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1 The Price System (Smith, Ch 1)

Single good economics. Let p be the price of the single good and y the supply of such
good (i.e. total amount sellers want to sell). Let x be demand for the good (i.e. total amount
consumers want to buy). Then:

• y = y(p) is the supply function and y′(p) > 0.

• x = x(p) is the demand function and x′(p) < 0.

• Equilibrium is q∗ = y(p∗) = x(p∗)

If p < p∗ one has excess demand and viceversa for excess supply. Excess demand (supply)
drives up (down) price and there’s a tendency towards equilibrium.If this were always the case,
we would have a stable equilibrium price.

1.1 Stability of equilibrium (cobweb cycle)

Suppose that because of lags in production (e.g., building capacity) supply is y(p) = bEt−1(pt) =
bpt−1 and demand is x(p) = α−βpt. Then market clearing 6= equilibrium. Market clearing would
be:

α− βpt = bpt−1

pt =
α

β
− b

β
pt−1 (1)

Whereas equilibrium implies pt = pt−1 = p∗ and:

α− βp∗ = bp∗

p∗ =
α

β + b
(2)

Substract (2) from (1) and get:

pt − p∗ = − b
β

(pt−1 − p∗)

Naturally, there’s a tendency towards equilibrium only if b < β. Otherwise one gets the cobweb
cycle or an unstable equilibrium.

1.2 Comparative statics

Sales Tax. Introduce a sales tax so that now, the price faced by consumers is π = p+ t. Since
demand depends upon π and supply is a function of p, market clearing is now x(π) = y(p).To
see what happens if the tax amount changes, differentiate w.r.t. t :

dπ

dt
=

dp

dt
+ 1

x′(π)
dπ

dt
= y′(p)

dp

dt
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Solving this two equation system yields:

dp

dt
=

x′(π)

y′(p)− x′(π)

dπ

dt
=

y′(p)

y′(p)− x′(π)

Since by assumption y′(p) > 0 and x′(p) < 0 we have that dp
dt < 0 and dπ

dt > 0. Finally, since
x(π) = q = y(p) we have:

dq

dt
=

x′(π)y′(p)

y′(p)− x′(π)

and dq
dt < 0. Summarizing, regardless of who pays the sales tax, the result is that if t rises,

p falls and π rises so that q falls (deadweight loss). Introducing a sales tax shifts the demand
schedule downwards; at each p consumers are willing to buy less than they otherwise would since
they now face π = p+ t

Income effects. Suppose now that demand is a function of both prices and income, so
market clearing is y(p) = x(p,m) and p is an implicit function of m :

y′(p)
dp

dm
=

∂x

∂p

dp

dm
+
∂x

∂m

dp

dm
=

xm
yp − xp

and since yp > 0, xp < 0 and assuming xm > 0, we conclude (not surprisingly) that dp
dm > 0.

Likewise, since y(p) = q = x(p,m), we have:

dq

dm
=

xmyp
yp − xp

and we conclude that, given the assumptions, dq
dm > 0. Moreover, to measure the relative size of

the income effects, define the income elasticity of demand as:

exm =
m

x

∂x

∂m

Cross-price effects. Suppose goods 1, 2 and a subsidy to good 2. Then equilibrium in
both markets would be:

y1(p1) = x1(p1, π2) (3a)

y2(p2) = x2(p1, π2) (3b)

π2 = p2 − s (3c)

where π2 is the price of good 2 faced by consumers, s is the subsidy and p2 is the price received
by producers of good 2. To see what happens when s changes, differentiate (3a)-(3c) w.r.t. s
and replace. Define y1

1 = dx1/dp1 and x1
2 = ∂x1/∂π2 to obtain:

y1
1

dp1

ds
= x1

1

dp1

ds
+ x1

2

(
dp2

ds
− 1

)
=⇒ dp1

ds
=

−x1
2y

2
2

(y1
1 − x1

1)(y2
2 − x2

2)− x1
2x

2
1

y2
2

dp2

ds
= x2

1

dp1

ds
+ x2

2

(
dp2

ds
− 1

)
=⇒ dp2

ds
=

−(y1
1 − x1

1)x2
2 − x1

2x
2
1

(y1
1 − x1

1)(y2
2 − x2

2)− x1
2x

2
1
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Naturally, the final change in prices and quantitties of both goods depend upon one another
in a complicated way. The reason is that both income and substitution effects play a role. To
guarantee the stability of the new equilibrium we require that (y1

1 − x1
1)(y2

2 − x2
2)− x1

2x
2
1 > 0.

Finally, to measure the responsiveness of demand and supply to self and cross-prices, define
the price elasticities of demand and supply:

exp = p
x
dx
dp exp = p

y
dy
dp eixj = pj

xi
∂xi

∂pj

2 Producer theory (Smith, Ch 2-3; Varian, Ch 18-22)

2.1 Technology and returns to scale

Suppose one is dealing with a typical single-output firmm which produces under a specific
technology:

y ≤ f(z1, z2, ..., zn)

in most applications one will require the input set to be convex which in turn rules out convex
production functions. However, one usually wants to work with production functions that have
convex isoquants (z1, z2 contours):

z1
z2

f(z1,z2)

A convex production set

z1

z2

f(z1,z2)

Convex contours

Moreover, one usually deals with different types of returns to scale. For k > 1:

• We say that a technology exhibits decreasing returns to scale if f(kz) < kf(z). This simply
means that if c(y) is the cost of producing y, then:

AC(y) =
c(y)

y
<
c(ky)

ky
= AC(ky)

• On the other hang, increasing returns imply that f(kz) > kf(z) so that the average cost
c(y)/y decreases as y increases:

AC(y) =
c(y)

y
>
c(ky)

ky
= AC(ky)

• And constant returns to scale imply f(kz) = kf(z) Naturally, the Average cost is constant
too.

Two important concepts in production technologies are:

3



• Technical rate of substitution. The TRS is simply the rate at which technology permits
one to substitute one input by another:

TRS = −MP1(z1, z2)

MP2(z1, z2)
=
∂f/∂z1

∂f/∂z2

that is, the slope of the isoquants in the input space or countours in the input-output
space.

• Diminishing marginal product. Which is simply a sensible statement about second
derivatives:

∂2f

∂z2
i

< 0

2.2 Cost minimization

A price-taker firm using inputs z = [z1, z2, ..., zn]′ and facing input prices w = [w1, w2, ..., wn]′

sets out to minimizing the cost of producing some level y:

min
z
w · z

s.t.

f(z) = y

with lagrangean:
L = w · z+λ(y−f(z))

and associated F.O.C.:

wi − λ
∂f

∂zi
= 0 (4)

f(z) = y (5)

saying, again, that the firm will use inputs up to the point where their price equal the value of
their marginal products. The solution to this problem will depend on w1, w2 and y and is known
as the cost function: c(w,y). As in the profit max problem, one can write the isocost functions
for two inputs:

C = w1z1 + w2z2

z1 =
C

w2
− w1

w2
z2

in the two input (z1, z2)−space, these will be paralel lines with negative slopes −w1w2 . Geometri-
cally, the firm wants to be in the lowest (most southwestern) isocost line and if one has convex
(z1, z2) upper contours as in Figure (), the optimal would be at the tangency point between
the isocost (straight line) and the isoquant (convex curve yielding constant y), that is, from the
F.O.C. (4)-(5) one obtains that the TRS equals the input price ratio:

∂f/∂z1

∂f/∂z2
=
w1

w2
(6)

When the optimal choice of inputs zi(w, y) is used to calculate the cost of production, one
obtains the cost function:

c(w, y) = w · z(w, y)
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It is straightforward to see that the cost function is homogeneous of degree 1 in w. Furthermore,
differentiationg the cost function w.r.t. y yields:

∂c(w, y)

∂y
=

n∑
i=1

wi
∂zi(w, y)

∂y

= λ
n∑
i=1

∂f

∂zi

∂zi(w, y)

∂y
(use F.O.C. (4))

∂c(w, y)

∂y
= λ(w, y) (since

∂f

∂zi

∂zi(w, y)

∂y
=
df

dy
= 1 by (5))

so that the Lagrange multiplier is precisely the marginal cost .

2.2.1 Elasticity of substitution

Finally, the shape of the isoquant ȳ = f(z1, z2) shows how the input mix changes as the price
changes, this can be masured by the elasticity of substitution:

σ =
w1/w2

z1/z2

d (z1/z2)

d (w1/w2)

which in turn tells what happens to the input shares on total production as prices change.
When such elasticity of substitution is constant, the production function is called CES.

Example 1 A CES function. Consider the technology:

y = f(z1, z2) =
(
z

1/2
1 + z

1/2
2

)2

so that:
∂f/∂z1

∂f/∂z2
=

√
z2√
z1

and from the F.O.C. (6) we have that:
√
z2√
z1

=
w1

w2
=⇒ z1

z2
=

(
w1

w2

)−2

and the elasticity of substitution is:

σ =
w1/w2

z1/z2
(−2)

(
w1

w2

)−3

σ = −2

so if the input price ratio changes by 10%, the input mix ratio changes by 20% (in opposite
direction)

Example 2 The Cobb-Douglas aggregate production function. Suppose that an economy oper-
ates under CD with two inputs, capital (K) and labor (L):

F (K,L) = KαLβ

first, Fk
FL

=
(
α
β

) (
L
K

)
and with r being the rental price of K and w the wage, from the F.O.C.

one has that: (
α

β

)(
L

K

)
=

r

w

K

L
=

( r
w

)−1
(
α

β

)
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so that the elasticity of substitution is:

r/w

K/L

d(K/L)

d(r/w)
=

r/w

K/L

(
−α
β

)( r
w

)−2

σ = −1

that, is, not only a Cobb-Douglas belongs to the family of CES functions, it exhibits elasticity of
substitution equal to one; if the input price ratio changes by 10% so does the input mix ratio (in
the opposite direction).

2.3 Profit maximization

If, in contrast to the cost min problem, the firm can also choose how much to produce and faces
output price p is assumed to maximize profits:

π = py −w · z (7)

If one deals with only one input, z1, (7) can be rewriten as:

y =
π

p
− w1

p
z1

This equation describes isoprofit lines in the input-output space with positive slope; combi-
nations of (y, z1) that yield the same profit. Geometrically, the firm wants to attain the highest
possible isoprofit line. With a convex input requirement set and a strictly concave production
function, the firm would optimize at the point where an isoprofit line is tangent to the production
function. Formally, the constrained optimization problem of the firm is:

max
y,z

py −w · z

s.t.

y ≤ f(z1, z2, ..., zn)

which is equivalent to the problem:

max
z
pf(z)−w · z

the first order necessary conditions are the n-equations:

p
∂f

∂z
= w (8)

y = f(z) (9)

simply stating that, when firms are price takers, they will use inpunt i up to the point to
wich the value of its marginal product equals its price. In order for (8) to be suffi cient we require
the input requirement set to be convex, as above.
Alternatively, if the firm has solved its cost minimization problem and know its cost function

c(w, y) then the problem is a single variable (unconstrained) optimization one:

max
y

py − c(w, y)

with necessary F.O.C.

p =
∂c(w, y)

∂y
(10)

that is, the firm produces up to the point where the marginal cost equals the price of output. The
second-order suffi cient condition is that ∂2c(w,y)

∂y2 > 0, i.e., that the cost function is convex or
exhibits increasing marginal cost.
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Remark 3 Since ∂c(w,y)
∂y = λ(w, y) = p one can substitute λ in the cost min F.O.C. (4):

wi − λ
∂f

∂zi
= 0

wi −
∂c(w, y)

∂y

∂f

∂zi
= 0

wi − p
∂f

∂zi
= 0

which is just the F.O.C. for the original profit max problem (8)

Comparative Statics. A simple exercise of comparative statics under convex input set and
concave production function will yield:

- Demand for input i will rise whenever wi falls or p rises.

- Demand for input i will fall whenever wi rises or p falls.

Claim 4 The only reasonable long-run profit level for a firm with constant returns to scale
operating in a competitive market is zero.

To see this, suppose that the firm maximizes profits at some π∗ > 0 with an optimal combi-
nation of inputs z∗. Then π∗ = pf(z∗) −w · z∗ ≥ pf(z) −w · z for any possible z. Now, since
the firm exhibits constant returns to scale, z′ = kz∗ for k > 1 implies ky∗ and kπ∗, that is a
higher level of profits, which contradicts the hypothesis that z∗ maximizes profits. Therefore,
only if π∗ = 0 we have that for any k > 1, kπ∗ = π∗ = 0.

Remark 5 One can recover the firm’s technology when it is not known by looking at the firms
revealed profitability. Much like revealed preferences via demands for goods can help recover the
shape of the utility function, the choice of inputs by the firm over some other feasible input
bundles embed information about feasibility and profitability. If enough of these are observed,
one coud recover the firm’s technology (enough "tangency points").

Example 6 Cobb-Douglas technology and two inputs. Consider the production function f(z1, z2) =
zα1 z

ϕ
2 . First, one sets out to minimize cost of producing certain y: The Lagrangean:

L = w1z1 + w2z2 + λ(y − zα1 z
ϕ
2 )

and F.O.C.

∂L
∂z1

= w1 − λαzα−1
1 zϕ2 = 0

∂L
∂z2

= w2 − λβzα1 z
ϕ−1
2 = 0

∂L
∂λ

= y − zα1 z
ϕ
2 . = 0

solving this sysem for z1, z2 one obtains:

z1 =

[
y

(
α

ϕ

w2

w1

)ϕ] 1
α+ϕ

z2 =

[
y

(
ϕ

α

w1

w2

)α] 1
α+ϕ
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and const function:

c(w, y) = w1

[
y

(
α

ϕ

w2

w1

)ϕ] 1
α+ϕ

+ w2

[
y

(
ϕ

α

w1

w2

)α] 1
α+ϕ

Now, one can solve the single variable unconstrained optimization problem:

max
y

py − c(w, y)

with F.O.C.

p =
∂c(w, y)

∂y

p =

(
1

α+ ϕ

){
w1

[(
α

ϕ

w2

w1

)ϕ] 1
α+ϕ

+ w2

[(
ϕ

α

w1

w2

)α] 1
α+ϕ

}
y
α+ϕ−1
α+ϕ

To complete the solution, one can solve for y as a function of p, w1, w2 and replace on the
equations for z1, z2 to leave them only as functions of p, w1, w2.

2.4 Cost Curves

If, in the short-run some input, say z2 is fixed at z̄2 (fixed cost) while some inputs are choice
variables, the production function is:

y = f(z1, z̄2)

so z1 is an implicit function of y and z̄2:

z1 = z1(z̄2, y)

the cost function is now:

c(w, y, z̄2) = w1z1(z̄2, y)︸ ︷︷ ︸ + w2z̄2︸ ︷︷ ︸
variable cost fixed cost

and the firm has a whole family of cost curves:

1. Short-run marginal cost (SRMC): ∂c(w, y, z̄2)/∂y

2. Short-run average cost (SRAC): c(w, y, z̄2)/y

3. Average variable cost (AVC): w1z1(z̄2, y)/y

Now, short-run profit maximization requires a slight variation of (10):

p =
∂c(w, y, z̄2)

∂y

and an additional condition is required; that revenue exceeds variable cost or p > AV C:

py − w1z1(z̄2, y) > 0

for, if this were not the case, fixed costs would make the firm loose money. Thus, the SRMC,
when it is above the AVC (so p > AV C) represents the firm’s short-run supply function.
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Naturally, since in the long-run both inputs are choice variables, the firm can do at least as
good in the L-R as it does in the S-R (it can always choose z2 = z̄2) so it is always the case that:

c(w, y, z̄2) ≥ c(w, y) =⇒ c(w, y, z̄2)

y︸ ︷︷ ︸ ≥
c(w, y)

y︸ ︷︷ ︸
SRAC LRAC

In fact, the LRAC is a lower envelope for the SRAC. However, there is not such clear-cut
relationship betwenn marginal cost curves since, for some levels of y, one has that ∂c(w,y,z̄2)

∂y >
∂c(w,y)
∂y (SRMC>LRMC ) while for some levels of output the opposite is true.

2.5 Firm and industry suply

Suppose that demand for a certain good is x(p) with x′(p) < 0. This is in fact the demand
function for an entire industry composed of firm’s producing the same good. On the other hand,
the supply function of the industry is the horizonthal aggregation of the N firms’marginal cost
curves:

y(p) =
N∑
i=1

yi(p)

2.5.1 Free entry and heterogeneous firms:

- Case 1: Identical U-shaped LRAC functions, free entry. If one starts from a situation
withN firms each producing at a level where LRMC > LRAC then p > LRAC and profits
are positive. With free entry, new firms will have incentives to enter the industry and will
supply additional output, driving the proce down to the point where LRMC = LRAC.
The industry L-R supply curve is horizonthal.

- Case 2: Heterogeneous LRAC functions, free entry. If different firms face different
cost functions, the industry’s LRS will have to be upward sloping since newcomers require
higher price to break-even, so to achieve higher level of output (more firms) one requires
higher prices.

- Case 3: Identical flat LRAC functions. This means constant returns to scale so LRMC =
LRAC. Free entry is irrelevant since firms can always expand indefinitely (flat LRAC).
Starting from p 6= LRAC = LRMC, S-R supply is determinate and expansion/contraction
(entry/exit) will drive p towards LRMC where individual firm’s output and total numer
of firms is indeterminate but the industry’s output is determined by demand.

- Case 4: Firms have decreasing returns and there are barries to entry. Firms make
profit but don’t want to expand since they face decreasing returns and since there is no
new entry, price and output levels are fixed.

- Case 5: Firms have decreasing returns and free entry. Since profits are positive (as
in case 4), new firms enter and drive p downwards until the LRS is flat. Eventually there
would be an indefinitely large number of firms each producing an infinitesimal amount of
output.

- Case 6: All firms face increasing returns. Output is determinate in the S-R but since
all firms face increasing returns (LRMC, LRAC slope downwards) there’s an incentive for
merging so eventually there remains one single firm (Monopoly)
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2.5.2 Features of the competitive industry

• The supply curve of a competitive industry will slope upwards in the S-R and will be
horizonthal or slope upwards in the L-R.

• The marginal cost of output is the same for all firms and equals the price of output.

• In the L-R all firms produce positive output, make non-negative profits and...

• In fact, firms make zero profits and produce at the point which minimizes average cost of
production.

3 Non-competitive markets (Smith, Ch 6; Varian 24-28)

3.1 Monopoly

The monopolistic firm is price-maker instead of price taker. Hence, whenever it increases output,
it drives down price. The firm has output y and cost function c(y). Its output price is not the
constat p as before but a function of y: p = p(y) (the inverse demand). Since p′(y) < 0 the firm
faces downward sloping demand. The firm’s revenue is:

R = p(y)y

and its profit-max problem is:
max
y

p(y)y − c(y)

with F.O.C.:

p(y) + p′(y)y︸ ︷︷ ︸ = c′(y)︸︷︷︸
marginal revenue = marginal cost

and S.O.C.:
2p′(y) + p′′(y)y − c′′(y) < 0

so that for the monopolistic firm the necessary condition is not MC = p bur MR = MC. The
reason is that p is not fixed but falling as y rises. Alternatively one can write:

MR = p(y) + p′(y)y

= p

(
1 +

y

p

dp

dy

)
= p

(
1 +

1

exp

)
since yp

dp
dy is the inverse of the price elasticity of demand. The monopolistic firm will produce at y

∗

whereMC = MR which lies to the left of the y′ whereMC = p. Thus, in a monopoistic industry
total output would be lower and price would be higher than those under perfect competition.

3.1.1 Price discrimination

If output is non-resellable, one could partly amend the ineffi ciencies generated by monopoly
power with price discrimination (air tickets, hotel rooms, medical charges).
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- Perfect price discrimination: every customer can be charged a different rate (the maximum
amount each customer is willing to pay) so that total revenue is:

R(y) =

∫ y

0

p(x)dx

and profits are:

π(y) =

∫ y

0

p(x)dx− c(y)

the necessary FOC is simply:
p(y) = c′(y)

just as in the competitive industry.

- Imperfect price discrimination...

3.2 Oligopoly

Suppose that market demand is linear:

p = a− bx

there are N firms each with linear cost function:

ci = cyi for i = 1, 2..., N

quantity consumed is the sum of firms’outputs:

x =
N∑
i=1

yi

3.2.1 Cournot Equilibrium

In the Cournot model, firms optimize under the assumption that other firms stay put. A typical
firm therefore has profits:

πi(yi, x) = (a− bx)yi − cyi
with associated FOC:

∂πi(yi, x)

∂yi
= a− b

(
dx

dyi
yi +

dyi
dyi

x

)
− c = 0 (11)

since the firm optimizes under the assumption that other firms do not change their output,
dx
dyi

= 1 so that the F.O.C. is:
a− byi − bx− c = 0 (12)

The set of F.O.C. for each firm characterize what is known as a Cournot equilibrium.
Suppose one deals with N = 2 , that is, a duopoly. Then x = y1 + y2 and (12) for firm 1

becomes:

0 = a− byi − b(y1 + y2)− c

y1 =
a− c− by2

2b
(13)

while for fim 2 it is:

y2 =
a− c− by1

2b
(14)
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these are the reaction functions for firms 1,2 in the Cournot equilibrium; that is, the best response
of each firm given that the other firms do not change their behavior. Production distribution
would be given by the intersection of the two reaction functions:

(y1, y2) =

(
a− c

3b
,
a− c

3b

)
and total output for sale would be y = 2(a−c)

3b . Note that if firm 1 becomes a monopolist, total
output for sale is given by:

(y1, y2) =

(
a− c

2b
, 0

)
and conversely if firm 2 is the monopolist. Note also that total output under oligopoly is larger
than under monopoly.

3.2.2 Stackelberg equilibrium

Suppose that, instead of assuming that y2 is fixed, firm 1 realizes firm 2 has reaction function
(14) If one assumes firm 1 as the leader of the industry, firm 1 max-profits subject to (14)
holding:

max
y1,y2

[a− b(y1 + y2)] y1 − cy1

s.t.

y2 =
a− c− by1

2b

or equivalently:

max
y1,y2

1

2
(a− c)y1 −

1

2
by2

1

with solution:
y1 =

a− c
2b

and using (14) to solve for the folower’s output y2:

y2 =
a− c

4b

naturally the distribution of output between firms is not symetric anymore with the leader
producing more than the follower.

3.2.3 Monopolistic competition

In this setting, there’s product differentiation so a typical firm faces a demand curve for its
product that is a function of its own price and other firm’s output prices:

yi = yi(p1, p2, ..., pn)

with ∂yi
∂pi

< 0 and ∂yi
∂pj

> 0. Hence, the firm acts as a monopolist since it is price-maker for its
own product, operates under a Cournot-type of enviroment since it assumes that other firms’
prices are given, but faces a competitive threat since if it makes profits, it attracts other firms
to produce a similar good, driving down pj and demand for i. The firm’s problem is therefore:

max
pi

piyi(p)− c(yi(p))
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with FOC:

c′(yi) = pi + yi
∂pi
∂yi

=

(
1 +

1

ei

)

4 Consumer theory (Smith, Ch 4; Varian, Ch 2-5)

4.1 Preferences

Notation:

• strictly preferred bundle: (x1, x2) � (y1, y2)

• weakly preferred bundle: (x1, x2) % (y1, y2)

• Indifferent between bundles: (x1, x2) ∼ (y1, y2)

Preference relations are usually assumed to be:

• Complete: at least one of the three things above can be said about (x1, x2) and (y1, y2)

• Reflexive: (x1, x2) % (x1, x2)

• Transitive: (x1, x2) % (y1, y2) and (y1, y2) % (z1, z2) ⇒ (x1, x2) % (z1, z2)

Given a preference relation % we define (in two dimensions) the weakly preferred set as{
x ∈ R2 | x % (x1, x2)

}
and the indifference curve as:{

x ∈ R2 | x ∼ (x1, x2)
}

4.2 Utility

When preference relations satisfy completeness, reflexivity and transitivity, one can usually find
a representation for them, utulity functions such that:

u(x) ≥ u(y)⇔ x % y

Note that if u(x1, x2) = x1x2 and we define the monotonic transformation v(x1, x2) =
ln(xa1x

b
2) = a lnx1 + b lnx2 = lnu(x1, x2), then υ describes the same preferences as u since it

orders bundles in the same way and in ordinal utility theory, that’s all we care about. The shape
of the utility function defines the shape of indifference curves.

Table 1. Types of indifference curves:
u(x)-form slope-intercept form MRS

Cobb-Douglas u(x) = xα1x
β
2 x2 = (k/xα1 )

1/β for k = 1, 2, ... decreasing on x1

substitutes u(x) = ax1 + bx2 x2 = k
b −

a
bx1 for k = 1, 2, ... either 0 or ∞

complements u(x) = min{x1,x2} always = −1

Well behavied preference relations usually are monotonic, which implies that their indiffer-
ence curves have negative slopes. The slope of the indifference curve is known as the marginal
rate of substitution (MRS) since it measures the rate at which consumers are just willing to
substitute consumption of one good for another.
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In many cases well behavied preferences are assumed to be convex, so that:

(tx1 + (1− t)y1, tx2 + (1− t)y2) % (x1, x2) or

u(tx1 + (1− t)y1, tx2 + (1− t)y2) ≥ u(x1, x2)

Non-convex indifference curves typically lead to specialization or corner solutions, as in, for
instance, concave preferences.

Example 7 One can always take a monotonic transformation of the Cobb-Douglas utility func-
tion that make the exponents sum to 1. Let:

u(x1, x2) = xa1x
b
2

raise u to the power of 1
a+b and obtain:

v(x1, x2) = x
a
a+b

1 x
b
a+b

2

= xα1x
1−α
2

4.3 Budget Constraint

A budget line is the set of bundles that cost exactly m the income of the consumer:

{x | p · x = m}

while the budget set is defined as all the feasible bundles of goods:

{x | p · x ≤ m}

(generality of the two dimensional case) We can think about the budget set in two dimensions
x = (x1, x2) where x1 =good 1, and x2 =the amount of money spent on everything else. The
price of this last composite good is obviously 1 so that the budget set is given by:

p1x1 + x2 ≤ m

Another way to think of p2 = 1 is of good 2 being a numeraire, since usually what we care
about is relative prices. If, on the other hand, x2 = good 2 and p2 6= 1 and we write the budget
line in slope-intercept form as:

x2 =
m

p2
− p1

p2
x1

Note that the larger p1p2 (good 1 being relatively more expensive), the steeper the budget line
becomes.
A budget constraint with a sales tax (τ) on good 1 and a subsidy (σ) on good 2 would look

like:
(p1 + τ)x1 + (p2 − σ)x2 = m

so that consumers pay τx1 to the government and p1x1 to firms, and firms receive p2x2 from
consumers and σx2 from the government.

4.4 Optimal choice

The tangency argument. The tangency argument tells us that a first order necessary condi-
tion for an optimal choice is:

MRS = −p1

p2
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that is, the point where the indifference curve and the budget line are tangent to each other
(same slope). In addition if preferences are convex, this is also a suffi cient condition.

Demand functions. The optimal choice for goods at some set of prices and income is
the demanded bundle x∗ = (x∗1, x

∗
2). The relationship that describes how the optimal choice

responds to changes in income and prices is a demand function: x(p,m). This is the result of
the constrained optimization problem:

max
x

u(x)

s.t. (15)

p · x = m

Some common examples of demand functions under linear constrainst are:

Table 2. Demand functions
u(x)-form Demand

Cobb-Douglas u(x) = xα1x
β
2 x∗1 = β

α+β
m
p1
and x∗2 = α

α+β
m
p2

substitutes u(x) = ax1 + bx2 x∗i =

 m/pi, if pi < pj
∈ (0,m/pi), if pi = pj
0, if pi > pj

complements u(x) = min{x1,x2} x∗i = x∗j = m
pi+pj

Example 8 Cobb-Douglas Demand Functions. To derive demand functions from:

u(x) = xα1x
β
2

one way is to simply equate MRS = p1
p2
and use the resulting expression along with the budget

constraint to solve for x∗i . In this case we would have:

αx2

βx1
=

p1

p2
(16a)

p1x1 + p2x2 = m (16b)

solve (16a)-(16b) and replace. Alternatively, set up the Lagrangean:

L = xα1x
β
2 + λ(m− p1x1 − p2x2)

F.O.C. and eliminating λ yields:

αx1

p1
=

βx2

p2
(17)

p1x1 + p2x2 = m (18)

we can solve the system (17)-(18) and obtain:

x∗1 =
β

α+ β

m

p1
and x∗2 =

α

α+ β

m

p2

Demand function concepts:

- The income offer curve is the relationship between the optimal choice of x1, x2 as income
changes (and prices remain constant).
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- The income offer curve results in the Engle curve is the relationship between income and a
single good xi. If the good is normal, the Engle curve has positive slope.

- The price offer curve conects the optimal choices under different price ratios (and constant
income).

- The price offer curve in turn gives rise to the demand curve conecting optimal choice to
different price ratios.

Homothetic preferences. This is a case of preferences in which (x1, x2) % (y1, y2) ⇒
(tx1, tx2) % (ty1, ty2) for any t > 0. This implies that optimal choice bundles will be col-
inear under different levels of income. Perfect complements, substitutes and Cobb-Douglas
are all special cases of homothetic preferences.

4.5 Revealed preferences

• Principle of revealed preferences. If (x1, x2) is chosen when prices are (p1, p2) and
p1x1 + p2x2 ≥ p1y1 + p2y2 then (x1, x2) % (y1, y2) or (x1, x2) is directly reveled preferred
to (y1, y2)

• Weak (strong) axiom of revealed preferences. If (x1, x2) is directly (or indirectly)
reveled preferred to (y1, y2) and the two bundles are different, it cannot be the case that
(y1, y2) is directly (or indirectly) reveled preferred to (x1, x2)

4.6 Compensated demands & expenditure functions

In general terms, (Marshalian) demand functions as derived above can be represented by the
form: x(p,m). An alternative way to state the consumer’s problem is:

min
x
p · x

s.t. (19)

u(x) = u

The first order necessary and suffi cient (given diminishing MRS) conditions for the problem
are:

pi = µ
∂u(x)

∂xi
for i = 1, 2 (20a)

u(x) = u (20b)

solution to this problem gives rise to compensated demand functions x(p, u) (or Hicksian
demands). The compensated demand functions are constructed by adjusting income as the
price changed so as to keep utility constant. This in turn gives rise to the expenditure function,
the minimum income that consumers need to spend to attain a certain level of utility under
certain prices:

e(p, u) = p · x(p,u)

The compensated demands and the expenditure functions are, respectively, homogeneous of
degree zero and one in prices. A remarkable propery of the expenditure function is that its
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derivative w.r.t. prices is just the compensated demand. To see this differentiate w.r.t pj (apply
product rule):

∂e(p, u)

∂pj
= xi(p, u) +

n∑
j=1

pj
∂xi(p, u)

∂pj

= xi(p, u) +
n∑
j=1

µ
∂u(x)

∂xi

∂xi(p, u)

∂pj
(use F.O.C. (20a))

= xi(p, u) (since we are setting ∂u(x) = 0 )

Example 9 Cobb-Douglas preferences. To obtain compensated demands and expenditure func-
tion of:

u(x) = xα1x
1−α
2

Using the F.O.C. (20a)-(20b) we solve the system and obtain the compensated demands:

x∗1(p,u) =

(
α

1− α
p2

p1

)1−α
u and x∗1(p,u) =

(
1− α
α

p1

p2

)α
u

4.7 The Slutsky Equation

If the consumer is solving the expenditure minimization problem (19) and in so doing is spending
exactly m, then the same bundle of goods is also solving the utility maximization problem (15).
Hence, xi(p, u) = xi(p,m) if m = e(p, u) so that:

xi(p, u) = xi(p, e(p, u))

differentiationg w.r.t. pi (use chain rule) gives rise to the Slutsky Equation:

xi(p, u)

∂pi
=

xi(p,m)

∂pi
+
xi(p,m)

∂m

e(p, u)

∂pi
xi(p, u)

∂pi
=

xi(p,m)

∂pi
+
xi(p,m)

∂m
xi (use

e(p, u)

∂pi
= xi from above)

xi(p,m)

∂pi︸ ︷︷ ︸ =
xi(p, u)

∂pi︸ ︷︷ ︸ − xi(p,m)

∂m
xi︸ ︷︷ ︸ (rearrange)

price fx = substitution fx − income fx

That is, the Slutsky Equation breaks a price effect into substitution and income effects.
The substitution effect tells us what would happen if prices change but real income was to
remain unchanged (i.e., compensated for the change in prices); income would be directed towards
substituting the more expensive good with more of the cheaper good. The income effect then
shows how the reduced (increased) real income now can buy less (more) of both goods. Naturally,
the size of the price effect depends on the size of these two separate effects.

5 Welfare economics and GEq

If x(p) is demand for good x and p(x) is inverse demand measuring consumer’s marginal will-
ingness to pay for the good, then total benefit which consumers receive for consuming x1 is:

CB(x1) =

∫ x1

0

p(x)dx
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that is, the total area under the demand curve. On the other hand, consumer surplus is the area
under the curve once one takes away the amount spent on that good, px1 :

CS(x1) =

∫ x1

0

p(x)dx− p1x1

a fall in prices will increase consumer surplus by: i) a fall in price of the goods already being
consumer and ii) the additional consumption of the good. If the consumer is spending e(p, u) in
n goods and one of the prices falls from p′i to p

′′
i , then the compensating variation in his money

income is e(p′, u)− e(p′′, u) where p′ and p′′ differ only on the ith-coordenate. Hence:

e(p, u)− e(p′, u) =

∫ p′′i

p′i

∂e(p, u)

∂pi
dpi

=

∫ p′′i

p′i

xi(p, u)dpi (using the property of e(p, u) above)

6 Choice under uncertainty

6.1 Insurance

Insurance provides a way to change the probability distribution of outcomes under different
states of nature. Suppose that an agent has wealth w and faces the probability π of a loss.L
He can buy insurance for the amount K at a price proportional to the amount insured: γK.
Therefore, his expected income if he buys insurance is:

w − L+K − γK with probability π

w − γK with probability (1− π)

therefore, he is able to forego one unit of wealth in the good state for one unit of wealth in
the bad state at the rate:

∆CG
∆CB

=
γ

1− γ

6.2 Expected utility and risk aversion

If π1 is the probability of consuming w1 and π2 is the probability of consuming w2 , a utility
function with the particular form:

u(π1, π2, w1, w2) = π1v(w1) + π2(w2)

is called a Von Neuman-Morgenstern or expected utility function.
An individual is said to be risk averse if:

u(π1w1 + π2w2) > π1u(w1) + π2u(w2)

that is, if his expected utility of wealth is less than the utility of expected wealth. i.e., the risk
averse individual has a concave utility function. (w 7→ u(w) is concave). If π1 = π (probability
of loss) and π2 = 1 − π (no loss probability), an individual is said to face "fair" premium
for insurance if π = γ. This happens when insurance companies just breakeven. In such
circumstances, the optimal amount of insurance is determined by:

π∆u(w1)/∆w1

(1− π)∆u(w2)/∆w1
=

π

1− π
∆u(w1)

∆w1
=

∆u(w2)

∆w2
(21)
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so that the marginal utility of an extra dollar of income if the loss occurs should be equal to
the marginal utility of an extra dollar if the loss doesn’t occur. If the consumer is risk averse,
(u() is concave) we have that w1 > w2 ⇒ u(w1) < u(w2) and viceversa. Thus, (21) is satisfied
IIF w1 = w2 which happens only under full insurance. Summarizing, under "fair" premium, the
optimal insurance level is always full insurance.

Example 10 Suppose a risk averse individual considers investing in one asset which return
varies accross states of nature: rg in the good state of nature with probability π and rg in the
bad state of nature with probability (1− π). Therefore expected wealth is

WE = π(w + xrg) + (1− π)(w + xrb)

The consumer’s problem is:
max
x≤w

f(x)

and expected utility is:

f(x) = πu(w + xrg) + (1− π)u(w + xrb) = EU(x)

the F.O.C.
f ′(x) = πu′(w + xrg)rg + (1− π)u′(w + xrb)rg = 0

gives the optimal choice x∗ to invest in the risky asset. Note that x∗ > 0 whenever πrg +
(1 − π)rb > 0, (i.e., whenever the expected return of the asset is positive). The second-order
condition:

f ′(x) = πu′′(w + xrg)r
2
g + (1− π)u′′(w + xrb)r

2
g

is unambiguously negative since u′′(w) < 0 by the assumption of risk aversion.

6.3 Risky assets and mean-variance utility

Let w take S states of nature with probabilities πi. The probability distribution of wealth (since
it is a discrete RV) can be described by its mean:

µw =
S∑
i=1

πiwi

and variance:

σ2
w =

S∑
i=1

πi(wi − µw)2

so that the utility of a probability distribution can be expressed in terms u(µw, σ
2
w). In this case

risk aversion would mean that µw 7→ u(µw, σ
2
w) is increasing and σ2

w 7→ u(µw, σ
2
w) decreasing.

Example 11 Suppose an individual considers investing on a riskless asset with return rf and
a risky asset with expected return rm and variance σ2

m. The investor allocates amount x into the
risky asset ro its expected reutrn is:

rx = xrm + (1− x)rf

while the variance of his portfolio will be:

σ2
x = x2σ2

m

in the two polar cases or corner solutions one has:

u(rx, σ
2
x) = u(rm, σ

2
m) if x = 1

u(rx, σ
2
x) = u(rf , 0) if x = 0
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on a rx − σ2
x space, indifference curves will be convex and have positive slopes. An optimal

portfolio choice between risky and riskless assets will be characterized by:

∆u(·)/∆σ
∆u(·)/∆µ︸ ︷︷ ︸ =

rm − rf
σm︸ ︷︷ ︸

risk-return MRS = price of risk
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