"A Theory of Financing Constraints and Firm Dynamics"
G.L. Clementi and H.A. Hopenhayn (QJE, 2006)

Cesar E. Tamayo
Econ612- Economics - Rutgers

April 30, 2012
Program

- Summary
- Physical environment
- The contract design problem
- Characterization of the optimal contract
- Firm growth and survival
- Contract maturity and debt limits
What they do in a nutshell

- The paper develops a theory of endogenous financing constraints.
What they do in a nutshell

- The paper develops a theory of endogenous financing constraints.
- Repeated moral hazard problem
What they do in a nutshell

- The paper develops a theory of endogenous financing constraints.
- Repeated moral hazard problem
- The optimal contract (under asymmetric info) determines non-trivial stochastic processes for firm size, equity and debt.
What they do in a nutshell

- The paper develops a theory of endogenous financing constraints.
- Repeated moral hazard problem
- The optimal contract (under asymmetric info) determines non-trivial stochastic processes for firm size, equity and debt.
- This in turn implies non-trivial firm dynamics even under simple i.i.d. shocks.
Physical environment:

- At $t = 0$ entrepreneur (\mathcal{E}) has a project that requires initial investment $I_0 > M$ where M is his net worth.
Physical environment:

- At $t = 0$ entrepreneur (\mathcal{E}) has a project that requires initial investment $I_0 > M$ where M in his net worth.
- Borrower (\mathcal{E}) and lender (\mathcal{L}) are risk neutral, discount future at δ.
Physical environment:

- At $t = 0$ entrepreneur (E) has a project that requires initial investment $I_0 > M$ where M is his net worth.
- Borrower (E) and lender (L) are risk neutral, discount future at δ.
- Both agents can fully commit to a long term contract.
Physical environment:

- At $t = 0$ entrepreneur (\mathcal{E}) has a project that requires initial investment $I_0 > M$ where M is his net worth.
- Borrower (\mathcal{E}) and lender (\mathcal{L}) are risk neutral, discount future at δ.
- Both agents can fully commit to a long term contract.
- At each $t \geq 1$, \mathcal{E} can re-scale the project by investing additional k_t.
Physical environment:

- At $t = 0$ entrepreneur (E) has a project that requires initial investment $I_0 > M$ where M in his net worth.
- Borrower (E) and lender (L) are risk neutral, discount future at δ.
- Both agents can fully commit to a long term contract.
- At each $t \geq 1$, E can re-scale the project by investing additional k_t.
- Returns are stochastic and equal to $R(k_t)$ if state of nature is H (with prob. p) and zero if state is L (prob. $1 - p$)
Physical environment:

- At \(t = 0 \) entrepreneur (\(\mathcal{E} \)) has a project that requires initial investment \(I_0 > M \) where \(M \) in his net worth.
- Borrower (\(\mathcal{E} \)) and lender (\(\mathcal{L} \)) are risk neutral, discount future at \(\delta \).
- Both agents can fully commit to a long term contract.
- At each \(t \geq 1 \), \(\mathcal{E} \) can re-scale the project by investing additional \(k_t \).
- Returns are stochastic and equal to \(R(k_t) \) if state of nature is \(H \) (with prob. \(p \)) and zero if state is \(L \) (prob. \(1 - p \)).
- At the beginning of each \(t \), project can be liquidated (\(\alpha_t = 1 \)) yielding \(S \geq 0 \) and resulting in payoffs \(Q \) to \(\mathcal{E} \) and \(S - Q \) to \(\mathcal{L} \).
Physical environment:

- At $t = 0$ entrepreneur (E) has a project that requires initial investment $I_0 > M$ where M in his net worth.
- Borrower (E) and lender (L) are risk neutral, discount future at δ.
- Both agents can fully commit to a long term contract.
- At each $t \geq 1$, E can re-scale the project by investing additional k_t.
- Returns are stochastic and equal to $R(k_t)$ if state of nature is H (with prob. p) and zero if state is L (prob. $1 - p$).
- At the beginning of each t, project can be liquidated ($\alpha_t = 1$) yielding $S \geq 0$ and resulting in payoffs Q to E and $S - Q$ to L.
- If project is not liquidated, E repays τ to L.
Physical environment:

- Assumption: $R(\cdot)$ is continuous, increasing and strictly concave.
Physical environment:

- **Assumption:** $R(\cdot)$ is continuous, increasing and strictly concave.
- **Assumption:** $R(\cdot)$ is private information; the state of nature at t is $\theta_t \in \Theta \equiv \{H, L\}$ but \mathcal{E} reports $\hat{\theta}_t$.
Physical environment:

- **Assumption:** $R(\cdot)$ is continuous, increasing and strictly concave.
- **Assumption:** $R(\cdot)$ is private information; the state of nature at t is $\theta_t \in \Theta \equiv \{H, L\}$ but E reports $\hat{\theta}_t$.
- **Assumption:** E consumes all proceeds $R(k_t) - \tau$ (i.e. no storage)
Physical environment:

Definition (reporting strategy)
A reporting strategy for \mathcal{E} is $\hat{\theta} = \{\hat{\theta}_t (\theta^t)\}_{t=1}^{\infty}$ where $\theta^t = (\theta_1, \theta_2, ..., \theta_t)$
Physical environment:

Definition (reporting strategy)
A reporting strategy for E is $\hat{\theta} = \{\hat{\theta}_t(\theta^t)\}_{t=1}^{\infty}$ where $\theta^t = (\theta_1, \theta_2, ..., \theta_t)$

Definition (contract)
A contract is a vector $\sigma = \{\alpha_t(h^{t-1}), Q_t(h^{t-1}), k_t(h^{t-1}), \tau_t(h^t)\}$ where $h^t = \{\hat{\theta}_1, ..., \hat{\theta}_t\}$
Physical environment:

Definition (reporting strategy)
A reporting strategy for \mathcal{E} is $\hat{\theta} = \{\hat{\theta}_t (\theta^t)\}_{t=1}^{\infty}$ where $\theta^t = (\theta_1, \theta_2, ..., \theta_t)$

Definition (contract)
A contract is a vector $\sigma = \{\alpha_t (h^{t-1}), Q_t (h^{t-1}), k_t (h^{t-1}), \tau_t (h^t)\}$ where $h^t = \{\hat{\theta}_1, ..., \hat{\theta}_t\}$

Definition (feasible contract)
A contract σ is feasible if $\alpha_t \in [0, 1], Q_t \geq 0, \tau_t (h^{t-1}, L) \leq 0, \tau_t (h^{t-1}, H) \leq R (k_t)$.

Physical environment:

Definition (reporting strategy)
A reporting strategy for E is $\hat{\theta} = \{\hat{\theta}_t (\theta^t)\}_{t=1}^{\infty}$ where $\theta^t = (\theta_1, \theta_2, ..., \theta_t)$

Definition (contract)
A contract is a vector $\sigma = \{\alpha_t (h^{t-1}), Q_t (h^{t-1}), k_t (h^{t-1}), \tau_t (h^t)\}$
where $h^t = \{\hat{\theta}_1, ..., \hat{\theta}_t\}$

Definition (feasible contract)
A contract σ is feasible if $\alpha_t \in [0, 1]$, $Q_t \geq 0$, $\tau_t (h^{t-1}, L) \leq 0$, $\tau_t (h^{t-1}, H) \leq R(k_t)$.

Definition (equity and debt)
Expected discounted cash flows for E is called equity, $V_t(\sigma, \hat{\theta}, h^{t-1})$ and for L is called debt, $B_t(\sigma, \hat{\theta}, h^{t-1})$
Physical environment:

Definition (reporting strategy)
A reporting strategy for E is $\theta = \{\hat{\theta}_t (\theta^t)\}_{t=1}^{\infty}$ where $\theta^t = (\theta_1, \theta_2, ..., \theta_t)$

Definition (contract)
A contract is a vector $\sigma = \{\alpha_t (h^{t-1}), Q_t (h^{t-1}), k_t (h^{t-1}), \tau_t (h^t)\}$ where $h^t = \{\hat{\theta}_1, ..., \hat{\theta}_t\}$

Definition (feasible contract)
A contract σ is feasible if $\alpha_t \in [0, 1], \ Q_t \geq 0, \ \tau_t (h^{t-1}, L) \leq 0, \ \tau_t (h^{t-1}, H) \leq R (k_t)$.

Definition (equity and debt)
Expected discounted cash flows for E is called equity, $V_t (\sigma, \hat{\theta}, h^{t-1})$ and for L is called debt, $B_t (\sigma, \hat{\theta}, h^{t-1})$

Definition (incentive compatibility)
A contract σ is incentive compatible if $\forall \hat{\theta}, \ V_1 (\sigma, \theta, h^0) \geq V_1 (\sigma, \hat{\theta}, h^0)$
The first-best (symmetric info)

- Since both are risk neutral and share δ, the optimal contract maximizes total expected discounted profits of the match $(\mathcal{E}, \mathcal{L})$.

\[\max k \left[pR(k) - k \right] \]

So that $R(k)$ is strictly concave and has a unique $k > 0$ that solves (1).

Assume $k > 0$ so that per-period total surplus is:

\[\pi = \max k \left[pR(k) - k \right] = pR(k) - k \]

And PDV of total surplus is

\[W = \pi_1 \delta > S \] by assumption.

Project is undertaken if $W > I_0$ and once project is started, the firm does not grow, shrink or exit.
The first-best (symmetric info)

- Since both are risk neutral and share δ, the optimal contract maximizes total exp. discounted profits of the match $(\mathcal{E}, \mathcal{L})$.
- In equilibrium \mathcal{L} provides \mathcal{E} with the unconst. efficient k in every t:

$$\max_k [pR(k) - k]$$

(1)
The first-best (symmetric info)

- Since both are risk neutral and share δ, the optimal contract maximizes total exp. discounted profits of the match (E, L).
- In equilibrium L provides E with the unconst. efficient k in every t:
 \[
 \max_k [pR(k) - k]
 \]
 (1)
- So that $R(\cdot)$ strictly concave \Rightarrow \exists unique $k^* \geq 0$ that solves (1).
The first-best (symmetric info)

- Since both are risk neutral and share δ, the optimal contract maximizes total exp. discounted profits of the match $(\mathcal{E}, \mathcal{L})$.

- In equilibrium \mathcal{L} provides \mathcal{E} with the unconst. efficient k in every t:

$$\max_k [pR(k) - k]$$

- So that $R(\cdot)$ strictly concave $\Rightarrow \exists$ unique $k^* \geq 0$ that solves (1).

- Assume $k^* > 0$ so that per-period total surplus is:

$$\pi^* = \max_k [pR(k) - k] = pR(k^*) - k^*$$
The first-best (symmetric info)

Since both are risk neutral and share \(\delta \), the optimal contract maximizes total exp. discounted profits of the match \((E, L)\).

In equilibrium \(L \) provides \(E \) with the unconst. efficient \(k \) in every \(t \):

\[
\max_k \left[pR(k) - k \right] \tag{1}
\]

So that \(R(\cdot) \) strictly concave \(\Rightarrow \) \(\exists \) unique \(k^* \geq 0 \) that solves (1).

Assume \(k^* > 0 \) so that per-period total surplus is:

\[
\pi^* = \max_k \left[pR(k) - k \right] = pR(k^*) - k^*
\]

And PDV of total surplus is \(W^* = \frac{\pi^*}{1-\delta} > S \) by assumption.
The first-best (symmetric info)

- Since both are risk neutral and share δ, the optimal contract maximizes total exp. discounted profits of the match $(\mathcal{E}, \mathcal{L})$.
- In equilibrium \mathcal{L} provides \mathcal{E} with the unconst. efficient k in every t:
 \[
 \max_k [pR(k) - k]
 \]
- So that $R(\cdot)$ strictly concave $\Rightarrow \exists$ unique $k^* \geq 0$ that solves (1).
- Assume $k^* > 0$ so that per-period total surplus is:
 \[
 \pi^* = \max_k [pR(k) - k] = pR(k^*) - k^*
 \]
- And PDV of total surplus is $W^* = \frac{\pi^*}{1-\delta} > S$ by assumption.
- Project is undertaken if $W^* > I_0$ and once project is started, firm does not grow, shrink or exit.
Private information: the Pareto frontier

- \mathcal{L} designs a contract that gives her $B(V)$ and gives \mathcal{E} a value V.

...
Private information: the Pareto frontier

- \mathcal{L} designs a contract that gives her $B(V)$ and gives \mathcal{E} a value V.
- The Pareto frontier of the problem is given by $Gr(B(V))$ and each $(V, B(V))$ implies a value for the match $W(V) = V + B(V)$.
Private information: the Pareto frontier

- \(\mathcal{L} \) designs a contract that gives her \(B(V) \) and gives \(\mathcal{E} \) a value \(V \).
- The Pareto frontier of the problem is given by \(\text{Gr}(B(V)) \) and each \((V, B(V))\) implies a value for the match \(W(V) = V + B(V) \).
- Begin by finding the equilibrium of the subgame that starts after \(\mathcal{L} \) decides not to liquidate the project.
Private information: the Pareto frontier

- \(\mathcal{L} \) designs a contract that gives her \(B(V) \) and gives \(\mathcal{E} \) a value \(V \).
- The Pareto frontier of the problem is given by \(Gr(B(V)) \) and each \((V, B(V)) \) implies a value for the match \(W(V) = V + B(V) \).
- Begin by finding the equilibrium of the subgame that starts after \(\mathcal{L} \) decides not to liquidate the project.
- Upon continuation, the evolution of equity is given by:

\[
V = \rho (R(k) - \tau) + \delta \left[\rho V^H + (1 - \rho) V^L \right]
\]

(2)
Private information: the Pareto frontier

- \mathcal{L} designs a contract that gives her $B(V)$ and gives \mathcal{E} a value V.
- The Pareto frontier of the problem is given by $Gr(B(V))$ and each $(V, B(V))$ implies a value for the match $W(V) = V + B(V)$.
- Begin by finding the equilibrium of the subgame that starts after \mathcal{L} decides not to liquidate the project.
- Upon continuation, the evolution of equity is given by:

$$ V = p(R(k) - \tau) + \delta \left[pV^H + (1 - p) V^L \right] \quad (2) $$

- While the evolution of debt (not in the paper):

$$ B(V) = p\tau - k + \delta \left[pB(V^H) + (1 - p) B(V^L) \right] $$
Private information: the Pareto frontier

- \mathcal{L} designs a contract that gives her $B(V)$ and gives E a value V.
- The Pareto frontier of the problem is given by $Gr(B(V))$ and each $(V, B(V))$ implies a value for the match $W(V) = V + B(V)$.
- Begin by finding the equilibrium of the subgame that starts after \mathcal{L} decides not to liquidate the project.
- Upon continuation, the evolution of equity is given by:

$$V = p(R(k) - \tau) + \delta \left[pV^H + (1 - p) V^L \right]$$

(2)

- While the evolution of debt (not in the paper):

$$B(V) = p\tau - k + \delta \left[pB(V^H) + (1 - p) B(V^L) \right]$$

- The value of equity effectively summarizes all the information provided by the history itself (Spear and Srivastava, 1987; Green, 1987) so it’s the appropriate state variable in a recursive formulation of the repeated contracting problem.
The optimal contract upon continuation maximizes the value for the match $\hat{W}(V_c)$, subject to LL, IC and PK constraints.
Recursive formulation *upon* continuation

- The optimal contract upon continuation maximizes the value for the match $\hat{W}(V_c)$, subject to LL, IC and PK constraints.
- In recursive form, the program to be solved upon continuation is:

$$\hat{W}(V) = \max_{k, \tau, V^H, V^L} pR(k) - k + \delta \left[pW(V^H) + (1 - p) W(V^L) \right]$$

s.t.

$$V = p(R(k) - \tau) + \delta \left[pV^H + (1 - p) V^L \right]$$

(PK)

$$\tau \leq \delta \left(V^H - V^L \right)$$

(ICC)

$$\tau \leq R(k), \ V^H \geq 0, \ V^L \geq 0$$

(LL)
Recursive formulation upon continuation

- The optimal contract upon continuation maximizes the value for the match $\hat{W}(V_c)$, subject to LL, IC and PK constraints.
- In recursive form, the program to be solved upon continuation is:

$$\hat{W}(V) = \max_{k, \tau, V^H, V^L} pR(k) - k + \delta \left[pW(V^H) + (1 - p) W(V^L) \right]$$

s.t.

$$V = p(R(k) - \tau) + \delta \left[pV^H + (1 - p) V^L \right]$$ \hspace{1cm} (PK)

$$\tau \leq \delta \left(V^H - V^L \right)$$ \hspace{1cm} (ICC)

$$\tau \leq R(k), \ V^H \geq 0, \ V^L \geq 0$$ \hspace{1cm} (LL)

- Authors show that $V \mapsto \hat{W}(V)$ is increasing and concave.
The optimal contract upon continuation maximizes the value for the match \(\hat{\mathcal{W}} (V_C) \), subject to LL, IC and PK constraints.

In recursive form, the program to be solved upon continuation is:

\[
\hat{\mathcal{W}} (V) = \max_{k, \tau, V^H, V^L} \left[pR(k) - k + \delta \left(p\mathcal{W}(V^H) + (1 - p)\mathcal{W}(V^L) \right) \right] \\
\text{s.t.} \\
V = p(R(k) - \tau) + \delta \left[pV^H + (1 - p)V^L \right] \quad \text{(PK)} \\
\tau \leq \delta \left(V^H - V^L \right) \quad \text{(ICC)} \\
\tau \leq R(k), \ V^H \geq 0, \ V^L \geq 0 \quad \text{(LL)}
\]

Authors show that \(V \mapsto \hat{\mathcal{W}} (V) \) is increasing and concave.

Solving this problem yields policy functions \(k (V) \), \(\tau (V) \), \(V^H (V) \) and \(V^L (V) \).
Recursive formulation *before* liquidation decision

- If project is liquidated, \(E \) receives \(Q \) while \(L \) receives \(S - Q \). If project is not liquidated, they get \(V_c, B(V_c) \).
Recursive formulation \textit{before} liquidation decision

- If project is liquidated, \mathcal{E} receives Q while \mathcal{L} receives $S - Q$. If project is not liquidated, they get $V_c, B(V_c)$.
- Pure strategies may not be optimal for some values of V so $\alpha \in [0, 1]$ and \mathcal{L} offers a "lottery" to \mathcal{E}.

\[W(V) = \max_{\alpha \in [0, 1]} \left(\alpha Q + (1 - \alpha) V_c \right) \]
Recursive formulation \textit{before} liquidation decision

- If project is liquidated, \mathcal{E} receives Q while \mathcal{L} receives $S - Q$. If project is not liquidated, they get $V_c, B(V_c)$.
- Pure strategies may not be optimal for some values of V so $\alpha \in [0, 1]$ and \mathcal{L} offers a "lottery" to \mathcal{E}.
- Thus, in recursive form, the program to be solved prior to liquidation:

$$W(V) = \max_{\alpha \in [0, 1], Q, V_c} \left\{ \alpha S + (1 - \alpha) \hat{W}(V_c) \right\}$$

s.t. : \begin{align*}
\alpha Q + (1 - \alpha) V_c &= V \quad \text{(PK)} \\
V_c &\geq 0, \quad Q \geq 0 \quad \text{(LL)}
\end{align*}
Recursive formulation \textit{before} liquidation decision

- If project is liquidated, \mathcal{E} receives Q while \mathcal{L} receives $S - Q$. If project is not liquidated, they get $V_c, B(V_c)$.

- Pure strategies may not be optimal for some values of V so $\alpha \in [0, 1]$ and \mathcal{L} offers a "lottery" to \mathcal{E}.

- Thus, in recursive form, the program to be solved prior to liquidation:

$$W(V) = \max_{\alpha \in [0, 1], Q, V_c} \{\alpha S + (1 - \alpha) \hat{W}(V_c)\}$$

\text{ s.t. } : \alpha Q + (1 - \alpha) V_c = V \quad \text{(PK)}

: \quad V_c \geq 0, \quad Q \geq 0 \quad \text{(LL)}

- Notice that $W(\cdot)$ preserves the properties of $\hat{W}(\cdot)$.
Regions for \(V \) (Propositions 1 & 2)

The domain of \(V \) can be partitioned in three regions:

- **Region I:** When \(0 \leq V \leq V_r \), liquidation is possible and randomizing is optimal with \(\alpha(V) = (V_r - V) / V_r \)

Sketch of argument:

\[\alpha = 1 \quad \text{while} \quad \alpha = 0 \]

Now \(W(V) = S \) while \(\alpha = 2(0, 1) \) s.t. \(V \leq V_r \) implies that \(\alpha (V) + (1 - \alpha) \hat{W}(V_r) > \max(S, \hat{W}(V)) \).

Intuition: As \(V \) expected value \(\hat{W}(V) \) rises above \(S \) and \(L \) liquidates with low probability (draw graph).

Region III: When \(V = pR(k / (1 / \delta)) \) the total surplus is the same as under symmetric information (first-best), i.e., \(W(V) = W \).

Intuition: equivalent to \(E \) having a balance of \(k / (1 / \delta) \) in the bank at interest rate \((1 / \delta) / \delta \) that is exactly enough to finance the project at its optimum scale. Then \(L \) advances \(k \) and collects \(\tau = 0 \) every period.
Regions for \(V \) (Propositions 1 & 2)

The domain of \(V \) can be partitioned in three regions:

- **Region I:** When \(0 \leq V \leq V_r \), liquidation is possible and randomizing is optimal with \(\alpha (V) = (V_r - V) / V_r \)
 - Sketch of argument: \(\alpha = 1 \Rightarrow W(V) = S \) while \(\alpha = 0 \Rightarrow W(V) = \hat{W}(V) \). Now \(W^* > S \Rightarrow \exists! V_r \) and \(\alpha \in (0, 1) \) s.t. \(V \leq V_r \) implies that \(\alpha S + (1 - \alpha) \hat{W}(V_r) > \max \{ S, \hat{W}(V) \} \).

- **Region III:** When \(V = p_R(k) / (1 - \delta) \) the total surplus is the same as under symmetric information (first-best), i.e., \(W(V) = W \).
 - Intuition: equivalent to \(\text{E} \) having a balance of \(k / (1 - \delta) \) in the bank at interest rate \((1 - \delta) / \delta \) that is exactly enough to finance the project at its optimum scale. Then \(L \) advances \(k \) and collects \(\tau = 0 \) every period.
The domain of V can be partitioned in three regions:

- **Region I:** When $0 \leq V \leq V_r$, liquidation is possible and randomizing is optimal with $\alpha(V) = (V_r - V) / V_r$
 - Sketch of argument: $\alpha = 1 \Rightarrow W(V) = S$ while $\alpha = 0 \Rightarrow W(V) = \hat{W}(V)$. Now $W^* > S \Rightarrow \exists! V_r$ and $\alpha \in (0, 1)$ s.t. $V \leq V_r$ implies that $\alpha S + (1 - \alpha) \hat{W}(V_r) > \max \{S, \hat{W}(V)\}$.
 - Intuition: As $V \rightarrow V_r$ expected value $\hat{W}(V)$ rises above S and L liquidates with low probability (draw graph).

- **Region II:** When $V > V_r$, liquidation is impossible and randomizing is optimal with $\alpha(V) = 1$.
 - Sketch of argument: $W(V) = S$ while $W(V) = \hat{W}(V)$. Now $W^* > S \Rightarrow \exists! V_r$ and $\alpha \in (0, 1)$ s.t. $V \leq V_r$ implies that $\alpha S + (1 - \alpha) \hat{W}(V_r) > \max \{S, \hat{W}(V)\}$.
 - Intuition: Equivalent to E having a balance of $k \left(\frac{1}{1 + \delta} \right)$ in the bank at interest rate $\left(\frac{1}{1 + \delta} \right)$ that is exactly enough to finance the project at its optimum scale. Then L advances k and collects $\tau = 0$ every period.

- **Region III:** When $V \leq 0$, liquidation is impossible and randomizing is optimal with $\alpha(V) = 0$.
 - Sketch of argument: $W(V) = \hat{W}(V)$ while $W(V) = S$. Now $W^* > S \Rightarrow \exists! V_r$ and $\alpha \in (0, 1)$ s.t. $V \leq V_r$ implies that $\alpha S + (1 - \alpha) \hat{W}(V_r) > \max \{S, \hat{W}(V)\}$.
 - Intuition: Equivalent to E having a balance of $k \left(\frac{1}{1 + \delta} \right)$ in the bank at interest rate $\left(\frac{1}{1 + \delta} \right)$ that is exactly enough to finance the project at its optimum scale. Then L advances k and collects $\tau = 0$ every period.
Regions for V (Propositions 1 & 2)

The domain of V can be partitioned in three regions:

- **Region I**: When $0 \leq V \leq V_r$, liquidation is possible and randomizing is optimal with $\alpha(V) = (V_r - V) / V_r$

 - Sketch of argument: $\alpha = 1 \Rightarrow W(V) = S$ while $\alpha = 0 \Rightarrow W(V) = \hat{W}(V)$. Now $W^* > S \Rightarrow \exists! V_r$ and $\alpha \in (0, 1)$ s.t. $V \leq V_r$ implies that $\alpha S + (1 - \alpha) \hat{W}(V_r) > \max\{S, \hat{W}(V)\}$.

 - Intuition: As $V \to V_r$ expected value $\hat{W}(V)$ rises above S and L liquidates with low probability (draw graph).

- **Region III**: When $V \geq V^* = pR(k^*) / (1 - \delta)$ the total surplus is the same as under symmetric information (first-best), i.e., $W(V^*) = W^*$.

Regions for V (Propositions 1 & 2)

The domain of V can be partitioned in three regions:

- **Region I:** When $0 \leq V \leq V_r$, liquidation is possible and randomizing is optimal with $\alpha(V) = (V_r - V) / V_r$

 - Sketch of argument: $\alpha = 1 \Rightarrow W(V) = S$ while $\alpha = 0 \Rightarrow W(V) = \hat{W}(V)$. Now $W^* > S \Rightarrow \exists! V_r$ and $\alpha \in (0, 1)$ s.t. $V \leq V_r$ implies that $\alpha S + (1 - \alpha) \hat{W}(V_r) > \max \{S, \hat{W}(V)\}$.

 - Intuition: As $V \to V_r$ expected value $\hat{W}(V)$ rises above S and L liquidates with low probability (draw graph).

- **Region III:** When $V \geq V^* = pR(k^*) / (1 - \delta)$ the total surplus is the same as under symmetric information (first-best), i.e., $W(V^*) = W^*$.

 - Intuition: equivalent to E having a balance of $k^*/(1 - \delta)$ in the bank at interest rate $(1 - \delta)/\delta$ that is exactly enough to finance the project at its optimum scale. Then L advances k^* and collects $\tau = 0$ every period.
Region II: When $V_r \leq V < V^*$:

- There is no liquidation in the current period and V_r is strictly increasing.
- The optimal capital advancement policy is single-valued and such that $k(V) < k^*$ (the firm is debt-constrained).

Sketch of argument: suppose that the optimal repayment policy for region II was $\tau = R(k)$ implying that the ICC binds (see below the proofs for both of these results). Then:

$$R(k) = \delta(V_H - V_L)$$

which implies that increasing k is only incentive compatible if V_H also increases. But $W(V)$ concave implies that doing so is costly! (draw graph)
The borrowing constraint region (Propositions 1 & 2 cont.)

- **Region II**: When $V_r \leq V < V^*$:

 (a) There is no liquidation in current period and $V \mapsto W(V)$ is strictly increasing and,
The borrowing constraint region (Propositions 1 & 2 cont.)

- **Region II**: When $V_r \leq V < V^*$:

 (a) There is no liquidation in current period and $V \mapsto W(V)$ is strictly increasing and,

 (b) The optimal capital advancement policy is single-valued and s.t. $k(V) < k^*$ (the firms is debt-constrained)
The borrowing constraint region (Propositions 1 & 2 cont.)

- **Region II**: When $V_r \leq V < V^*$:

 (a) There is no liquidation in current period and $V \mapsto W(V)$ is strictly increasing and,

 (b) The optimal capital advancement policy is single-valued and s.t. $k(V) < k^*$ (the firms is debt-constrained).

- Sketch of argument: suppose that the optimal repayment policy for region II was $\tau = R(k)$ implying that the ICC binds (see below the proofs for both of these results). Then:

 $$R(k) = \delta(V^H - V^L)$$

 which implies that increasing k is only incentive compatible if $V^H - V^L$ also increases. But $W(V)$ concave implies that doing so is costly! (draw graph)
Optimal repayment policy (proposition 3)

- The optimal repayment function satisfies $\tau = R(k)$ for $V < V^*$ and $\tau = 0$ for $V \geq V^*$.
The optimal repayment function satisfies $\tau = R(k)$ for $V < V^*$ and $\tau = 0$ for $V \geq V^*$.

Intuition:
The optimal repayment function satisfies \(\tau = R(k) \) for \(V < V^* \) and \(\tau = 0 \) for \(V \geq V^* \).

Intuition:

- We know that \(\max_{V \in \mathcal{V}} W(V) = W^* \) and from props 1&2 we know that \(W(V^*) = W^* \).
The optimal repayment function satisfies $\tau = R(k)$ for $V < V^*$ and $\tau = 0$ for $V \geq V^*$.

Intuition:

- We know that $\max_{V \in \mathcal{V}} W(V) = W^*$ and from props 1&2 we know that $W(V^*) = W^*$.
- Now, at given t, \mathcal{L} delivers promised utility V_t either by allowing $\tau < R(k)$ or by promising higher future value.
The optimal repayment function satisfies $\tau = R(k)$ for $V < V^*$ and $\tau = 0$ for $V \geq V^*$.

Intuition:

- We know that $\max_{V \in \mathcal{V}} W(V) = W^*$ and from props 1&2 we know that $W(V^*) = W^*$.
- Now, at given t, \mathcal{L} delivers promised utility V_t either by allowing $\tau < R(k)$ or by promising higher future value.
- Risk neutrality and common $\delta \Rightarrow V \rightarrow V^*$ in the shortest time possible is optimal.
The optimal repayment function satisfies $\tau = R(k)$ for $V < V^*$ and $\tau = 0$ for $V \geq V^*$.

Intuition:

- We know that $\max_{V \in V} W(V) = W^*$ and from props 1&2 we know that $W(V^*) = W^*$.
- Now, at given t, L delivers promised utility V_t either by allowing $\tau < R(k)$ or by promising higher future value.
- Risk neutrality and common $\delta \Rightarrow V \rightarrow V^*$ in the shortest time possible is optimal.
- Limited liability then implies $\tau = R(k)$ until $V = V^*$.
Evolution of equity when \(V < V^* \)

- From prop. 3 we know that \(\tau = R(k) \) for \(V_r \leq V < V^* \) is optimal.
Evolution of equity when $V < V^*$

- From prop. 3 we know that $\tau = R(k)$ for $V_r \leq V < V^*$ is optimal.
- Next, notice that $\tau = R(k)$ implies that the ICC binds (lemma 2).
Evolution of equity when $V < V^*$

- From prop. 3 we know that $\tau = R(k)$ for $V_r \leq V < V^*$ is optimal.
- Next, notice that $\tau = R(k)$ implies that the ICC binds (lemma 2).
 - To see this, recall that from prop. 2, $V < V^* \Rightarrow k(V) < k^*$. Thus, suppose that the optimal k is s.t. the ICC is slack: $\tau = R(k) < \delta (V^H - V^L)$. Then one could increase k thereby increasing the total surplus without violating the ICC, contradicting optimality.
Evolution of equity when $V < V^*$

- From prop. 3 we know that $\tau = R(k)$ for $V_r \leq V < V^*$ is optimal.
- Next, notice that $\tau = R(k)$ implies that the ICC binds (lemma 2).
 - To see this, recall that from prop. 2, $V < V^* \Rightarrow k(V) < k^*$. Thus, suppose that the optimal k is s.t. the ICC is slack:
 $\tau = R(k) < \delta(V^H - V^L)$. Then one could increase k thereby increasing the total surplus without violating the ICC, contradicting optimality.
- Next, ICC binding $\Rightarrow R(k) = \delta(V^H - V^L)$. Recall that from prop. 2 $V_r \leq V \Rightarrow \alpha(V) = 0$. Summarizing:
 $$V = \alpha Q + (1 - \alpha) V_c = V_c = \delta \left[pV^H + (1 - p) V^L \right]$$
Evolution of equity when $V < V^*$

- From prop. 3 we know that $\tau = R(k)$ for $V_r \leq V < V^*$ is optimal.
- Next, notice that $\tau = R(k)$ implies that the ICC binds (lemma 2).
 - To see this, recall that from prop. 2, $V < V^* \Rightarrow k(V) < k^*$. Thus, suppose that the optimal k is s.t. the ICC is slack: $\tau = R(k) < \delta(V^H - V^L)$. Then one could increase k thereby increasing the total surplus without violating the ICC, contradicting optimality.
- Next, ICC binding $\Rightarrow R(k) = \delta(V^H - V^L)$. Recall that from prop. 2 $V_r \leq V \Rightarrow \alpha(V) = 0$. Summarizing:

$$V = \alpha Q + (1 - \alpha)V_c = V_c = \delta \left[pV^H + (1 - p) V^L \right]$$

- And we obtain the policy functions:

$$V^L(V) = \frac{V - pR(k)}{\delta}, \quad V^H(V) = \frac{V + (1 - p)R(k)}{\delta}$$
Evolution of equity when $V < V^*$

- The authors show that $V^L (V) , V^H (V)$ are nondecreasing.
Evolution of equity when $V < V^*$

- The authors show that $V^L(V), V^H(V)$ are nondecreasing.
- Moreover, starting from any equity value $V_0 \in [V_r, V^*)$ after a finite sequence of good shocks $V_0 \rightarrow V^*$. Likewise, after a finite sequence of bad shocks $V_0 \rightarrow V_r$ or below, triggering randomized liquidation.
- There is an asymmetry between change in equity following good and bad shocks: if p, δ large then $V^L(V) > V^H(V)$.

Evolution of equity when $V < V^*$

- The authors show that $V^L(V), V^H(V)$ are nondecreasing.
- Moreover, starting from any equity value $V_0 \in [V_r, V^*)$ after a finite sequence of good shocks $V_0 \rightarrow V^*$.
- Likewise, after a finite sequence of bad shocks $V_0 \rightarrow V_r$ or below, triggering randomized liquidation.
Evolution of equity when $V < V^*$

- The authors show that $V^L(V), V^H(V)$ are nondecreasing.
- Moreover, starting from any equity value $V_0 \in [V_r, V^*)$ after a finite sequence of good shocks $V_0 \to V^*$.
- Likewise, after a finite sequence of bad shocks $V_0 \to V_r$ or below, triggering randomized liquidation.
- There is an asymmetry between change in equity following good and bad shocks: if p, δ large $\Rightarrow V - V^L > V^H - V$.
Dynamics of equity
Dynamics of equity

- Finally, it is easy to see that \(\{V_t\} \) is a submartingale with two absorbing sets: \(V_t < V_r \) and \(V_t > V^* \ \forall \ t \)
Finally, it is easy to see that \(\{V_t\} \) is a submartingale with two absorbing sets: \(V_t < V_r \) and \(V_t > V^* \) \(\forall t \).

Simulations (\(R(k) = k^{2/5} \), \(p = 0.5 \), \(\delta = 0.99 \), \(S = 1.5 \)):

![Graph showing stock price dynamics over time]
We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \mapsto k(V)$ in general (it is nonmonotonic).
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \leftrightarrow k(V)$ in general (it is nonmonotonic).
- However, simulations show that conditional on success, capital grows at a positive rate, i.e. $k(V^H)/k(V) > 1$ while $k(V^L)/k(V) < 1$.
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \mapsto k(V)$ in general (it is nonmonotonic).
- However, simulations show that conditional on success, capital grows at a positive rate, i.e. $k(V^H)/k(V) > 1$ while $k(V^L)/k(V) < 1$.
- This contributes to the "cash-flow coefficient" debate; if Tobin’s q is a sufficient statistic for investment, then cash flows should not matter.
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \leftrightarrow k(V)$ in general (it is nonmonotonic).
- However, simulations show that conditional on success, capital grows at a positive rate, i.e. $k(V^H)/k(V) > 1$ while $k(V^L)/k(V) < 1$.
- This contributes to the "cash-flow coefficient" debate; if Tobin’s q is a sufficient statistic for investment, then cash flows should not matter.
- But if the optimal contract of this model was the DGP:
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \mapsto k(V)$ in general (it is nonmonotonic).
- However, simulations show that conditional on success, capital grows at a positive rate, i.e. $k(V^H)/k(V) > 1$ while $k(V^L)/k(V) < 1$.
- This contributes to the "cash-flow coefficient" debate; if Tobin’s q is a sufficient statistic for investment, then cash flows should not matter.
- But if the optimal contract of this model was the DGP:
 1. Cash flows will matter for investment $\Leftrightarrow k(V) < k^*$
Optimal k advancement policy

- We’ve seen that $V_0 \in [V_r, V^*) \Rightarrow k(V) < k^*$ (the firms is debt-constrained).
- Now, it is difficult to characterize $V \mapsto k(V)$ in general (it is nonmonotonic).
- However, simulations show that conditional on success, capital grows at a positive rate, i.e. $k(V^H)/k(V) > 1$ while $k(V^L)/k(V) < 1$.
- This contributes to the "cash-flow coefficient" debate; if Tobin’s q is a sufficient statistic for investment, then cash flows should not matter.
- But if the optimal contract of this model was the DGP:
 1. Cash flows will matter for investment $\iff k(V) < k^*$
 2. Cash flows will matter more, the more constrained is the firm.
Firm growth and survival

- Firm size is captured by k
Firm growth and survival

- Firm size is captured by k
- Starting from the same $V_0 \in [V_r, V^*)$ simulate many different shock paths.
Firm growth and survival

- Firm size is captured by k
- Starting from the same $V_0 \in [V_r, V^*)$ simulate many different shock paths.
- As seen before, firms eventually either exit or reach the unconstrained optimum size.
Firm growth and survival

- Firm size is captured by k
- Starting from the same $V_0 \in [V_r, V^*)$ simulate many different shock paths.
- As seen before, firms eventually either exit or reach the unconstrained optimum size.
- Since $k < k^*$ w/e $V_t < V^*$ surviving firms grow with age; size and age are positively correlated in accordance with empirical evidence.
Firm growth and survival

- Firm size is captured by k
- Starting from the same $V_0 \in [V_r, V^*)$ simulate many different shock paths.
- As seen before, firms eventually either exit or reach the unconstrained optimum size.
- Since $k < k^*$ w/e $V_t < V^*$ surviving firms grow with age; size and age are positively correlated in accordance with empirical evidence.
- Mean and variance of equity growth decrease systematically.
Firm growth and survival

- Firm size is captured by k
- Starting from the same $V_0 \in [V_r, V^*)$ simulate many different shock paths.
- As seen before, firms eventually either exit or reach the unconstrained optimum size.
- Since $k < k^*$ w/e $V_t < V^*$ surviving firms grow with age; size and age are positively correlated in accordance with empirical evidence.
- Mean and variance of equity growth decrease systematically.
- Conditional probability of survival increases with V. Given that V increases over time (for surviving firms), survival rates are positively correlated with age and size.
Firm growth and survival

- Firm size is captured by \(k \).
- Starting from the same \(V_0 \in [V_r, V^*] \) simulate many different shock paths.
- As seen before, firms eventually either exit or reach the unconstrained optimum size.
- Since \(k < k^* \) w/e \(V_t < V^* \) surviving firms grow with age; size and age are positively correlated in accordance with empirical evidence.
- Mean and variance of equity growth decrease systematically.
- Conditional probability of survival increases with \(V \). Given that \(V \) increases over time (for surviving firms), survival rates are positively correlated with age and size.
- The advantage of this model is that requires little structure on the stochastic process driving firm productivity; a simple \(i.i.d. \) process is enough to generate the rich dynamics described above.
Firm growth and survival

Average Size

Exit Hazard Rate

Average Growth

Variance of Growth
Beyond firm dynamics (not presented here)

The authors show that the optimal (long term) contract can be replicated by a sequence of one-period contracts iff it is renegotiation-proof.
Beyond firm dynamics (not presented here)

- The authors show that the optimal (long term) contract can be replicated by a sequence of one-period contracts iff it is renegotiation-proof.
- The contract is renegotiation-proof iff collateral S is greater than the maximum sustainable debt.
Beyond firm dynamics (not presented here)

- The authors show that the optimal (long term) contract can be replicated by a sequence of one-period contracts iff it is renegotiation-proof.
- The contract is renegotiation-proof iff collateral S is greater than the maximum sustainable debt.
- Risk aversion?
Beyond firm dynamics (not presented here)

- The authors show that the optimal (long term) contract can be replicated by a sequence of one-period contracts iff it is renegotiation-proof.
- The contract is renegotiation-proof iff collateral S is greater than the maximum sustainable debt.
- Risk aversion?
- No capital accumulation is WLOG?
The authors show that the optimal (long term) contract can be replicated by a sequence of one-period contracts iff it is renegotiation-proof.

The contract is renegotiation-proof iff collateral S is greater than the maximum sustainable debt.

Risk aversion?

No capital accumulation is WLOG?

General equilibrium?