1. (a) \[\text{Var}(X) = E[(x - E(x))^2] = E[x^2 - 2xE(x) + E(x)^2] \]
\[= E(x^2) - 2E(x)E(x) + E(x)^2 = E(x^2) - E(x)^2 \]
\[= E(x^2) - \mu_x^2 \]
\[\text{Var}(X + Y) = E[((x + y) - E(x + y))^2] = E[(x - E(x)) + (y - E(y))]^2 \]
\[= E[(x - E(x))^2 + [y - E(y)]^2 + 2(x - E(x))(y - E(y))] \]
\[= E[x - E(x)]^2 + E[y - E(y)]^2 + 2E(x - E(x))(y - E(y)) \]
\[= \text{Var}(X) + \text{Var}(Y) + 2\text{Cov}(X, Y) \]
\[\text{Var}(c) = E(c - E(c))^2 = 0 \]

(b) \[\text{Var}(\hat{X}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]
\[\text{Cov}(\hat{X}, \hat{Y}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

(c) \[\bar{W} = \frac{1}{T} \sum_{i=1}^{T} W_i; \quad E(W_i) = \mu_W \]
- \(W_i \): sample point
- \(\bar{W} \): sample mean
- \(\mu_W \): true mean

(d) Cross section data is a sample of a number of observational units all drawn at the same point in time, such as the GDP of all countries in 1998. Time series data is a set of observations drawn on the same observational unit at a number of points in time, such as GDP of America from 1980 - 1998.

(f) An example of discrete PDF:
- \(X \): the result of casting a die
- Possible values: \(X_1, X_2, \ldots, X_6 \)
- Probability of each possible value occurring

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(X = 1)</th>
<th>(X = 2)</th>
<th>(X = 3)</th>
<th>(X = 4)</th>
<th>(X = 5)</th>
<th>(X = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td></td>
</tr>
</tbody>
</table>

The distribution is a uniform distribution.

Properties of continuous PDF:

(i) \(f(x) \geq 0 \)
(ii) \(\int_{-\infty}^{\infty} f(x)dx = 1 \)
(iii) \(\int_{a}^{b} f(x)dx = P(a \leq x \leq b) \)

2. \(T = 18 \)
\[\bar{X} = 166.1 \]
\[Y = 189.8 \]

\[Cov(X, Y) = \frac{1}{17}(647,573) - \frac{18}{17}(166.1)(189.8) = 4694.425 \]

\[or \quad \simeq \frac{1}{18}(647,573) - (166.1)(189.8) = 4433.623 \]

\[Var(X) = \frac{1}{17}[536,578 - 18(166.1)^2] = 2347.399 \]

\[or \quad \simeq \frac{1}{18}(536,578) - (166.1)^2 = 2216.988 \]

\[Var(Y) = \frac{1}{17}[812,250 - 18(189.8)^2] = 9600.575 \]

\[or \quad \simeq \frac{1}{18}(812,250) - (189.8)^2 = 9067.210 \]

3. (a) \[\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{Cov(X, Y)}{\sqrt{Var(x)\sqrt{Var(Y)}}} \]

(b) \[\hat{\rho} = \frac{S_{XY}}{S_X S_Y} = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2 \sum(y_i - \bar{y})}} \]

(c) (i) \(-1 \leq \rho_{XY} \leq 1\)

(ii) \[\rho_{XY} = 0 \Rightarrow Cov(X, Y) = 0 \]

It means that \(X\) and \(Y\) are uncorrelated.

(d) \[\hat{\rho} = \frac{4964.425}{\sqrt{2347.399\sqrt{9600.575}}} = 0.98878 \]

\[or \quad \simeq \frac{4433.623}{\sqrt{2216.988\sqrt{9067.210}}} = 0.9887 \]

(e) There is a strong positive correlation between \(X\) and \(Y\).

4. (a) \[Z = \frac{\bar{X} - \mu_X}{\sigma_X} = \frac{1.5 - 2}{\sqrt{0.16}} = -1.25 \]

The critical value \(Z_{\alpha} = -1.645; \quad \alpha = 0.1. \) Since \(Z_{\alpha} < Z\), we do not reject \(H_0\).

(b) The level is the probability that we reject \(H_0\) when \(H_0\) is true.

(c) \[Z = \frac{1.5 - 2}{\sqrt{0.16}} = -1.25 \]

The critical value \(Z_{\alpha} = -1.28; \quad \alpha = 0.1. \) Since \(Z_{\alpha} < Z\), we do not reject \(H_0\).

(d) \[Z = \frac{1.5 - 2}{\sqrt{0.16}} = -1.25 \]

The critical value \(Z_{\alpha} = 1.28; \quad \alpha = 0.1. \) Since \(Z_{\alpha} > Z\), we do not reject \(H_0\).

5. The \(t\)-distribution is an approximation of the \(Z\)-distribution. This approximation becomes more accurate as the degrees of freedom increases. In fact, as the degree of freedom approaches infinity, the \(t\)-distribution becomes \(Z\)-distribution. The \(Z\) is used when \(\mu_X\) and \(\sigma_X\) are known. The \(t\) is used when all that is known is \(\bar{X}\) and \(Var(X)\)