Chapter 11: Monopoly

1. Profit maximization by a monopolist
 A. As usual, increase Q provided MR > MC (produce up to point where MR = MC)
 Key difference vs. perfect competition:
 MR < P for monopolist
 MR = P for perfect competitor
 B. Monopolist is only seller, so monopolist's
 D curve is the market D curve
 \[R = PQ \]
 \[P = P(Q), \text{ with } \frac{dP}{dQ} = P'(Q) < 0 \]
 i.e., downward-sloping demand curve

C. so \[MR = \frac{dR}{dQ} = \frac{d[P(Q)Q]}{dQ} = Q\frac{dP}{dQ} + P \frac{dQ}{dQ} \]
 \[= P \left[1 + Q \frac{dP}{P dQ} \right] = P \left[1 + \frac{1}{\varepsilon} \right] \]
 where \(\varepsilon = \frac{dQ}{Q} \), the elasticity of demand \(\frac{dP}{P} \) with respect to price

 NB: when
 Since \(\varepsilon < 0 \), MR < P \((P = AR = PQ/Q) \)
when $\varepsilon < -1$, $MR = P[1 + (1/\varepsilon)] > 0$
when $\varepsilon = -1$, $MR = P[1 + (1/\varepsilon)] = 0$
when $\varepsilon > -1$, $MR = P[1 + (1/\varepsilon)] < 0$

D. profit maximization requires $MR = MC$
or $P[1 + (1/\varepsilon)] = MC$

E. Implications of profit maximization
(1) Since $\varepsilon < 0$, $P > MC$
(2) IEPR (inverse elasticity pricing rule): when profits are maximized, the markup of price over MC (as % of P) must satisfy
\[
\frac{P - MC}{P} = -\frac{1}{\varepsilon}
\]
(3) monopolist always produces on the elastic part of the demand curve (where $\varepsilon > 1$ in absolute value)
(4) Note that this applies to any producer with less than infinitely elastic demand, not just to a monopolist
F. Monopoly with a linear demand curve (review Ch. 2, pp. 41-42 and Fig. 2.16): for the linear demand curve $P = a - bQ$, vertical intercept = a, slope = $-b$, horizontal intercept = a/b

$R = PQ = (a - bQ)Q = aQ - bQ^2$
so $MR = dR/dQ = a - 2bQ$

vertical intercept = a, slope = $-2b$, horizontal intercept = $a/2b$
thus, D and MR curves look as follows:

\[
P = a - bQ:
\]

$\text{Demand curve ("P")}$
2. Comparative statics for monopoly
 A. outward shift in market demand curve (with accompanying shift in MR curve!):
 if MC is increasing in Q:
 Q rises, P rises
 if MC is decreasing in Q:
 Q rises, P changes...how?
 (see text, p. 423, and Figure 11.10)

 B. increase in marginal cost (due to higher input prices, etc.):
 optimal Q falls, optimal P rises
3. Multiplant monopoly and cartels
 A. With multiple plants, produce so as to equalize MC in each plant (otherwise, could cut costs by shuffling output) – implies that aggregate MC schedule is the horizontal sum of the individual plants' MC schedules

 B. then, operate where \(\text{MR} = \text{total MC} \), and allocate output among plants to equate the MC of all plants

 ![Graph](image)

 C. Profit maximization by a cartel: act as if all firms were one monopolist with multiple plants – low-MC firms would produce more output (need to set production quotas for each firm, and prevent "cheating")
4. Welfare economics of monopoly
A. Standard of comparison = perfect
 competition (operate where \(P = MC \), since
 \(MC = \) supply curve)
B. relative to perfect competition,
 monopolist raises \(P \) and cuts \(Q \), \(\rightarrow \) DWL

<table>
<thead>
<tr>
<th></th>
<th>perfect competition</th>
<th>monopoly impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>consumer surplus</td>
<td>(A+B+F)</td>
<td>(A)</td>
</tr>
<tr>
<td>producer surplus</td>
<td>(E+G+H)</td>
<td>(B+E+H)</td>
</tr>
<tr>
<td>total surplus</td>
<td>(A+B+E+)</td>
<td>(A+B+E+H)</td>
</tr>
<tr>
<td></td>
<td>(F+G+H)</td>
<td></td>
</tr>
</tbody>
</table>
5. Why do monopolies exist?
 A. **Natural monopoly:** at any level of total industry output, total cost for one firm producing is less than total cost for 2 or more firms – usually because of scale economies, decreasing ATC
 B. **Barriers to entry:**
 - structural (cost/marketing advantages for an existing firm)
 - legal (franchises)
 - strategic barriers to entry (incumbent acts, or is expected to act, to bar new entrants)

6. **Monopsony:** buyer with market power
 A. **Perfect competition:**
 \[MC = \frac{d(TC)}{dQ} = \frac{d(FC + wL)}{dQ} = w\frac{dL}{dQ} = \frac{w}{MPL} \]
 => assumes firm is a price-taker in input market
 \[MR = MC \text{ implies } P = \frac{w}{MPL} \]
B. **Monopsony:** able to affect price in input market (faces upward-sloping supply curve)

i.e., \(w = w(L) \), with \(dw/dL > 0 \)

then \(TC = rK + wL = rK + w(L)L \)

so \(d(TC)/dQ = MC = \frac{d[w(L)]}{dQ} L + w \frac{dL}{dQ} \)

\[
= \frac{dw(L)}{dL} \frac{dL}{dQ} L + w \frac{dL}{dQ} = \left[\frac{dw}{dL} \frac{L}{w} + 1 \right] \frac{w}{MPL}
\]

so \(MC = \frac{w}{MPL} \left[1 + (1/\varepsilon_{L,w}) \right] \)

where

\(\varepsilon_{L,w} = \text{elasticity of labor supply w.r.t. wage} \)

\[
= \%\Delta L/\%\Delta w = (dL/L)/(dw/w)
\]

\[
= (dL/dw)(w/L)
\]

NB: here, \(MC > w/MPL \) since \(\varepsilon_{L,w} > 0 \)
C. Profit maximization and monopsony if a perfect competitor in output market: MR = MC implies

\[P = \left(\frac{w}{MPL}\right) \left[1 + \left(\frac{1}{\varepsilon_{L,w}}\right) \right] \]

or \[P \times MPL = w \left[1 + \left(\frac{1}{\varepsilon_{L,w}}\right) \right] \]

so, relative to perfect competitor, monopsonist pays a lower wage, hires less labor.
D. DWL under monopsony

<table>
<thead>
<tr>
<th>surplus</th>
<th>perfect comp</th>
<th>monopsony</th>
<th>monopsony impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>worker</td>
<td>C+D+G</td>
<td>D</td>
<td>-C-G</td>
</tr>
<tr>
<td>employer</td>
<td>A+B+F</td>
<td>A+B+C</td>
<td>C-F</td>
</tr>
<tr>
<td>total</td>
<td>A+B+C+</td>
<td>A+B+C+D</td>
<td>-F-G</td>
</tr>
<tr>
<td></td>
<td>D+F+G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(DWL due to monopsony = F+G.)