Problem-solving in models of demand: some suggestions

(1) See Mathematical Appendix in text (pp. 664-683) to review calculus and other mathematical techniques

(2) How-To summaries in the Study Guide:
 ▪ computing demands and demand curves (p. 117)
 ▪ computing income and substitution effects (p. 122)
 ▪ computing CV and EV (p. 128)

(3) Draw a diagram to make it easier to see what's going on!

(4) Ask: how many unknowns are there? how many equations are there?

An extended example appears in the following pages.
Chapter 5

Study Guide:

- Obtain D curves: p. 117
- Calculate income + substitution effects: p. 122
- Calculate EV, CV: p. 128

it helps to draw a picture!

Mathematical Appendix - in text, p. 664

BASELINE: \[U = 10x - \frac{x^2}{2} + y \]

\[I = 20 \quad P_x = 1 \quad P_y = 1 \quad (\text{later, } P_x \rightarrow P_x' = 2) \]

1. **CALCULATE DEMANDS**

 Use \(I = P_x x + P_y y \) and \(\frac{MU_x}{P_x} = \frac{MU_y}{P_y} \)

 So \[20 = 1 \cdot x + 1 \cdot y \]

 or \[20 = x + y \]

 Since \(x = 9 \) (see below)

 we have:

 \[20 = x + y \]

 \[20 = 9 + y \] \[\Rightarrow y = 11 \]

 So we can now calculate \(U \) at the optimum:

 \[U = 10x - \frac{x^2}{2} + y \]

 \[= 10 \cdot 9 - \frac{81}{2} + 11 \]

 \[= 90 - 40.5 + 11 \] \[\Rightarrow U = 60.5 \]
If \(p_x \) rises to 2, use same methods:

\[I = p_x x + p_y y \quad \text{and} \quad \frac{MU_x}{p_x} = \frac{MU_y}{p_y} \Rightarrow \frac{10-x}{2} = \frac{1}{1} \]

So \(20 = 2 \cdot x + 1 \cdot y \)

Since \(x = 8 \), solve for \(y \):

\[20 = 2 \cdot x + 1 \cdot y \]
\[20 = 16 + y \quad \Rightarrow \quad y = 4 \]

To get new level of utility at new optimum, use \(U \) function:

\[U = 10 \cdot x - \frac{x^2}{2} + y \Rightarrow U = 10 \cdot 8 - \frac{64}{2} \]

So \(U = 52 \)

2) TO CALCULATE INCOME + SUBSTITUTION EFFECTS

* * * draw a picture !!! * * *

<table>
<thead>
<tr>
<th>Location</th>
<th>(U)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>old A</td>
<td>60.5</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>new B</td>
<td>52</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>"decomposition"</td>
<td>B</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

SUBSTITUTION EFFECT:
Keep \(U \) same, move to new \(\frac{P_y}{P_x} \)

INCOME EFFECT:
Keep \(\frac{P_y}{P_x} \) same, move to new \(U \)
DECOMPOSITION BASKET—used to measure substitution effect, to decompose total effect into income and substitution effects.

Keep \(U \) constant at 60.5, but change to new \(\frac{P_x}{P_y} \) (how much I is necessary to do this?)

decomposition basket must satisfy both \(\frac{MU_x}{P_x} = \frac{MU_y}{P_y} \) AND \(U = 10x - \frac{x^2}{2} + y \)

so \(\frac{10-x}{2} = 1 \) and \(60.5 = 10x - \frac{x^2}{2} + y \) \(\text{old level of } U \)

\[10 - x = 2 \]

\[60.5 = 10 \cdot 8 - \frac{64}{2} + y \]

\[60.5 = 80 - 32 + y \quad \Rightarrow \quad y = 12.5 \]

Use budget constraint to calculate how much I \(\text{old} \) be necessary to achieve this level of \(U \):

\[I = p_x \cdot x + p_y \cdot y = 2(8) + 1(12.5) = 28.5 \]

So we can now calculate income and substitution effects as follows:

<table>
<thead>
<tr>
<th></th>
<th>Location</th>
<th>(U)</th>
<th>(I)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>old</td>
<td>A</td>
<td>60.5</td>
<td>20</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>"decomposition"</td>
<td>B</td>
<td>60.5</td>
<td>28.5</td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>new</td>
<td>C</td>
<td>52</td>
<td>20</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>income effect (C-B)</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>-8.5</td>
</tr>
<tr>
<td>substitution effect (B-A)</td>
<td></td>
<td></td>
<td></td>
<td>-1</td>
<td>+1.5</td>
</tr>
</tbody>
</table>
COMPENSATING/EQUIVALENT VARIATION

\[CV = \text{change in } \$ \text{ necessary to keep } \overline{\text{old } U} \text{ at new prices} \]

(\text{starting from new basket of goods})

\[CV = \text{distance } \overline{KJ} \text{ (measured in units of } y) \]

\[= \text{change in } I \text{ necessary to keep } U = 60.5 \]

\[= \text{change in } I \text{ necessary to buy basket } B \]

\[= 28.5 - 20 = 8.5 \]

(see previous page)
$EV = \text{change in \$ necessary to keep new Utility at old prices (starting from old basket)}$

$EV = \text{distance } KL \text{ (measured in units of y)}$

$= \text{change in income necessary to keep } U = 52 \text{ (its new level) at old set of relative prices}$

$= \text{change in income necessary to buy basket } D$

To buy D, we need

\[\frac{10-x}{1} = \frac{1}{1} \quad \text{(when } p_x = 1, \quad p_y = 1) \]

and we need $U = 52 = 10x - \frac{x^2}{2} + y$

\[\frac{10-x}{1} = \frac{1}{1} \Rightarrow \begin{cases} x = 9 \\ \text{so } U = 52 = 10 \cdot 9 - \frac{81}{2} + y \\ \text{so } 52 = 90 - 40.5 + y \\ \text{so } y = 2.5 \end{cases} \]

Income needed to buy $x = 9, y = 2.5$

When $p_x = 1, p_y = 1$ is:

$\begin{align*}
I &= 1 \cdot 9 + 1 \cdot 2.5 = 11.5 \\
\text{So change in } I &= EV \\
&= 11.5 - 20 = -8.5
\end{align*}$

(Rise in p_x was equivalent to $\Delta I = -8.5$)