdf at 1000 grid points";
xy(xx,£x);

_plegctl={2 4 1.5 5.0};

_plegstr="kernel density 6000 draws";

-pltype=2;

xy (x0,den0) ;

endwind; £t

/* = = ZEEEE= !i- === */

/* kernel density estimation; Tsurumi’s original codex/
/* but modified by Freddy Rojas */

[* ========== ====s === === */
proc{2)=kden(v,h};

local g,j,nn,res;

nn=rows{v);

Hou,
H

Q@print "h ";Q

@h;Q

£=0;

j=1;

do while j <= nn;

g=glmeanc (pdfn((v[jl-v)}./h)}./h;
=i+

endo;

res=sortc(v-g[2:nn+1],1);
retp(res(.,1],res[.,2]);

endp;
/¥ s2=========== ===== === == ==x%/
/* Epachenikov kernel density estimation; */

proc(2)= kernele(z,h);

',
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lecal a,res,t,g,z_v,zv,zv_,];
3=1; -

g=0;

do while j <= rows(z);
zv=(z[jl-2)./h;

t=(abs(zv).<sqrt(5));
a=code(t,sqrt(5)|1);
zv_=t.*({3/4)*(1-(1/5) .x(zv."2))./a);
g=g|meanc(zv_)./h;
J=3+1;
endo;
res=sortc(z g[2:rows(z)+1],1);
retp(res[.,1],res(.,2]);
endp;

1.2 Gauss Program, Question 2.(i), (ii} and (iii)

Asignment 03 {(code sent byiﬂiraki Tsurumi)
Modified by Freddy Rojas Cama
Last update October 1st, 2010

ook o o ok ke o s ok ook ok ke o o ok o s ok o ook R o ok R ok ok ok K ks ok sk sk ok f
// Question N 2 (i), (ii) and (iii)

/o e s o s ok o sk ok ok ook koo sk ki ok o ok ok sk ok ok /
//Preliminaries and housecleaning

newv;

cls;

library pgraph;

//#include density.src;

pagwin auto;

graphset;

alpha=148;

beta=4;

/*===computation of mean, mode, variance, skewness, and
by Simpson’s rule =====*/

upa=1; lowa=.5;

nn=6000; nnl=nn+l;
ha=(upa-lowa)/nn;
pea=seqa{lowa,ha,nnl);
wpl={1 4}; wp2={2 4}; wp4=1;
nn2=nn/2-1;
wp3=ones(1,nn2).*.wp2;
wp=upl wp3Twp4;

kurtosis
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wp=wp*{ha/3};

sur=pea” (alpha-1) .*(1-pea)” (beta-1);
/*~-marginal posterior pdf, mean and sd----*/
vol=wp*sur;

//print "volume" vol;

mar=sur/vol;

mu=wp*{pea.*mar) ;

var=wp*({({pea~mu)~2) . *mar) ;

sd=sqrt(var);

skew=wp* (({pea-mu)"3).*mar) ;

. skew=skew/sd"3; er
kurto=wp*({((pea-mu) “4) . #mar) ;
kurto=kurto/sd"4;
mode=pea[maxindc{mar)];

par=mu-mode”var~skew kurto;
LI
]

Mo, " Statistics from draws whose come from Simpon’s rule calculations ";
print " mean mode var skew and kurtosis ";

par;

//Draws from Beta Function %53
n=6000; ’
xl=rndbeta(n,1,alpha,beta);
hO=1.06*stdc(x1)/(n".2);
{x_,denl}=kden{x1,h0);
/*====sample mean, variance, skewness, and kurtosis ====x/
smean=meanc{x1);

sd=stdc(x1);

svar=sd"2;

skv=meanc{(x1-smean)"3)/sd"3;

skurt=meanc((xl-smean) “4)/sd"4;

smode=x1[maxindc(den1)];
n ",
H]

n ll;

print;

om., " Statistics from draws whose come from Beta Formula ";
print "sample mean, mode, variance, skewness, and kurtosis ";
print smean”smode”svar”skw skurt;

/* ===m== === ====== ===============k /

/* kernel density estimation; Tsurumi’s original code*/

/* but modified by Freddy Rojas */

/% s============ssooooooooooo === =======x%/
proc(2)=kden{v,h};

local g,j,nn,res;

nn=rows (v);

n .
Ll

10

K

dy
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LI {
]

@print "h ";@

¢h;Q

g=0;

=1

do while j <= nn;
g=glmeanc(pdfn((v[jl-v)./h))./h;
J=i+1;

endo;

res=sortc(v g(2:nn+1],1);
retp(res[.,1],res[.,2]);
endp;
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