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Abstract

A number of recent studies in the economics literature have focused on the usefulness of factor models

in the context of prediction using �big data� (see Bai and Ng (2008), Dufour and Stevanovic (2010), Forni

et al. (2000, 2005), Kim and Swanson (2014a), Stock and Watson (2002b, 2006, 2012), and the references cited

therein). We add to this literature by analyzing whether �big data� are useful for modelling low frequency

macroeconomic variables such as unemployment, in�ation and GDP. In particular, we analyze the predictive

bene�ts associated with the use of principal component analysis (PCA), independent component analysis (ICA),

and sparse principal component analysis (SPCA). We also evaluate machine learning, variable selection and

shrinkage methods, including bagging, boosting, ridge regression, least angle regression, the elastic net, and

the non-negative garotte. Our approach is to carry out a forecasting �horse-race� using prediction models

constructed using a variety of model speci�cation approaches, factor estimation methods, and data windowing

methods, in the context of the prediction of 11 macroeconomic variables relevant for monetary policy assessment.

In many instances, we �nd that various of our benchmark models, including autoregressive (AR) models, AR

models with exogenous variables, and (Bayesian) model averaging, do not dominate speci�cations based on

factor-type dimension reduction combined with various machine learning, variable selection, and shrinkage

methods (called �combination�models). We �nd that forecast combination methods are mean square forecast

error (MSFE) �best� for only 3 of 11 variables when the forecast horizon, h = 1, and for 4 variables when

h = 3 or 12. Additionally, non-PCA type factor estimation methods yield MSFE-best predictions for 9 of 11

variables when h = 1, although PCA dominates at longer horizons. Interestingly, we also �nd evidence of the

usefulness of combination models for approximately 1/2 of our variables, when h > 1. Most importantly, we

present strong new evidence of the usefulness of factor based dimension reduction, when utilizing �big data�

for macroeconometric forecasting.
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1 Introduction

In recent years, considerable research has focused on the analysis of �big data�in economics.
This in turn has resulted in considerable attention being paid to the rich variety of methods
available in the areas of machine learning, data mining, variable selection, dimension reduction,
and shrinkage. In this paper, we utilize various of these methods to add to the discussion of the
usefulness of �big data�for forecasting macroeconomic variables such as unemployment, in�a-
tion and GDP. From the perspective of dimension reduction, we construct of di¤usion indices,
and add to the discussion of the usefulness of such indices for macroeconomic forecasting.1

In particular, when constructing di¤usion indices, we implement principal component analy-
sis (PCA), independent component analysis (ICA) and sparse principal component analysis
(SPCA).2 We also evaluate machine learning, variable selection and shrinkage methods, in-
cluding bagging, boosting, ridge regression, least angle regression, the elastic net, and the
non-negative garotte. Finally, we combine various dimension reduction techniques with these
machine learning and shrinkage methods and evaluate the usefulness of these approaches for
forecasting.
In order to assess all of the above techniques, we carry out a large number of real-time

out-of-sample forecasting experiments; and our venue for this "horse-race" is the prediction
of 11 key macroeconomic variables relevant for monetary policy assessment. These variables
include the unemployment, personal income, the 10 year Treasury-bond yield, the consumer
price index, the producer price index, non-farm payroll employment, housing starts, industrial
production, M2, the S&P 500 index, and gross domestic product; and as noted in Kim and
Swanson (2014a) are discussed on the Federal Reserve Bank of New York�s website, where it
is stated that �In formulating the nation�s monetary policy, the Federal Reserve considers a
number of factors, including the economic and �nancial indicators, as well as the anecdotal
reports compiled in the Beige Book.�
The notion of a di¤usion index is to use appropriately �distilled� latent common factors

extracted from a large number of variables as inputs in the speci�cation of subsequent parsimo-
nious (yet �information rich�) models. More speci�cally, let X be an T�N -dimensional matrix
of observations, and de�ne an T � r-dimensional matrix of dynamic factors, F . Namely, let

X = F�0 + e (1)

where e is a disturbance matrix and � is an N�r coe¢ cient matrix. Once F is extracted using
one of the estimation methods examined in this paper, we construct the following forecasting

1A small sample of recent forecasting studies using large-scale datasets and pseudo out-of-sample forecasting
includes: Armah and Swanson (2010a,b), Artis et al. (2005), Boivin and Ng (2005, 2006), Forni et al. (2005),
and Stock and Watson (1999, 2002a, 2005, 2006, 2012). Stock and Watson (2006) additionally discuss in some
detail the literature on the use of di¤usion indices for forecasting.

2There is a vast on growing literature in this area. Some few relevant papers, including those addressing both
empirical and theoretical issues, includes: For related papers in this area, see Armah and Swanson (2010a,b),
Artis et al. (2005), Banerjee and Marcellino (2008), Bai and Ng (2002, 2006b, 2008), Boivin and Ng (2005, 2006),
Ding and Hwang (1999), Dufour and Stevanovic (2010), and Stock and Watson (2002a, 2005, 2006, 2012).
The above papers consider PCA. However, there is also a small and growing literature that examines ICA

in the context of macroeconomic forecasting (see e.g. Moneta et al. (2013), Tan and Zhang (2012), and Yau
(2004)). We were unable to �nd any papers that hithertofore have examined the used of SPCA in our context.
However, the method has been applied empirically in other �elds. For example, in the context of gene expression
genomics, see Carvalho et al. (2008) and Mayrink and Lucas (2013).
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model based on Stock and Watson (2002a,b), Bai and Ng (2006a) and Kim and Swanson
(2014a):

Yt+h = Wt�W + Ft�F + "t+h; (2)

where Yt; is the target variable to be predicted, h is the prediction horizon, Wt is a 1� s vector
of �additional�explanatory variables, and Ft is a 1� r vector of factors, extracted from F: The
parameters, �W and �F ; are de�ned conformably, and "t+h is a disturbance term. In empirical
contexts such as that considered herein, we �rst estimate r unobserved (latent) factors, say F̂ ,
from the N observable predictors, X. To achieve useful dimension reduction, r is assumed to
be much less than N; (i.e. r << N) Then, parameter estimates, �̂W and �̂F are constructed
using an in-sample dataset with Yt+h; Wt, and F̂t: Finally, ex-ante forecasts based on rolling or
recursive estimation schemes are formed.
In Kim and Swanson (2014a), principal component analysis (PCA) is used in obtaining

estimates of the latent factors, called principal components. PCA yields �uncorrelated�latent
principal components via the use of data projection in the direction of the maximum variance;
and principal components (PCs) are naturally ordered in terms of their variance contribution.
The �rst PC de�nes the direction that captures the maximum variance possible, the second
PC de�nes the direction of maximum variance in the remaining orthogonal subspace, and so
forth. Perhaps because derivation of PCs is easily done via use of singular value decompositions,
it is the most frequently used method in factor analysis (see e.g. Bai and Ng (2002, 2006b)
and Stock and Watson (2002a) for details). As discussed above, in this paper we additionally
implement ICA and SPCA for estimating latent factors. These methods are used in the statistics
discipline in a variety of contexts. However, economists have yet to explore the usefulness of
SPCA in forecasting contexts, and few empirical investigations of the usefulness of ICA have
been reported in economics (see above for examples from this small literature). Of note is
that ICA (see e.g. Comon (1994) and Lee (1998)) uses so-called �negentropy�, which is a
measure of entropy, to construct independent factors. SPCA is designed to uncover uncorrelated
components and ultimately factors, just like PCA. However, the method also searches for
components whose factor loading coe¢ cient matrices are �sparse�(i.e., the matrices can contain
zeros). Since PCA yields nonzero loadings for entire set of variables, practical interpretation
thereof is more di¢ cult than in contexts where sparsity characterizes the factors. Note that the
importance of sparsity has not only been noted in the context of forecasting (see e.g. Bai and Ng
(2008)), but has also been recently touted in a number of papers in the �nancial econometrics
literature (see e.g. Fan et al. (2015)). For further discussion of this and related issues, see Vines
(2000), Jolli¤e et al. (2003), and Zou et al. (2006).
In order to add functional �exibility to our forecasting models, we additionally implement

versions of (2) where the numbers and functions of factors used are speci�ed via implementation
of a variety of machine learning, variable selection and shrinkage methods, as discussed above.
One key feature of many of these methods is that they are used for targeted regressor and
factor selection. Related research that focuses on forecast combination methods is discussed
in Stock and Watson (2012), Aiol� and Timmermann (2006), and Bai and Ng (2008); and our
discussion is meant to add to the recent work reported in Stock and Watson (2012) and Kim
and Swanson (2014a), who survey and analyze several machine learning, variable selection and
shrinkage methods that are based on factor augmented autoregression models of the variety
given in equation (2). Finally, in our experiments, we also consider various linear benchmark
forecasting models including autoregressive (AR) models, AR models with exogenous variables,
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and combined autoregressive distributed lag models.
Our main �ndings can be summarized as follows. First, models speci�ed using factors almost

always dominate all other models, in terms of mean square forecast error (MSFE). Additionally,
ICA and SPCA are preferred to PCA when estimating the factors in our MSFE-�best�models,
when the forecasting horizon is h = 1, although the more standard approach of using PCA
�wins� at all other forecasting horizons. One reason for this switch between PCA and the
other methods may be that the PCA is �more� robust to structural breaks, at the one-step
ahead horizon. Stock and Watson (2008) note that factors may, in some cases, play the same
�averaging� role as �pooling� forecasts does, particularly in the face of intercept breaks in
forecasting models. This argument derives in part from the fact that there all factor loadings
are nonzero in principal components. SPCA induces sparseness in factor loadings, and thus
may not o¤er this bene�cial feature. Moreover, given the increasing inability of forecast model
regression coe¢ cients to swiftly adapt to structural change, as the forecast horizon increases,
this feature may account in part for our �nding that PCA dominates at longer horizons, but
not at the 1-step ahead horizon. Further empirical and theoretical analysis of this �nding is
left to future research, however.
Second, our benchmark AR type models are never MSFE-best, and model averaging tech-

niques including the use of arithmetic mean forecasts as well Bayesian model averaging only
yield MSFE-best models for approximately 1/3 of the 11 variables, regardless of forecast hori-
zon. The reason for this is that pure factor type models, machine learning, variable selection
and shrinkage models, and �combination models� that combine dimension reduction via the
use of factors with machine learning and shrinkage are the MSFE-best models for most of our
variables, across all forecast horizons. In many cases, though, the key to �beating�model
averaging methods, involves the use of our combination models.
Third, even though combination models are important, pure machine learning, variable

selection, and shrinkage methods almost never deliver MSFE-best models. Rather, they are
most useful when combined with factor analysis methods, as discussed above.
Fourth, recursive estimation strategies clearly dominate rolling strategies when constructing

1-step ahead forecasts. However, at longer forecast horizons, rolling estimation methods are
preferred to recursive methods. This �nding may be due in part to the presence of structural
breaks, although further empirical and theoretical investigation is left to future research.
Overall, our �ndings suggest that dimension reduction associated with the speci�cation and

estimation of factors, as well as machine learning and shrinkage methods are very useful for
forecasting macroeconomic variables, when analyzing �big data�.
The rest of the paper is organized as follows. In the next section we provide a survey

of dynamic factor models, independent component analysis, and sparse principal component
analysis. In Section 3, we survey the machine learning, variable selection and shrinkage methods
used in our prediction experiments. Data, forecasting methods, and baseline forecasting models
are discussed in Section 4, and empirical results are presented in Section 5. Concluding remarks
are given in Section 6.
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2 Di¤usion Index Models

2.1 Principal Component Analysis

In this section, we outline the factor and forecasting models which we use, as well as providing a
brief overview of PCA. For a detailed discussion of principal component analysis, see Stock and
Watson (1999, 2002a, 2005, 2012), Bai and Ng (2002, 2008, 2009), Kim and Swanson (2014a)),
and the references cited therein.
Let Xtj be the observed datum for the j�th cross-sectional unit at time t, for t = 1; :::; T

and j = 1; :::; N: Recall that we consider the following model:

Xtj = �
0
jFt + etj; (3)

where Ft is a r � 1 vector of common factors, �j is an r �1 vector of factor loadings associated
with Ft, and etj is the idiosyncratic component of Xtj.3 The product �0jFt is called the common
component of Xtj. This is the dimension reducing factor representation of the data. More
speci�cally, with r < N , a factor analysis model has the form:

X1 = �11F1 + � � �+ �1rFr + e1 (4)

X2 = �21F1 + � � �+ �2rFr + e2
...

XN = �N1F1 + � � �+ �NrFr + eN :

Here, F is a vector of r < N underlying latent variables or factors, �ij is an element of an
N � r matrix, �; of factor loadings, and the e are uncorrelated zero-mean disturbances. Many
economic analyses �t naturally into the above framework. For example, Stock and Watson
(1999) consider in�ation forecasting with di¤usion indices constructed from a large number of
macroeconomic variables. Recall also that our generic forecasting equation is:

Yt+h = Wt�W + Ft�F + "t+h; (5)

where h is the forecast horizon, Wt is a 1� s vector (possibly including lags of Y ); and Ft is a
1� r vector of factors, extracted from F: The parameters, �W and �F are de�ned conformably,
and "t+h is a disturbance term. Following Bai and Ng (2002, 2006b, 2008, 2009), the whole panel
of data X = (X1; :::; XN) can be represented as (3). We then estimate the factors, Ft, using
principal components analysis, independent component analysis, or sparse principal component
analysis. In particular, forecasts of Yt+h based on (5) involve a two step procedure because both
the regressors and the coe¢ cients in the forecasting equation are unknown. The data, Xt; are
�rst used to estimate the factors, yielding F̂t. With the estimated factors in hand, we obtain
the estimators �̂F and �̂W by regressing Yt+h on F̂t andWt. Of note is that if

p
T=N ! 0, then

the usual generated regressor problem does not arise, in the sense that least squares estimates
of �̂F and �̂W are

p
T consistent and asymptotically normal (see Bai and Ng (2008)). In this

paper, we try di¤erent methods for estimating �̂F and then compare the predictive accuracy

3In the sequel, we assume that all variables are standardized, as is customary in this literature.
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of the resultant forecasting models.4

In the following sections, we provide a brief overview of ICA and SPCA, underscoring the
di¤erence between these methods and PCA.

2.2 Independent Component Analysis

Independent Component Analysis (ICA) is predicated on the idea of �opening�the black box
in which principal components often reside. A few uses of ICA include mobile phone signal
processing, brain imaging, voice signal extraction and stock price modeling. In all cases, there
is a large set of observed individual signals, and it is assumed that each signal depends on
several factors, which are unobserved.
The starting point for ICA is the very simple assumption that the components, F; are

statistically independent in equation (3). The key is the measurement of this independence
between components. The method can be graphically depicted as follows:

Figure 1: Schematic Representation of ICA

More speci�cally, ICA begins with statistical independent source data, S, which are mixed
according to 
; and X; which is observed, is a mixture of S weighted by 
: For simplicity, we
assume that the unknown mixing matrix, 
; is square, although this assumption can be relaxed
(see Hyvärinen and Oja (2000)). Using matrix notation, we have that

X = S
 (6)

We can rewrite (6) as follows,

X1 = !11S1 + � � �+ !1NSN (7)

X2 = !21S1 + � � �+ !2NSN
...

XN = !1NS1 + � � �+ !NNSN ;

where !ij is the (i; j) element of 
: Since 
 and S are unobserved, we have to estimate the
demixing matrix 	 which transforms the observed X into the independent components, F .

4We refer the reader to Stock and Watson (1999, 2002a, 2005, 2012) and Bai and Ng (2002, 2008, 2009) for
a detailed explanation of this procedure, and to Connor and Korajczyk (1986, 1988, 1993), Forni et al. (2005)
and Armah and Swanson (2010b) for further detailed discussion of generic di¤usion index models.
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That is,
F = X	

or
F = S
	:

As we assume that the mixing matrix, 
 is square, 	 is also square, and 	 = 
�1, so that F
is exactly the same as S, and perfect separation occurs. In general, it is only possible to �nd
	 such that 
	 = PD; where P is a permutation matrix and D is a diagonal scaling matrix.
The independent components, F are latent variables, just the same as principal components,
meaning that they cannot be directly observed. Also, the mixing matrix, 
 is assumed to be
unknown. All we observe is data, X, and we must estimate both 
 and S using it. Only then
can we estimate the demixing matrix 	; and the independent components, F: However (7) is
not identi�ed unless several assumptions are made. The �rst assumption is that the sources,
S; are statistically independent. Since various sources of information (for example, consumer�s
behavior, political decisions, etc.) may have an impact on the values of macroeconomic vari-
ables, this assumption is not strong. The second assumption is that the signals are stationary.
For further details, see Tong et al. (1991).
ICA under (7) assumes that N components of F exist. However, we can simply construct

factors using up to r (< N) components, without loss of generality. In practice, we can construct
r independent components by preprocessing with r principal components. See chapter 6 and
10 of Stone (2004) for further details. In general, the above model would be more realistic if
there were noise terms added. For simplicity, however, noise terms are omitted; and indeed the
estimation of the noise-free model is already computationally di¢ cult (see Hyvärinen and Oja
(2000) for a discussion of the noise-free model, and Hyvärinen (1998, 1999) for a discussion of
the model with noise added). For a detailed explanation of the estimation algorithm that we
use, refer to the working paper version of this paper (i.e., see Kim and Swanson (2014b)).

2.2.1 Comparison with Principal Component Analysis

As is evident from Figure 1, ICA is exactly the same as PCA, if we let the demixing matrix be
the factor loading coe¢ cient matrix associated with principal components analysis. The key
di¤erence between ICA and PCA is in the properties of the factors obtained. Principal compo-
nents are uncorrelated and have descending variance so that they can easily be ordered in terms
of their variances. Moreover, those components explaining the largest share of the variance are
often assumed to be the �relevant�ones for subsequent use in di¤usion index forecasting. In
particular, the �rst principal component captures the maximum variance possible, the second
component also captures the maximum variance but in an orthogonal subspace, and is thus
uncorrelated with the �rst component, and so on.
For simplicity, consider two observables, X = (X1; X2) : PCA �nds a matrix which trans-

forms X into uncorrelated components F = (F1; F2) ; such that the uncorrelated components
have a joint probability density function, pF (F ) with

E (F1F2) = E (F1)E (F2) : (8)

On the other hand, ICA �nds a demixing matrix which transforms the observed X = (X1; X2)
into independent components F � = (F �1 ; F

�
2 ) ; such that the independent components have a
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joint pdf pF � (F �) with
E [F �p1 F

�q
2 ] = E [F

�p
1 ]E [F

�q
2 ] ; (9)

for every positive integer value of p and q. That is, the condition holds for all moments.
Evidently, PCA estimation is much simpler than ICA, since it just involves �nding a linear

transformation of components which are uncorrelated. Moreover, PCA ranks components using
their variances or correlations, so that components associated with higher variance or correlation
are assumed to have more explanatory power than those with lower variance or correlation. On
the other hand, ICA is unable to �nd the variance associated with each independent component
since both S and 
 in (6) are unknown, so that any scalar multiplier in one of the sources,
Sj; could be cancelled by dividing the corresponding mixing vector, !j by the same scalar.
Therefore, we can randomly change the order of X in (6) so that we cannot determine the
order of the independent components. From the perspective of forecasting, this is probably a
good thing, since there is no a priori reason to believe that �largest variance�PCA components
are the most relevant for predicting any particular target variable. Moreover, this feature of
ICA is the reason for using PCA for pre-processing in ICA algorithms. For further details
about preprocessing, see Appendix F of Stone (2004).

2.3 Sparse Principal Component Analysis

In the paper in which they develop SPCA, Zou et al. (2006) note that factor loading coe¢ cients
under PCA are all typically nonzero, making interpretation of estimated components di¢ cult.
They address this issue by proposing a modi�ed PCA method (i.e., SPCA) in which the lasso
(elastic net) is used to construct principal components with sparse loadings. This is done this
by �rst reformulating PCA as a regression type optimization problem, and then by using a
lasso (elastic net) on the coe¢ cients in a suitably constrained regression model.
Since the seminal paper by Zou et al. (2006), many authors have proposed variants of

SPCA. For example, Jolli¤e (1995) modi�es loadings to be values such as 1, -1 and 0. Another
approach is setting thresholds for the absolute value of the loadings, below which loadings are
set to zero. Jolli¤e et al. (2003) suggest using so-called �SCoTLASS(Simpli�ed Component
Technique-LASSo)�to construct modi�ed principal components with possible zero loadings, �;
by solving

max�0(X 0X)�; subject to
NX
j=1

j�jj � '; �0� = 1;

for some tuning parameter, '. The absolute value threshold results in (various) zero loadings,
hence inducing sparseness. However, the SCoTLASS constraint does not ensure convexity, and
therefore the approach may be computationally expensive. As an alternative, Zou et al. (2006)
develop a regression optimization framework. Namely, they assume that the X are dependent
variables, F are explanatory variables, and the loadings are coe¢ cients. They then use the
lasso (and elastic net) to derive a sparse loading matrix. Other recent approaches include those
discussed in Leng and Wang (2009) and Guo et al. (2010), both of which are based on Zou
et al. (2006). We follow the approach of Zou et al. (2006), and readers are referred to Sections
3.3-3.5 of their paper for complete details. As in the case of ICA, we again refer the reader to
Kim and Swanson (2014b) for a detailed discussion of the estimation procedures implemented
in order to use SPCA in our forecasting experiments.
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2.4 Selecting the Number of Factors

Selection of the number of factors when applying PCA in our experiments is an important issue,
since the number of factors used in our forecasting models may impact the predictive perfor-
mance of the models. In some contexts, such as in macroeconomics, factors and numbers of
factors can conceivably be chosen based on theoretical arguments. Of course, empirical analy-
sis is also often used for selecting the number of factors. Indeed, there are several empirical
approaches for the determination of the appropriate number of factors for PCA. Well known
methods include the scree plot and evaluating percentages of cumulative variance. These meth-
ods are straightforward, and Neto et al. (2005) contains a nice survey thereof. Cross validation
is also feasible, but can be computationally expensive in big data environments. In light of
this, Josse and Husson (2012) suggest using general cross validation (GCV) to approximate
leave-one-out cross validation based estimation of the number of factors. In the econometrics
literature, Bai and Ng (2002) suggest choosing the number of factors using a selection criteria

of the form PC (r) = V
�
r; F̂

�
+ rh (N; T ) ; where h (�) is a penalty function, V (�) minimizes

the Euclidian distance between the variables in the dataset and their factor projection, and r
is the number of factors (see Kim and Swanson (2014a) for further details).5 With regard to
ICA, note that Yo et al. (2007) propose using information criteria for selecting the number of
factors in ICA. There is no speci�c research that we are aware of for selecting the number of
factors in SPCA. Our approach is to simply use the number of factors based on Bai and Ng
(2002) in all cases. We leave to future research the analysis of trade-o¤s associated with using
alternative estimates of r.

3 Machine Learning, Variable Selection, and Shrinkage
Methods

We consider a variety of machine learning, variable selection and shrinkage methods in our
forecasting experiments. The methods considered include bagging, boosting, ridge regression,
least angle regression, the elastic net, the non-negative garotte and Bayesian model averaging.
Here, we brie�y summarize a number of these methods, and provide relevant citations to
detailed discussions thereof.
Bagging, which was introduced by Breiman (1996), is a machine based learning algorithm

whereby outputs from di¤erent predictors of bootstrap samples are combined in order to im-
prove overall forecasting accuracy. Bühlmann and Yu (2002) use bagging in order to improve
forecast accuracy when data are iid. Inoue and Kilian (2008) and Stock and Watson (2012)
extend bagging to time series models. Stock and Watson (2012) consider �bagging�as a form of
shrinkage, when constructing prediction models. In this paper, we use the same algorithm that
they do when constructing bagging estimators. This allows us to avoid time intensive bootstrap
computation done elsewhere in the bagging literature. Boosting, a close relative of bagging,
is another statistical learning algorithm, was originally designed for classi�cation problems in
the context of Probability Approximate Correct (PAC) learning (see Schapire (1990)), and is
implemented in Freund and Schapire (1997) using the algorithm called AdaBoost.M1. Hastie

5Other recent approaches for selecting the number of factors include Chen et al. (2010), Onatski (2009), and
the references cited therein.
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et al. (2009) apply it to classi�cation, and argue that �boosting� is one of the most powerful
learning algorithms currently available. The method has been extended to regression problems
in Ridgeway et al. (1999) and Shrestha and Solomatine (2006). In the economics literature, Bai
and Ng (2009) use a boosting for selecting the predictors in factor augmented autoregressions.
We implement a boosting algorithm that mirrors that used by these authors.
The other shrinkage methods implemented herein are penalized regression methods. One

such method that we consider is called ridge regression, which is a well known linear method
in which minimization of the sum of square residuals is modi�ed to include a penalty that is
a function of the number parameters. Conveniently, ridge regression uses a quadratic penalty
term, and thus has a closed form solution. We also implement the �least absolute shrinkage and
selection operator�(lasso), which was introduced by Tibshirani (1996), and is another attractive
technique for variable selection using high-dimensional datasets, especially when N is greater
than T . This method is similar to ridge, but uses an L1 penalty function instead of ridge�s L2
penalty, thus allowing for sparsity. Third, we examine �least angle regression�(LARS), which is
introduced in Efron et al. (2004), and can be interpreted as the algorithm which �nds a solution
path for the lasso. Moreover, LARS is based on a well known model-selection approach known
as �forward-selection�, which has been extensively used to examine cross-sectional data (for
further details, see Efron et al. (2004)). Bai and Ng (2008) show how to apply LARS and
the lasso in the context of time series data, and Gelper and Croux (2008) extend Bai and
Ng (2008)�s work to time series forecasting with many predictors. We implement Gelper and
Croux (2008)�s algorithm when constructing the LARS estimator. A related method that we
consider is called the �elastic net�, which is proposed by Zou and Hastie (2005), and which
is also similar to the lasso, as it simultaneously carries out automatic variable selection and
continuous shrinkage, via use of penalized regression with both L1 and L2 penalty functions.
Its name comes from the notion that it is similar in structure to a stretchable �shing net that
retains �all the big �sh�. Bai and Ng (2008) apply the elastic net method to time series using
the approach of Zou and Hastie (2005). We also follow their approach when implementing the
elastic net. Finally, we consider the �non-negative garotte�, originally introduced by Breiman
(1995). This method is a scaled version of the least square estimator with shrinkage factors.
Yuan and Lin (2007) develop an e¢ cient garotte algorithm and prove consistency in variable
selection. We follow Yuan and Lin (2007) in the sequel.
In addition to the above machine learning and shrinkage methods, we consider Bayesian

model averaging (henceforth, BMA), as it is one of the most attractive methods for model
selection currently available (see Fernandez et al. (2001), Koop and Potter (2004) and Ravaz-
zolo et al. (2008)). The concept of Bayesian model averaging can be described with simple
probability rules.6 If we consider R di¤erent models, each model has a parameter vector and
is represented by its prior probability, likelihood function and posterior probability. Given this
information, using Bayesian inference, we can obtain model averaging weights based on the
posterior probabilities of the alternative models. Koop and Potter (2004) consider BMA in the
context of many predictors and evaluate its performance. We follow their approach. In the
following subsections, we explain the intuition behind the above methods, and how they are
used in our forecasting framework.
For a comprehensive discussion of the above methods and estimation algorithms, the reader

is referred to Kim and Swanson (2014b).

6We also consider simple arithmetic model averaging.

9



4 Data, Forecasting Methods, and Baseline Forecasting
Models

4.1 Data

The data that we use are monthly observations on 144 U.S. macroeconomic time series for
the period 1960:01 - 2009:5 (N = 144; T = 593)7. Forecasts are constructed for eleven vari-
ables, including: the unemployment rate, personal income less transfer payments, the 10 year
Treasury-bond yield, the consumer price index, the producer price index, non-farm payroll em-
ployment, housing starts, industrial production, M2, the S&P 500 index, and gross domestic
product.8 Table 1 lists the eleven variables. The third row of the table gives the transforma-
tion of the variable used in order to induce stationarity. In general, logarithmic di¤erences were
taken for all nonnegative series that were not already in rates (see Stock and Watson (2002a,
2012) for complete details). Note that a full list of the 144 predictor variables is provided in an
appendix to an earlier version of this paper which is available upon request from the authors.

4.2 Forecasting Methods

Using the transformed dataset, denoted by X, factors are estimated using the techniques dis-
cussed above. Thereafter, the estimation methods outlined in the previous section are used to
form forecasting models and predictions. In our experiments, we consider three speci�cation
types, as follows.
Speci�cation Type 1 (SP1): Factors are �rst constructed using the large-scale dataset

and each of PCA, ICA, and SPCA. Prediction models are then constructed using the machine
learning and shrinkage methods of Section 3 to select functions of and weights for the factors
to be used in prediction models of the variety given in (5). This speci�cation type is estimated
with and without lags of factors.
Speci�cation Type 2 (SP2): Factors are �rst constructed using subsets of variables from

the large-scale dataset and each of PCA, ICA, and SPCA. Variables used in factor calculations
are pre-selected via application of the machine learning and shrinkage methods discussed in
Section 3. Thereafter, prediction models of the variety given in (5) are estimated. This is
di¤erent from the above approach of estimating factors using all of the variables. Note that
forecasting models are estimated with and without lags of factors.
As stated above, we analyze versions of Speci�cations 1 and 2 (i.e., SP1 and SP2) both with

and without lags of factors. Using the notation of equation (5), SP1 and SP2 include Ft, while
the �lags of factors�versions, called SP1L and SP2L, include Ft and Ft�1: The reason only one
lag was utilized is that no additional forecast improvement was found when more than one lag
was included.
Speci�cation Type 3 (SP3): Prediction models are constructed using only the machine

and shrinkage methods discussed in Section 3, without use of factor analysis at any stage.

7This is an updated and expanded version of the Stock and Watson (2002b, 2012) dataset, although data
de�nitional changes and series discontinuations prevents us from updating the database to a more current date.
We leave the discussion of the use of alternative data samples to future research.

8Note that gross domestic product is reported quarterly We interpolate these data to a monthly frequency
following Chow and Lin (1971),
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Speci�cation Type 4 (SP4): Prediction models are constructed using only machine
learning and shrinkage methods, and only with variables which have nonzero coe¢ cients, as
speci�ed via pre-selection using SPCA.
In Speci�cation Types 3 and 4, factor augmented autoregressions (FAAR) and pure factor

based models (such as principal component regression - see next subsection for complete details)
are not used as candidate forecasting models, since models with these speci�cation types do
not include factors or any type.
In our prediction experiments, pseudo out-of-sample forecasts are calculated for each vari-

able, model variety, and speci�cation type, for prediction horizons h = 1; 3; and 12. All
estimation, including lag selection, machine learning and shrinkage method implementation,
and factor selection is done anew, at each point in time, prior to the construction of each
new prediction, using both recursive and rolling data window strategies. Note that at each
estimation period, the number of factors included will be di¤erent, following re-estimation of
r. Note also that lags of the target predictor variables are also included in the set of explana-
tory variables, in all cases. Selection of the number of lags (of both variables and factors) to
include is done using the SIC. Out-of-sample forecasts begin after 13 years (e.g. the initial
in-sample estimation period is R =156 observations, and the out-of-sample period consists of
P = T � R = 593 � 156 = 437 observations, for h = 1). Moreover, the initial in-sample
estimation period is adjusted so that the ex ante prediction sample length, P , remains �xed,
regardless of the forecast horizon. For example, when forecasting the unemployment rate, when
h = 1, the �rst forecast will be Ŷ h=1157 = �̂WW156 + �̂F ~F156; while in the case where h = 12, the
�rst forecast will be Ŷ h=12157 = �̂WW145+ �̂F ~F145: In our rolling estimation scheme, the in-sample
estimation period used to calibrate our prediction models is �xed at length 12 years. The recur-
sive estimation scheme begins with the same in-sample period of 12 years (when h = 12), but
a new observation is added to this sample prior to the re-estimation and construction of each
new forecast, as we iterate through the ex-ante prediction period. Note, thus, that the actual
observations being predicted as well as the number of predictions in our ex-ante prediction
period remains the same, regardless of forecast horizon, in order to facilitate comparison across
forecast horizons as well as models.
Forecast performance is evaluated using mean square forecast error (MSFE), de�ned as:

MSFEi;h =
T�h+1P
t=R�h+2

�
Yt+h � Ŷi;t+h

�2
; (10)

where bYi;t+h is the forecast for horizon h. Forecast accuracy is evaluated using the above point
MSFE measure as well as the predictive accuracy test statistic (called �DM� hereafter) of
Diebold and Mariano (1995), which is implemented using quadratic loss, and which has a null
hypothesis that the two models being compared have equal predictive accuracy (see Clark and
McCracken (2001), McCracken (2000), McCracken (2007), and McCracken (2004)for details
describing the importance of accounting for parameter estimation error and nonnestedness in
the DM and related predictive accuracy tests).9 In the simplest case, the DM test statistic has
an asymptotic N(0; 1) limiting distribution, under the assumption that parameter estimation

9In the experiments carried out in this paper, we do not consider so-called real-time data. However, it is
worth noting that the use of real-time datasets in macroeconometrics, and in particular in forecasting and policy
analysis, has received considerable attention in the literature in recent years. For a discussion of DM and related
tests using real-time data, the reader is referred to Clark and McCracken (2009).
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error vanishes (i.e. P=R ! 0, as T; P;R ! 1), and assuming that each pair of models being
compared is nonnested: The null hypothesis of the test isH0 : E

h
l
�
"1t+hjt

�i
�E

h
l
�
"2t+hjt

�i
= 0;

where "it+hjt is i�th model�s prediction error and l (�) is the quadratic loss function. The actual

statistic in this case is constructed as: DM = P�1
PP

i=1 dt=�̂d; where dt =
�
["1t+hjt

�2
�
�
["2t+hjt

�2
;

d is the mean of dt, �̂d is a heteroskedasticity and autocorrelation robust estimator of the

standard deviation of d, and ["1t+hjtand ["2t+hjt are estimates of the true prediction errors "
1
t+hjtand

"2t+hjt. Thus, if the statistic is negative and signi�cantly di¤erent from zero, then Model 2 is
preferred over Model 1.

4.3 Baseline Forecasting Models

In addition to the various forecast models discussed above (see Speci�cation Types 1-4), we
also form predictions using the following benchmark models, all of which are estimated using
least squares.
Univariate Autoregression: Forecasts from a univariate AR(p) model are computed as

Ŷ ARt+h = �̂+ �̂ (L)Yt; with lags , p, selected using of the SIC.
Multivariate Autoregression: Forecasts from an ARX(p) model are computed as Y ARXt+h =

�̂+ �̂Zt + �̂ (L)Yt; where Zt is a set of lagged predictor variables selected using the SIC.10 De-
pendent variable lags are also selected using the SIC. Selection of the exogenous predictors
includes choosing up to six variables prior to the construction of each new prediction model, as
the recursive or rolling samples iterate forward over time.
Principal Components Regression: Forecasts from principal component regression are

computed as Ŷ PCRt+h = �̂ + 
̂F̂t; where F̂t is estimated via principal components using X; as in
equation (5).
Factor Augmented Autoregression: Based on equations (5), forecasts are computed

as Y ht+h = �̂ + �̂F F̂t + �̂W (L)Yt: This model combines an AR(p) model, with lags selected
using the SIC, and the above principal component regression (PCR) model. PCR and factor
augmented autoregressive (FAAR) models are estimated using ordinary least squares. Factors
in the above models are constructed using PCA, ICA and SPCA.
Combined Bivariate ADL Model: Following Stock and Watson (2012), we implement

a combined bivariate autoregressive distributed lag (ADL) model. Forecasts are constructed
by combining individual forecasts computed from bivariate ADL models. The i-th ADL model
includes pi;x lags of Xi;t and pi;y lags of Yt; for i = 1; :::; N: The model, thus, is speci�ed as:

Ŷ ADLt+h = �̂ + �̂i (L)Xi;t + �̂i (L)Yt: The combined forecast is Ŷ
Comb;h
T+hjT =

N

�
i=1
wiŶ

ADL;h
T+hjT . Here, we

set (wi = 1=N) ; and N = 144. In each model, pi;x is �rst selected using the SIC, and then pi;y
is selected, again using the SIC. There are a number of studies that compare the performance
of combining methods in controlled experiments, including: Clemen (1989), Diebold and Lopez
(1996), Newbold and Harvey (2002), and Timmermann (2006); and in the literature on factor

10For this model, autoregressive lags are �rst selected using the SIC, as in the case of estimation of the AR(p)
model. Thereafter, the �rst lag of each variable in the entire dataset is sequentially added to the model, where
we are assuming for simplicity that h = 1. If the adjusted R2 increases by more than 0.01, then the variable is
retained, and the search continues, until the �rst lag of each variable has been tried. This process is repeated
until six lags of each variable had been tried.
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models, Stock andWatson (2004, 2006, 2012), and the references cited therein. In this literature,
combination methods typically outperform individual forecasts. This stylized fact is sometimes
called the �forecast combining puzzle.�
Mean Forecast Combination: To further examine the issue of forecast combination, and

in addition to the Bayesian model averaging methods discussed previously, we form forecasts as
the arithmetic average of the thirteen forecasting models summarized in Table 2, which include
those outlined in this and previous sections.
Of �nal note is that all of the above benchmark models remain unchanged, regardless of

speci�cation type, as we de�ne speci�cation types only in the context of dimension reduction,
machine learning, variable selection and shrinkage methods. The exception are our mean fore-
cast combinations, since they combine all benchmark forecasts as well as all other models. As
stated above, our entire set of models are listed in Table 2.

5 Empirical Results

In this section, we summarize the results of our prediction experiments. The variables (and
transformations thereof) that we forecast are listed in Table 1. There are 6 di¤erent speci�cation
�permutations�. Speci�cation Types 1 and 2 (estimated with and without lags) are estimated
via PCA, ICA and SPCA, so that there 4 � 3 = 12 permutations of these two speci�cations.
Adding Speci�cation Types 3 and 4, and multiplying by two (for recursive and rolling windowing
strategies) yields a total of (12 + 2) � 2 = 28 speci�cation types for each target variable and
each forecast horizon. The forecast models that we use in our experiments are summarized in
Table 2. For the sake of brevity, we eschew reporting the entirety of our experimental �ndings,
instead focusing on key �ndings and results. Complete details are available upon request from
the authors.
Table 3, Panel A contains the lowest relative MSFEs from amongst all models, for Speci-

�cation Types 1-4 and for factors estimated using PCA, ICA, and SPCA, where by relative,
we mean that MSFEs relative to that of the AR(SIC) benchmark are reported. The models
to which each of these MSFEs correspond are given in Panel A of Table 4. Thus, the MSFE
value of 0.780 given in the upper right corner of the entries in Panel A of Table 3 is that ob-
tained from use of our FAAR model (see upper right corner of the entries in Panel A of Table
4), under Speci�cation Type 1, with factors estimated using PCA. Panel A of Tables 3 and
4 corresponds to experiments run using recursive estimation. For corresponding results based
on rolling estimation, refer to Panel B of Tables 3 and 4. The tables are partitioned into 3
sets of results, corresponding to forecast horizons h = 1; 3; and 12: Entries in bold denote the
lowest relative MSFEs from amongst all models for a given model speci�cation (i.e. Speci�ca-
tion Types 1-4). Since the benchmark models, including AR(SIC), ARX, etc., are included
as candidate models when selecting the lowest relative MSFEs from amongst all models, for
Speci�cation Types 1-4 and for factors estimated using PCA, ICA, and SPCA, MSFE entries
in Table 3 might be unity, indicating that the AR(SIC) model was MSFE-�best� for a given
speci�cation type and factor estimation method. Additionally, for a given speci�cation type,
entries might be the same for multiple factor estimation methods. This occurs because candi-
date models include those that contain no factors (e.g. the ARX model), and the same ARX
model might �win�not only against models estimated using PCA, say, but also against models
estimated using SPCA. These cases are made clear by inspection of the model (in Table 4) to
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which the MSFE (in Table 3) pertains. For example, in the case of Speci�cation Type 1 and
h = 1, GDP MSFEs are 0.916 for all three factor estimation methods. This is because ARX,
one of benchmark models, yields a lower MSFE than any other model, for Speci�cation Type
1, regardless of whether the models that contain factors are estimated using PCA, ICA, or
SPCA. Finally, since Speci�cation Types 3 and 4 do not involve use of a factors, there are no
bold entries in rows corresponding to these speci�cation types. Namely, there is no �choice�to
be made across factor estimation methods for these speci�cation types. A number of clear-cut
conclusions emerge upon inspection of Tables 3-4.
First, although there are a limited number of exceptions, most of the entries in Table 3

are less than unity, indicating that our autoregressive model is dominated by other models
in virtually all of our experiments. For example, note that the relative MSFE value for IPX,
when using Speci�cation Type 1 (SP1) and h = 1, is 0.268, under recursive estimation (see the
third entry in the column denoted �IPX�in Table 3, Panel A). This entry is clearly less than
unity. Additionally, note that this entry is starred, indicating that the model corresponding
to the entry (i.e. the FAAR model, with factors estimated using SPCA - see the third entry
in the column denoted �IPX� in Table 4, Panel A ) statistically signi�cantly di¤erent from
the AR(SIC) model, at a 90% con�dence level, based on application of the DM test discussed
above.
Second, the MSFE-best models, from across all speci�cation types and factor estimation

methods, are usually speci�ed using Speci�cation Type 1 (i.e., SP1), when h = 1: This is seen
by inspecting the block of entries in Table 3 (Panel A) associated with h = 1, and by noting
that for each of the 11 columns of entries in this block of MSFEs, the lowest �bolded�MSFE
falls under SP1, with one exceptions (i.e., CPI and GDP). Furthermore, when comparing all
11 of these so-called �overall winners� for the h = 1 case, we see that PCA is the chosen
factor estimation method for only 2 variables (i.e., for UR and M2), while SPCA �wins� for
6 variables, and ICA �wins� for 2 variables.11 This supports the use of SPCA and ICA, at
the h = 1 forecast horizon. Note also that the fact that SP1 �wins�rather than SP1L (recall
that SP1 uses no lags of factors, while SP1L is the same as SP1, except that factor lags are
included) indicates that additional factor lags, other than the single lag used under SP1 which
is needed to ensure that our experiments are ex ante are not useful when h = 1:
Third, note that the above conclusion with regard to the performance of SPCA and ICA

factor estimation methods, for h = 1, is based solely upon inspection of results associated with
recursive estimation. Interestingly, when the MSFEs associated with the �overall winners�
discussed above are compared with the �overall winners�under rolling estimation (see Tables
3 and 4, Panel B), the above conclusion remains largely intact. Indeed, for this case (i.e.
h = 1), rolling estimation only yields one �overall winner�than is lower than the corresponding
�overall winner� for the recursive estimation case. Namely, this is the case for CPI, where
rolling estimation under Speci�cation Type 4 yields a lower MSFE than any other method
under any other modelling permutation. This �nding clearly supports the use of recursive
estimation when h = 1. To simplify further discussion, let us de�ne the �globally best�MSFE
as the lowest �overall winner�when comparing results under both rolling and the recursive
estimation strategies. All of our results discussed in the context of our �globally best�models
are summarized in Table 5. In particular, for each forecast horizon, one can read, from Table
5, the �globally best� speci�cation type, estimation window type, factor estimation method,

11For CPI, the �overall winner�does not incorporate factors, and hence the sum of these �wins�is only 10.
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and model.
Fourth, although recursive estimation yield the �globally best�MSFEs for all 11 variables,

when h = 1, this is not so for h = 3 and h = 12: Indeed, for h = 3, the lowest MSFEs across
speci�cation type, factor estimation method and data windowing choice (i.e., the �globally
best�MSFEs) are obtained via rolling estimation for 6 of 11 variables. Moreover, for h = 12,
the �globally best�MSFEs are obtained via rolling estimation for 9 of 11 variables. When
comparing factor estimation methods for these �globally best�models, we see that PCA dom-
inates for 8 of 11 variables when h = 3, and for 7 of 11 variables when h = 12. Thus, at longer
forecast horizons, the choice between using PCA or one of our other factor estimation methods
becomes more di¢ cult, and on average it is better to use PCA.
Fifth, as discussed above, entries in the Table 4 show which forecast models (see the list

of models in Table 2) have the lowest relative MSFEs, as reported in Table 3, for each tar-
get variable, and for each speci�cation type, factor estimation method, and forecast horizon
(Panel A summarizes results for recursive estimation, and Panel B does the same for rolling
estimation). For example, in the upper-leftmost three entries of Panel A of Table 4, we see that
for unemployment, the FAAR, ARX, and FAAR models result in the MSFE-best predictions,
under SP1 and for each of PCA, ICA, and SPCA, respectively, given recursive estimation. The
corresponding MSFEs for these models, as reported in Table 3 (Panel A) are 0.780, 0.897 and
0.827, respectively. Again as discussed above, bold entries in Panels A and B of Table 4 denote
the forecasting models yielding MSFE-best predictions, for a given speci�cation type, forecast
horizon, and target variable. When comparing only the �globally best�models across Table 4
(Panels A and B), which we have de�ned to be the MSFE-best models for each variable across
all speci�cation and modeling permutations, we see that for h = 1, the FAAR wins 4 times,
PCR wins 2 times, Mean or BMA wins 3 times, and Boost wins 2 times. Here, Boost is esti-
mated under Speci�cation Type 1, indicating that it involves the use of estimated factors. In
all, then, 10 of 11 �globally best�models are factor based models, since Mean also uses factor
type models.12 Moreover, mean only wins twice. This is strong evidence in favor of using factor
models for forecasting macroeconomic variables when h = 1, and provides evidence against the
oft noted success of using Bayesian averaging and arithmetic mean combinations, since Mean
only �wins�twice.
Sixth, when the above model assessment is carried out for h = 3 and h = 12, we see that

the following �wins�obtain. For h = 3: PCR (3), Mean (4), Boosting (1), LARS (1), NNG (1),
Ridge (1). For h = 12: PCR (1), Mean or BMA (4), Boosting (4), LARS (1), Bagging (1). At
both of these horizons, 9 of 11 �winning�models incorporate factors, in support of our above
conclusion concerning the usefulness of factor models. Interestingly, our machine learning and
shrinkage type models fare much better at the higher forecast horizons, and are critical for 4 of
11 variables when h = 3, and again for 6 of 11 variables when h = 12. This feature of our results
might in part be explained by the presence of structural breaks that are more �damaging�to
predictions made at longer forecast horizons (see Introduction for further discussion, including
a discussion of why ICA and SPCA might be preferred to PCA for h = 1 but not for h > 1).
All of the above results discussed in the context of our �globally best�models are summarized
in Table 5. In particular, for each forecast horizon, one can read, from this table, the �globally
best�speci�cation type, estimation window type, factor estimation method, and model.

12The �winning�CPI model is BMA, estimated under Speci�cation Type 4, and hence factors enter into only
10 of 11 models.
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Overall, our �ndings suggest that dimension reduction associated with the speci�cation and
estimation of factors, as well as machine learning and shrinkage methods are very useful for
forecasting macroeconomic variables, when analyzing �big data�. Exactly which method and
model to use is case speci�c, as might be expected, although dimension reduction methods
seem useful at all forecast horizons, while machine learning and shrinkage methods are more
useful at longer forecast horizons. Finally, there is substantial evidence suggesting that SPCA
and ICA o¤er interesting alternatives to the use of PCA when estimating factors, particularly
for 1-step ahead prediction.

6 Concluding Remarks

In this paper we outline and discuss a number of interesting new forecasting methods that have
recently been developed in the statistics and econometrics literatures. We focus in particular
on the examination of a variety of factor estimation methods, including principal components
analysis (PCA), independent component analysis (ICA), and sparse principal component analy-
sis (SPCA); as well as hybrid forecasting methods that use these factor estimation methods in
conjunction with various types of machine learning, variable selection and shrinkage methods,
including bagging, boosting, least angle regression, the elastic net, and the nonnegative garrote,
for example. We analyze all models and methods by carrying out a series of real-time prediction
experiments, in the context of predicting 11 key macroeconomic indicators at various forecast
horizons. We �nd that simple time series models and model averaging methods do not dominate
hybrid methods that couple factor estimation methods with machine learning and shrinkage
methods. We also �nd that SPCA and ICA are useful alternatives to PCA, perhaps due to
their sparseness features. Overall, we �nd strong new evidence of the usefulness dimension
reduction associated with the speci�cation and estimation of factors, and �nd that combining
such dimension reduction with learning and shrinkage methods yields promising results, when
forecasting macroeconomic variables.

16



References

Aiol�, M. and Timmermann, A. (2006). Persistence in forecasting performance and conditional
combination strategies. Journal of Econometrics, 135(1-2):31�53.

Armah, N. A. and Swanson, N. R. (2010a). Di¤usion index models and index proxies: Recent
results and new direction. European Journal of Pure and Applied Mathematics, 3:478�501.

Armah, N. A. and Swanson, N. R. (2010b). Seeing inside the black box: Using di¤usion index
methodology to construct factor proxies in large scale macroeconomic time series environ-
ments. Econometric Reviews, 29:476�510.

Artis, M. J., Banerjee, A., and Marcellino, M. (2005). Factor forecasts for the uk. Journal of
Forecasting, 24(4):279�298.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1):191�221.

Bai, J. and Ng, S. (2006a). Con�dence intervals for di¤usion index forecasts and inference for
factor-augmented regressions. Econometrica, 74(4):1133�1150.

Bai, J. and Ng, S. (2006b). Evaluating latent and observed factors in macroeconomics and
�nance. Journal of Econometrics, 131(1-2):507�537.

Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal
of Econometrics, 146(2):304�317.

Bai, J. and Ng, S. (2009). Boosting di¤usion indices. Journal of Applied Econometrics,
24(4):607�629.

Banerjee, A. and Marcellino, M. (2008). Factor-augmented error correction models. CEPR
Discussion Papers 6707, C.E.P.R. Discussion Papers.

Boivin, J. and Ng, S. (2005). Understanding and comparing factor-based forecasts. Interna-
tional Journal of Central Banking, 1(3):117�152.

Boivin, J. and Ng, S. (2006). Are more data always better for factor analysis? Journal of
Econometrics, 132(1):169�194.

Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics,
37(4):373�384.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123�140.
Bühlmann, P. and Yu, B. (2002). Analyzing bagging. Annals of Statistics, 30:927�961.
Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J. R., Wang, Q., and West, M. (2008). High-
dimensional sparse factor modeling: Applications in gene expression genomics. Journal of
the American Statistical Association, 103:1438�1456.

Chen, Y.-P., Huang, H.-C., and Tu, I.-P. (2010). A new approach for selecting the number of
factors. Computational Statistics and Data Analysis, 54:2990�2998.

Chow, G. C. and Lin, A.-l. (1971). Best linear unbiased interpolation, distribution, and extrap-
olation of time series by related series. The Review of Economics and Statistics, 53(4):372�75.

Clark, T. and McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing
for nested models. Journal of Econometrics, 105:85�110.

Clark, T. and McCracken, M. W. (2009). Tests of equal predictive ability with real-time data.
Journal of Business and Economic Statistics, 27:441�454.

Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International
Journal of Forecasting, 5(4):559�583.

17



Comon, P. (1994). Independent component analysis - a new concept? Signal Processing,
36:287�314.

Connor, G. and Korajczyk, R. A. (1986). Performance measurement with the arbitrage pricing
theory : A new framework for analysis. Journal of Financial Economics, 15(3):373�394.

Connor, G. and Korajczyk, R. A. (1988). Risk and return in an equilibrium apt : Application
of a new test methodology. Journal of Financial Economics, 21(2):255�289.

Connor, G. and Korajczyk, R. A. (1993). A test for the number of factors in an approximate
factor model. Journal of Finance, 48(4):1263�91.

Diebold, F. X. and Lopez, J. A. (1996). Forecast evaluation and combination. NBER Technical
Working Papers 0192, National Bureau of Economic Research, Inc.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business
& Economic Statistics, 13(3):253�63.

Ding, A. A. and Hwang, J. T. G. (1999). Prediction intervals, factor analysis models, and high-
dimensional empirical linear prediction. Journal of the American Statistical Association,
94(446):446�455.

Dufour, J.-M. and Stevanovic, D. (2010). Factor-augmented varma models: Identi�cation,
estimation, forecasting and impulse responses. Working paper, McGill University.

Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R. (2004). Least angle regression. Annals
of Statistics, 32:407�499.

Fan, J., Rigollet, P., and Wang, W. (2015). Estimation of functionals of sparse covariance
matrices. Annals of Statistics, 43:2706�2737.

Fernandez, C., Ley, E., and Steel, M. F. J. (2001). Model uncertainty in cross-country growth
regressions. Journal of Applied Econometrics, 16(5):563�576.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model:
Identi�cation and estimation. The Review of Economics and Statistics, 82(4):540�554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The generalized dynamic factor
model: One-sided estimation and forecasting. Journal of the American Statistical Associa-
tion, 100:830�840.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119�139.

Gelper, S. and Croux, C. (2008). Least angle regression for time series forecasting with many
predictors, working paper. Technical report, Katholieke Universiteit Leuven.

Guo, J., James, G., Levina, E., Michailidis, G., and Zhu, J. (2010). Principal component
analysis with sparse fused loadings. Journal of Computational and Graphical Statistics,
19(4):947�962.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical Learning.
Springer, 2nd edition.

Hyvärinen, A. (1998). Independent component analysis in the presence of gaussian noise by
maximizing joint likelihood. Neurocomputing, 22:49�67.

Hyvärinen, A. (1999). Gaussian moments for noisy independent component analysis. IEEE
Signal Processing Letters, 6(6):145�147.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applica-
tions. Neural Networks, 13(4-5):411�430.

18



Inoue, A. and Kilian, L. (2008). How useful is bagging in forecasting economic time series? a
case study of us cpi in�ation. Journal of the American Statistical Association, 103(482):511�
522.

Jolli¤e, I., Trenda�lov, N., and Uddin, M. (2003). A modi�ed principal component technique
based on the lasso. Journal of Computational and Graphical Statistics, 12:531�547.

Jolli¤e, I. T. (1995). Rotation of principal components: choice of normalization constraints.
Journal of Applied Statistics, 22:29�35.

Josse, J. and Husson, F. (2012). Selecting the number of components in principal component
analysis using cross-validation approximation. Computational Statistics & Data Analysis,
56:1869�1879.

Kim, H. H. and Swanson, N. R. (2014a). Forecasting �nancial and macroeconomic variables
using data reduction methods: New empirical evidence. Journal of Econometrics, 178(2):352�
367.

Kim, H. H. and Swanson, N. R. (2014b). Mining big data using parsimonious factor and
shrinkage methods. Working paper, Rutgers University.

Koop, G. and Potter, S. (2004). Forecasting in dynamic factor models using bayesian model
averaging. Econometrics Journal, 7(2):550�565.

Lee, T.-W. (1998). Independent Component Analysis - Theory and Applications. Springer,
Boston, Massachusetts, 1 edition.

Leng, C. and Wang, H. (2009). On general adaptive sparse principal component analysis.
Journal of Computational and Graphical Statistics, 18(1):201�215.

Mayrink, V. D. and Lucas, J. E. (2013). Sparse latent factor models with interactions: Analysis
of gene expression data. The Annals of Applied Statistics, 7:799�822.

McCracken, M. W. (2000). Robust out-of-sample inference. Journal of Econometrics, 99:195�
223.

McCracken, M. W. (2004). Parameter estimation error and tests of equal forecast accuracy
between non-nested models. International Journal of Forecasting, 20:503�514.

McCracken, M. W. (2007). Asymptotics for out-of-sample tests of granger causality. Journal
of Econometrics, 140:719�752.

Moneta, A., Entner, D., Hoyer, P., and Coad, A. (2013). Causal inference by independent
component analysis with applications to micro- and macroeconomic data. Oxford Bulletin of
Economics and Statistics, 75:705�730.

Neto, P., Jackson, D., and Somers, K. (2005). How many principal components? stopping rules
for determining the number of aon-trivial axes revisited. Computational Statistics & Data
Analysis, 49:974�997.

Newbold, P. and Harvey, D. I. (2002). Forecast combination and encompassing. In Clements,
M. P. and Hendry, D. F., editors, A Companion to Economic Forecasting, pages 268�283.
Blackwell Press, Oxford.

Onatski, A. (2009). Testing hypotheses about the number of factors in large factor models.
Econometrica, 77:1447�1479.

Ravazzolo, F., Paap, R., van Dijk, D., and Franses, P. H. (2008). Bayesian Model Averaging in
the Presence of Strutural Breaks, chapter 15. Frontier of Economics and Globalization.

Ridgeway, G., Madigan, D., and Richardson, T. (1999). Boosting methodology for regression
problems. In The Seventh International Workshop on Arti�cial Intelligence and Statistics

19



(Uncertainty �99), pages 152�161. Morgan Kaufmann.
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197�227.
Shrestha, D. L. and Solomatine, D. P. (2006). Experiments with adaboost.rt, an improved
boosting scheme for regression. Neural Computation, 18(7):1678�1710.

Stock, J. H. and Watson, M. W. (1999). Forecasting in�ation. Journal of Monetary Economics,
44(2):293�335.

Stock, J. H. and Watson, M. W. (2002a). Forecasting using principal components from a large
number of predictors. Journal of the American Statistical Association, 97:1167�1179.

Stock, J. H. and Watson, M. W. (2002b). Macroeconomic forecasting using di¤usion indexes.
Journal of Business & Economic Statistics, 20(2):147�62.

Stock, J. H. and Watson, M. W. (2004). Combination forecasts of output growth in a seven-
country data set. Journal of Forecasting, 23(6):405�430.

Stock, J. H. and Watson, M. W. (2005). Implications of dynamic factor models for var analysis.
NBER Working Papers 11467, National Bureau of Economic Research, Inc.

Stock, J. H. and Watson, M. W. (2006). Forecasting with many predictors. In Elliott, G.,
Granger, C., and Timmermann, A., editors, Handbook of Economic Forecasting, volume 1,
chapter 10, pages 515�554. Elsevier.

Stock, J. H. and Watson, M. W. (2008). Forecasting in dynamic factor models subject to
structural instability. In Castle, J. and Shephard, N., editors, The Methodology and Practice
of Econometrics, A Festschrift in Honour of Professor David F. Hendry. Oxford University
Press.

Stock, J. H. and Watson, M. W. (2012). Generalized shrinkage methods for forecasting using
many predictors. Journal of Business and Economic Statistics, 30(4):481�493.

Stone, J. V. (2004). Independent Component Analysis. MIT Press.
Tan, L. and Zhang, H. (2012). Forecast of employment based on independent component analy-
sis. In Information Computing and Applications, Third International Conference, ICICA
2012, volume Part I, CCIS 307, pages 373�381. Springer-Verlag.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267�288.

Timmermann, A. G. (2006). Forecast combinations. In Elliott, G., C., G., and Timmermann,
A., editors, Handbook of Economic Forecasting, volume 1, chapter 4, pages 135�196. Elsevier.

Tong, L., Liu, R.-w., Soon, V., and Huang, Y.-F. (1991). Indeterminacy and identi�ability of
blind identi�cation. IEEE Transactions on Circuits and Systems, 38:499�509.

Vines, S. (2000). Simple principal components. Applied Statistics, 49:441�451.
Yau, R. (2004). Macroeconomic forecasting with independent component analysis. Econometric
Society 2004 Far Eastern Meetings, 741.

Yo, L., T, A., and VD., C. (2007). Estimating the number of independent components for
functional magnetic resonance imaging data. Human Brain Mapping, 28(11):1251�1266.

Yuan, M. and Lin, Y. (2007). On the non-negative garrotte estimator. Journal of the Royal
Statistical Society, 69(2):143�161.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
Of The Royal Statistical Society Series B, 67(2):301�320.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal

20



of Computational and Graphical Statistics, 15(2):262�286.

21



Table 1: Target Forecast Variables *

Series Abbreviation Yt+h

Unemployment Rate UR Zt+1 �Zt
Personal Income Less transfer payments PI ln (Zt+1=Zt)

10-Year Treasury Bond TB Zt+1 � Zt
Consumer Price Index CPI ln (Zt+1=Zt)

Producer Price Index PPI ln (Zt+1=Zt)

Nonfarm Payroll Employment NPE ln (Zt+1=Zt)

Housing Starts HS ln (Zt)

Industrial Production IPX ln (Zt+1=Zt)

M2 M2 ln (Zt+1=Zt)

S&P 500 Index SNP ln (Zt+1=Zt)

Gross Domestic Product GNP ln (Zt+1=Zt)

* Notes: Data used in model estimation and prediction construction are monthly U.S. �gures for the period
1960:1-2009:5. Data transformations used in prediction experiments are given in the last column of the table.
See Section 4 for further details.
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Table 2: Models Used in Forecasting Experiments*

Method Description

AR(SIC) Autoregressive model with lags selected by the SIC
ARX Autoregressive model with exogenous regressors
CADL Combined autoregressive distributed lag model
FAAR Factor augmented autoregressive model
PCR Principal components regression
Bagging Bagging with shrinkage, c = 1:96
Boosting Component boosting, M = 50
BMA1 Bayesian model averaging with g-prior = 1=T
BMA2 Bayesian model averaging with g-prior = 1=N2

Ridge Ridge regression
LARS Least angle regression
EN Elastic net
NNG Non-negative garrote
Mean Arithmetic mean

* Notes: This table summarizes the models used in all forecasting experiments. In addition to estimating
the above pure linear and factor models (i.e., AR, ARX, CADL, FAAR, PCR), we consider the various above
machine learning and shrinkage methods, as well as various combined factor and machine learning = shrinkage
methods, when implementing our forecasting experiments. Complete details for all models, other than the pure
linear models, are given in Section 4.2, where we discuss Speci�cation Types 1-4, in which the various strategies
for factor estimation, machine learning and shrinkage method implementation are outlined. For further details
see also Sections 3 and 4.
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Table 3: Lowest Point MSFEs by Forecast Estimation and Factor Speci�cation Method*

Panel A: Recursive Window Estimation

Forecast
Horizon

Factor Spec. Mtd. UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA 0.780* 0.870 0.940 0.875 0.943 0.811 0.900 0.800 0.939* 0.976 0.916*

ICA 0.897 0.920 0.931 0.840* 0.843* 0.802 0.901 0.574 0.965 0.920 0.916*

SPCA 0.827 0.789* 0.409* 0.870 0.858 0.706* 0.542* 0.268* 0.969 0.897* 0.916*

SP1L
PCA 0.850* 0.889* 0.955* 0.865* 0.945* 0.879* 0.901* 0.804* 0.930* 0.976* 0.916*

ICA 0.897 0.966 0.978 0.939 0.960 0.918 0.901* 0.861 0.991 1.002 0.916*

SPCA 0.897 0.954 0.987 0.939 0.972 0.881 0.901* 0.826 0.954 0.998 0.916*

SP2
PCA 0.861* 0.950* 0.965* 0.933 0.968 0.854* 0.901* 0.833* 0.942 0.985* 0.871
ICA 0.897 0.959 0.971 0.939 0.965* 0.861 0.901* 0.874 0.959 0.991 0.867*

SPCA 0.897 0.959 0.976 0.939 0.966 0.860 0.901* 0.873 0.940* 0.986 0.873

SP2L
PCA 0.861* 0.950* 0.965* 0.933 0.968 0.854* 0.901* 0.833* 0.942* 0.985* 0.871*

ICA 0.864 0.957 0.975 0.923* 0.967 0.862 0.901* 0.840 0.961 0.993 0.871*

SPCA 0.868 0.961 0.974 0.939 0.963* 0.859 0.901* 0.874 0.950 0.991 0.879

SP3 0.897 0.944 0.987 0.933 0.956 0.826 0.901 0.874 0.977 0.989 0.873

SP4 0.897 0.964 0.979 0.939 0.962 0.865 0.901 0.829 0.971 0.986 0.916

h = 3

SP1
PCA 0.913* 0.866* 0.998 0.929 0.910* 0.819 0.852* 0.850 0.977 0.994* 0.956
ICA 0.914 0.902 0.975 0.922 0.945 0.819 0.917 0.834 0.969 1.002 0.976
SPCA 0.916 0.892 0.988 0.895* 0.940 0.775* 0.862 0.816* 0.942* 0.997 0.944*

SP1L
PCA 0.925* 0.892* 0.988 0.901* 0.929* 0.818* 0.852* 0.838* 0.978* 0.993* 0.963*

ICA 0.963 0.902 0.998 0.967 0.945 0.927 0.948 0.895 0.997 1.007 0.979
SPCA 0.951 0.902 0.984 0.968 0.945 0.924 0.912 0.887 0.990 0.997 0.988

SP2
PCA 0.916* 0.895* 0.992* 0.888 0.945 0.827* 0.783 0.809* 0.967 0.995 0.954*

ICA 0.941 0.902 0.995 0.959 0.945 0.859 0.824 0.821 0.980 0.997 0.963
SPCA 0.943 0.902 0.998 0.975 0.945 0.894 0.793 0.873 0.964* 0.993 0.963

SP2L
PCA 0.916* 0.895* 0.992* 0.888 0.945 0.827* 0.783 0.809* 0.967* 0.995 0.954*

ICA 0.916* 0.902 0.998 0.903 0.945 0.827* 0.854 0.812 0.979 0.997 0.967
SPCA 0.950 0.902 0.994 0.972 0.945 0.889 0.803 0.812 0.974 0.993 0.962

SP3 0.943 0.902 0.998 0.926 0.945 0.860 0.723 0.881 0.939 1.001 0.975

SP4 0.950 0.902 0.986 0.979 0.945 0.898 0.937 0.872 0.990 0.988 0.978

h = 12

SP1
PCA 0.939 0.956 0.997 0.886* 0.939* 0.874 0.818* 0.919* 0.958 1.002 0.999
ICA 0.948 0.944 0.997 0.960 0.977 0.907 0.844 0.952 0.960 1.001 0.986*

SPCA 0.933* 0.940* 0.992* 0.928 0.950 0.845* 0.841 0.932 0.950* 0.996 0.993

SP1L
PCA 0.903* 0.956* 0.988* 0.888* 0.927* 0.860* 0.829* 0.926* 0.942* 0.995* 1.000
ICA 0.943 0.969 0.997 0.961 0.981 0.912 0.912 0.939 0.964 1.002 0.981
SPCA 0.912 0.977 0.997 0.945 0.970 0.879 0.832 0.937 0.981 1.001 0.997

SP2
PCA 0.926 0.949 0.992* 0.891* 0.950* 0.816* 0.749 0.916* 0.930 0.995* 0.982*

ICA 0.941 0.949 0.997 0.909 0.960 0.843 0.901 0.942 0.933 0.999 0.991
SPCA 0.916* 0.948* 0.997 0.935 0.957 0.843 0.910 0.919 0.916* 0.997 0.992

SP2L
PCA 0.926 0.949* 0.992* 0.891* 0.950* 0.816* 0.749 0.916* 0.930* 0.995 0.982*

ICA 0.933 0.953 0.992 0.894 0.964 0.853 0.883 0.944 0.942 0.998 0.985
SPCA 0.914* 0.950 0.996 0.958 0.968 0.872 0.880 0.938 0.961 0.994 0.989

SP3 0.926 0.961 0.997 0.899 0.953 0.862 0.804 0.890 0.910 1.002 0.982

SP4 0.926 0.963 0.997 0.943 0.962 0.855 0.886 0.927 0.976 1.001 0.990
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Panel B: Rolling Window Estimation

Forecast
Horizon

Factor Spec. Mtd. UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA 0.787* 0.909* 0.944* 0.843* 0.971 0.831* 0.841* 0.803* 0.863* 0.998* 0.940*

ICA 0.871 1.014 0.977 0.876 0.973 0.918 0.841* 0.910 0.918 0.998* 0.948
SPCA 0.871 1.023 0.977 0.883 0.996 0.877 0.841* 0.875 0.869 1.007 0.945

SP1L
PCA 0.852* 0.989* 0.954* 0.850* 0.973 0.871* 0.841* 0.845* 0.845* 1.002 0.943
ICA 0.871 1.004 0.982 0.883 0.985 0.924 0.841* 0.877 0.908 1.008 0.941*

SPCA 0.871 1.081 0.992 0.883 1.003 0.911 0.841* 0.851 0.880 1.008 0.989

SP2
PCA 0.871* 1.085 0.963* 0.849 0.936* 0.869* 0.841* 0.858* 0.889 0.998* 0.915*

ICA 0.871* 1.114 0.977 0.849 0.941 0.884 0.841* 0.858* 0.908 1.006 0.915*

SPCA 0.871* 1.087 0.979 0.844* 0.949 0.877 0.841* 0.892 0.888* 1.007 0.927

SP2L
PCA 0.871* 1.088 0.964* 0.850 0.948* 0.865* 0.841* 0.833* 0.886* 0.997* 0.905*

ICA 0.871* 1.100 0.977 0.843 0.953 0.880 0.841* 0.841 0.909 1.004 0.905*

SPCA 0.871* 1.095 0.979 0.840* 0.957 0.879 0.841* 0.864 0.910 1.004 0.915

SP3 0.871 1.114 0.992 0.858 1.000 0.924 0.841 0.841 0.916 1.008 0.930

SP4 0.871 1.091 0.977 0.828 0.946 0.872 0.841 0.867 0.899 1.008 0.945

h = 3

SP1
PCA 0.882* 0.872* 1.002 0.861* 0.937 0.786* 0.769* 0.835* 0.914* 0.997* 0.937
ICA 0.923 0.925 0.996 0.890 0.941 0.833 0.839 0.854 0.978 1.004 0.957
SPCA 0.926 0.913 0.993 0.870 0.944 0.847 0.807 0.869 0.941 1.003 0.969

SP1L
PCA 0.904* 0.889* 0.981* 0.848* 0.920 0.807* 0.744* 0.820* 0.908* 0.988 0.953*

ICA 0.936 0.925 1.001 0.900 0.951 0.876 0.854 0.877 0.976 1.008 0.957
SPCA 0.957 0.903 1.002 0.905 0.945 0.905 0.840 0.884 0.981 1.001 0.972

SP2
PCA 0.895* 0.883* 0.998 0.875 0.941 0.814* 0.740 0.833* 0.912* 0.989 0.929*

ICA 0.912 0.899 0.995 0.875 0.939 0.838 0.743 0.850 0.915 0.989 0.950
SPCA 0.919 0.914 0.997 0.863 0.941 0.846 0.785 0.857 0.927 0.989 0.947

SP2L
PCA 0.889 0.886* 0.988* 0.864 0.942 0.792* 0.738 0.823* 0.911* 0.985* 0.938*

ICA 0.888* 0.901 0.998 0.865 0.941 0.792* 0.806 0.838 0.921 0.985* 0.947
SPCA 0.927 0.919 1.002 0.861* 0.936 0.843 0.772 0.858 0.929 0.985* 0.943

SP3 0.911 0.903 1.002 0.906 0.960 0.839 0.683 0.844 0.950 1.002 0.970

SP4 0.930 0.903 1.002 0.842 0.925 0.831 0.806 0.858 0.942 0.994 0.960

h = 12

SP1
PCA 0.897 0.935* 0.997* 0.812 0.891 0.729 0.723 0.884* 0.896* 1.007 1.010
ICA 0.930 0.944 0.997* 0.863 0.949 0.779 0.741 0.909 0.937 0.996 0.999
SPCA 0.879* 0.953 0.997* 0.781 0.920 0.720* 0.715* 0.890 0.904 1.006 0.997*

SP1L
PCA 0.864* 0.946* 0.997 0.819 0.902 0.737 0.726 0.898* 0.899* 1.000 0.996
ICA 0.908 0.951 0.997 0.872 0.962 0.730* 0.773 0.902 0.942 1.003 0.987
SPCA 0.869 0.983 0.992 0.816 0.938 0.759 0.712 0.943 0.960 1.002 0.984*

SP2
PCA 0.893* 0.929* 0.997* 0.818* 0.912* 0.692 0.637 0.880* 0.884 0.994 0.994
ICA 0.911 0.932 0.997* 0.833 0.915 0.691* 0.726 0.902 0.888 0.994 0.993
SPCA 0.901 0.935 0.997* 0.819 0.921 0.692 0.693 0.896 0.879 0.991 0.991*

SP2L
PCA 0.883* 0.927* 0.997* 0.816* 0.903* 0.714* 0.624 0.888* 0.880* 0.993 0.996
ICA 0.895 0.929 0.997* 0.835 0.917 0.719 0.695 0.898 0.897 0.994 0.993
SPCA 0.888 0.935 0.997* 0.836 0.910 0.722 0.768 0.897 0.905 0.994 0.991*

SP3 0.903 0.971 0.997 0.799 0.947 0.690 0.551 0.940 0.891 1.001 0.998

SP4 0.882 0.937 0.997 0.804 0.912 0.702 0.616 0.886 0.902 0.997 0.985

*Notes: See notes to Tables 1 and 2. Numerical entries in this table are the lowest (relative) mean square forecast errors (MSFEs)
based on the use of models estimated used recursive (Panel A) and rolling (Panel B) data windowing methods, and using three
di¤erent factor estimation methods (PCA, ICA and SPCA - see Section 2 for further discussion), for six di¤erent speci�cation types
(SP1, SP1L, SP2, SP2L, SP3, and SP4 - see Section 4 for details). Prediction models and target variables are described in Tables
1 and 2. Forecasts are monthly, for the period 1974:3-2009:5. Forecast horizons reported on include h=1, 3, and 12. Tabulated
relative MSFEs are calculated such that numerical values less than unity constitute cases for which the alternative model has
lower point MSFE than the AR(SIC) model. Entries in bold denote point-MSFE �best�models among the three factor estimation
methods, for a given speci�cation type, estimation window and forecast horizon. Additionally, bolded entries superscripted with a
�*� indicate instances for which the AR(SIC) model is statistically inferior that the model yielding the stated �best�MSFE. For a
listing of these MSFE �best�models, compare Panel A of Table 3 with Panel A of Table 4. See Section 5 for further details.
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Table 4: Forecast Models Corresponding to the Lowest Point MSFEs Reported in Table 3*

Panel A: Recursive Window Estimation

Forecast
Horizon

Factor Spec.
Mtd.

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA FAAR PCR Ridge PCR PCR FAAR ARX PCR Mean Mean ARX
ICA ARX FAAR FAAR FAAR FAAR Ridge ARX FAAR Mean Boost ARX
SPCA FAAR PCR PCR BMA1 BMA2 Mean FAAR FAAR Mean Boost ARX

SP1L
PCA FAAR PCR Mean PCR Mean Mean ARX BMA1 Mean Boost ARX
ICA ARX Mean Mean ARX Mean Mean ARX Mean Mean AR ARX
SPCA ARX Mean CADL ARX Mean Boost ARX Mean Mean Mean ARX

SP2
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA ARX Mean Mean ARX Mean Mean ARX ARX EN Mean Boost
SPCA ARX Mean Mean ARX Mean Mean ARX BMA1 Boost Mean Boost

SP2L
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA Boost Mean Mean Boost Mean Mean ARX Boost EN Mean Boost
SPCA Boost Mean Mean ARX Mean Mean ARX ARX Boost Mean Boost

SP3 ARX Mean CADL Mean Mean Mean ARX ARX Mean Boost Mean

SP4 ARX Mean Mean ARX Mean Mean ARX BMA1 Mean Mean ARX

h = 3

SP1
PCA PCR PCR CADL FAAR PCR FAAR Boost Mean Mean LARS Mean
ICA FAAR ARX PCR FAAR ARX FAAR LARS Mean Bagg AR Mean
SPCA Mean PCR Mean FAAR Mean Ridge Mean FAAR Mean NNG Mean

SP1L
PCA Mean Mean Mean Mean Mean BMA1 Mean Mean Mean NNG Mean
ICA Mean ARX CADL Mean ARX Mean LARS ARX NNG AR Mean
SPCA Mean ARX Mean Mean ARX BMA2 Mean Mean NNG NNG NNG

SP2
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Mean ARX LARS Boost ARX Boost Boost Boost Mean Mean Mean
SPCA Mean ARX CADL Mean ARX Mean Boost Mean Boost LARS Mean

SP2L
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Boost ARX CADL Boost ARX Boost Boost LARS Mean Mean Mean
SPCA Mean ARX BMA2 Mean ARX Mean Boost LARS Boost Mean Mean

SP3 Boost ARX CADL Mean ARX Mean Mean BMA2 Mean AR Boost

SP4 Mean ARX Mean Mean ARX Mean Mean Mean NNG Mean Mean

h = 12

SP1
PCA Ridge Mean CADL FAAR FAAR FAAR FAAR Mean Mean AR Mean
ICA Mean Mean CADL Mean Mean Mean FAAR CADL Mean AR Bagg
SPCA Mean Mean NNG Mean Mean Mean Mean Mean Mean LARS Mean

SP1L
PCA Mean Mean Boost Mean Mean Mean Mean Mean Boost LARS AR
ICA Mean Bagg CADL Mean Mean Mean FAAR Bagg Mean AR Bagg
SPCA Mean Mean CADL Mean BMA2 Mean Mean Mean Mean AR Mean

SP2
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LARS LARS
ICA Mean Mean CADL Boost Mean EN Boost Mean Mean LARS Mean
SPCA Boost Mean CADL Mean Mean EN Boost Mean Mean LARS Mean

SP2L
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LARS LARS
ICA Mean Mean BMA2 Boost Mean Boost Boost Mean Mean Mean LARS
SPCA Boost Mean Mean Mean Mean Mean Boost Mean Mean BMA2 LARS

SP3 Boost Boost CADL Mean Mean Boost EN EN Mean AR EN

SP4 Mean Mean CADL Mean Mean Mean Boost Mean Mean AR Mean
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Panel B: Rolling Window Estimation

Forecast
Horizon

Factor Spec.
Mtd.

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA FAAR PCR Mean FAAR Mean FAAR ARX PCR FAAR LARS Mean
ICA ARX AR Mean Mean Mean Mean ARX ARX Mean NNG Mean
SPCA ARX AR Mean ARX LARS Mean ARX Mean Mean AR Mean

SP1L
PCA Mean PCR Mean Mean Mean Mean ARX Mean Mean AR Mean
ICA ARX AR Mean ARX Mean Mean ARX Mean Mean AR Mean
SPCA ARX AR CADL ARX AR Mean ARX Mean Mean AR LARS

SP2
PCA ARX AR Mean Mean LARS Mean ARX Boost Mean EN EN
ICA ARX AR Mean Mean LARS Mean ARX Boost Mean AR EN
SPCA ARX AR Mean Boost LARS Mean ARX Mean Mean AR LARS

SP2L
PCA ARX AR Mean Mean EN Mean ARX BMA2 Mean LARS LARS
ICA ARX AR Mean Mean EN Mean ARX Boost Mean AR LARS
SPCA ARX AR Mean Mean Mean Mean ARX Boost Mean AR LARS

SP3 ARX AR CADL Boost AR Boost ARX Boost LARS AR EN

SP4 ARX AR Boost BMA2 Mean Mean ARX Mean Boost AR Mean

h = 3

SP1
PCA Mean PCR AR Mean Mean PCR Boost Mean FAAR LARS Boost
ICA Mean Mean PCR Mean Mean Mean Bagg Mean Bagg AR Mean
SPCA Mean Mean BMA2 BMA1 Mean Mean Mean Mean Mean AR Mean

SP1L
PCA Mean Mean LARS Mean Mean Mean Boost Mean Mean Mean Mean
ICA Mean Mean AR BMA2 Boost Mean Boost Mean Mean AR Mean
SPCA Mean Mean AR BMA2 NNG Mean Mean Mean Mean AR LARS

SP2
PCA Mean Mean NNG Mean Mean BMA2 Boost Mean EN NNG LARS
ICA Mean Mean BMA2 Mean Mean Mean Boost Mean EN NNG Mean
SPCA Boost Mean BMA1 BMA2 Mean Mean Boost Mean Mean NNG Mean

SP2L
PCA Boost Mean BMA1 Mean Mean Boost BMA2 Mean Mean NNG Mean
ICA Boost Mean BMA2 Mean Mean Boost Boost Boost Boost NNG Mean
SPCA Mean Mean AR Mean Mean Mean Boost Mean Boost NNG Mean

SP3 Boost Boost AR Boost NNG Boost Boost Boost Boost AR Boost

SP4 Mean Mean AR Mean Mean Boost Mean Boost Boost Mean LARS

h = 12

SP1
PCA Mean Mean CADL Mean PCR FAAR Boost Mean Mean AR AR
ICA Mean Mean CADL Ridge Mean Mean FAAR Mean Mean Bagg Mean
SPCA Mean Mean CADL BMA2 Mean Mean Mean Mean Mean AR Mean

SP1L
PCA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR NNG
ICA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR Bagg
SPCA Mean NNG NNG BMA2 Boost Mean Mean LARS LARS AR LARS

SP2
PCA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
ICA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean Mean EN Boost Mean Boost LARS Mean

SP2L
PCA Mean Mean CADL Mean Mean Boost Boost Mean Mean BMA2 Mean
ICA Mean Mean CADL Mean Mean Boost Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean LARS Boost Boost Mean Boost NNG Mean

SP3 Boost Boost CADL EN EN Boost Boost Boost Boost AR NNG

SP4 Mean Mean CADL Boost Mean Mean Boost Mean Mean NNG EN

*Notes: See notes to Tables 1-3. In Panels A and B, MSFE �best�models, based on results reported in Table 3 are reported.
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Table 5: Summary of Winning Methods and Models by Forecast Horizon

Forecast Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1 SP1 SP1 SP4 SP1 SP1 SP1 SP1 SP1L SP1 SP2
Recur Recur Recur Roll Recur Recur Recur Recur Roll Recur Recur
PCA SPCA SPCA N/A ICA SPCA SPCA SPCA PCA SPCA ICA
FAAR PCR PCR BMA2 FAAR Mean FAAR FAAR Mean Boost Boost

h = 3

SP1 SP1 SP1 SP4 SP1 SP1 SP3 SP2 SP1L SP2L SP2
Roll Recur Recur Roll Recur Recur Roll Recur Roll Roll Roll
PCA PCA ICA N/A PCA SPCA N/A PCA PCA PCA PCA
Mean PCR PCR Mean PCR Ridge Boost Mean Mean NNG LARS

h = 12

SP1L SP2L SP1L SP1 SP1 SP3 SP3 SP2 SP2 SP2 SP1L
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA SPCA PCA N/A N/A PCA SPCA SPCA ICA
Mean Mean Boost BMA2 PCR Boost Boost Mean Boost LARS Bagg

* Notes: See notes to Tables 1-4. This table contains details of the winning forecast model/method, for each forecast horizon.
Entries correspond the the lowest bolded MSFE entries in Table 3 within each forecast horizon, across all speci�cation types, for
each variable. In summary, the �winning� (speci�cation type, estimation windowing method, factor estimation method - when
factors enter into the �best�model, and model - as given in Table 2) is summarized, for each forecast horizon and target variable.
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