The Risk and Term Structure of Interest Rates

Money and Banking

Cesar E. Tamayo
Department of Economics, Rutgers University

July 19, 2011
Beyond the role of interest rates

- So far we have studied the role of interest rates in financial markets; we know they help us in the task of valuing money over time.
So far we have studied the role of interest rates in financial markets; we know they help us in the task of valuing money over time.

YTM: used to discount future flows and express them in terms of present purchasing power:

\[
PV = \frac{CF}{(1 + i)^n}
\]
Beyond the role of interest rates

- So far we have studied the role of interest rates in financial markets; we know they help us in the task of valuing money over time.
- YTM: used to discount future flows and express them in terms of present purchasing power:

\[PV = \frac{CF}{(1 + i)^n} \]

- But what is "i" made of and why it may differ from one asset to another?
Beyond the role of interest rates

- So far we have studied the role of interest rates in financial markets; we know they help us in the task of valuing money over time.
- YTM: used to discount future flows and express them in terms of present purchasing power:

\[PV = \frac{CF}{(1 + i)^n} \]

- But what is "i" made of and why it may differ from one asset to another?
- Moreover, what causes "i" to fluctuate over time?
Bonds with the same maturity have different interest rates due to:

- Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value. U.S. Treasury bonds are considered default free (government can raise taxes).
- Risk premium: the spread between the interest rates on bonds with default risk and the interest rates on (same maturity) Treasury bonds.
Bonds with the same maturity have different interest rates due to:

- Default risk
Bonds with the same maturity have different interest rates due to:

- Default risk
- Liquidity
Risk structure of interest rates

- Bonds with the same maturity have different interest rates due to:
 - Default risk
 - Liquidity
 - Tax considerations

This difference is sometimes called the spread.

Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value.

U.S. Treasury bonds are considered default free (government can raise taxes).

Risk premium: the spread between the interest rates on bonds with default risk and the interest rates on (same maturity) Treasury bonds.
Bonds with the same maturity have different interest rates due to:

- Default risk
- Liquidity
- Tax considerations

This difference is sometimes called the **spread**.
Risk structure of interest rates

- Bonds with the same maturity have different interest rates due to:
 - Default risk
 - Liquidity
 - Tax considerations

- This difference is sometimes called the **spread**.

- Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value of the bond.
Bonds with the same maturity have different interest rates due to:

- Default risk
- Liquidity
- Tax considerations

This difference is sometimes called the **spread**.

Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value

- U.S. Treasury bonds are considered default free (government can raise taxes).
Bonds with the same maturity have different interest rates due to:

- Default risk
- Liquidity
- Tax considerations

This difference is sometimes called the spread.

Default risk: probability that the issuer of the bond is unable or unwilling to make interest payments or pay off the face value.

- U.S. Treasury bonds are considered default free (government can raise taxes).
- Risk premium: the spread between the interest rates on bonds with default risk and the interest rates on (same maturity) Treasury bonds.
A bond with default risk will always have a positive risk premium and the latter increases whenever the former increases.
Risk and interest rates: private solution to information asymmetries

<table>
<thead>
<tr>
<th>Rating</th>
<th>Moody's</th>
<th>S&P</th>
<th>Fitch</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaa</td>
<td>AAA</td>
<td>AAA</td>
<td>AAA</td>
<td>Prime Maximum Safety</td>
</tr>
<tr>
<td>Aa1</td>
<td>AA-</td>
<td>AA-</td>
<td>AA-</td>
<td>High Grade High Quality</td>
</tr>
<tr>
<td>Aa2</td>
<td>AA</td>
<td>AA</td>
<td>AA</td>
<td></td>
</tr>
<tr>
<td>Aa3</td>
<td>AA-</td>
<td>AA-</td>
<td>AA-</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>A+</td>
<td>A+</td>
<td>A+</td>
<td>Upper Medium Grade</td>
</tr>
<tr>
<td>A2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>A-</td>
<td>A-</td>
<td>A-</td>
<td></td>
</tr>
<tr>
<td>Baa1</td>
<td>BBB+</td>
<td>BBB+</td>
<td>BBB+</td>
<td>Lower Medium Grade</td>
</tr>
<tr>
<td>Baa2</td>
<td>BBB</td>
<td>BBB</td>
<td>BBB</td>
<td></td>
</tr>
<tr>
<td>Baa3</td>
<td>BBB-</td>
<td>BBB-</td>
<td>BBB-</td>
<td></td>
</tr>
<tr>
<td>Ba1</td>
<td>BB+</td>
<td>BB+</td>
<td>BB+</td>
<td>Non Investment Grade</td>
</tr>
<tr>
<td>Ba2</td>
<td>BB</td>
<td>BB</td>
<td>BB</td>
<td>Speculative</td>
</tr>
<tr>
<td>Ba3</td>
<td>BB-</td>
<td>BB-</td>
<td>BB-</td>
<td>Highly Speculative</td>
</tr>
<tr>
<td>B1</td>
<td>B-</td>
<td>B-</td>
<td>B-</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>B-</td>
<td>B-</td>
<td>B-</td>
<td></td>
</tr>
<tr>
<td>Caa1</td>
<td>CCC+</td>
<td>CCC</td>
<td>CCC</td>
<td>Substantial Risk</td>
</tr>
<tr>
<td>Caa2</td>
<td>CCC</td>
<td>—</td>
<td>—</td>
<td>In Poor Standing</td>
</tr>
<tr>
<td>Caa3</td>
<td>CCC-</td>
<td>—</td>
<td>—</td>
<td>Extremely Speculative</td>
</tr>
<tr>
<td>Ca</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>May be in Default</td>
</tr>
<tr>
<td>C</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>Default</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>DDD</td>
<td></td>
</tr>
</tbody>
</table>
Liquidity: the relative ease with which an asset can be converted into cash
Liquidity: the relative ease with which an asset can be converted into cash

- Cost of selling a bond
Risk structure of interest rates

- Liquidity: the relative ease with which an asset can be converted into cash
 - Cost of selling a bond
 - Number of buyers/sellers in a bond market
Risk structure of interest rates

- Liquidity: the relative ease with which an asset can be converted into cash
 - Cost of selling a bond
 - Number of buyers/sellers in a bond market

- Income tax considerations
 - Interest payments on municipal bonds are exempt from federal income taxes
Risk structure of interest rates

- Liquidity: the relative ease with which an asset can be converted into cash
 - Cost of selling a bond
 - Number of buyers/sellers in a bond market
- Income tax considerations
 - Interest payments on municipal bonds are exempt from federal income taxes
Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different. This difference is called a spread.
Term structure of interest rates

- Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different. This difference is called a spread.
- Yield curve: a plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations.
Term structure of interest rates

- Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different. This difference is called a spread.

- Yield curve: a plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations
 - Upward-sloping: long-term rates are above short-term rates
Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different. This difference is called a spread.

Yield curve: a plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations

- Upward-sloping: long-term rates are above short-term rates
- Flat: short- and long-term rates are the same
Term structure of interest rates

- Bonds with identical risk, liquidity, and tax characteristics may have different interest rates because the time remaining to maturity is different. This difference is called a spread.

- Yield curve: a plot of the yield on bonds with differing terms to maturity but the same risk, liquidity and tax considerations
 - Upward-sloping: long-term rates are above short-term rates
 - Flat: short- and long-term rates are the same
 - Inverted: long-term rates are below short-term rates
Term structure of interest rates: stylized facts

1. Interest rates on bonds of different maturities move together over time:
Interest rates on bonds of different maturities move together over time:

When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term rates are high, yield curves are more likely to slope downward and be inverted.
1. Interest rates on bonds of different maturities move together over time:

2. When short-term interest rates are low, yield curves are more likely to have an upward slope; when short-term rates are high, yield curves are more likely to slope downward and be inverted.

3. Yield curves almost always slope upward.
Term structure of interest rates: What may explain this?

- **Expectations:**

 The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.

 Buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.

 Bond holders consider bonds with different maturities to be perfect substitutes.

 Example

 Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it.
Term structure of interest rates: What may explain this?

- **Expectations:**

 - The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.
Term structure of interest rates: What may explain this?

- **Expectations:**
 - The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.
 - Buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.

Example:
Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it.
Expectations:

- The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.
- Buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.
- Bond holders consider bonds with different maturities to be perfect substitutes.
Expectations:

- The interest rate on a long-term bond will equal an average of the short-term interest rates that people expect to occur over the life of the long-term bond.
- Buyers of bonds do not prefer bonds of one maturity over another; they will not hold any quantity of a bond if its expected return is less than that of another bond with a different maturity.
- Bond holders consider bonds with different maturities to be perfect substitutes.

Example

Let the current rate on one-year bond be 6%. You expect the interest rate on a one-year bond to be 8% next year. Then the expected return for buying two one-year bonds averages \((6\% + 8\%)/2 = 7\%\). The interest rate on a two-year bond must be 7% for you to be willing to purchase it.