The Risk and Term Structure of Interest Rates
Money and Banking

Cesar E. Tamayo
Department of Economics, Rutgers University

July 20, 2011
Interest rates on bonds of different maturities move together over time:
Interest rates on bonds of different maturities move together over time:

When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term rates are high, yield curves are more likely to slope downward and be inverted.
1. Interest rates on bonds of different maturities move together over time:

2. When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term rates are high, yield curves are more likely to slope downward and be inverted.

3. Yield curves almost always slope upward.
Term structure of interest rates: What may explain this?

- Expectations theory (ET):

 Assumes that bond holders consider bonds with different maturities to be perfect substitutes. That is, buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.

 Statement of the ET: The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.

 Example: Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it.
Term structure of interest rates: What may explain this?

- **Expectations theory (ET):**
 - Assumes that bond holders consider bonds with different maturities to be perfect substitutes

 "Statement of the ET: The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond."

 Example: Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%)\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it."
Term structure of interest rates: What may explain this?

- **Expectations theory (ET):**
 - Assumes that bond holders consider bonds with different maturities to be perfect substitutes
 - That is, buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity
Expectations theory (ET):

- Assumes that bond holders consider bonds with different maturities to be perfect substitutes.
- That is, buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.
- Statement of the ET: The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.
Term structure of interest rates: What may explain this?

- **Expectations theory (ET):**
 - Assumes that bond holders consider bonds with different maturities to be perfect substitutes.
 - That is, buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.
 - Statement of the ET: The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.

Example

Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it.
Let us be more general. Suppose that we compare two strategies to invest a $1 as follows:

1. Buy a one period bond, hold it and when it matures, buy another one (roll-over strategy).
2. Buy a two period bond and hold it until maturity (buy and hold).

So we have:

\[i_t = \text{today's interest rate on one period bonds} \]
\[i_{E_t+1} = \text{next period expected interest rate on one period bonds} \]
\[i_{2t} = \text{today's interest rate on two period bonds} \]
Let us be more general. Suppose that we compare two strategies to invest a $1 as follows:

1. Buy a one period bond, hold it and when it matures, buy another one (roll-over strategy)

2. Buy a two period bond and hold it until maturity (buy and hold)

So we have:

\[i_t = \text{today's interest rate on one period bonds} \]
\[i_{E t+1} = \text{next period expected interest rate on one period bonds} \]
\[i_{2t} = \text{today's interest rate on two period bonds} \]
Let us be more general. Suppose that we compare two strategies to invest a $1 as follows:

1. Buy a one period bond, hold it and when it matures, buy another one (roll-over strategy)
2. Buy a two period bond and hold it until maturity (buy and hold)
Let us be more general. Suppose that we compare two strategies:

1. Buy a one period bond, hold it and when it matures, buy another one (roll-over strategy)
2. Buy a two period bond and hold it until maturity (buy and hold)

So we have:

\[i_t = \text{today's interest rate on one period bonds} \]
\[i_{t+1}^E = \text{next period expected interest rate on one period bonds} \]
\[i_{2t} = \text{today's interest rate on two period bonds} \]
Let us use our well known PV formula but in this case we know PV and want CF.
Term structure of interest rates: Expectations Theory

- Let us use our well known PV formula but in this case we know PV and want CF.
- Note: in this case interest rate = rate of return = return (why?)
Let us use our well known PV formula but in this case we know PV and want CF.

Note: in this case interest rate=rate of return=return (why?)

Expected return from the "buy and hold" strategy:

\[
(1 + i_{2t})(1 + i_{2t}) - 1 = (1 + i_{2t})^2 - 1 \\
= 2i_{2t} + (i_{2t})^2 \\
\approx 2i_{2t}
\]
Let us use our well known PV formula but in this case we know PV and want CF.

Note: in this case interest rate=rate of return=return (why?)

Expected return from the "buy and hold" strategy:

\[(1 + i_{2t})(1 + i_{2t}) - 1 = (1 + i_{2t})^2 - 1 = 2i_{2t} + (i_{2t})^2 \approx 2i_{2t}\]

Expected return from the "roll-over" strategy:

\[(1 + i_t)(1 + i^e_{t+1}) - 1 = 1 + i_t + i^e_{t+1} + i_t (i^e_{t+1}) - 1 \approx i_t + i^e_{t+1}\]
Term structure of interest rates: Expectations Theory

- The ET of the term structure tells us that both bonds will be held only if their returns are equal we equate these two results:

\[2i_{2t} = i_t + i_{t+1} \Rightarrow i_{2t} = \frac{i_t + i_{t+1}}{2} \]
The **ET** of the term structure tells us that both bonds will be held only if their returns are equal we equate these two results:

\[2i_{2t} = i_t + i_{t+1}^e \Rightarrow i_{2t} = \frac{i_t + i_{t+1}^e}{2} \]

Or more generally:

\[i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \ldots + i_{t+n-1}^e}{2} \]
The **ET** of the term structure tells us that both bonds will be held only if their returns are equal we equate these two results:

\[2i_{2t} = i_t + i_{t+1}^e \Rightarrow i_{2t} = \frac{i_t + i_{t+1}^e}{2} \]

Or more generally:

\[i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \ldots + i_{t+n-1}^e}{2} \]

So the ET explains fact # 1, namely that interest rates of different maturities move together.
Term structure of interest rates: Expectations Theory

- The **ET** of the term structure tells us that both bonds will be held only if their returns are equal we equate these two results:

\[2i_{2t} = i_t + i_{t+1} \Rightarrow i_{2t} = \frac{i_t + i_{t+1}}{2} \]

- Or more generally:

\[i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \ldots + i_{t+n-1}^e}{2} \]

- So the ET explains fact # 1, namely that interest rates of different maturities move together.

- It also explains fact # 2: if the short term interest rate, \(i_t \), is "abnormally" low, then people expect it to go back to a normal level in the future; that is, they expect \(i_{t+1}^e \) to be higher than \(i_t \). Therefore, the average of \(i_t \) and \(i_{t+1}^e \) would be higher than \(i_t \) and the two period bond will have a higher interest rate.
The ET of the term structure tells us that both bonds will be held only if their returns are equal; we equate these two results:

\[2i_{2t} = i_t + i_{t+1} \Rightarrow i_{2t} = \frac{i_t + i_{t+1}}{2} \]

Or more generally:

\[i_{\text{int}} = \frac{i_t + i_{t+1} + i_{t+2} + \ldots + i_{t+n-1}}{2} \]

So the ET explains fact # 1, namely that interest rates of different maturities move together.

It also explains fact # 2: if the short term interest rate, \(i_t \), is "abnormally" low, then people expect it to go back to a normal level in the future; that is, they expect \(i_{t+1}^e \) to be higher than \(i_t \). Therefore, the average of \(i_t \) and \(i_{t+1}^e \) would be higher than \(i_t \) and the two period bond will have a higher interest rate.

However, the ET fails to explain fact # 3.
Term structure of interest rates: Segmented markets theory

- Radical departure: markets for different maturity bonds are completely separate and segmented.
Term structure of interest rates: Segmented markets theory

- Radical departure: markets for different maturity bonds are completely separate and segmented.
- Interest rates for each maturity are determined by D&S in each market.

Investors have preferences for bonds of one maturity over another. If investors generally prefer bonds with shorter maturities that have less interest-rate risk, then this explains why yield curves usually slope upward (fact 3).
Radical departure: markets for different maturity bonds are completely separate and segmented.

Interest rates for each maturity are determined by D&S in each market.

Investors have preferences for bonds of one maturity over another
Radical departure: markets for different maturity bonds are completely separate and segmented.

Interest rates for each maturity are determined by D&S in each market.

Investors have preferences for bonds of one maturity over another.

If investors generally prefer bonds with shorter maturities that have less interest-rate risk, then this explains why yield curves usually slope upward (fact 3).
The interest rate on a long-term bond will equal an average of short-term interest rates expected to occur over the life of the long-term bond plus a **liquidity premium** that responds to supply and demand conditions for that bond.
The interest rate on a long-term bond will equal an average of short-term interest rates expected to occur over the life of the long-term bond plus a **liquidity premium** that responds to supply and demand conditions for that bond.

So we can add to our break-down of interest rates. If we are comparing two bonds with the same risk structure:

![Diagram of nominal interest rate components]

- **Nominal Interest rate**
 - Expected inflation
 - Value of money over time
 - Liquidity premium
The interest rate on a long-term bond will equal an average of short-term interest rates expected to occur over the life of the long-term bond plus a **liquidity premium** that responds to supply and demand conditions for that bond.

So we can add to our break-down of interest rates. If we are comparing two bonds with the same risk structure:

![Diagram of interest rate components](image)

- **Nominal Interest rate**
- **Expected inflation**
- **Value of money over time**
- **Liquidity premium**

Note: recall that if we are comparing bonds with different default risk, we would add a risk premium.
Thus, we can adjust the results from the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \ldots + i_{t+n-1}^e}{2} + l_{nt} \]

Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(\dot{t} \).

Usually the longer the maturity, the higher the liquidity premium. Also, the liquidity premium may change over time; in good times it may be lower and in uncertain times it may be much higher.

A similar approach is that of the preferred habitat theory: Investors have a preference for bonds of one maturity over another. They will be willing to buy bonds of different maturities only if they earn a somewhat higher expected return.
Thus, we can adjust the result from the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i^e_{t+1} + i^e_{t+2} + \ldots + i^e_{t+n-1}}{2} + l_{nt} \]

Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(t \).
Thus, we can adjust the result of the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i_{t+1}^e + i_{t+2}^e + \ldots + i_{t+n-1}^e}{2} + l_{nt} \]

- Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(\dot{t} \)
- Usually the longer the maturity, the higher the liquidity premium.
Thus, we can adjust the result from the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i_{t+1} + i_{t+2} + \ldots + i_{t+n-1}}{2} + l_{nt} \]

Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(t \).

Usually the longer the maturity, the higher the liquidity premium.

Also, the liquidity premium may change over time; in good times it may be lower and in uncertain times it may be much higher.
Thus, we can adjust the result from the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i_{t+1} + i_{t+2} + \ldots + i_{t+n-1}}{2} + l_{nt} \]

Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(t \).

Usually the longer the maturity, the higher the liquidity premium.

Also, the liquidity premium may change over time; in good times it may be lower and in uncertain times it may be much higher.

A similar approach is that of the preferre habitat theory: Investors have a preference for bonds of one maturity over another.
Thus, we can adjust the result from the ET framework to account for the liquidity premium:

\[i_{nt} = \frac{i_t + i^{e}_{t+1} + i^{e}_{t+2} + \ldots + i^{e}_{t+n-1}}{2} + l_{nt} \]

Note the subindex in \(l_{nt} \); it has two components, \(n \) and \(t \).

Usually the longer the maturity, the higher the liquidity premium.

Also, the liquidity premium may change over time; in good times it may be lower and in uncertain times it may be much higher.

A similar approach is that of the preferre habitat theory: Investors have a preference for bonds of one maturity over another.

They will be willing to buy bonds of different maturities only if they earn a somewhat higher expected return.
Usually investor’s preferred habitat would be that of short term bonds in which case the analysis would be the same as the liquidity premium theory.
Usually investor’s preferred habitat would be that of short term bonds in which case the analysis would be the same as the liquidity premium theory:

(The expectations yield curve is drawn flat because it is as likely to be upward sloping as it is to be downward sloping)
Term structure of interest rates: Liquidity premium theory

- Usually investor’s preferred habitat would be that of short term bonds in which case the analysis would be the same as the liquidity premium theory:

 (The expectations yield curve is drawn flat because it is as likely to be upward sloping as it is to be downward sloping)

- However, the preferred habitat theory may allow for different investors to prefer different "habitats".
Modern evidence suggests that yield curve data contain good information about the liquidity premium between short and long term bonds but not so good information about intermediate term bonds.
Modern evidence suggests that yield curve data contain good information about the liquidity premium between short and long term bonds but not so good information about intermediate term bonds.

Yield curve data are also helpful in forecasting future inflation.
Modern evidence suggests that yield curve data contain good information about the liquidity premium between short and long term bonds but not so good information about intermediate term bonds.

Yield curve data are also helpful in forecasting future inflation.

Since rising interest rates are associated with economic booms and falling interest rates are associated with recessions, the yield curve may have predictive power over the business cycle.
Term structure of interest rates: interpreting the yield curve

(a) Future short-term interest rates expected to rise
(b) Future short-term interest rates expected to stay the same
(c) Future short-term interest rates expected to fall moderately
(d) Future short-term interest rates expected to fall sharply
Term structure of interest rates: interpreting the yield curve